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Self-compensation in semiconductors
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The problem of self-compensation of charged dopants is analyzed. Special emphasis is given to dopants in
binary oxides. It is shown that one can determine the degree of self-compensation from the properties of the
host material and dopant concentration alone. It is further shown that for a nativep-type semiconductor, donors
are compensated, mostly, by native ionic defects. On the other hand, doping with acceptors allows us to
increase significantly the hole concentration, i.e., self-compensation is low under high doping levels. For a
nativen-type semiconductor the opposite is true, namely, extrinsic acceptors are mainly compensated by native
ionic defects. It is shown that the changes in concentration of all the charged defects are simply related by a
single factor, the doping factorf, or its powerf k wherek depends solely on the defect’s charge. Quantitative
calculations off and defect concentrations are presented for Cu2O, which was used as a model material. It is
found that forp-type Cu2O doping with donors results inf within the range of 1 –10, depending on the dopant
concentration andP(O2). This means that the hole concentration decreases and the electron concentration
increases at most by a factor of 10. Therefore one does not expect to obtain a changeover fromp- to n-type
cuprous oxide by doping, under equilibrium conditions. Most of the donors are compensated by negative ionic
defects. Self-compensation in the presence of amphoteric defects and Fermi level stabilization are discussed,
using the former formalism.@S0163-1829~99!11335-3#
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I. INTRODUCTION

Doping semiconductors is of key importance in mode
technology. In many cases the theoretical calculation of
charged defect concentrations involved is simple.1 In such
cases the concentration of, e.g., electrons in an extri
n-type semiconductor equals to a good approximation
difference between donor and acceptor concentrations.

However, when dealing with wide-gap ionic semicondu
tors the question of self-compensation arises. Charged im
rities may be compensated not only by a change in elec
and hole concentrations but also by a change in ionic de
concentrations. According to Agrinskaya and Mashove2

self-compensation is the deviation of the ration/ND ~or
p/NA) from unity, wheren and p are the concentrations o
electrons and holes, andNA andND are the equivalent con
centrations~concentration times valence! of charged, extrin-
sic acceptors and donors, respectively. For a more gen
case, we define self-compensation (h) as

h[12
n2p2~n02p0!

ND2NA
, ~1!

where the subscript 0 denotes zero concentration of dopa
This definition also takes into consideration the electron
hole concentrations (n0 andp0) present in the undoped solid
and that a change in bothn andp is not considered as self
compensation. In compounds,n0 and p0 originate from de-
viation from stoichiometry and thermal excitation.

The parameters of interest are the concentrations of
electronic charge carriersn or p and their dependence on th
dopant concentration. Obviously for a fixed temperature
chemical potential of the components~e.g., oxygen partial
pressure for a binary oxide!, the concentrationsn, p as well
PRB 600163-1829/99/60~11!/8138~9!/$15.00
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as the concentration of all other native defects are functi
of the dopant concentration. However, this dependence is
readily apparent.

There is no single answer to the question of se
compensation for a given doping level. As we shall see,
answer depends on the nature of the native point defe
their relative concentration, and on the nature of the dop
whether single valued or not. We shall first present a met
for calculating the concentrations of the native point defe
as a function of dopant concentration. We shall then ap
the method to analyze self-compensation under various c
ditions.

All approaches, as well as ours, assume that one can i
tify in the material native and extrinsic ionic defects in th
sense that the defects have integer, well defined cha
Mandel’s3 approach is to guess the main compensat
specie, then estimate the reaction constants and try to fit
to the experimental results. Jansen and Sankey4 have found
the trends in the native defect concentrations using a se
ten independent reactions and two constraints to evaluat
unknowns. This method, while formally correct, has tw
main drawbacks. The first one, as the authors have poi
out, is that the results are extremely sensitive to sm
changes in the numerical values of the reaction constant
addition to that, it is difficult to get a better understanding
the system after applying this kind of calculations. Fas
inger, Ferreira, and Sitter5,6 used the fact that the Fermi leve
seems to be pinned at a rather fixed absolute value for gro
of compounds. Starting from this approximate assumpt
they then discuss self-compensation.

The calculation of the native point defect concentratio
as a function of dopant concentration can be handled by
well known method of dilute point defect chemistry.7 Doing
so, Maier8 has argued that the effect of doping can be
ferred from the neutrality condition. The trend is then th
8138 ©1999 The American Physical Society
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PRB 60 8139SELF-COMPENSATION IN SEMICONDUCTORS
effective positive dopants suppress other positive native
fect concentrations and enhance negative native defect
centrations. Teramoto9 and Neumark10 used point defect
chemistry to discuss the effect of doping with amphote
impurities on the electron and hole concentrations.

It is the purpose of this work to analyze the problem
self-compensation of charged dopants. We shall discuss
changes in native defect concentrations with doping, follo
ing the method of point defect chemistry.7 We shall also
present a simple way of obtaining the changes in these
centrations with doping. This analysis refers to systems w
dilute concentrations of point defects. Our approach is
ferent from those of Mandel,3 Jansen and Sankey,4 and Fas-
chinger, Ferreira, and Sitter.5,6 We do not limit the discussion
to one compensating specie at a time as Mandel does.3 We
do not look for explicit data of the defect energy levels a
for reaction constants as done before.2,3,9,10Instead we show
that the necessary information is available from the kno
edge of the concentrations of the native defects in the
doped, host material. