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Effects of weak disorders on quantum Hall critical points
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Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 8 February 1999!

We study the consequences of the random mass, random scalar potential, and random vector potential on the
line of fixed points between integer and/or fractional quantum Hall states and an insulator. This line of fixed
points was first identified in a clean Dirac fermion system with both Chern-Simon coupling and Coulomb
interaction@Phys. Rev. Lett.80, 5409~1998!#. By performing a renormalization-group analysis in 1/N (N is
the number of species of Dirac fermions! and the variances of three disordersDM ,DV ,DA , we find thatDM is
irrelevant along this line, and bothDA andDV are marginal. With the presence of all three disorders, the pure
fixed line is unstable. Setting Chern-Simon interaction to zero, we find one nontrivial line of fixed points in the
(DA ,w) plane with dynamic exponentz51 and continuously changingn; it is stableagainst small (DM ,DV)
in a small range of the line 1,w,1.31, therefore it may be relevant to integer quantum Hall transition. Setting
DM50, we find a fixed plane withz51, the part of this plane withn.1 is stable against smallDM , therefore
it may be relevant to fractional quantum Hall transition. Although we do not find a generic fixed point with all
the couplingsnonvanishing, we prove that the theory isrenormalizableto the order (1/N)2,(1/N)D,D2, and we
explore the interesting processes which describe the interferences between the Chern-Simon interaction, the
Coulomb interaction, and the three kinds of disorders.@S0163-1829~99!12627-4#
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I. INTRODUCTION

The zero-temperature quantum phase transitions betw
the different quantum Hall and insulating states of a tw
dimensional electron gas in a strong magnetic field
among the most intensively studied quantum critical poin
both theoretically1,2 and experimentally.3 Earlier theoretical
investigations focused on the transitions between the inte
quantum Hall plateaus and described them in terms of n
interacting electrons moving in a random external potenti4

Ludwig et al. introduced and analyzed a Dirac fermio
model with random mass, random scalar potential, and
dom gauge potential. They found that the random mas
marginallyirrelevant, the random scalar potential marginal
relevant. However, they found that the random vector pote
tial is exactly marginal; therefore, there is a line of fixed
points characterized by the strength of the random ga
potential. The zero-energy wave function shows multifrac
behaviors with the exponents continuously changing al
the line.5 If two of the random potentials are nonzero, t
third one will be generated and the system flows to
strong-coupling regime. They further argued that the sys
should flow to the generic fixed point of integer quantu
Hall transitions which was correctly described by t
Chalker-Coddington model.6,7

The properties of the fixed line of Dirac fermions in th
presence of random magnetic fields were further investiga
in Refs. 8 and 9. Later, theU(1) gauge potential was ex
tended to the non-Abelian gauge potential.10–12

It has also been argued that the transitions between f
tional quantum Hall states could be mapped onto mod
essentially equivalent to those between the integer stat13

The latter point of view was, however, questioned by W
and Wu14 and Chen, Fisher, and Wu:15 they focused on the
simpler case of systems in the presence of aperiodic rather
than a random potential, and examined a model of any
PRB 600163-1829/99/60~11!/8290~14!/$15.00
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with a statistical angleu and short-range repulsive intera
tions, which displayed a second-order quantum phase tra
tion between a quantized Hall state and a Mott insulator
the strength of the periodic potential was varied. This tran
tion was characterized by a line of critical points with co
tinuously varying exponents, parametrized by the value ou.
For the caseu50, when the anyons were fermions, the tra
sition was out of an integer quantum Hall state; its expone
and other universal properties were different from the ca
0,u,2p for which the anyons acquired fractional statisti
and the transition was out a fractional quantum Hall sta
~For u52p the anyons became bosons and the Hall s
reduced to a superfluid.!

In all of the above theoretical works, the long-range Co
lomb interactions between charge carriers have been e
tively ignored. However, a few recent works have tak
steps to remedy this serious shortcoming. Yang a
MacDonald16 studied the integer quantum Hall transition u
der a Hartree-Fock treatment of the Coulomb interacti
Lee and Wang17 showed that the renormalization-group e
genvalue of the Coulomb interaction was zero at the Hartr
Fock critical point; higher-order calculations are therefo
necessary to understand the physics. Pfannkuche
MacDonald18 numerically studied electrons with Coulom
interactions in a periodic potential between a fractional H
state and an insulator, but were limited to rather small sys
sizes. Interesting scaling interpretations of Coulom
interaction-induced dephasing were discussed in Ref. 19

Most recently, neglecting the disorders, Ye and Sach
provided a thorough analysis of the consequences of C
lomb interactions on the anyons in a periodic potential mo
of Refs. 14 and 15. They showed that the Coulomb inter
tion is marginally irrelevantfor the integer case (u50), and
remains so for the fractional case for small values ofu; this
marginally irrelevant interaction will lead to logarithmic co
rections to naive scaling functions for the vicinity of th
8290 ©1999 The American Physical Society
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transition. For largeru, they established, in a certain 1/N
expansion, the existence of a line of fixed points at which
Coulomb interactions acquire a nonzero fixed point va
determined by the value ofu. There are no logarithmic cor
rections at these fixed points, and naive scaling holds. T
found a dynamic critical exponentz51 at all points on the
fixed line, providing a concrete realization of the scenario,20,2

not previously established explicitly, that energies must sc
as inverse distances for the 1/r Coulomb interaction. They
also found the correlation length exponentn.2/d ~whered
is the spatial dimensionality! along this fixed line, which
implies that the fixed line is stable against the weak rand
mass disorder.

In this paper we study in detail the consequences of
random mass, random scalar potential, and random ve
potential at the line of fixed points. In the rest of this secti
we introduce the notations and the model. In Sec. II we g
a very general renormalization-group~RG! formulation of
the model and establish someexact results @for example,
Eqs.~5! and~8!#. In Sec. III we perform one-loop expansio
and discuss the implications of RG flow equations. In S
IV we first discuss the RG equation atN5` limit, then
calculate 1/N corrections and discuss the solutions in diffe
ent cases. Finally, we reach conclusions in Sec. V. In
Appendix we show the equivalence of the two forms of t
random vector gauge potential.

We begin our analysis by writing down the model of Re
21 extended to include the random massM (x), the random
scalar potentialV(x), and the random vector potentia
Ai(x),5

S5E ddxdtFac̄mg0]0cm1c̄mg i] icm

2
i

AN
qme/2a1/2a0c̄mg0cm2

i

AN
gme/2a1/2ai c̄mg icmG

1E d2k

4p2

dv

2p F ika0~2kW ,2v!at~kW ,v!

1
k

2
at~2kW ,2v!at~kW ,v!G1E ddxdt@ iM ~x!c̄mcm

1V~x!c̄mg0cm1 iAi~x!c̄mg icm#. ~1!

The cm are m51, . . . ,N species of chargeq/AN 211 di-
mensional Dirac fermions which interact with aU(1) gauge
field (a0 ,ai) ( i 51,2); we are interested in the caseN51 but
will find the large-N expansion to be a useful tool. Theg0 ,g i
are the Diracg matrices,xi ~t! are spatial~temporal! coor-
dinates with ]0[]t , ] i[]xi

, and kW , v (k5ukW u) are the
Fourier-transformed wave-vector and frequency variab
To aid the subsequent renormalization-group analysis,
are working ind521e spatial dimensions andm is a renor-
malization scale. The parametera is introduced to allow for
anisotropic renormalization between space and time.22 We
have used the Coulomb gauge which allows us to explic
e
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representai in terms of the transverse spatial compone
with ai5 i e i j kjat /k. Thea0at term inS is the Chern-Simons
coupling: it turns the Dirac particles into anyons with a s
tistical angleu/N with u[qg; notice that the angle is o
order 1/N and so the expected periodicity of the physi
underu/N→u/N14p will not be visible in the 1/N expan-
sion. Theatat term is the Coulomb interaction, and it ha
been written in terms ofat following Ref. 23.

In the absence of the Coulomb interaction and the rand
potential terms, it was shown in Ref. 15 thatS represents the
critical theory of a system of anyons in a periodic potent
undergoing a transition from an insulator with conductiviti
sxx5sxy50 into a fractional quantum Hall state withsxx

50 and sxy5(q2/h)/(12u/2p) to leading order in 1/N.
Both these states have energy gaps. It was shown in Re
that the Coulomb interaction and disorder do not modify
values ofs i j in either phase.

The relationship of the continuum modelS to the more
realistic model of electrons studied in Ref. 18 remains som
what unclear, although it is plausible thatS is the critical
theory of the latter. We may also viewS as the simplest
theory consistent with the following requirements, and the
fore worthy of further study:~i! the two phases on either sid
of the critical point have the correct values ofs i j , and the
Hall phase hasboth quasiparticle and quasihole excitation
with the correct charge and statistics, and~ii ! the gap towards
the quasiparticleand the quasihole excitations vanishes
the critical point.

II. THE RENORMALIZATION-GROUP FORMULATION
OF THE MODEL

We now proceed with a renormalization-group analysis
S. Simple power counting shows that the Chern-Simo
Coulomb interactions,24 and all three kinds of disorders ar
marginal at tree level ind52, and so loop expansions ar
required and useful. Power counting also shows that a sh
range four-fermion interaction term isirrelevant and has
therefore been neglected inS; this makes the fermionic for-
mulation of the anyon problem much simpler than
bosonic counterpart.14,25,26

We assume all the three kinds of disorder satisfy Gaus
distribution with zero mean and variancesDM ,DV ,DA ,

^M ~x!M ~x8!&5DMdd~x2x8!,

^V~x!V~x8!&5DVdd~x2x8!, ~2!

^Ai~x!Aj~x8!&5d i j DAdd~x2x8!.

By introducing replica a,b51,2,...,n and doing a
quenched average over the above Gaussian distributions
get
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S5E ddxdtFac̄m
a g0]0cm

a 1c̄m
a g i] icm

a 2
i

AN
qme/2a1/2a0

ac̄m
a g0cm

a 2
i

AN
gme/2a1/2ai

ac̄m
a g icm

a G
1E d2k

4p2

dv

2p F ika0
a~2kW ,2v!at

a~kW ,v!1
k

2
at

a~2kW ,2v!at
a~kW ,v!G1E ddxdtdt8†DMme@c̄m

a ~x,t!cm
a ~x,t!#

3@c̄m
b ~x,t8!cm

b ~x,t8!#2DVme@c̄m
a ~x,t!g0cm

a ~x,t!#@c̄m
b ~x,t8!g0cm

b ~x,t8!#1DAme@c̄m
a ~x,t!g icm

a ~x,t!#

3@c̄m
b ~x,t8!g icm

b ~x,t8!#‡. ~3!

The loop expansion requires counterterms to account for ultraviolet divergences in momentum integrals; we w
counter terms as

SCT5E ddxdtFa~Za21!c̄m
a g0]0cm

a 1~Z221!c̄m
a g i] icm

a 2
i

AN
~Z1

q21!qme/2a1/2a0
ac̄m

a g0cm
a

2
i

AN
~Z1

g21!gme/2a1/2ai
ac̄m

a g icm
a G1E ddxdtdt8†~ZM21!DMme@c̄m

a ~x,t!cm
a ~x,t!#@c̄m

b ~x,t8!cm
b ~x,t8!#

2~ZV21!DVme@c̄m
a ~x,t!g0cm

a ~x,t!#@c̄m
b ~x,t8!g0cm

b ~x,t8!#1~ZA21!DAme@c̄m
a ~x,t!g icm

a ~x,t!#

3@c̄m
b ~x,t8!g icm

b ~x,t8!#‡. ~4!
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In general, counter terms for the last two gauge fi
terms in S should also be considered. However, it w
shown21 that at least to two loops, there were no divergen
associated with these terms. The Ward identities follow
from gauge invariance dictate

Z1
q5Za , Z1

g5Z2 . ~5!

Using these identities, we relate the bare fields and c
plings in S to the renormalized quantities by

cmB5Z2
1/2cm ,

aB5~Za /Z2!a,

qB5qme/2~Za /Z2!1/2,

gB5gme/2~Z2 /Za!1/2, ~6!

DMB5meDMZM /Z2
2,

DVB5meDVZV /Z2
2,

DAB5meDAZA /Z2
2.

Notice that these relations imply that for the statistic
angleu/N5qg/N we haveuB5ume even in the presence o
the Coulomb interaction and the disorders; so ind52 this
angle is a renormalization-group invariant, which is expec
on general physical grounds.

The dynamic critical exponentz is related to the renor
malization ofa by22

z512m
d

dm
ln a512m

d

dm
ln

Z2

Za
. ~7!
d

s
g

u-

l

d

We will find it convenient to express the loop expansi
in terms of the ‘‘fine-structure’’ constantw[q2/16, and a
central object of study shall be itsb function b(w)
5m(dw/dm). By comparing~7! with relationships between
bare and renormalized quantities quoted above we see t

z512b~w!/w. ~8!

Finally, the critical exponentn is related to the anomalou
dimension of the composite operatorc̄c by n2121
5m(d ln Zc̄c /dm); the renormalization constantZc̄c can be
calculated by inserting the operator into the self-energy d
grams.

III. ONE-LOOP CALCULATION

We begin the explicit calculation of the renormalizatio
constants by considering a direct perturbative expansio
the Coulomb fine-structure constantw, the statistical angleu,
and the three kinds of disordersDM ,DV ,DA . At one-loop
order@Fig. 1 and Fig. 2~a!,~b!,~c!#, we find no dependence o
u; the values of the renormalization constants up to terms
orderw2, u2, wu, andD2 are

Z25122w/Npe,
~9!

FIG. 1. Renormalization to the Dirac fermion self-energy fro
gauge-field fluctuations to order 1/N.
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Za512
1

pe
~DM1DV12DA!.

We also explicitly verified that the Ward identities Eq.~5!
hold.

From Figs. 3–8 and Fig. 1~a!–~d!, we can calculate the
three renormalization constants for the disorders~the details
are given in Sec. IV where we perform a similar calculatio
in the large-N limit !:

ZM511
1

peDM
~2DM

2 12DMDV24DMDA24DVDA!

2
8w

Npe
, ~10!

ZV512
2

peDV
~DMDV12DMDA1DVDV12DVDA!,

ZA512
2

peDA
DMDV2

4w

Npe
.

From Eq.~6!, we obtain the fourb functions,

b~w!5bp~w!2
w

p
~DM1DV12DA!,

b~DM !522DM~np
2121!

1
2

p
~DM

2 1DMDV22DMDA22DVDA!,

~11!

b~DV!52DV

bp~w!

w
2

2

p
~DMDV12DMDA1DV

212DVDA!,

b~DA!52
2

p
DMDV ,

where theb function of the Coulomb coupling in thepure
systembp(w) is21

bp~w!5
2w2

Np
1O~w3,w2u2! ~12!

while thepure critical exponentnp is21

FIG. 3. Renormalization from the random mass.

FIG. 2. Contribution to the Dirac fermion self-energy from ra
dom potentials.
s

np5122w/Np. ~13!

From Eq.~11!, we can identify thedisorderedcritical expo-
nentn,

n215np
212

DM

p
2

DV

p
1

2DA

p
. ~14!

From the first and the third equations in Eq.~11!, we find
b(DV) andb(w) are related by

b~DV!52DV

b~w!

w
2

4

p
DMDA . ~15!

In Eq. ~11!, by setting the Coulomb interaction and two
the random potentials to be zero, we reproduce the resul
Ludwig et al.5

With the presence of the Coulomb interactionwÞ0, we
discuss the three cases separately.

~i! DMÞ0. The system flows to a line ofstable fixed
points given byDM52w/N. The flow trajectory is given by
DM5C/w2, C is an arbitrary constant@Fig. 9~a!#. From Eqs.
~13! and ~14!, we find n51 along this line, it saturates th
boundn>2/d (d is the special dimension!.

FIG. 4. Renormalization from the interference of the rando
mass andeffectiverandom scalar potential. Note the effective ra
dom scalar potential can only appear in theinternal loops.

FIG. 5. Renormalization from the interference of the rando
mass andeffectiverandom vector potential.
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8294 PRB 60JINWU YE
~ii ! DVÞ0. There exists a line ofunstablefixed points
given by DV52w/N. The flow trajectory is given byDV
5Cw2 @Fig. 9~b!#. Below this line the system flows to th
origin, above this line the system flows to the stron
coupling regime. From Eqs.~13! and ~14!, we find n51
along this line.

~iii ! DAÞ0. The system flows to a line ofstable fixed
points given byDA5w/N. The flow trajectory is given by
DA5C @Fig. 9~c!#. From Eqs.~13! and ~14!, we find n51
24DA /p which continuously changes along this line.
should be noted thatn,1 along this line.

From Eq.~8!, it is easy to see thatz51 on all these lines
of fixed points. It is also worth noting that, despite the va
z51, the critical correlators arenot Lorentz invariant.

In the generic case, we do not find any perturbative
cessible stable fixed point. The system flows to the stro
coupling regime. In the next section, we resort to the largeN
expansion to explore the strong-coupling regime.

IV. LARGE- N EXPANSION

To understand larger values ofu and to explore the con
sequences of a possible interference between the Cou
interactions, disorders, and the Chern-Simons term,
found it convenient to perform a 1/N expansion. This is tech
nically simpler than a perturbative two-loop extension of t
computation in Sec. III and also automatically includes
dynamic screening of the gauge field propagator by the
mion polarization.23 Alternatively stated, the so-calle
random-phase~RPA! approximation becomes exact atN
5`, and 1/N corrections require gauge-field propagato
which have the RPA form

FIG. 6. Renormalization from the random scalar potential

FIG. 7. Renormalization from the interference of the effect
random scalar potential and effective random vector potential.
-

-
g-

mb
e

e
r-

SRPA5
1

2 E d2k

4p2

dv

2p
~a0 ,at!

3S q2k2/~16Ak21v2! ik

ik k1g2/~16Ak21v2!
D S a0

at
D .

~16!

The inverse of the above matrix leads to the propaga
of the gauge fields

G00~q,n!5
1

q2

q1
g2

16
Aq21n2

11S u

16D
2

1
e2

16

q

Aq21n2

,

G0i~q,n!5
e i j qj

q2

1

11S u

16D
2

1
e2

16

q

Aq21n2

,

~17!

G0i~q,n!52Gi0~q,n!,

FIG. 8. Renormalization from the effective random vector p
tential.

FIG. 9. One-loop renormalization-group flow of~a! the random
mass and Coulomb interaction,~b! the random scalar potential an
Coulomb interaction, and~c! the random gauge potential and Co
lomb interaction.
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Gi j ~q,n!5S d i j 2
qiqj

q2 D e2/16

F11S u

16D
2GAq21n21

e2

16
q

.

