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We study the consequences of the random mass, random scalar potential, and random vector potential on the
line of fixed points between integer and/or fractional quantum Hall states and an insulator. This line of fixed
points was first identified in a clean Dirac fermion system with both Chern-Simon coupling and Coulomb
interaction[Phys. Rev. Lett80, 5409(1998]. By performing a renormalization-group analysis ilNI(N is
the number of species of Dirac fermigremd the variances of three disorddrg Ay ,A ., we find thatA, is
irrelevant along this line, and both, andA,, are marginal. With the presence of all three disorders, the pure
fixed line is unstable. Setting Chern-Simon interaction to zero, we find one nontrivial line of fixed points in the
(A, ,w) plane with dynamic exponert=1 and continuously changing it is stableagainst small 4,, ,A,)
in a small range of the linedw<1.31, therefore it may be relevant to integer quantum Hall transition. Setting
Ay =0, we find a fixed plane wite=1, the part of this plane witlx>1 is stable against small,, , therefore
it may be relevant to fractional quantum Hall transition. Although we do not find a generic fixed point with all
the couplingsionvanishingwe prove that the theory inormalizableto the order (IN)2, (1/N)A,A2, and we
explore the interesting processes which describe the interferences between the Chern-Simon interaction, the
Coulomb interaction, and the three kinds of disordg8€163-182009)12627-4

I. INTRODUCTION with a statistical angled and short-range repulsive interac-
tions, which displayed a second-order quantum phase transi-
The zero-temperature quantum phase transitions betweeion between a quantized Hall state and a Mott insulator as
the different quantum Hall and insulating states of a two-the strength of the periodic potential was varied. This transi-
dimensional electron gas in a strong magnetic field argion was characterized by a line of critical points with con-
among the most intensively studied quantum critical pointstinuously varying exponents, parametrized by the valué. of
both theoretically? and experimentally.Earlier theoretical ~ For the cas@=0, when the anyons were fermions, the tran-
investigations focused on the transitions between the integajition was out of an integer quantum Hall state; its exponents
quantum Hall plateaus and described them in terms of norand other universal properties were different from the cases
interacting electrons moving in a random external potefitial. 0< 9< 21 for which the anyons acquired fractional statistics
Ludwig et al. introduced and analyzed a Dirac fermion and the transition was out a fractional quantum Hall state.
model with random mass, random scalar potential, and ranFor #=2# the anyons became bosons and the Hall state
dom gauge potential. They found that the random mass igeduced to a superfluid.
marginallyirrelevant the random scalar potential marginally  |n all of the above theoretical works, the long-range Cou-
relevant However, they found that the random vector poten-lomb interactions between charge carriers have been effec-
tial is exactlymarginat therefore, there is a line of fixed tively ignored. However, a few recent works have taken
points characterized by the strength of the random gaugeteps to remedy this serious shortcoming. Yang and
potential. The zero-energy wave function shows multifractalMacDonald® studied the integer quantum Hall transition un-
behaviors with the exponents continuously changing alongler a Hartree-Fock treatment of the Coulomb interaction.
the line® If two of the random potentials are nonzero, the L ee and Wantf showed that the renormalization-group ei-
third one will be generated and the system flows to thegenvalue of the Coulomb interaction was zero at the Hartree-
strong-coupling regime. They further argued that the systenfock critical point; higher-order calculations are therefore
should flow to the generic fixed point of integer quantumnecessary to understand the physics. Pfannkuche and
Hall transitions which was correctly described by theMacDonald® numerically studied electrons with Coulomb
Chalker-Coddington modéi’ interactions in a periodic potential between a fractional Hall
The properties of the fixed line of Dirac fermions in the state and an insulator, but were limited to rather small system
presence of random magnetic fields were further investigategizes. Interesting scaling interpretations of Coulomb
in Refs. 8 and 9. Later, th&J(1) gauge potential was ex- interaction-induced dephasing were discussed in Ref. 19.
tended to the non-Abelian gauge potentfaft? Most recently, neglecting the disorders, Ye and Sachdev
It has also been argued that the transitions between fragrovided a thorough analysis of the consequences of Cou-
tional quantum Hall states could be mapped onto modelomb interactions on the anyons in a periodic potential model
essentially equivalent to those between the integer states.of Refs. 14 and 15. They showed that the Coulomb interac-
The latter point of view was, however, questioned by Wention is marginally irrelevantfor the integer cased=0), and
and Wu* and Chen, Fisher, and Wh:they focused on the remains so for the fractional case for small valuegathis
simpler case of systems in the presence pkdodicrather  marginally irrelevant interaction will lead to logarithmic cor-
than a random potential, and examined a model of anyonsggections to naive scaling functions for the vicinity of the
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transition. For largerd, they established, in a certainNL/ representa; in terms of the transverse spatial component
expansion, the existence of a line of fixed points at which thavith a; =i ¢;;k;a;/k. Theaga, term inS is the Chern-Simons
Coulomb interactions acquire a nonzero fixed point valuecoupling: it turns the Dirac particles into anyons with a sta-
determined by the value af There are no logarithmic cor- tistical angle &/N with 6=qg; notice that the angle is of
rections at these fixed points, and naive scaling holds. Theyrder 1N and so the expected periodicity of the physics
found a dynamic critical exponemt=1 at all points on the  nderg/N— /N+ 44 will not be visible in the 1N expan-
fixed line, providing a concrete realization of the scendf,  gjon. Theaa, term is the Coulomb interaction, and it has
not previously established explicitly, that energies must scalg ,ap, \written in terms of, following Ref. 23.

as inverse distances f(.)r ther Ioulomb interaction. They In the absence of the Coulomb interaction and the random
_also found j[he c_orrela_tlon length exponent 2/d_(where_d potential terms, it was shown in Ref. 15 tittepresents the

is the spatial dimensionalilyalong this fixed line, which critical theory of a system of anyons in a periodic potential

implies that the fixed line is stable against the weak randorrbnder oing a transition from an insulator with conductivities
mass disorder. going

In this paper we study in detail the consequences of thdx<~ 7xy=0 into a fractional quantum Hall state withy,

- ) -~ . .
random mass, random scalar potential, and random vectdr © and o,,=(q°/h)/(1— 6/2) to leading order in M.
potential at the line of fixed points. In the rest of this sectionBOth these states have energy gaps. It was shown in Ref. 21

we introduce the notations and the model. In Sec. Il we givéhat the Coulomb interaction and disorder do not modify the
a very general renormalization-groRG) formulation of ~ values ofcy; in either phase.
the model and establish sonexact results [for example, The relationship of the continuum modslto the more
Egs.(5) and(8)]. In Sec. Il we perform one-loop expansion realistic model of electrons studied in Ref. 18 remains some-
and discuss the implications of RG flow equations. In Secwhat unclear, although it is plausible thatis the critical
IV we first discuss the RG equation &t=c limit, then  theory of the latter. We may also vie&@ as the simplest
calculate 1N corrections and discuss the solutions in differ- theory consistent with the following requirements, and there-
ent cases. Finally, we reach conclusions in Sec. V. In théore worthy of further study(i) the two phases on either side
Appendix we show the equivalence of the two forms of theof the critical point have the correct values @f , and the
random vector gauge potential. Hall phase hasoth quasiparticle and quasihole excitations
We begin our analysis by writing down the model of Ref. with the correct charge and statistics, digithe gap towards

21 extended to include the random maégx), the random  the quasiparticleand the quasihole excitations vanishes at
scalar potentialV(x), and the random vector potential the critical point.

A(x),°
- - Il. THE RENORMALIZATION-GROUP FORMULATION
S=f dxd7| FoPm+ YmYidi
YmYodo¥mt UmYidithm OF THE MODEL
i We now proceed with a renormalization-group analysis of
i — i — . . .
_ 12172 _ €2, 102 S. Simple power counting shows that the Chern-Simons
quS“a AodmYolh gu " a @ myith : . ) : ’
N oTmTOTm N Lmam Coulomb interactiond! and all three kinds of disorders are

marginal at tree level id=2, and so loop expansions are
required and useful. Power counting also shows that a short-
range four-fermion interaction term igrelevant and has
therefore been neglected &) this makes the fermionic for-

f kol :
il By p | aog(—k,—w)a(k,w)

k . . g ) — mulation of the anyon problem much simpler than its
+ral—k —wa(ko) +f d**d[iM (X) Ymipm bosonic counterparf:>26
We assume all the three kinds of disorder satisfy Gaussian
+V(X)Zm'yowm+iAi(X)Jm7i ol 1) distribution with zero mean and variancg, ,Ay ,Ax,
The ¢, arem=1, ... N species of chargg/\N 2+1 di- (M(X)M(X")y=Ap8%x—x"),

mensional Dirac fermions which interact withUg1) gauge

field (ag,a;) (i=1,2); we are interested in the cade=1 but

will find the largeN expansion to be a useful tool. The, ¥, (VX)V(x"))=Ay8%x—x"), 2
are the Diracy matrices,x; (7) are spatialtemporal coor-

dinates withdo=d,, d=0dy, andk, » (k=|k|) are the

Fourier-transformed wave-vector and frequency variables. (AI()A[(X))=8jAp6%(x—X).

To aid the subsequent renormalization-group analysis, we

are working ind=2+ € spatial dimensions and is a renor-

malization scale. The parametelis introduced to allow for By introducing replica a,b=1,2,..,n and doing a
anisotropic renormalization between space and fimdle  quenched average over the above Gaussian distributions, we
have used the Coulomb gauge which allows us to explicitlyget
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S= f d9dr

a‘/’ﬁﬁof?ol//ﬁq‘F ‘l’%’)’i&iwa \/_qu/2 vz (a)’//myod"m_ \/__glueIZ 1z a'//myllzbm

d2k do

gp=t=
~b 1\ ,b AN er,a a ~ib ’ b ’ er,a a

X[lﬂm(xﬂ' )¢m(X,T )] AVIU’ [lﬂm(XiT)Volﬂm(X,T)][‘ﬂm(X,7' )70¢m(X'T )]+AAIU’ [lpm(X!T)’Yiwm(X!T)]

XPR (%, 7 ) v (%, 7)1 3)

The loop expansion requires counterterms to account for ultraviolet divergences in momentum integrals; we write the
counter terms as

N ok .
ikad(—K, ~ )af(K,w) + 5 af(~ Kk~ 0)ai(ko)

+f dOxdrd 7' [A S 2(x, 7) (%, 7)]

_ _ i
Ser= f ddr a(za—1)wmoao¢?n+(zz—l)wi‘nyiﬁn//?n—J—N(Z‘}—l)qm’z YZadyR youd,

—T<zg—1>guf’2 aZalyR iyl | + f dixdrd 7' [(Zy— 1) AT P0G D IR (X, 7)) (%, 7)]

—(Zy= DA TR T) Yol A D ILPRX ) Yo, 7)1+ (Za— D) A g TY2(X, 7) i 92 (%, 7)]

X[go %, ) v, 7)1 (4)

In general, counter terms for the last two gauge field We will find it convenient to express the loop expansion
terms in S should also be considered. However, it wasin terms of the “fine-structure” constanw=q%/16, and a
showrf* that at least to two loops, there were no divergencesentral object of study shall be it® function B(w)
associated with these terms. The Ward identities following= u(dw/dw). By comparing(7) with relationships between

from gauge invariance dictate bare and renormalized quantities quoted above we see that
qa_ 9_
21=2,, Zi=2;. ) z=1-B(w)/w. (8)
Using these identities, we relate the bare fields and cou-
plings in S to the renormalized quantities by Finally, the critical exponent is related to the anomalous
112 dimension of the composite operatagy by v 1—1
Yme=2Z3 ¥m

=u(dInZ,,/du); the renormalization constait,, can be
calculated by inserting the operator into the self-energy dia-

ag=(Z,1Z3)a, grams.

Us=duAZ,1Z)",
11l. ONE-LOOP CALCULATION

— €2 1/2

= Z,1Z,)", 6
9a= 0" (Z2/2.) © We begin the explicit calculation of the renormalization
Ayp=puAyZy 122 constants by considering a direct perturbative expansion in

MB MEMTE2: the Coulomb fine-structure constamt the statistical anglé,
Avs=uAvZy /22, and the three kinds of disordetsy ,Ay,A,. At one-loop

order[Fig. 1 and Fig. 2a),(b),(c)], we find no dependence on
0, the values of the renormalization constants up to terms of

__ € 2
Ang=uDaZAlZ;. orderw?, 62, wo, andA? are

Notice that these relations imply that for the statistical
angled/N=qg/N we havefg= 6u° even in the presence of Z,=1-2W/Nmre,
the Coulomb interaction and the disorders; sadin?2 this (9)

angle is a renormalization-group invariant, which is expected
on general physical grounds. rr‘,n.‘_‘_\ rr‘JL“L\ ‘.F’—rLLL\ (.J"JL\‘L\

The dynamic critical exponert is related to the renor- 7, A Yo Y Y, Y i bt
malization ofa by??

(a) (b) © @

z=1— Mim a=1— ,uilné. (7) FIG. 1. Renormalization to the Dirac fermion self-energy from
d d @ gauge-field fluctuations to orderN./
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FIG. 2. Contribution to the Dirac fermion self-energy from ran-

dom potentials.

1
Za:]._ E(AM‘FA\/‘F 2AA)

We also explicitly verified that the Ward identities E§)
hold.

From Figs. 3-8 and Fig.(&)—(d), we can calculate the
three renormalization constants for the disordéns details
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are given in Sec. IV where we perform a similar calculations

in the largeN limit):
1 2
ZM:1+ ?A'\A(ZAM+2AMAV_4AMAA_4AVAA)

8w
Nme’

(10

2
ZV: 1- —(AMAV+ ZAMAA“F AvAv+ zAvAA),
melAy

Zp=1———AyA —4W
AT _7TEAA MEVT N7e’

From Eq.(6), we obtain the fou functions,
w
B(w)=BP(w)— ;(AM+AV+2AA)1
B(Am)=—2Ay(v, 1)

2
+ ;(Af,pLAMAV—ZAMAA—ZAVAA),
11

BA(w) 2 2
- ;(AMA\/"‘ ZAMAA+ AV+ ZA\/AA),

B(Ay)=2Ay

2
B(Ap)=— ;AMAVa
where theg function of the Coulomb coupling in thpure
systemBP(w) is?!
2

BP(w)= f\% +0O(w3,w?6?) (12)

while the pure critical exponenty, is**

[ SR
[U IR
~
4

@ (b) (©) )

FIG. 3. Renormalization from the random mass.

FIG. 4. Renormalization from the interference of the random
mass anceffectiverandom scalar potential. Note the effective ran-
dom scalar potential can only appear in theernal loops

vp=1—2W/Nm. (13

From Eq.(11), we can identify thalisorderedcritical expo-
nentv,

(14)

From the first and the third equations in E41), we find
B(Ay) and B(w) are related by

B(w)

w

(15

4
B(Ay)=2Ay _;AMAA-

In Eq. (11), by setting the Coulomb interaction and two of
the random potentials to be zero, we reproduce the results of
Ludwig et al>

With the presence of the Coulomb interactiw¥ 0, we
discuss the three cases separately.

(i) Ay #0. The system flows to a line ditable fixed
points given byA,,=2w/N. The flow trajectory is given by
Ay=C/w?, Cis an arbitrary constanEig. 9a)]. From Egs.

(13) and (14), we find =1 along this line, it saturates the
boundv=2/d (d is the special dimensign

1 Yi Yi 1 1 Y; Yi 1
T T ] ! 7 Al 4
! I I ! N e \ S
1 1 1 1 )\ l‘

: 1] L : , \\ ,, \A
1 T Vi 1 Yi 1 1 Yi
(a) (b) () (d)

R -
V' St 1 RN Y;
: | : |
1 1 1 1
! : , 1, 1
1 Yi‘\ L ,"Y. Yi \\\Zi’/,
(e) ® (® (h)

FIG. 5. Renormalization from the interference of the random
mass anceffectiverandom vector potential.



8294 JINWU YE PRB 60

Yu Yo YO XO e - Yi ¥, i YJ rd - LN
|| I A v Yo [ Yo 1 Yo Y T IJ A L4 ¥ g Vi ‘Yj Y
A4 ' \ ¢ T T
1 1 1 1 1 1 | 1
A ] 1 A . .
I l V4 \ 1 1 I l , \ \ |
] 3 rs P 1 1 'l B > - 1
%o Y% Y Y % AR Yi Y, Y, Y, ¥i AN
N "
(@) (b © @ @ (b) © (d)
FIG. 6. Renormalization from the random scalar potential. FIG. 8. Renormalization from the effective random vector po-
tential.

(i) Ay#0. There exists a line ofinstablefixed points
given by A,=2w/N. The flow trajectory is given by, 1 d’k dw
=Cw? [Fig. 9b)]. Below this line the system flows to the SRPAZEJ 172 25 (20,20
origin, above this line the system flows to the strong-
coupling regime. From Eq913) and (14), we find v=1 (q2k2/(16\/k2+ »?) ik
along this line. X .

(iii) A,#0. The system flows to a line aftable fixed ik k+g%(16Vk* + w?)
points given byA,=w/N. The flow trajectory is given by (16
A,=C [Fig. 9c)]. From Egs.(13) and (14), we find v=1
—4A /7 which continuously changes along this line. It  The inverse of the above matrix leads to the propagators
should be noted that<<1 along this line. of the gauge fields

From Eq.(8), it is easy to see that=1 on all these lines

Qo
a; )’

of fixed points. It is also worth noting that, despite the value 92
z=1, the critical correlators aneot Lorentz invariant. 1 g+ E\/q2+ V2
In the generic case, we do not find any perturbative ac- Goo(9,7)= — ,
cessible stable fixed point. The system flows to the strong- q 6\2 ¢° q
coupling regime. In the next section, we resort to the lavge- 1+ 16 + 16 W
expansion to explore the strong-coupling regime.
G _ €|qu 1
IV. LARGE- N EXPANSION i(Q,v) = 92 9\2 & q
1+ =] + = —
To understand larger values é6fand to explore the con- 16 16 g2+ 12

sequences of a possible interference between the Coulomb (17)
interactions, disorders, and the Chern-Simons term, we _

found it convenient to perform aN/expansion. This is tech- Goi(q,7)==Giolq,7),
nically simpler than a perturbative two-loop extension of the

computation in Sec. Il and also automatically includes the&w Ay
dynamic scr_eer?ing of the gauge field propagator by the fer- z=1 =1
mion polarizatiort? Alternatively stated, the so-called v=l v=1

random-phasgRPA) approximation becomes exact Bk
=, and 1N corrections require gauge-field propagators
which have the RPA form

Y Vi Yi ¥ b/ i Yi Yo

r T 1 T ~— A ’ 0 W 0 W
A4 A YR 4 (a) (b)

