
n

PHYSICAL REVIEW B 15 SEPTEMBER 1999-IVOLUME 60, NUMBER 11
Boundary element method for electron transport in the presence of pointlike scatterers
in magnetic fields
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The boundary element method for electron waves in the presence of uniform magnetic fields is extended so
that it is applicable to scattering problems by many scatterers. The cross sections of scatterers are assumed to
be so small that the scattering potentials are modeled by summation ofd functions. This extended method is
applied to a magnetic electron focusing geometry with a sequence of scatterers between an emitter and a
collector. The transmission probability of an electron wave from the emitter to the collector is computed as a
function of the magnetic field. Electron distributions are also calculated. These evidently show the commen-
surate scattering classically expected. The results of sample calculations demonstrate the effectiveness of the
method.@S0163-1829~99!01235-7#
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I. INTRODUCTION

Since magnetoresistance anomalies were experimen
observed in two-dimensional~2D! electron systems with an
array of stationary scatterers~an antidot array! fabricated on
an interface of the GaAs/AlxGa12xAs heterostructure,1–4 the
transport of 2D electrons in such systems has been rigoro
studied also theoretically. In the theoretical treatment, a
tential of the form

V~x,y!5V0FcosS p

a
xD cosS p

a
yD G2b

~wherea is the lattice constant andb is the control paramete
of the steepness of the antidots! or the periodically arranged
well potential of finite or infinite height are usually employe
in order to model an antidot array.5 Then, mostly infinite
systems without boundaries or with periodic boundary c
ditions are considered and magnetoresistivity by making
of Kubo’s linear-response theory or band structures
computed.6,7 Few works for the electron systems confined
cavities have been reported. For the case that a few obst
exist within the system surrounded by arbitrary-shap
boundaries, certainly the boundary element method for e
tron waves in magnetic fields8 is applicable by modeling the
scattering potentials by well potentials of finite or infini
height. We, then, need to take more than four nodes on
boundaries of the scattering potentials and at each node
unknown variables~a wave function and its normal deriva
tive! are assigned. When a lot of scatterers exist, the num
of the matrix elements of the discretized integral equati
memory space required on a computer, and cpu time
comes too large. Thus, it seems that such a method is
practicable. In this paper, an approximate solution pract
for the system with many obstacles of small cross section
presented.

For the systems with scattering potentials, the 2D volu
integral of the product of the potential, the wave functio
and the Green’s function appears in the expression of
wave function within the region surrounded by a clos
boundary. Here we consider the scatterers of small cross
PRB 600163-1829/99/60~11!/8213~5!/$15.00
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tions, so that the 2D volume integration is approximate
evaluated. Then, we take a node in order to evaluate
volume integral for a scatterer. The method developed h
is applied to a magnetic electron focusing geometry9 with a
sequence of scatterers between an emitter and a colle
~Fig. 1!. The result is physically interpreted and discusse

II. BOUNDARY INTEGRAL EQUATION

Thex andy axes are defined in the plane as shown in F
1 and the vector potential which generates a uniform m
netic field perpendicular to the planeB5(0,0,2B) is defined
asA(r )(¹3A5B).

The Schro¨dinger equation of an electron moving in th
influence of the magnetic field and a scalar potentialV(r ) is
generally written in a dimensionless form as

F1

2
@2 i¹2A~r !#21V~r !Gc~r !5«c~r !, ~2.1!

where length and energy are scaled by the magnetic le
l B[A\/uqBu and by the cyclotron energy\vc (vc
5uqBu/m* ), respectively. The quantitiesq and m* denote
the electron charge and the effective mass in semiconduc
The scaled total wave number is defined byK[A2«.

By means of the Green’s function10,11

FIG. 1. Magnetic electron focusing geometry and the definit
of the coordinate system.
8213 ©1999 The American Physical Society



ur

m

th

-
e

t

m
o

e
t

The

r-

that
e
at

’s
ter-

ue

e-
nte-

8214 PRB 60TSUYOSHI UETA
G~r ,r 8;«!5expF iSE
r8

r
A~r 9!•dr 9GG0~z;«!,

G0~z;«![
1

4p
G~ 1

2 2«!U~ 1
2 2«,1,z!exp~2z/2!, ~2.2!

which satisfies

1

2
@ i¹82A~r 8!#2G~r ,r 8;«!5«G~r ,r 8;«!1d~r2r 8!,

~2.3!

we can express the wave function within the region s
rounded by the closed boundaryS in terms of the integral
along the boundary,

c~r !5 R @G~r ,r 8;«!¹8c~r 8!

2c~r 8!¹8G~r ,r 8;«!#•n8dS8

22i R G~r ,r 8;«!c~r 8!A~r 8!•n8dS8

22E G~r ,r 8;«!c~r 8!V~r 8!dr 8, ~2.4!

wheren8 is the unit normal vector directed outwards fro

the region. Here,z5(r2r 8)2/2 andU( 1
2 2«,1,z) is a loga-

rithmic solution of Kummer’s functions.12 The S in front of
the integral of Eq.~2.2! implies that the path of the line
integral connects the pointr 8 and r straightly. Concerning
the last term on the right-hand side, we must perform
volume integral.

By moving pointr on the boundaryS, the integral equa-
tion can be constructed as follows:

c~r !c~r !5c0~r !22E G~r ,r 8;«!c~r 8!V~r 8!dr 8,

c0~r ![P R dS8S G~r ,r 8!
]c~r 8!

]n8
2c~r 8!

]G~r ,r 8!

]n8

22iG~r ,r 8!c~r 8!A~r 8!•n8D , ~2.5!

where the symbol ‘‘P’’ and]/]n8 denotes the Cauchy’s prin
cipal value of the integral and outward-normal derivativ
respectively. The coefficientc(r ) comes from the volume
integration*dr 8 of the delta functiond(r2r 8), which is not
unity sincer lies on the boundaryS. If the boundary curve
has a corner with internal angleu(r ) at r , then c(r )
5u(r )/2p.13 Obviously,c(r )51/2 if the boundary on poin
r is smooth.

III. APPROXIMATION

Let us considerNs scatterers of the same scattering a
plitude and cross section. The potential of a scatterer is m
eled by a cylindrical barrier of finite heightV and radiusa, so
that the total potential is written as
-

e

,

-
d-

V~r !5V̄ā2
1

2
~Kd!2(

n51

Ns 1

pa2
u~a2ur2Rnu!, ~3.1!

where V̄ and ā are defined byV̄[V/«5V/( 1
2 K2) and ā

[a/d. The functionu(x) denotes the unit step function. Th
quantities« ([ 1

2 K2) and d are the energy of the inciden
electrons and the width of orifices~the emitter and the col-
lector!, respectively. The position vector of the center ofnth
scatterer is expressed byRn . We can takeRn’s arbitrarily.
We make the radiusa small enough keepingV̄ā2 constant,
since scatterers of small cross section are considered.
scattering potential (1/pa2)u(a2ur2Rnu) may, then, be ap-
proximated by Dirac’sd function d(r2Rn). We can imme-
diately evaluate the 2D volume integration in Eq.~2.5! and
obtain

c~r !c~r !5c0~r !2V̄ā2~Kd!2(
n51

Ns

G~r ,Rn!c~Rn!.

~3.2!

In Eq. ~3.2!, c(Rn)’s are unknown variables to be dete
mined. If r is set onRm (1<m<Ns) @thenc(Rm)51 since
Rm is a internal point#, G(Rm ,Rm) in the summation is di-
vergent. Originally, such divergence does not occur, so
when we taker as Rm , we need to evaluate the volum
integration, including the potential whose center is located
Rm ,

1

pa2E G~Rm ,r 8!u~a2ur 82Rmu!c~r 8!dr 8,

more accurately in order to avoid the divergence.
Now, considering the small scattering radiusa, we may

reasonably estimate as

expF iSE
r8

Rm
A~r 9!•dr 9G;1,

exp~2z/2!;1 ,

and obtain the expansion of the Kummer functionU( 1
2

2«,1,z) for small z,12

G~ 1
2 2«!U~ 1

2 2«,1,z!;2@ ln z1C~ 1
2 2«!22g#.

Here,C( 1
2 2«) andg are the digamma function and Euler

constant, respectively. Within the range in which the scat
ing potential has a finite~nonzero! value, the wave function
c(r ) in the integrand should not vary very far from the val
at the centerRm , so that we may writec(r );c(Rm). In this
approximation, the wave function in the integrand is ind
pendent of the position, and it can be taken outside the i
gral. Finally, we obtain
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1

pa2E G~Rm ,r 8!u~a2ur 82Rmu!c~r 8!dr 8

;2
1

pa2

c~Rm!

4p E u~a2ur 82Rmu!

3@ ln z1C~ 1
2 2«!22g#dr 8

52
c~Rm!

4p F ln
a2

2
211C~ 1

2 2«!22gG . ~3.3!

Therefore, whenr is taken asRm in Eq. ~2.5!, G(Rm ,Rm)

is replaced by2(1/4p)@k1C( 1
2 2«)# with k[ ln(a2/2)

2122g5 ln 1
2(ād)22122g.

IV. APPLICATION

As an example of application, this extended method
applied to a magnetic electron focusing geometry with sc
terers~Fig. 1!. The scatterers lie on the middle line betwe
the emitter and the collector at intervals ofd/2, that is, their
positions are given by (x,y)5(d/2)(5,n) (n is a natural
number!.

In the absence of a magnetic field, when the boundarie
and B ~Fig. 1! are located enough in the distance from bo
orifices of the emitter and the collector, the integration on
portion A and B on the right-hand side of Eq.~2.4! need not
be performed owing to the Sommerfeld radiation conditio
In the presence of a magnetic field, however, this condit
does not hold.

In classical mechanics, electrons in magnetic fields m
on cyclotron orbits. In our system, electrons injected fro
the emitter travel toward the virtual boundary B along t
wall, repeating the fractional cyclotron motion, whose rad
is r c[K5A2«, and collision with the wall and with the
scatterers. Therefore, electrons never go away farther
2r c from the wall and scatterers. Quantum mechanically,
wave functions show rapid~Gaussian! decay and will not
have a significant amplitude in the distance farther thanr c
from the wall and the obstacles. Such behavior of wave fu
tions is confirmed by the fact that the Green’s functi
G(r ,r 8;«) falls rapidly whenur2r 8u is larger than the cyclo-
tron diameter 2r c .

The electron waves propagate toward the boundary
along the wall, so that it seems that the integration along
boundary A on the right-hand side of Eq.~2.5! need not be
performed. However, this is not valid at all. Time-revers
symmetry of electron motion is broken in an external ma
netic field. That appears in the fact thatG0(z;«) is real.
Namely, we cannot impose the outgoing~or incoming! wave
condition on the Green’s function in contrast to the case
the absence of a magnetic field. Therefore, solutions of
~2.5! include waves coming in from the boundary A an
flowing out to the emitter unless the integration along
boundary A is performed with an outgoing wave conditio

The confinement potential at the walls is assumed to
infinitely high. On the wall, the wave functionc(r 8) van-
ishes, so that only the first term is left on the right-hand s
of the second equation of Eq.~2.5!. Its normal derivative
]c/]n8 is unknown.
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Edge states are formed when electrons are confined
waveguide subjected to magnetic fields.14,15 Although wave
functions at the orifices should, then, be expanded in te
of the edge states, the influence of magnetic fields will
small when the cyclotron diameter is sufficiently larger th
the width of the waveguides as we will consider now. So
put A(r )50 within the emitter and the collector, that is, i
the region ofy,0. It is, then, convenient to employ th
Landau gaugeA5(2y,0,0), since the vector potential mu
be continuous even on thex axis.

When an electron wave belonging to the transverse m
a is injected, the total wave function in the emitter of wid
d is written as

ca~r !5ua* ~r !1(
b

r ab ub~r !,

ua~r ![exp~2 iky,ay!A2

d
sinFkx,aS x1

d

2D G ,
~4.1!

kx,a[ap/d, ky,a5AK22kx,a
2

~a,b51,2, . . .!.

On the orifice of the emitter, the reflection coefficientsr ab
are unknown variables.

The wave function in the collector of widthd is, then,
expressed as

ca~r !5(
l

tal wl~r !,

wl~r ![exp~2 iky,ly!A2

d
sinFkx,lS x1

d

2
2L D G ,

~4.2!

whereL is the interval between the centers of the emitter a
the collector which is taken asL55d in the present paper
On the orifice of the collector, the transmission coefficie
tab are unknown variables.

On the boundaries A and B, the wave functions are
panded in terms of the edge statesx(r ,kb) as15

ca~r !5(
g

sag x~r ,kg! ~4.3!

and

ca~r !5(
d

uad x~r ,kd!, ~4.4!

respectively. Here, the edge states are defined by

x~r ,k![exp~ ikx! w~y,k!, ~4.5!

wherew(y,k)’s are eigenstates of the differential equatio

F2
d2

dy2
1~k1y!2Gw~y,k!52«w~y,k! ~4.6!

with boundary conditions thatw(y,k) vanishes on the poten
tial walls and in the distance from the walls. The wave nu
berskg andkd are selected so that Eqs.~4.3! and ~4.4! will
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express outgoing waves on boundaries A and B. The co
cients sag , uad are other unknown variables to be dete
mined. Here, note that the eigen-wave-vectork for large
enough« has complex values as Schultet al.15 pointed out.

The discretization and the numerical implementation
performed according to the usual procedure of the bound
element method in terms of the first-order~linear! elements.
The general and detail formulation process of the equat
can be found from Ref. 11 and existing textbooks. In
discretization scheme, nodes defined on the walls are
centrated in the region where rapid spatial variation of
wave functions is expected. The set of linear equations
tained by the discretization is solved for the unknown va
ables,]c i /]n8, r a,b , sa,d , ta,l , ua,s , andc(Rn). Substi-
tuting the obtained values of these into Eq.~2.5!, we obtain
the value of the wave functions within the region surround
by the boundary.

In experiments, the conductance between the emitter
the collector is obtained. It is well known that the condu
tance is proportional to the summation of the transmiss
probability for all of the injected propagating modes. In o
formulation, we can evaluate the transmission probability
electrons from the emitter to the collector by means of
Landauer-Bu¨ttiker formula.9 When the ath propagating
mode is injected, it is given by

Ta5 (
b51

NF vb

va
utabu2, ~4.7!

where va and vb are the group velocities of electrons b
longing to theath mode in the emitter and to thebth mode
in the collector, respectively. The numberNF denotes the
maximum index of propagating modes in each waveguid

V. NUMERICAL RESULTS

We introduce a dimensionless parameterB̃5B/B0 for the
magnetic induction ~magnetic flux density!, with B0
[\/qd2. When the width of the emitter is, for example, 25
nm, the magnetic induction corresponding toB̃51 is about
0.01 T. Throughout the present paper, we employKd
515A2. Then, six modes can propagate within the emi
and the collector, that is,NF56. This is an example of suc
a short wavelength that it is hard to analyze it by means
the other numerical methods. The parameters of the sca
ing potentialV̄ and ā are taken asV̄5300 andā50.1. The
coefficient of the scattering potential is obtained
V̄ā2(Kd)251350.

In the practical computation, the total number of nodes
390 including the nodes of the scatterers. The number of
scatterersNs is 20. The maximum value ofb in Eq. ~4.1! and
l in Eq. ~4.2! is set to 40. The number of the propagati
modes in the emitter and the collector is equal to 6, so th
lot of evanescent modes are included in the expansions.
upper limit of d and s is taken to be the number of th
propagating modes, since the amplitudes of the evanes
modes converge to very small values if the boundaries A
B are located in the distance from the orifice of the emit
and that of the collector, respectively.

The magnetic-field dependence ofTa @magnetic electron
fi-
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focusing spectrum~EFS!# was calculated for the injection o
the fundamental mode (a51). The result is shown in Fig. 2
by the solid line. EFS in the absence of the scatterers is
shown by the dashed line. Substructures are observed as
as periodic major peaks. Thel th major peak appears whe
the electron beam focuses on the collector afterl 21 times
reflection from the potential walls. The width of the maj
peaks in Fig. 2 increases withl. This is because classica
electrons move within a finite width of a beam.16 The series

of subpeaks betweenB̃510 andB̃515 reflects the periodic
arrangement of the scatterers. The positions of the subp
agree with values of the magnetic field at which the elect
beam of widthd propagating along the classical trajecto
collides with the scatterers.

At some of the subpeaks and of the subdips, the cyclot
diameter is equal to an integral multiple of the interval b
tween scatterers, that is, 2r c52\K/qB52d(Kd)/B̃5n
3d/2 (n is a natural number!. Characteristic trajectories sa
isfying such a commensurate condition are called ‘‘runaw
orbits.’’ Electrons can, then, travel along the series of
scatterers owing to sequential collisions with the scatter
In order to confirm that, a contour of electron densityuc(r )u2

is presented in Fig. 3 forB̃517.3333 where 2r c /(d/2)
54Kd/B̃;5. The value ofB̃ is indicated by an arrow in Fig
2. Here, the contours are assigned in the range which
cludes all interesting parts of the plot. We see that the pr
ability density is distributed along the series of the scatter
The wave function on the right-hand side of the line of t
scatterers consists of the component passing through
scatterers and that going to the end of the series and tur
back by successive collisions, for the number of the scat
ers taken into consideration,Ns520 is finite. The electron
density distributions on the other commensurate conditi
~that is, different values ofn) also show similar behavior. I
is obvious that the classical picture is effective when
incident wave ofKd515A2 belongs to the fundamenta
mode.

In this case, we chose asKd515A2 and ā50.1. Then,

FIG. 2. Magnetic-field dependence of the transmission proba
ity from the emitter to the collector for the fundamental mode
jection T1, which in the absence of the scatterers is also shown
the dashed line.Kd515A2 is employed as an example of a sho
wavelength.
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the ratio of the radiusa of the scattering potential to th
wavelengthl becomes

2p

l
a5Ka5Kd•ā515A2•0.1;2.1.

The diameter 2a is larger than half of the wavelength, so th
an electron wave may be scattered by the scatterer. In
the scattering amplitude becomes extremely small ifā is
taken smaller than 0.1.

Conservation of probability~unitarity! is employed in or-
der to rate the accuracy of the numerical calculation. T
accuracy of conservation of probability is of the order
1022% for most cases and better than a few percent even
all cases, whenB̃ is larger than 8.5.~WhenB̃ is smaller than
8.5, the accuracy becomes worse remarkably, since
Green’s function oscillates very rapidly.11! Thus, we see tha
the approximation in Sec. III scarcely affects the accurac

On the other hand, even if the accuracy of conservatio
probability is about 1022%, we have physically strang

FIG. 3. Contour of the density of the electrons of Fig. 2 atB̃

517.3333. The value ofB̃ is pointed out in Fig. 2 by an arrow.
r

t

ct,

e
f
or

he
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of

cases where the probability density around the collec
unusually large. This will be caused by truncating the
with an infinite upper limit of Eq.~4.2!, for the wave func
tion has a very fine structure due to scattering, so tha
coefficients of the higher modes in the collector will no
small enough. The accuracy of the conservation is not
enced because only the coefficients of the evanescent
which do not transport current are incorrect.

VI. SUMMARY AND DISCUSSIONS

The boundary element method for 2D electron system
uniform magnetic fields have been extended so that it i
plicable to 2D electron systems with many small obsta
As an example, it has been applied to a magnetic foc
geometry with scatterers lined up on the middle line betw
the emitter and the collector. The density distribution an
magnetic-field dependence of the transmission proba
from the emitter to the collector~EFS! have been calculate
Then, if the diameter of the scattering potential is larger
one-half of the wavelength, the electron wave has been
tered in spite of the approximation of the scattering pote
by ad function. This method enables us to analyze 2D
tron systems with more than 20 obstacles with sufficien
curacy in a feasible cpu time. It is applicable only to
stacles of small scattering cross sections. Nonetheless
powerful to analyze systems with a number of small
stacles.

In the last several years, many laboratories have ach
the preparation of periodic nanostructure in semicond
heterojunctions and measured magnetoresistance, th
effect, and far infrared with square, rectangular, triang
quasiperiodic, and random lattices. The results show
peculiarities. Some of them cannot be explained by us
billiard model of reflecting disks and are considered
quantum-mechanical effects. Therefore, we anticipate a
tical application of the method developed here to such p
lems. In addition, we can easily treat the obstacles by m
of this method, so that it may possibly enable us to deter
the positions of the obstacles in a 2D electron system
measuring the conductance or the magnetoresistance.
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