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Boundary element method for electron transport in the presence of pointlike scatterers
in magnetic fields
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The boundary element method for electron waves in the presence of uniform magnetic fields is extended so
that it is applicable to scattering problems by many scatterers. The cross sections of scatterers are assumed to
be so small that the scattering potentials are modeled by summati@fiuoictions. This extended method is
applied to a magnetic electron focusing geometry with a sequence of scatterers between an emitter and a
collector. The transmission probability of an electron wave from the emitter to the collector is computed as a
function of the magnetic field. Electron distributions are also calculated. These evidently show the commen-
surate scattering classically expected. The results of sample calculations demonstrate the effectiveness of the
method.[S0163-182@9)01235-7

[. INTRODUCTION tions, so that the 2D volume integration is approximately
evaluated. Then, we take a node in order to evaluate the
Since magnetoresistance anomalies were experimentallyolume integral for a scatterer. The method developed here
observed in two-dimension&PD) electron systems with an is applied to a magnetic electron focusing geontetvith a
array of stationary scatterefan antidot arrayfabricated on sequence of scatterers between an emitter and a collector
an interface of the GaAs/ABa, _,As heterostructur&;*the  (Fig. 1). The result is physically interpreted and discussed.
transport of 2D electrons in such systems has been rigorously

Thex andy axes are defined in the plane as shown in Fig.

studied also theoretically. In the theoretical treatment, a po- Il. BOUNDARY INTEGRAL EQUATION
2 1 and the vector potential which generates a uniform mag-
netic field perpendicular to the plaie=(0,0,—B) is defined

tential of the form
r o
COS( EX COS( gy
asA(r)(VXA=B).

(whereais the lattice constant anlis the control parameter ~ The Schrdinger equation of an electron moving in the
of the steepness of the antidpts the periodically arranged influence of the magnetic field and a scalar potential) is
well potential of finite or infinite height are usually employed generally written in a dimensionless form as

in order to model an antidot arrdyThen, mostly infinite
systems without boundaries or with periodic boundary con-
ditions are considered and magnetoresistivity by making use
of Kubo's linear-response theory or band structures are .
compute’” Few works for the electron systems confined inWhere length and energy are scaled by the magnetic length
cavities have been reported. For the case that a few obstacles=V#/|qB| and by the cyclotron energyio: (o

exist within the system surrounded by arbitrary-shaped=|dB|/m*), respectively. The quantities and m* denote
boundaries, certainly the boundary element method for eledhe electron charge and the effective mass in semiconductors.
tron waves in magnetic fiellss applicable by modeling the The scaled total wave number is definedHos 2.

scattering potentials by well potentials of finite or infinite By means of the Green’s functith'*

height. We, then, need to take more than four nodes on the

boundaries of the scattering potentials and at each node two

unknown variablega wave function and its normal deriva- A

V(va) :VO

1
5[—iV—A(r)]2+V(f) p(r)=e(r), (2.7)

tive) are assigned. When a lot of scatterers exist, the number . id/Z
of the matrix elements of the discretized integral equation, A
memory space required on a computer, and cpu time be- D ® B

comes too large. Thus, it seems that such a method is not
practicable. In this paper, an approximate solution practical

for the system with many obstacles of small cross sections is ; ’
X
presented. -‘7 ;
For the systems with scattering potentials, the 2D volume Emitter Collgctor
integral of the product of the potential, the wave function, 5d

and the Green’s function appears in the expression of the
wave function within the region surrounded by a closed FIG. 1. Magnetic electron focusing geometry and the definition
boundary. Here we consider the scatterers of small cross secf the coordinate system.
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r NS
G(r,r’;s)=ex+SJ,A(r”)~dr”}Go(z:s), V(r)=V_a2%(Kd)22 iza(a—|r—Rn|), (3.2
r n=1 a

1 _ _ _ _
Go(z;s)EEF(%—s)U(%—s,l,z)exp(—ZIZ), (22 whereV and a are defined bW=V/e=V/(3K?) and a
=al/d. The functiond(x) denotes the unit step function. The
which satisfies quantitiess (=3K?) andd are the energy of the incident
electrons and the width of orificghe emitter and the col-
lecton, respectively. The position vector of the centendf
scatterer is expressed IR;,. We can takeR,’s arbitrarily.