1 1 1 1 A A

1 1 [ [ ’ PN

\
YO Yi Yi Yo Yi YD Yo Y z=1
(2) (b) ©) (d) / v<l

Yi [ Yg |Yn Yo Yo’ Yi g0 Vi
: : | :
1 | 1 1
! : : ! W
i WL T W | (C.)
© ) () (h) FIG. 9. One-loop renormalization-group flow @) the random

mass and Coulomb interactiofl) the random scalar potential and
FIG. 7. Renormalization from the interference of the effective Coulomb interaction, an¢t) the random gauge potential and Cou-
random scalar potential and effective random vector potential.  lomb interaction.
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% T Yo Yo Yo Yi _
- o m m om omom — e e e m - - - + - e wm o wm wm omow —_-
q. 0 q. 0 Q.0
(a)
Yo A Yo Y % % Yo Yo Yo
oo + -t ——-- ——-
(GRD) . 0 (q 0 (q 0)
(b) ©
( . 0)
(d) (e) © (d)
FIG. 10. Effective random scalar potentidl, to the order FIG. 12. Effective random scalar-vector potenﬁ@ to the or-

(1/N)°A,, and (1N)°A,. The thick dashed line is the effective der (1N)°A, and (1N)°A, . The thick dashed line is the effective
random scalar potential. The thin dashed lines are the bare randorandom SV potential. There i® bare random SV potential.
scalar and vector potentials. The wavy line is the gauge-fields

propagators. Note that bothA , andA,, contribute to the effective random
vector potential with thesamesign.
0id; e?/16 To the order of (IN)°A, the summation of Fig. ¥2)—(d)
Gij(q,»)=| dij— ? 92 ez - leads to effective random scalar-vector(SV) potential
1+ 16 q-+v+ 1_6q ACEiqu' /q,
To the order of (IN)°A, the summation of Fig. 18)—(e) - 2o
leads toeffectiverandom scalar potentia,,, AC:()\+W)2[_AV+AA(1+W)]' (20
ZV:M, (18) It should be noted that both, and A\, contribute to the
(A +w) effective random SV potential with theppositesign and

where$=(6/16)? and\ =1+ ¢. Note that bothA, andA there isno suchhrandorrfl SV potbential in trk]le Ocl)'rigircyal actijonh
contribute to the effective random scalar potential with theEd- (3)- Due to the interference between the disorder and the

samesign. Chern-SimongCS) interaction, this potential is generated.
To the order of (IX)°A, the summation of Fig. ¥&)—(e) But it can only appear asnternal lines. Setting =0

. o - 2 (namely, no CS interactionthis potential vanishes.
leads toeffectiverandom vector potential a(4i; —0i0;/q°) These three effective potentials plus the random mass po-
(see the Appendijx

tential and the four RPA gauge fields propagators in(Ed)

Avd+An(1l 2 are the building blocks in the following Feymann diagrams.
~ vO+AA(1+w) . .

Ap= - (19 Note that, however, onlpare disorder potentials can appear

(A +w) asexternallines of any Feymann diagram.
v In the following, we discuss thE =< case first, then we
[ — N . % + discuss the M correction. It is well known that onlprimi-
(_0)) W tive divergences of Feymann diagrams are needed in the RG
9.

flow equation.

¥i Y Y ¥ Yi Y Y 'Yj A. N=c limit
_—>_"<>\W + v Siilie Figure 2 shows the contributions to the Dirac fermion

@0 self-energy from the effective random potentials. The diver-
® © gent parts from the effective random SV potentias and
(e) vanish. We find the two constants defined in E4.

Vi % Vo ¥; i Y% % Y% Yo Y
+ - Z,=1,

(9,0 (21
() ) 1 ~ ~
Z,=1——(Ay+Ay+2A,).
FIG. 11. Effective random vector potentid, to the order me
(1/N)°A, and (1N)°A,. The thick dashed line is the effective
random vector potential. The thin dashed lines are the bare random In the following, the notatiorA— B means tha# renor-
scalar and vector potentials. malizesB.
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Figure 3 is the renormalization from the random mass
this figure and the following figures, we do not draw explic-
itly the diagrams with the exchange of leg3 and lgeg4

AR
3a=—-3b= ;HAA,
" (22)
3c=3d=—"—Ay.

In all, Fig. 3 contributes 4% me—A),.

Figure 4 is the renormalization from the interference of
random mass aneffectiverandom scalar potential. Note the
effective random scalar potential can only appear inithe
ternal loops

AyA
4a=4b=4c=4d=— ——"

—Ap,

2A4Ay

AvAy

2
4g=4h=

— V-
In all, Fig. 4 contributes AyAy/me—Ay, 4AyAy/me
—>A\/, _4AMZV/7T€—>AA.

Figure 5 is the renormalization from the interference of
random mass aneffectiverandom vector potential,

2A A 2A A
Ba=5b=—"A LA, —MZA A,
TE T E
2A A 2A A
5c=5d=— —""A_A,,, MZA LAy,
e e
~ (24)
4A,, R
Be=5f=——"2"2 A,
5g=5h=0.

In all, Fig. 5 contributes—8AyAp/me—Ay, 8AyAp/ e
—Ay.

Figure 6 is the renormalization from the random scalar
potential.

A
Ba=—6b=— AL,
TTE
_ (25)
2AA
6c=6d= —2 Y _,

V .

In all, Fig. 6 contributes A A /me— A, .
Figure 7 is the renormalization from the interference of

JINWU YE

PRB 60
Y o To ¥ i Y Yi ¥
] T I T T T T T
1 1 1 1 1 1 ] 1
1 1 1 1 1 1 1 1
] ] i ] B ] [ | [ ]
Yi Yj Yi ’Yo Y() ,Y j ’Y() YO
@) (b) © @

Yo T Yo ¥ Yi Y Ti i
5 7 A3 7 5 g A (g
AN 4 AN 4 AN 4 A 4
A A A A
4 N\ VAR 7 N\ TN
; 7 Yo Yi Y Yo Y Y,
(e ) (6:4] (h)

FIG. 13. Renormalization from the effective random SV poten-

tial.

2A A, 2A AL
7C_7d—_ Te - M Te - Vo
A
7l V2A
Te=7f c Vo
7g=7h=0.

In all, Fig. 7 contributes—8AyAp/me—Ay, 8AyAp/me
—>Av.

Figure 8 is the renormalization from the effective random

vector potential,

(27)
8c=8d=0.

In all, Fig. 8 doesot contribute.
Figure 13 is the renormalization from the effective ran-

dom SV potential,

A2

A
13a=13d=—13e=—13h=— —= A,
41e
(28)
AZ
13=13=13=13g=— 5 —Ay.

the effective random scalar potential and the effective rang, g, Fig. 13 contributes- 2A2/me—Ay . It can be shown

dom vector potential,

2A A, 2A A,

7a=7b=— —Ay, —Ay, (26

that only when SV potential get paired, there a@nzero
contributions.

Figure 14 is the renormalization to the random mass from

random effective scalar, vector and scalar-vector potentials,
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14a= l4h= %MHAM ZM 1+ (ZA +2AMZV_4AMZA_4ZVZA_Z%
me  AN+W '
< —16AAx)
8AuAc \/g MAK),
14b=14c=12f=129= p m—AM, (29 ,
_ ZV::I._—(AMA\/"_ZAMZA_FAV'AVJFZA\/ZA),
14d= 14— — 20mAV ¢ e (30)
TS T T e A
In all, Fig. 14 contributes— (32A /me)[ /(A +w)][ pAy 7 1 2 ALK
—(W+ @) Aa—VpAc]—Ay. A eApy MV
From Figs. 5-8, 13, and 14, we find the three constants
Zw.Zy,Zp defined in Eq(4), whereA is given by
|
R, Ayp(3—W— )+ Ap[ ¢°— (W ) (1+W)*—2¢h( 1+W)] 31)

From Eg.(6), we can find the followingB functions at
N=o0:

W ~ ~
B(W):_;[AM+ P(Ay)+2P(AA)],
2, 1., 4. 2 .
,B(AM)—;AM“‘;Ac+;AvAA+;(AM_2AA)P(AV)

4 - - 2~ ~
~—(au+B)P@E - ~BcP(Eo)

16A P(A

? M ( K)’

2 2 _ 4 _(3
B == 8udy- ZAP(R) - = (Ay+A)P(E,),

2 ~
B(Ap)=— ;AM P(Ay),

1 1 1 1 1 ] 1 ]
i Y oY% Ny Yo
1 1 1 1
S A A A A A A

(a) (b) (c) (d)

1! 1} 1! 1
A RTE >§ Y, voogvj YjQ %
I<>§ 1 ] 1
Y Y, A Y, Y, ™ Y. v

(©) ® @ (h)

FIG. 14. Renormalization to random mass framp, A, ,Ac. In
the text, it is calledi . Compare this figure to Fig. 1.

(A+w)®

where the function P(A)=AydA/dAy+ApdAlIAL
+W(IA W) +2h(IA1 ).

We shall discuss the implications of this equation after
considering IN corrections in the next subsection.

B. 1/N correction

In this section we consider theN/correction toN=
results. The small parameters ar®K,, A\ ,A,. We ex-
pect that if there are fixed points, the fixed points values of
A’® are of the order M.

Figure 1 is the contribution to the Dirac fermion self-
energy from 1IN fluctuation of gauge fields given by Eq.
(17). Actually, Figs. 1b) and Xc) are convergent. The re-
sults ar

. P, 1 (2w 16w?A  #°C 6°E
2= " Nre T Nmel N w167 167/
(33

vy, 1 (16w’B #°D 6°F

Z,=1- =1- - +—],

Nme Nmel N\ 167 167

where A\=1+(6/16)*> and the functionsA,B,C,D,E=A
+B, F=B are given by the formal expressions

4x%(1—x2
de NEESVEN f(xwa)
1
B:J'o dx

1 4x2
c= fo XL T |

(1—x%)(1—6x%+x%)
(1+x°)°

f(x;w, ),
(34)

(X;w, 6),

L[t (1-6x*+xY)
D—f dx(—f(xwe)

o 1-x%)(1+x%)
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%

i

%

(a) (b) (©) (@

1 1 1 1
1I l 1 1| 1I
Y Y Y Y, Y, Y, Y, Y%

(e ® (@ )

FIG. 15. Renormalization to the random mass from gauge-fields
fluctuation to the order N.

with f(x;w, 8) =[N (1+x?)+w(1—x3)]"1, and the variable
X represents an intermediate frequency. Note the two con-
stantsC,D are divergent: this divergence is due to the sin-
gular effect of frequenciesw|>k. However, as shown in
Ref. 21, these divergences are gauge artifacts and cancel in
the B function and in any physical gauge-invariant quantity
such as, z, or gj; . The divergences, however, do infect the
anomalous dimension of the field operaiarthis is as ex-
pected as the propagator gfis clearly gauge dependent.
Figure 15 is the renormalization 1, from the 1N fluc-
tuation of gauge fields. Actually, Figs. @3 and 1%c) are
convergent; the divergent parts are

W 1 [4w( _4W(2A+B))+02(2C+D)

N7e Nme| \ T 167
6’(2A+B) 6°G 3
T 39
where the functiorG is given by
G_fld 11— +w 2
=/, X (6= D(1=X)+ W7 | (W, 0).
(36)

It is easy to see Fig. 15 is exactlige sameadiagram for the
calculation of Z,,, as expected® therefore ZyZ,,=1
—Wy/Ne.

In Fig. 15, replacing\, line by A\, andA , lines, we can
repeat the same calculation. In fact, the divergent parts
should beW¥,,/N7e andW¥ ,/Ne, respectively, as dictated
by Ward identities. It can be shown explicitly that Fig.(46
+Fig. 16b) vanishes as dictated by Ward identities.

yx
% Y,

(a) ()

FIG. 16. Fermion bubbles which contribute to the renormaliza-
tion of random scalar and vector potentials. In the figure,\
=0,1,2.
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Adding the 1N correction to the renormalization con-
stants calculated in the last Sec. IV A, we obtain

22:1_

Z —1- (At Ryt 2K —
= _;( vt Ayt A)_NWE,

1 - e -
ZM=1+TAM(ZAfﬁZAMAV—4AMAA—4AVAA—A%

20y,

_16AMZK)_my

(37)

2 ~ ~ ~
ZV:]'_ —(AMA\/+ ZAMAA+ AvAv+ ZA\/AA)

’7TEAV

2¥y,

Nme’

ORI, Gl
AT meAp, M7V Nre

From Eg.(6), we can find IN corrections to the3 func-
tions in Eq.(32),

B(w) = BPw)— [y +P(Ey) +2P(E )]

i 2, 1o, 4. -
IB(AM):_ZAM(Vp _1)+;AM+;AC+;AVAA

2 ~ ~ 4 ~ ~
+—(Am=280)P(Ay) = —(Au+Ay)P(AQ)