To the order of (1/N)0D, the summation of Fig. 10~a!–~e!

leads toeffectiverandom scalar potentialD̃V ,

D̃V5
DV1DAf

~l1w!2 , ~18!

wheref[(u/16)2 andl511f. Note that bothDV andDA
contribute to the effective random scalar potential with
samesign.

To the order of (1/N)0D, the summation of Fig. 11~a!–~e!

leads toeffectiverandom vector potentialD̃A(d i j 2qiqj /q2)
~see the Appendix!,

D̃A5
DVf1DA~11w!2

~l1w!2 . ~19!

FIG. 10. Effective random scalar potentialD̃V to the order
(1/N)0DV and (1/N)0DA . The thick dashed line is the effectiv
random scalar potential. The thin dashed lines are the bare ran
scalar and vector potentials. The wavy line is the gauge-fie
propagators.

FIG. 11. Effective random vector potentialD̃A to the order
(1/N)0DA and (1/N)0DV . The thick dashed line is the effectiv
random vector potential. The thin dashed lines are the bare ran
scalar and vector potentials.
e

Note that bothDA andDV contribute to the effective random
vector potential with thesamesign.

To the order of (1/N)0D, the summation of Fig. 12~a!–~d!
leads to effective random scalar-vector~SV! potential
D̃Ce i j qj /q,

D̃C5
2Af

~l1w!2 @2DV1DA~11w!#. ~20!

It should be noted that bothDA andDV contribute to the
effective random SV potential with theoppositesign and
there isno such random SV potential in the original actio
Eq. ~3!. Due to the interference between the disorder and
Chern-Simons~CS! interaction, this potential is generate
But it can only appear asinternal lines. Setting f50
~namely, no CS interaction!, this potential vanishes.

These three effective potentials plus the random mass
tential and the four RPA gauge fields propagators in Eq.~17!
are the building blocks in the following Feymann diagram
Note that, however, onlybaredisorder potentials can appea
asexternallines of any Feymann diagram.

In the following, we discuss theN5` case first, then we
discuss the 1/N correction. It is well known that onlyprimi-
tive divergences of Feymann diagrams are needed in the
flow equation.

A. N5` limit

Figure 2 shows the contributions to the Dirac fermi
self-energy from the effective random potentials. The div
gent parts from the effective random SV potentials~d! and
~e! vanish. We find the two constants defined in Eq.~4!

Z251,
~21!

Za512
1

pe
~DM1D̃V12D̃A!.

In the following, the notationA→B means thatA renor-
malizesB.

om
s

m

FIG. 12. Effective random scalar-vector potentialD̃C to the or-
der (1/N)0DA and (1/N)0DV . The thick dashed line is the effectiv
random SV potential. There isno bare random SV potential.
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Figure 3 is the renormalization from the random mass~in
this figure and the following figures, we do not draw expl
itly the diagrams with the exchange of leg3 and leg4!,

3a523b5
DM

2

pe
→DA ,

~22!

3c53d5
2DM

2

pe
→DM .

In all, Fig. 3 contributes 4DM
2 pe→DM .

Figure 4 is the renormalization from the interference
random mass andeffectiverandom scalar potential. Note th
effective random scalar potential can only appear in thein-
ternal loops,

4a54b54c54d52
DMD̃V

pe
→DA ,

4e54 f 5
2DMD̃V

pe
→DM , ~23!

4g54h5
2DMDV

pe
→DV .

In all, Fig. 4 contributes 4DMD̃V /pe→DM , 4DMDV /pe

→DV , 24DMD̃V /pe→DA .
Figure 5 is the renormalization from the interference

random mass andeffectiverandom vector potential,

5a55b5
2DMD̃A

pe
→DM ,

2DMD̃A

pe
→DV ,

5c55d52
2DMD̃A

pe
→DM ,

2DMD̃A

pe
→DV ,

~24!

5e55 f 52
4DMD̃A

pe
→DM ,

5g55h50.

In all, Fig. 5 contributes28DMD̃A /pe→DM , 8DMD̃A /pe
→DV .

Figure 6 is the renormalization from the random sca
potential.

6a526b5
D̃V

2

pe
→DA ,

~25!

6c56d5
2DVD̃V

pe
→DV .

In all, Fig. 6 contributes 4DVD̃V /pe→DV .
Figure 7 is the renormalization from the interference

the effective random scalar potential and the effective r
dom vector potential,

7a57b52
2D̃VD̃A

pe
→DM , 2

2D̃VD̃A

pe
→DV , ~26!
f

f

r

f
-

7c57d52
2D̃VD̃A

pe
→DM ,

2D̃VD̃A

pe
→DV ,

7e57 f 5
4DVD̃A

pe
→DV ,

7g57h50.

In all, Fig. 7 contributes28D̃VD̃A /pe→DM , 8DVD̃A /pe
→DV .

Figure 8 is the renormalization from the effective rando
vector potential,

8a528b5
4D̃A

2

pe
→DA ,

~27!

8c58d50.

In all, Fig. 8 doesnot contribute.
Figure 13 is the renormalization from the effective ra

dom SV potential,

13a513d5213e5213h52
D̃C

2

4pe
→DA ,

~28!

13b513c513f 513g52
D̃C

2

2pe
→DM .

In all, Fig. 13 contributes22D̃C
2 /pe→DM . It can be shown

that only when SV potential get paired, there arenonzero
contributions.

Figure 14 is the renormalization to the random mass fr
random effective scalar, vector and scalar-vector potenti

FIG. 13. Renormalization from the effective random SV pote
tial.
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14a514h5
16DMD̃A

pe

w1f

l1w
→DM ,

14b514c512 f 512g5
8DMD̃C

pe

Af

l1w
→DM , ~29!

14d514e52
16DMD̃V

pe

f

l1w
→DM .

In all, Fig. 14 contributes2(32DM /pe)@1/(l1w)#@fD̃V

2(w1f)D̃A2AfD̃C#→DM .
From Figs. 5–8, 13, and 14, we find the three consta

ZM ,ZV ,ZA defined in Eq.~4!,

ts

ZM511
1

peDM
~2DM

2 12DMD̃V24DMD̃A24D̃VD̃A2D̃C
2

216DMD̃K!,

ZV512
2

peDV
~DMDV12DMD̃A1DVD̃V12DVD̃A!,

~30!

ZA512
2

peDA
DMD̃V ,

whereD̃K is given by
D̃K5
DVf~32w2f!1DA@f22~w1f!~11w!222f~11w!#

~l1w!3 . ~31!
ter

of

lf-
.
-

From Eq. ~6!, we can find the followingb functions at
N5`:

b~w!52
w

p
@DM1P~D̃V!12P~D̃A!#,

b~DM !5
2

p
DM

2 1
1

p
D̃C

2 1
4

p
D̃VD̃A1

2

p
~DM22D̃A!P~D̃V!

2
4

p
~DM1D̃V!P~D̃A!2

2

p
D̃CP~D̃C!

2
16

p
DMP~D̃K!,

~32!
b~DV!52

2

p
DMDV2

2

p
DVP~D̃V!2

4

p
~DM1DV!P~D̃A!,

b~DA!52
2

p
DMP~D̃V!,

FIG. 14. Renormalization to random mass fromD̃V ,D̃A ,D̃C . In

the text, it is calledD̃K . Compare this figure to Fig. 1.
where the function P(D)5DV]D/]DV1DA]D/]DA
1w(]D/]w)12f(]D/]f).

We shall discuss the implications of this equation af
considering 1/N corrections in the next subsection.

B. 1/N correction

In this section we consider the 1/N correction toN5`
results. The small parameters are 1/N,DM ,DV ,DA . We ex-
pect that if there are fixed points, the fixed points values
D8s are of the order 1/N.

Figure 1 is the contribution to the Dirac fermion se
energy from 1/N fluctuation of gauge fields given by Eq
~17!. Actually, Figs. 1~b! and 1~c! are convergent. The re
sults are21

Z2512
CA

Npe
512

1

Npe S 2w

l
2

16w2A

pl
1

u2C

16p
2

u2E

16p D ,

~33!

Za512
CV

Npe
512

1

Npe S 16w2B

pl
2

u2D

16p
1

u2F

16p D ,

where l511(u/16)2 and the functionsA,B,C,D,E5A
1B, F5B are given by the formal expressions

A5E
0

1

dx
4x2~12x2!

~11x2!3 f ~x;w,u!,

B5E
0

1

dx
~12x2!~126x21x4!

~11x2!3 f ~x;w,u!,

~34!

C5E
0

1

dx
4x2

~12x2!~11x2!
f ~x;w,u!,

D5E
0

1

dx
~126x21x4!

~12x2!~11x2!
f ~x;w,u!,
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with f (x;w,u)5@l(11x2)1w(12x2)#21, and the variable
x represents an intermediate frequency. Note the two c
stantsC,D are divergent: this divergence is due to the s
gular effect of frequenciesuvu@k. However, as shown in
Ref. 21, these divergences are gauge artifacts and canc
the b function and in any physical gauge-invariant quant
such asn, z, or s i j . The divergences, however, do infect th
anomalous dimension of the field operatorc: this is as ex-
pected as the propagator ofc is clearly gauge dependent.

Figure 15 is the renormalization toDM from the 1/N fluc-
tuation of gauge fields. Actually, Figs. 15~b! and 15~c! are
convergent; the divergent parts are

CM

Npe
5

1

Npe F4w

l S 12
4w~2A1B!

p D1
u2~2C1D !

16p

1
u2~2A1B!

16p
2

u2G

2p G , ~35!

where the functionG is given by

G5E
0

1

dxF ~f21!~12x2!1w
~12x2!2

11x2 G f 2~x;w,u!.

~36!

It is easy to see Fig. 15 is exactlythe samediagram for the
calculation of Zc̄c as expected,20 therefore Z2Zc̄c51
2CM /Npe.

In Fig. 15, replacingDM line by DV andDA lines, we can
repeat the same calculation. In fact, the divergent p
should beCV /Npe andCA /Npe, respectively, as dictate
by Ward identities. It can be shown explicitly that Fig. 16~a!
1Fig. 16~b! vanishes as dictated by Ward identities.

FIG. 15. Renormalization to the random mass from gauge-fie
fluctuation to the order 1/N.

FIG. 16. Fermion bubbles which contribute to the renormali
tion of random scalar and vector potentials. In the figurem,n,l
50,1,2.
n-
-

l in

ts

Adding the 1/N correction to the renormalization con
stants calculated in the last Sec. IV A, we obtain

Z2512
CA

Npe
,

Za512
1

pe
~DM1D̃V12D̃A!2

CV

Npe
,

ZM511
1

peDM
~2DM

2 12DMD̃V24DMD̃A24D̃VD̃A2D̃C
2

216DMD̃K!2
2CM

Npe
, ~37!

ZV512
2

peDV
~DMDV12DMD̃A1DVD̃V12DVD̃A!

2
2CV

Npe
,

ZA512
2

peDA
DMD̃V2

2CA

Npe
.

From Eq.~6!, we can find 1/N corrections to theb func-
tions in Eq.~32!,

b~w!5bp~w!2
w

p
@DM1P~D̃V!12P~D̃A!#,

b~DM !522DM~np
2121!1

2

p
DM

2 1
1

p
D̃C

2 1
4

p
D̃VD̃A

1
2

p
~DM22D̃A!P~D̃V!2

4

p
~DM1D̃V!P~D̃A!

2
2

p
D̃CP~D̃C!2

16

p
DMP~D̃K!,

b~DV!52DV

bp~w!

w
2

2

p
DMDV2

2

p
DVP~D̃V!

2
4

p
~DM1DV!P~D̃A!,

b~DA!52
2

p
DMP~D̃V!. ~38!

The bp(w) in Eq. ~38! is the b function of the Coulomb
coupling in thepure case which was calculated in Ref. 21

s

-
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bp~w!5
2w2~12f!

Np2l2
F p216wE

0

1

dxS 12x2

11x2D 3 l~11x2!1
w

2
~12x2!

@l~11x2!1w~12x2!#2
G

1
32wf

Np2 E
0

1

dx
~12x2!~21110x22x4!

~11x2!3

~11x2!1
w

2
~12x2!

@l~11x2!1w~12x2!#2 . ~39!

The pure exponentnp in Eq. ~38! is given by

np
21215

2w~12f!

Np2l2
F p216wE

0

1

dxS 12x2

11x2D 3 l~11x2!1
w

2
~12x2!

@l~11x2!1w~12x2!#2
G1

32f

Np2 E
0

1

dxS 12x2

11x2D 3 11x21
w

2
~12x2!

@l~11x2!1w~12x2!#2

2
192f

Np2 E
0

1

dxS 12x2

11x2D 11x21
w

2
~12x2!

@l~11x2!1w~12x2!#2 1
512f~12f!

Np2 E
0

1

dx
~12x2!~11x2!

@l~11x2!1w~12x2!#3 . ~40!
te
er-

in
s

The explicit expressions forP8s are given by

P~D̃V!5
1

~l1w!3 @DV~12w23f!1DAf~31w2f!#,

P~D̃A!5
1

~l1w!3 $DVf~31w2f!1DA~11w!

3@~11w!22~31w!f#%,
~41!

P~D̃C!5
2Af

~l1w!3 $22DV~12f!

1DA@~l1w!w12~11w!~12f!#%,

P~D̃K!5
1

~l1w!3 $DVf~924w25f!

1DA@5f22~11w!2~2w13f!26f~11w!

22w~w1f!~11w!22fw#%

2
3~w12f!

~l1w!4 $DVf~32w2f!

1DA@f22~w1f!~11w!222f~11w!#%.

From the second equation in Eq.~38!, we can identify the
disorderedcritical exponent

n215np
212

DM

p
2

P~D̃V!

p
1

2P~D̃A!

p
1

8P~D̃K!

p
.

~42!

At fixed points, substituting

bp~w!

w
5

1

p
@DM1P~D̃V!12P~D̃A!#

into Eq. ~40!, we can simplify the above equation to
n215 ñp
211

4P~D̃A!

p
1

8P~D̃K!

p
, ~43!

whereñp
21 is listed in Eq.~12! of Ref. 21

ñp
212152

128f

Np2 E
0

1

dx
~12x2!~116x21x4!

~11x2!3

3

11x21
w

2
~12x2!

„l~11x2!1w~12x2!…2

1
512f~12f!

Np2 E
0

1

dx
~12x2!~11x2!

@l~11x2!1w~12x2!#3 .

~44!

It can be checked that Eq.~15! should be replaced by

b~DV!52DV

b~w!

w
2

4

p
DMP~D̃A!. ~45!

In Eq. ~38!, we expandb(w) to order 1/N andD, expand
b~D! to (1/N)D,D2. It is easy to see there should beno
(1/N)2 terms inb~D!, because interactions do not genera
disorder~or, equivalently, disorder does not generate int
actions!. Note that the small parameter 1/N plays a similar
role to the small parametere in the conventionale expansion,
namely, we are trying to locate the fixed points atD8s at the
order of 1/N.

We now turn to the physical implications of our ma
results~38!, ~39!, and~40!. If there exists only random mas
namely,DV5DA50, Eq. ~38! simplifies to

b~w!5bp~w!2
w

p
DM ,

~46!

b~DM !522DM~np
2121!1

2

p
DM

2 522DM~ ñp
2121!.
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Setting all the disorders vanishing, the authors in Ref.
found a line ofpure fixed points given bybp(w)50. They
also found thatñp.1 along the fixed line, and therefor
concluded that this line is stable against weak random m
disorder from Harris criterion. Here, we explicitly writ
down b(DM) to the order (1/N)DM ,DM

2 and reach astron-
ger statement that there areno other fixed points except thi
line in the weak-coupling regime.

Comparing Eq.~32! to Eq. ~38!, we find that there isno
1/N correction tob(DA), thereforeDA is always marginal.
The 1/N correction tob(DV) is simply bp(w)/w, therefore
DV is marginal along this line, irrelevant~relevant! above
(below) this line. Actually, these results are expected fro
Ward identities. We also find that 1/N correction tob(DM)
is just np

2121, which is consistent with the Harris criterion
With the presence of all the three disorders, we expect
the pure fixed line is unstable.

1. Integer quantum Hall transition„f50…

First, considering the transition out of the integer quant
Hall state,u50, which impliesf50, l51. The bp(w) is
simplified to21

bp~w!

w
5

2w

Np2
F p216wE

0

1

dxS 12x2

11x2D 3

3

11x21
w

2
~12x2!

@11x21w~12x2!#2
G . ~47!

Equation~40! reduces tonp
21215bp(w)/w. The simple

analysis of Eq.~39! shows thatbp(w).0 for all w.0; for
small w we havebp(w)/w52w/(Np), in agreement with
the one-loop result~12!, while for w@1, b(w)54/(Npw).
So the onlypure fixed point remains atw50. The whole
picture of bp(w)/w is drawn in Fig. 17~a!,~c!, it increases
linearly first, reaches a maximum value 0.20/N at w51.31,
and eventually decays as 1/w.

It is easy to see thatD̃V5DV /(11w)2, P(D̃V)5DV(1
2w)/(11w)3; D̃A5P(D̃A)5DA ; D̃C5P(D̃C)50; D̃K5

2DAw/(11w), P(D̃K)52DAw(w12)/(11w)2. Substi-
tuting these expressions into Eq.~38! we find that Eq.~38! is
simplified to

b~w!

w
5

bp~w!

w
2

1

p S DM1DV

12w

~11w!3 12DAD ,

b~DM !522DM

bp~w!

w
1

2

p
DM

2 1
2

p
~DM22DA!DV

~48!

3
12w

~11w!3 1
4

p
DMDAS 32

4

~11w!2D ,

b~DV!52DV

bp~w!

w
2

2

p
DMDV2

2

p
DV

2 12w

~11w!3

2
4

p
~DM1DV!DA ,
1

ss

at

b~DA!52
2

p
DMDV

12w

~11w!3 .

Equation~42! is simplified to

n215np
212

DM

p
2

DV

p

12w

~11w!3 1
2DA

p
2

8DA

p

w~w12!

~11w!2 .

~49!

Equation~45! is simplified to

b~DV!52DV

b~w!

w
2

4

p
DMDA . ~50!

We discuss the three cases separately.
~i! DMÞ0. The system flows to a line ofstable fixed

points given byDM5p@bp(w)/w#. Like the one-loop result,
n51 and the flow trajectory is given byDM5C/w2, C is an
arbitrary constant;1/N @Fig. 17~a!#. We suspect thatn51
is exact~namely, independent of the large-N limit !. This line
is unstableagainst smallDV andDA .

~ii ! DVÞ0. There exists a line of fixed points given b
DV5p@(11w)3/(12w)#@bp(w)/w# which approaches in-
finity asw→12. Like the one-loop result,n51 and the flow
trajectory is given byDV5Cw2 @Fig. 17~b!#. Again, we sus-
pect thatn51 is exact. The lower part of this line~thin part!
is unstable, the higher part of this line~thick part! is stable.
The system either flows to the origin or flows to the high
part, depending on the initial condition. This line isunstable
against smallDM andDA .

~iii ! DAÞ0. The system flows to a line of fixed point
given by DA5(p/2)@bp(w)/w#. Like the one-loop result,
the flow trajectory is given byDA5C @Fig. 17~c!#. However,
unlike the one-loop result,n21512(4DA /p)@122/(1
1w)2#, if w.&21;0.41, n.1. The left part of this line

FIG. 17. Renormalization-group flow to order 1/N of ~a! the
random mass and Coulomb interaction,~b! the random scalar po
tential and Coulomb interaction, and~c! the random gauge potentia
and Coulomb interaction. The thick~thin! lines in~b! and~c! are the
stable~unstable! lines of fixed points.
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~thick part! is stable, the right part of this line~thin part! is
unstable. At weak disorder, the system either flows to the
part of the line or to the strong-coupling regime, depend
on the initial condition. At strong disorder, the system
ways flows to the strong-coupling regime.

This line is stable against smallDM andDV in the range
1,w,1.31. This stable region may control the integ
quantum Hall transitions observed in real experimen
systems.1

As shown first by Ludwiget al.,5 the random gauge fixed
line is unstable againstDM andDV @see also Eq.~11!#. Due
to the Coulomb interaction, we find there is a small part
the fixed line 1,w,1.31 which is stable against smallDM
andDV .

From Eq.~8!, it is easy to see thatz51 on all these lines
of fixed points. Unfortunately, we are still unable to find
generic fixed points with all the couplingsnonvanishing.
These generic fixed points may be either unaccessible to
method developed in this paper, or simply do not exist in
real experimental system.

2. Fractional quantum Hall transition „f>0…

Turning to the fractional case with a nonzerou, we start
with the simplest casew5DV5DA50. b(DM) simplifies
to

b~DM !522DM~np
2121!1

2

p
DM

2 , ~51!

wherenp is the exponent in the absence of Coulomb int
actions (w50):

np512
512f~122f!

N3p2l3 . ~52!

When 0,f,1/2, np,1, the pure fixed point is unstable, th
system flows to a line of fixed points given byDM
5512f(122f)/N3pl3. From Eq. ~8! and the fact
bp(w)/wuw5050, we obtainz511DM /p.1 which con-
tinuously changes along this line~Fig. 18!. From Eq.~42!,
we getn51 along this line. Whenf.1/2, the pure line of
fixed points withz51 is stable. It is easy to see that th
fixed line is unstable against small (w,DV ,DA).

Unlike the Coulomb interaction case (u50), if DVÞ0 or
DAÞ0, then all the three disorders are generated, this ca
easily realized from Eq.~38!. So we have to investigate th
generic fixed points of Eq.~38!.

FIG. 18. Renormalization-group flow to order 1/N of the ran-
dom mass and Chern-Simon interaction.
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From Eq. ~38!, b(DA)50 implies eitherP(D̃V)50 or
DM50. In the following, we discuss the two cases sep
rately.

~i! P(D̃V)50. From Eq. ~45! and Eq. ~38!, b(w)
5b(DV)50 implies thatP(D̃A)50, bp(w)/w5DM /p. Fi-
nally, b(DM)50 implies

22DM~ ñp
2121!1

1

p
D̃C

2 1
4

p
D̃VD̃A2

2

p
D̃CP~D̃C!

2
16

p
DMP~D̃K!50. ~53!

The disorderedcritical exponent Eq.~43! is simplified to

n215 ñp
211

8P~D̃K!

p
. ~54!

It is easy to see thatP(D̃V)5P(D̃A)50 implies the fol-
lowing equation:

t5
DV

DA
5

f~31w2f!

w13f21
5

~11w!@~31w!f2~11w!2#

f~31w2f!
.

~55!

Namely, x511w should satisfy thefourth-order equa-
tion:

x412~f21!x322f2x222f~f21!~f12!x1f2~22f!2

50, ~56!

with the constraints 31w.f, f.(12w)/3, f.(1
1w)2/(31w).

From Ref. 21,bp(w)/w5DM /p.0 implies thatf,2,
thereforew,A5.

If f50, Eq. ~56! reduces tox3(x22)50, thereforew
51. If 0,f,1, there isno real root which satisfies bothx
.1 and the constraints.

If f51, Eq. ~56! reduces to (x221)250 which implies
thatw50. Substituting (f51, w50, t51) into Eq.~41!, we
find D̃C5P(D̃C)5P(D̃K)50.

If 1 ,f,2, there is only one real root withx.1. We also
find P(D̃K),0, thereforen. ñp.1 in this regime.

Unfortunately, when substituting the (f,w,t) into Eq.
~53!, we find that the left-hand side of the equation is alwa
positive. Therefore, we conclude there isno perturbatively
accessible fixed points withDM ,DV ,DA.0.

~ii ! DM50. From Eq.~45!, we see thatb(w)50 implies
b(DV)50. From Eq.~38!, it leads to

bp~w!

w
5

1

p
@P~D̃V!12P~D̃A!#. ~57!

From Eq.~38!, b(DM)50 leads to

1

p
D̃C

2 1
4

p
D̃VD̃A2

4

p
D̃AP~D̃V!2

4

p
D̃VP~D̃A!

2
2

p
D̃CP~D̃C!50. ~58!
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From Eq. ~58!, given (f,t), we can determinew, then
substituting (f,w,t) to Eq. ~57!, we can determineDA ,DV .
In the following, we consider the two end lines separatel

~a! DV50 ~namely,t50!. If f50, Eq. ~58! becomes an
identity, we recover the results of the integer quantum H
transfer~IQHT! @Fig. 17~c!#. If f.0, the solution of Eq.~58!
is w5 1

2 @3f1A(3f)214(12f)24#.0 ~namely,f.3/5!.
Substituting this expression into Eq.~57!, we can determine
DA and the constraintf,1.3. Thusf must satisfy 3/5,f
,1.3. From Eq.~43!, we find this line is stable against sma
DM .

~b! DA50 ~namely,t5`!. If f50, Eq.~58! becomes an
identity, we recover the results of the IQHT@Fig. 17~b!#.

If f.0, the solution of Eq.~58! is w5325f. Substitut-
ing w5325f into Eq. ~57!, we can determineDV :
bp(w)/w5(DV /32p)@(6f21)/(12f)2#. Therefore f
must satisfy 1/6,f,3/5. Equation ~43! becomesn21

5 ñp
211(3DV/8p)@f2/(12f)3#. ñp

21.1; therefore, this
line is unstable against smallDM .

We conjecture that there is a fixedplanewhich connects
the above two end lines att50 and att5` ~Fig. 19!. The
shaded~unshaded! region hasn.1 (n,1), therefore is
stable ~unstable! against smallDM . Numerical analysis is
needed to determine its precise boundary. The stable re
may control the fractional quantum hall~FQH! transitions
observed in real experimental systems.2

V. CONCLUSION

Recent experiments indicated that the transitions betw
two quantum Hall states or between a quantum Hall state
an insulating state may be described by quantum crit
theories. In these theories, different FQH states and insu
ing states are considered as different ground states of
electron systems. The three important questions that rem
unsolved on the nature of these quantum phase transi
are ~a! the effects of the quasiparticle statistics,~b! the ef-
fects of long-ranged Coulomb interaction on the transitio
and ~c! the effects of all kinds of disorders.

FIG. 19. If DM50, there is a fixed plane in the (f,t
5DV /DA) plane.w and DA and DV are uniquely determined by
(f,t), and therefore are not shown in the figure. The shaded reg
with z51, n.1 is stable against smallDM .
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Answering the three questions at the same time seem
forbidding task at this moment. Reference 21 investiga
the combined effects of~a! and~b! in a Dirac fermion model
and found a line of fixed points. Along this line, both th
Chern-Simon interaction and the Coulomb interaction
nonvanishing; the dynamic exponentz51. In this paper, we
make a serious attempt to study the combined effects of~a!,
~b!, and ~c! in the Dirac fermion model. We perform
renormalization-group analysis by the systematic pertur
tive expansions in 1/N (N is the number of species of Dira
fermions! and the variances of three disordersDM ,DV ,DA .
We find thatDM is irrelevant along this line; there isno 1/N
correction tob(DA), thereforeDA is always marginal;DV is
marginal along this line, irrelevantabovethis line, relevant
below this line. With the presence of all the three disorde
the pure fixed line is unstable.

In IQHT, in the three special cases, we find the thr
nontrivial lines of fixed points with dynamic exponentz
51. The fixed line in the (DM ,w) plane hasn51 and is
unstable against small (DV ,DM). The fixed line in the
(DV ,w) plane hasn51 and is unstable against sma
(DM ,DA). Most interestingly, the fixed line in the (DA ,w)
plane has continuously changingn and isstableagainst small
(DM ,DV) in the small range 1,w,1.31 ~Fig. 17!. This
stable region may control the integer quantum Hall tran
tions observed in real experimental systems.1

The results may be relevant to the IQH to insulator tra
sitions. It may also be important to high-Tc superconductors
It was well established that high-Tc superconductors have
d-wave order parameter and its quasiparticle excitations
described by 211 dimensional Dirac fermions.27

In FQHT, setting Coulomb interaction to zero andDV
5DA50, we find a line of fixed points withn51 and z
.1 which continuously changes along this line~see Fig. 18!.
This line is unstable against small (w,DV ,DA).

Most interestingly, settingDM50, we find a fixed plane
with z51, the part of this plane withn.1 is stable agains
small DM . This stable region may control the fraction
quantum Hall transitions observed in real experimen
systems.2

Unfortunately, we are unable to find generic fixed poin
with all the couplingsnonvanishing. These generic fixed
points may be either unaccessible to the method develope
this paper, or simply do not exist in the real experimen
system. However, by looking carefully at the divergent stru
tures of all the relevant Feymann diagrams, we show
model isrenormalizableto the order (1/N)D,D2,(1/N)2 dis-
cussed in this paper; we do bring out the systematic
elegant structure which describes the interferences betw
the Chern-Simon interaction, the Coulomb interaction, a
the three kinds of disorders. We believe that the structur
interesting in its own right and may inspire future work
study this difficult problem.
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APPENDIX: THE PROOF OF EQUIVALENCE
OF THE RANDOM VECTOR GAUGE POTENTIAL DAd i j

AND DA„d i j 2QiQj /Q2
…

We can decompose the random gauge fieldAi(x) in Eq.
~1! into transverse and longitudinal components,

Ai5Ai
T1Ai

L5e i j ] jx
T1] ix

L, ~A1!

wherexT(x),xL(x) satisfy

^xT~x!xT~x8!&5^xL~x!xL~x8!&52DA lnux2x8u.
~A2!

From the above equation, it can be shown easily

^Ai
T~k!Aj

T~k8!&5DAS d i j 2
kikj

k2 D ,

~A3!

^Ai
L~k!Aj

L~k8!&5DA

kikj

k2 .

Adding the two equations above leads to
od

ev
,

in,

. B
^Ai~x!Aj~x8!&5^Ai
T~x!Aj

T~x8!&1^Ai
L~x!Aj

L~x8!&

5DAd i j d
d~x2x8! ~A4!

which is the third equation of Eq.~2!.
By gauge transformation,Ai

L(x)5] ix
L(x) can be re-

moved, sô Ai
L(k)Aj

L(k8)&5DAkikj /k2 shouldnot make any
contribution togauge-invariantquantities. This fact is simi-
lar to the ‘‘running gauge fixing parameter’’ in usual relati
istic quantum-field theory.28 This point can also be demon
strated in the following specific example.

Let us evaluate its contribution to fermion self-ener
Fig. 2~c!; the divergent part is

1

2pe
~g0v1g iki !. ~A5!

It is evident that although this contribution affects th
anomalous dimension of the field operatorc, it does not
affect the dynamic exponentz which is a gauge-invarian
quantity.
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