(2.3 We make the radiua small enough keepinya? constant,
since scatterers of small cross section are considered. The
'scattering potential (%a?) §(a—|r—R,|) may, then, be ap-
proximated by Dirac’ss function 6(r —R,). We can imme-
diately evaluate the 2D volume integration in Eg.5 and
obtain

%[iV’—A(r’)]ZG(r,r’;s)=gG(r,r’;s)+ S(r—r'"),

we can express the wave function within the region sur
rounded by the closed bounda8/in terms of the integral
along the boundary,

p(r)= jg[G(r,r’;s)V’t/f(r’)
NS
—(r')V'G(r,r';e)]-n"dS' (1) (1) = gho(r)—Vai(Kd)2 Y, G(r,Ry)¥(Ry).
n=1
—2i %G(r,r’;s)l,//(r’)A(r’)-n’dS’ 3.2
In Eq. (3.2, #(R,)’s are unknown variables to be deter-
—zf G(r,r";e)y(r")V(r')dr’, (2.4 mined. Ifr is set onR,,, (1=m=Ny) [thenc(R,,) =1 since
R,, is a internal poin G(R,,R,,) in the summation is di-
wheren’ is the unit normal vector directed outwards from vergent. Originally, such divergence does not occur, so that
the region. Herez=(r —r')/2 andU (% —¢,12) is a loga- when we taker as R;,, we need to evaluate the volume
ne region. Herez , e, ot 9 integration, including the potential whose center is located at
rithmic solution of Kummer's functiont? The S in front of

the integral of Eq.(2.2) implies that the path of the line

integral connects the point andr straightly. Concerning

the last term on the right-hand side, we must perform the 1

volume integral. —Zj G(Rm,r")6(a—|r' =Ry g(r')dr’,
By moving pointr on the boundang, the integral equa- ma

tion can be constructed as follows:

m:

more accurately in order to avoid the divergence.

, , - Now, considering the small scattering radaswe may
c(r)¢(r)=¢o(r)—2f G(r,r'se)g(r’)V(r)dr’, reasonably estimate as
J ! aG(r,r’ m
%(r)zP}gdS'(Gu,r')Lr,)—z/f(r')L,” ex;{iSIR A(r”)-dr”}fvl,
on an r’
—2iG(r,r’)¢(r’)A(r’)-n’), (2.5 exp(—z/2)~1,

where the symbol “P" andi/dn" denotes the Cauchy’s prin- y optain the expansion of the Kummer functioh(:
cipal value of the integral and outward-normal denvatlve,_8 12) for small 212

respectively. The coefficient(r) comes from the volume

integrationfdr’ of the delta functions(r —r’), which is not

unity sincer lies on the boundarg. If the boundary curve F(i-e)U(t—e,12)~—[Inz+T(i—e)—29].

has a corner with internal anglé(r) at r, then c(r)

= 6(r)/27r.23 Obviously,c(r)=1/2 if the boundary on point

r is smooth. Here, W (3 —¢) andy are the digamma function and Euler’s
constant, respectively. Within the range in which the scatter-

Il APPROXIMATION ing p_otentia_ll has a finiténonzerg value, the wave function
#(r) in the integrand should not vary very far from the value
Let us consideNg scatterers of the same scattering am-at the centeR,,, so that we may write/(r) ~ #(R,,). In this

plitude and cross section. The potential of a scatterer is modzpproximation, the wave function in the integrand is inde-

eled by a cylindrical barrier of finite heightand radiusa, so  pendent of the position, and it can be taken outside the inte-

that the total potential is written as gral. Finally, we obtain
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Edge states are formed when electrons are confined in a

iz G(Ry,r")8(a—|r'—Ry|)¢(r’)dr’ waveguide subjected to magnetic fields> Although wave
ma functions at the orifices should, then, be expanded in terms
of the edge states, the influence of magnetic fields will be
~ _i ¢(Rm) g(a—|r' —Ry) small when the cyclotron diameter is sufficiently larger than
ma? 4w m the width of the waveguides as we will consider now. So we
put A(r) =0 within the emitter and the collector, that is, in
X[Inz+W(:—¢)—2y]dr’ the region ofy<<0. It is, then, convenient to employ the
) Landau gaugé = (—y,0,0), since the vector potential must
__ $(Rm) Ina—— 1+W(i—g)—2 3.3 be continuous even on theaxis.
47 2 2 Y| ' When an electron wave belonging to the transverse mode

_ _ «a is injected, the total wave function in the emitter of width
Therefore, whem is taken aRR,, in Eq.(2.5), G(R,Rm)  dis written as

is replaced by—(1/47)[k+W¥(:—¢)] with k=In(a%2)

—1-2y=In j(ad)*~1-2y. Pa(1)=UL(N)+ 2 Tap Ug(T),
B
IV. APPLICATION > d
As an example of application, this extended method is ua(r)Eexp(—iky,ay)\[asir{kxya X+ 51
applied to a magnetic electron focusing geometry with scat- (4.1)
terers(Fig. 1). The scatterers lie on the middle line between Ky o=cmld, Ky ,=KZ—K2 '
the emitter and the collector at intervalsd®, that is, their ' v “
positions are given byx,y)=(d/2)(5n) (n is a natural (a,=1.2,...).
numbej.

In the absence of a magnetic field, when the boundaries LN the orifice of_the emitter, the reflection coefficienfg
and B(Fig. 1) are located enough in the distance from both@'® unknown variables. .
orifices of the emitter and the collector, the integration on the 1he wave function in the collector of widtd is, then,
portion A and B on the right-hand side of E@.4) need not  €xPressed as
be performed owing to the Sommerfeld radiation condition.

In the presence of a magnetic field, however, this condition (//a(r)zz t Wy(r),
does not hold. A

In classical mechanics, electrons in magnetic fields move
on cyclotron orbits. In our system, electrons injected from _ . \/E . d
the emitter travel toward the virtual boundary B along the Wi (r)=exp(—iky\y) /g sin k| x+ 5 =L,
wall, repeating the fractional cyclotron motion, whose radius (4.2

Is rc=K=y2e, and collision with the wall and with the ', hare| i the interval between the centers of the emitter and
scatterers. Therefore, electrons never go away farther thqﬂe collector which is taken ds=5d in the present paper

2r¢ frofm tht? wall ‘End scatterers. Q_uargltum mecganl_ﬁally,t th&n the orifice of the collector, the transmission coefficients
wave functions show rapidGaussiah decay and will no {,,; are unknown variables.

have a significant amplitude in the distance.farther thgn 2 On the boundaries A and B, the wave functions are ex-
from the wall gnd the obstacles. Such behavior of’ wave ﬂ_mcbanded in terms of the edge stajes, ) ad®
tions is confirmed by the fact that the Green’s function
G(r,r’;e) falls rapidly when|r —r’| is larger than the cyclo-
tron diameter 2. . Bo()=2 Sy x(1,k,) 4.3
The electron waves propagate toward the boundary B 7
along the wall, so that it seems that the integration along thand
boundary A on the right-hand side of E®.5 need not be
performed. However, this is not valid at all. Time-reversal
symmetry of electron motion is broken in an external mag-
netic field. That appears in the fact th@y(z;¢) is real. ) i
Namely, we cannot impose the outgoifay incoming wave respectively. Here, the edge states are defined by
condition on the Green’s function in contrast to the case in _ .
the absence of a magnetic field. Therefore, solutions of Eq. x(r)=expinx) ¢y, «), “.9
(2.5 include waves coming in from the boundary A and whereo(y,«)’s are eigenstates of the differential equation
flowing out to the emitter unless the integration along the
boundary A is performed with an outgoing wave condition.
The confinement potential at the walls is assumed to be
infinitely high. On the wall, the wave functio¢(r’) van-
ishes, so that only the first term is left on the right-hand sidewith boundary conditions that(y, x) vanishes on the poten-
of the second equation of E@2.5). Its normal derivative tial walls and in the distance from the walls. The wave num-
dylan’ is unknown. bersk, and ks are selected so that Eqg.3) and (4.4) will

wa(r>=25 Ups X(T,Ks), (4.4)

2

- d—yz+(f<+y)2 ey, k) =2e¢(Y,K) (4.6)
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express outgoing waves on boundaries A and B. The coeffi-
cientss,,, U,s; are other unknown variables to be deter-
mined. Here, note that the eigen-wave-vectoifor large Lr
enoughe has complex values as Scheltal’® pointed out.
The discretization and the numerical implementation are 08
performed according to the usual procedure of the boundary
element method in terms of the first-ordénear elements. B 06
The general and detail formulation process of the equations
can be found from Ref. 11 and existing textbooks. In the 04
discretization scheme, nodes defined on the walls are con-
centrated in the region where rapid spatial variation of the 02 L
wave functions is expected. The set of linear equations ob-
tained by the discretization is solved for the unknown vari- 0 I Wl .
ables,d/on’, 1, 5, Sa.s, tans Ua,er andy(R,). Substi- 0 10 20 30 40
tuting the obtained values of these into Eg.5), we obtain B
the value of the wave functions within the region surrounded FIG. 2. Magnetic-field dependence of the transmission probabil-

by the boundary. _ itgv from the emitter to the collector for the fundamental mode in-
In experiments, the conductance between the emitter angction T,, which in the absence of the scatterers is also shown by

the collector is obtained. It is well known that the conduc-the dashed linekd=15y2 is employed as an example of a short
tance is proportional to the summation of the transmissioRyayelength.
probability for all of the injected propagating modes. In our

formulation, we can evaluate the transmission probability of , L
electrons from the emitter to the collector by means of thd©cUSiNg spectrumiEFS] was calculated for the injection of

Landauer-Btiiker formula® When the ath propagating the fundamental moden(=1). The result is shown in Fig. 2

with scatterers arrayed in the line
without scatterer§ -~

mode is injected, it is given by by the solid line. EFS i_n the absence of the scatterers is also
shown by the dashed line. Substructures are observed as well
Ne as periodic major peaks. THéh major peak appears when
T,= 2 V_B|ta5|2’ (4.7 the electron beam focuses on the collector afted times

reflection from the potential walls. The width of the major

wherev,, andv, are the group velocities of electrons be- peaks in Fig. 2 increases with This is because classical

longing to theath mode in the emitter and to theth mode ~ €lectrons move within a finite width of a bediThe series

in the collector, respectively. The numbli denotes the of subpeaks betweeB=10 andB= 15 reflects the periodic

maximum index of propagating modes in each waveguide. arrangement of the scatterers. The positions of the subpeaks
agree with values of the magnetic field at which the electron

V. NUMERICAL RESULTS beam of widthd propagating along the classical trajectory
collides with the scatterers.
We introduce a dimensionless paramdierB/B, for the At some of the subpeaks and of the subdips, the cyclotron

magnetic induction (magnetic flux density with B, diameter is equal to an integral multiple of the interval be-
=#/qd?. When the width of the emitter is, for example, 250 tween scatterers, that is, r224K/qB=2d(Kd)/B=n

nm, the magnetic induction Correspondingﬁg:]_ is about xXdl2 (n is a natural numberCharacteristic trajectories sat-
0.01 T. Throughout the present paper, we empkg isfying such a commensurate condition are called “runaway
=15{2. Then, six modes can propagate within the emittelorbits.” Electrons can, then, travel along the series of the
and the collector, that i$y-=6. This is an example of such Scatterers owing to sequential collisions with the scatterers.
a short wavelength that it is hard to analyze it by means ofn order to confirm that, a contour of electron densigyr)|?

the other numerical methods. The parameters of the scatteis presented in Fig. 3 foB=17.3333 where £./(d/2)

ing potentialV anda are taken a¥ =300 anda=0.1. The =4Kd/B~5. The value oB is indicated by an arrow in Fig.
coefficient of the scattering potential is obtained as2. Here, the contours are assigned in the range which in-
Va?(Kd)2=1350. cludes all interesting parts of the plot. We see that the prob-

In the practical computation, the total number of nodes iability density is distributed along the series of the scatterers.
390 including the nodes of the scatterers. The number of th&he wave function on the right-hand side of the line of the
scattererd\s is 20. The maximum value g8 in Eq.(4.1) and ~ Scatterers consists of the component passing through the
X\ in Eq. (4.2) is set to 40. The number of the propagating Scatterers and that going to the end of the series and turning
modes in the emitter and the collector is equal to 6, so that Back by successive collisions, for the number of the scatter-
lot of evanescent modes are included in the expansions. TH¥S taken into consideratioilNs=20 is finite. The electron
upper limit of 5 and o is taken to be the number of the density distributions on the other commensurate conditions
propagating modes, since the amplitudes of the evanescefihat is, different values af) also show similar behavior. It
modes converge to very small values if the boundaries A ant$ Obvious that the classical picture is effective when the
B are located in the distance from the orifice of the emitterincident wave ofKd=152 belongs to the fundamental
and that of the collector, respectively. mode. o

The magnetic-field dependence Bf [magnetic electron In this case, we chose a6d=15,2 anda=0.1. Then,
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cases where the probability density around the collector is
unusually large. This will be caused by truncating the sum
with an infinite upper limit of Eq(4.2), for the wave func-

tion has a very fine structure due to scattering, so that the
coefficients of the higher modes in the collector will not be
small enough. The accuracy of the conservation is not influ-
enced because only the coefficients of the evanescent modes
which do not transport current are incorrect.

VI. SUMMARY AND DISCUSSIONS

The boundary element method for 2D electron systems in
uniform magnetic fields have been extended so that it is ap-
plicable to 2D electron systems with many small obstacles.
As an example, it has been applied to a magnetic focusing
geometry with scatterers lined up on the middle line between
the emitter and the collector. The density distribution and the
~ magnetic-field dependence of the transmission probability

FIG. 3. Contour of the density of the electrons of Fig. 2Bat  from the emitter to the collectdEFS have been calculated.
=17.3333. The value dB is pointed out in Fig. 2 by an arrow. Then, if the diameter of the scattering potential is larger than

one-half of the wavelength, the electron wave has been scat
the ratio of the radiusx of the scattering potential to the tered in spite of the approximation of the scattering potential

wavelengthx becomes by a § function. This method enables us to analyze 2D elec-
) tron systems with more than 20 obstacles with sufficient ac-
K —_ I 1 i i i -
a=Ka=Kd-a=15y2-0.1~2.1. curacy in a feasible cpu time. It is applicable only to ob

stacles of small scattering cross sections. Nonetheless, it is
The diameter 2 is larger than half of the wavelength, so that ptc()av(\:/;aer;ul to analyze systems with a number of small ob
an electron wave may be scattered by the scatterer. In fact, |, yho |ast several years, many laboratories have achieved
the scattering amplitude becomes extremely smak ifs  the preparation of periodic nanostructure in semiconductor
taken smaller than0.1. _ heterojunctions and measured magnetoresistance, the Hall
Conservation of probabilityunitarity) is employed in or-  effect, and far infrared with square, rectangular, triangular,
der to rate the accuracy of the numerical calculation. Th%uasiperiodic, and random lattices. The results show many
accuracy of conservation of probability is of the order of pecyliarities. Some of them cannot be explained by using a
10"2% for most cases and better than a few percent even fddjlliard model of reflecting disks and are considered as
all cases, wheB is larger than 8.5WhenB is smaller than quantum-mechanical effects. Therefore, we anticipate a prac-
8.5, the accuracy becomes worse remarkably, since thigcal application of the method developed here to such prob-
Green’s function oscillates very rapidi). Thus, we see that lems. In addition, we can easily treat the obstacles by means
the approximation in Sec. Il scarcely affects the accuracy. of this method, so that it may possibly enable us to determine
On the other hand, even if the accuracy of conservation othe positions of the obstacles in a 2D electron system by
probability is about 10%%, we have physically strange measuring the conductance or the magnetoresistance.
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