23 P - oA p(i
——Ac ( c)_? mP(Ak),

BP(w) 2 2
B(Ay)=2Ay W _;AMAV_;AVP(AV)
4 -
- ;(AM"_AV)P(AA)v

2 ~
B(AA):_;AMP(AV)- (39

The BP(w) in Eq. (38) is the B function of the Coulomb
coupling in thepure case which was calculated in Ref. 21,
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)\(1+x2)+w(1—x2)
. _2wi(1-¢) 16wf1d 1-x2\3 2
B ==z | 7 N e aed) rwii—d)
(1+x2)+ﬂ(1—x2)
32we (1—x%)(—1+10x°—x%) 2 29
TN FESSE ML) T w(I D) (39
The pure exponentr,, in Eq. (38) is given by
)\(1+x2)+w(1—x2) 1+x2+w(1—x2)
S 2w(1l—¢) 16wf1d 1—x?\3 2 32¢ (1 [1-x%\3 2
Vo TR TNAANZ | T o 15 MD)W= T N2 o 17 v WD) 2
1+x2+w(1—x2)
192¢4 —x? 2 512¢(1_¢)fl (1—x)(1+x?) 40
"N o T N Wi D2 T N XN ) T w(l—x)° (40)
|
The explicit expressions fdP’* are given by L 4P(R,  8P(Ry)
v lzvp + + ) (43
- 1 a a
P(av) ()\+W)§[AV(1 W=34)+And(3TW= )], where¥, * is listed in Eq.(12) of Ref. 21
5 1 1o 1284 (1—x%)(1+6x%+x*)
P(AA) ()\+W)3{Av¢(3+w ¢)+AA(1+W) Vp LT N’772 (1+X2)3

X[(1+w)?*=(3+w) o]},

- 2\
P(Ro)= st~ 28u(1- )

(41)

+FAA N+ W)W+2(1+w)(1— )]},

- 1
P(Ay)= At w) 3{Av¢(9 4w—5¢)

+AA5H2— (1+W)%(2w+3¢p) —6h(1+wW)
—2w(w+ ¢)(1+w)—2¢w]}

3(w+
(7\+—W)4{AV¢(3 w—¢)

+AA P2 — (W ) (1+W) =2 (1+w) ]}

From the second equation in E&8), we can identify the
disorderedcritical exponent

1 Aw P@y) 2P@R,)  8P(A)

P T T T T

(42

At fixed points, substituting

BP(w)

w

1 ~ ~
= —[Aw+P(Ay) +2P(Ap)]

into Eq. (40), we can simplify the above equation to

w
1+x2+§(1—x2)

><()\(1+x2)+w(1—x2))2

5124(1-¢)
* N2

(1—x?)(1+x?)
XN T W(1—D) B

(44)
It can be checked that E¢L5) should be replaced by

,B(AV)ZZAVBSJV)

4 -
-—AwPEp. @9

In Eq. (38), we expand3(w) to order 1N andA, expand
B(A) to (IN)A,A% It is easy to see there should e
(1/N)? terms in B(A), because interactions do not generate
disorder(or, equivalently, disorder does not generate inter-
actiong. Note that the small parameteLplays a similar
role to the small parametetin the conventiona¢ expansion,
namely, we are trying to locate the fixed pointsAdf at the
order of 1N.

We now turn to the physical implications of our main
results(38), (39), and(40). If there exists only random mass
namely,Ay=A,=0, Eq.(38) simplifies to

w
Bw)=pBP(W)— —Ay,
) (46)
-1+ ;Afﬁ —2Au(T, - 1).

B(Aw)= _ZAM(V;;
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Setting all the disorders vanishing, the authors in Ref. 214,
found a line ofpure fixed points given bysP(w)=0. They
also found thafy,>1 along the fixed line, and therefore
concluded that this line is stable against weak random mas.
disorder from Harris criterion. Here, we explicitly write
down B(A),) to the order (IN)A ,Af,, and reach atron-
ger statement that there arm other fixed points except this

PRB 60

line in the weak-coupling regime.

Comparing Eq(32) to Eq. (38), we find that there is0
1/N correction toB(A,), thereforeA , is always marginal.
The 1N correction toB(Ay) is simply BP(w)/w, therefore
Ay is marginal along this line, irrelevaritelevani above

(below) this line. Actually, these results are expected from

Ward identities. We also find thatN/correction toB(A )
is just v, *—
the pure fixed line is unstable.

1. Integer quantum Hall transition(¢=0)

First, considering the transition out of the integer quantum

Hall state,#=0, which implies¢p=0, A\=1. The BP(w) is
simplified t&*

BP(w) 2w f (1 x2\3
w N2 T 16w | "dx 1+x?
w
1+x2+§(1—x2)

w1 4

Equation(40) reduces t()ugl— 1=pP(w)/w. The simple
analysis of Eq(39) shows thatgP(w)>0 for all w>0; for
small w we havegP(w)/w=2w/(N), in agreement with
the one-loop resul(12), while for w1, B(w)=4/(Nww).
So the onlypure fixed point remains atv=0. The whole
picture of BP(w)/w is drawn in Fig. 17a),(c), it increases
linearly first, reaches a maximum value 0J20#t w=1.31,
and eventually decays aswi/

It is easy to see thah,=A,/(1+w)?, P(A,)=Ay(1
—wW)/(1+w)% Aa=P(A)=An; Ac=P(Ac)=0; A=
— A W/(1+W), P(Ag)=—Aw(w+2)/(1+w)2 Substi-
tuting these expressions into E88) we find that Eq(38) is
simplified to

Bw)  BP(w) 1 1-w
W w = AM”V(H—WW”AA)'
BP(w) 2 2
BAw)= =28y ——+ AL+ —(Ay—2An)Ay
(48)
1-w 4 ( 4 )
“rws F o tulal 3T )
3 BP(w) 2 2 , 1-w
B(Ay)=2Ay —;AMAV—;AVW
4
_;(AM"'AV)AA,

1, which is consistent with the Harris criterion.
With the presence of all the three disorders, we expect tha

(@)

("

v>/ i

0 o4 131 w
(©)

IS

v<l<]

FIG. 17. Renormalization-group flow to orderNLbf (a) the
random mass and Coulomb interacti¢h) the random scalar po-
tential and Coulomb interaction, aifc) the random gauge potential
and Coulomb interaction. The thi¢kin) lines in(b) and(c) are the
stable(unstable lines of fixed points.

A== ZAAy—Y
B(Ap)=——Ay VZw)®
Equation(42) is simplified to
_ 1 AM AV l_W ZAA SAA W(W+2)
v l=p e ——— 3+ - 5
P T T (14+w) T T (1+w)
(49)
Equation(45) is simplified to
Ay)=2A B(W)—iA A (50
B(Ay)=2Ay W ZAmAa. )

We discuss the three cases separately.

(i) Ay#0. The system flows to a line dftable fixed
points given byA = o[ BP(w)/w]. Like the one-loop result,
v=1 and the flow trajectory is given hy,,=C/w?, C is an
arbitrary constant-1/N [Fig. 17a)]. We suspect that=1
is exact(namely, independent of the largetimit). This line
is unstableagainst smallA,, and A4 .

(i) Ay#0. There exists a line of fixed points given by
Ay= [ (1+w)3(1—w)][ BP(w)/w] which approaches in-
finity asw—1". Like the one- Ioop resulty=1 and the flow
trajectory is given byA,,= Cw? [Fig. 17b)]. Again, we sus-
pect thatr=1 is exact The lower part of this lingthin pard
is unstable the higher part of this linéthick par} is stable
The system either flows to the origin or flows to the higher
part, depending on the initial condition. This lineusstable
against smallAy, andA, .

(i) Ap#0. The system flows to a line of fixed points
given by A, = (7/2)[ BP(w)/w]. Like the one-loop result,
the flow trajectory is given by o= C[Flg 17c)]. However,
unlike the one-loop result,y”"=1—(4A,/7)[1-2/(1
+w)?], if w>v2—1~0.41, v>1. The left part of this line
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Ay From Eq.(38), B(A,)=0 implies eitherP(A,)=0 or
, ' Ay=0. In the following, we discuss the two cases sepa-
rately.
' 221 () P(R,)=0. From Eq. (45 and Eq. (38, B(W)
J =B(Ay)=0 implies thatP(A,) =0, BP(W)/w=A, /. Fi-
‘ ‘ nally, B(Ay) =0 implies
Y
, L 28Ty 1)+ SRZ+ TR Ea- SRP(E
1 | 1 ‘ 1 l z=1 ‘ ‘ —2An(7p " )+; ct ZAvAaT —Ac (A¢)
0 112 0

16 ~
FIG. 18. Renormalization-group flow to ordemLbf the ran- T

dom mass and Chern-Simon interaction.
The disorderedcritical exponent Eq(43) is simplified to

(thick par is stable, the right part of this linghin par} is
unstable. At weak disorder, the system either flows to the left 1
part of the line or to the strong-coupling regime, depending
on the initial condition. At strong disorder, the system al-
ways flows to the strong-coupling regime. It is easy to see tha®(A,)=P(A,)=0 implies the fol-

This line is stable against smally andAy, in the range  |owing equation:
1<w<1.31. This stable region may control the integer
guantum Hall transitions observed in real experimental Ay d(B3+w—¢) (1+W)[(3+wW)p—(1+w)?]
systems. _ _ A wr3g—1 H(B+W—g) '

As shown first by Ludwicgt al.® the random gauge fixed (55)
line is unstable againgt,, andA, [see also Eq(11)]. Due
to the Coulomb interaction, we find there is a small part of Namely, x=1+w should satisfy thefourth-order equa-
the fixed line kxw<1.31 which is stable against smalj, tion:
andAy .

From Eq.(8), it is easy to see that=1 on all these lines X'+ 2(¢—1)x*=2¢*x*=2¢(p—1)(p+2)x+ ¢*(2— ¢)?
of fixed points. Unfortunately, we are still unable to find a -0 (56)
generic fixed points with all the couplingsonvanishing '
These generic fixed points may be either unaccessible to thgith the constraints 3w>¢, ¢>(1-w)/3, ¢>(1
method developed in this paper, or simply do not exist in the+ w)?/(3+w).

14 . (54)

real experimental system. From Ref. 21,8°(w)/w=Ay/7>0 implies that$<2,
_ N thereforew< /5.
2. Fractional quantum Hall transition (¢>0) If $=0, Eq. (56) reduces t0x3(x—2)=0, thereforew
Turning to the fractional case with a nonzefowe start =1. If 0<¢$ <1, there isno real root which satisfies botk
with the simplest case=A,=A,=0. B(A) simplifies >1 and the constraints.
to If =1, Eq.(56) reduces to X>—1)2=0 which implies
thatw= 0. Substituting ¢=1,w=0,t=1) into Eq.(41), we
_ 1 2 5 find Ac=P(Ac)=P(A¢)=0.
AlAwm)==28u(rpy = 1)+ WAM’ 6D If 1 <¢$<2, there is only one real root witk>1. We also
where v, is the exponent in the absence of Coulomb inter-find P(A) <0, thereforev>7%,>1 in this regime.
actions (v=0): Unfortunately, when substituting thep(w,t) into Eq.
(53), we find that the left-hand side of the equation is always
5124(1—-2¢) positive Therefore, we conclude there ti® perturbatively
Wl Eas (52 accessible fixed points withy, ,Ay,Ax>0.

(i) Ayy=0. From Eq.(45), we see thaB(w)=0 implies
When 0< ¢<1/2, v,<1, the pure fixed point is unstable, the g(A,)=0. From Eq.(38), it leads to
system flows to a Ii3ne of fixed points given by, o)
=5124(1—-2¢)/IN37\°. From Eq. (8) and the fact w ~ ~
BP(W)/W|,_o=0, we obtainz=1+A,,/m>1 which con- W~ A P(AV+2P(A)]. (57)
tinuously changes along this ling&ig. 18. From Eq.(42),
we getr=1 along this line. Wherp>1/2, the pure line of From Eq.(38), B(Ay)=0 leads to
fixed points withz=1 is stable. It is easy to see that this
fixed line is unstable against smaW (A ,A,).

Unlike the Coulomb interaction casé<0), if A,#0 or
A,#0, then all the three disorders are generated, this can be
easily realized from Eq38). So we have to investigate the
generic fixed points of Eq.38).

:I._.2 4. - 4 ~ 4. ~
;Ac-i- ;AVAA— ;AAP(AV)— ;AVP(AA)

2. ~
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t=A,/A,
1/6 3/5
o]
z=1
v<1
=l
v>1
0 3/5 13 ¢
FIG. 19. If Ay=0, there is a fixed plane in theg(t

=Ay/A,) plane.w and A, and Ay, are uniquely determined by
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Answering the three questions at the same time seems a
forbidding task at this moment. Reference 21 investigated
the combined effects dfb) and(b) in a Dirac fermion model
and found a line of fixed points. Along this line, both the
Chern-Simon interaction and the Coulomb interaction are
nonvanishing; the dynamic exponenit 1. In this paper, we
make a serious attempt to study the combined effectg)pf
(b), and (c) in the Dirac fermion model. We perform a
renormalization-group analysis by the systematic perturba-
tive expansions in N (N is the number of species of Dirac
fermiong and the variances of three disordeyg ,Ay,Ax.

We find thatA, is irrelevant along this line; there i® 1/N
correction toB(A,), thereforeA , is always marginald,, is
marginal along this line, irrelevargbovethis line, relevant
belowthis line. With the presence of all the three disorders,
the pure fixed line is unstable.

In IQHT, in the three special cases, we find the three
nontrivial lines of fixed points with dynamic exponent

(¢,1), and therefore are not shown in the figure. The shaded regime 1. The fixed line in the 4, ,w) plane hasyv=1 and is

with z=1, v>1 is stable against small, .

From Eg.(58), given (¢,t), we can determinev, then
substituting g, w,t) to Eq.(57), we can determind 5, Ay, .

In the following, we consider the two end lines separately.

(@ Ay=0 (namely,t=0). If $=0, Eq.(58) becomes an

unstable against smallA{,,Ay). The fixed line in the
(Ay,w) plane hasv=1 and is unstable against small
(Am,Ap). Most interestingly, the fixed line in theA ,w)
plane has continuously changin@nd isstableagainst small
(Ay,Ay) in the small range £w<1.31 (Fig. 17. This
stable region may control the integer quantum Hall transi-

identity, we recover the results of the integer quantum Halfions observed in real experimental systems.

transfer(IQHT) [Fig. 17c)]. If ¢>0, the solution of Eq(58)
isw=1[3¢+ (34)?+4(1— ¢)—4]>0 (namely,¢>3/5).
Substituting this expression into EG7), we can determine
A, and the constraing<1.3. Thus¢ must satisfy 3/5 ¢
<1.3. From Eq(43), we find this line is stable against small
Ay .

(b) Ap,=0 (namely,t=x). If $=0, Eq.(58) becomes an
identity, we recover the results of the IQHFig. 17b)].

If >0, the solution of Eq(58) is w=3—5¢. Substitut-
ing w=3-5¢ into Eq. (57), we can determineAy:
BP(wW)/w=(A\/327)[(6¢—1)/(1— ¢)?]. Therefore ¢
must satisfy 1/6 ¢<3/5. Equation (43) becomesy !
'=~Fj'l+ (3Avl87r)[¢.2/(1— $)°1>7,'>1; therefore, this
line is unstable against smally, .

We conjecture that there is a fix@ne which connects
the above two end lines a0 and att=c (Fig. 19. The
shaded(unshadej region hasv>1 (v<1), therefore is
stable (unstabl¢ against smallA,,. Numerical analysis is

needed to determine its precise boundary. The stable regio§¥

may control the fractional quantum halFQH) transitions
observed in real experimental systefns.

V. CONCLUSION

The results may be relevant to the IQH to insulator tran-
sitions. It may also be important to high-superconductors.

It was well established that highs: superconductors have a
d-wave order parameter and its quasiparticle excitations are
described by 2 1 dimensional Dirac fermiorf.

In FQHT, setting Coulomb interaction to zero anig,
=A,=0, we find a line of fixed points with=1 andz
>1 which continuously changes along this liizee Fig. 18
This line is unstable against smal (A, ,A,).

Most interestingly, setting\y,=0, we find a fixed plane
with z=1, the part of this plane witlh>1 is stable against
small Ay,. This stable region may control the fractional
guantum Hall transitions observed in real experimental
systems.

Unfortunately, we are unable to find generic fixed points
with all the couplingsnonvanishing These generic fixed
points may be either unaccessible to the method developed in
this paper, or simply do not exist in the real experimental
stem. However, by looking carefully at the divergent struc-
tures of all the relevant Feymann diagrams, we show the
model isrenormalizableto the order (IN)A,A?,(1/N)? dis-
cussed in this paper; we do bring out the systematic and
elegant structure which describes the interferences between
the Chern-Simon interaction, the Coulomb interaction, and
the three kinds of disorders. We believe that the structure is

Recent experiments indicated that the transitions betweejfteresting in its own right and may inspire future work to
two quantum Hall states or between a quantum Hall state angtydy this difficult problem.

an insulating state may be described by quantum critical
theories. In these theories, different FQH states and insulat-
ing states are considered as different ground states of the
electron systems. The three important questions that remain
unsolved on the nature of these quantum phase transitions We thank M. P. A. Fisher, B. Halperin, A. Millis, C.
are (a) the effects of the quasiparticle statisti¢b) the ef-  Mudry, S. Kivelson, N. Read, S. Sachdev, and X. G. Wen for
fects of long-ranged Coulomb interaction on the transitionshelpful discussions. This work was supported by NSF Grant
and (c) the effects of all kinds of disorders. No. DMR-97-07701.
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APPENDIX: THE PROOF OF EQUIVALENCE
OF THE RANDOM VECTOR GAUGE POTENTIAL A, &
AND A,(8—QiQ;/Q%)

We can decompose the random gauge figlgk) in Eq.
(1) into transverse and longitudinal components,

Ai:A;r‘FA:_:EijO"J'XT‘F aiXL, (Al)
where xT(x), x"(x) satisfy
XTOOX (X)) =(x"(x)x"(x"))=—Aaln[x—x"|.
(A2)

From the above equation, it can be shown easily

kik;
<AF(k>A}(k'>>=AA( 5 —kz'),
(A3)

Coati ki
(AFOAL(K)) = At

Adding the two equations above leads to
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(ACOA(X))=(AT()AT (X)) +(AF(X)AF(X"))

=Apd; 8% (x—x") (A4)
which is the third equation of Ed?2).

By gauge transformationAiL(x)zai x"(xX) can be re-
moved, so{AF(K)Af(k'))= A xkik; /k? shouldnot make any
contribution togauge-invariantquantities. This fact is simi-
lar to the “running gauge fixing parameter” in usual relativ-
istic quantum-field theor$? This point can also be demon-
strated in the following specific example.

Let us evaluate its contribution to fermion self-energy
Fig. 2(c); the divergent part is

1
ﬁ(?’owﬂL Yiki)- (A5)

It is evident that although this contribution affects the
anomalous dimension of the field operatégy it does not

affect the dynamic exponerzt which is a gauge-invariant
quantity.
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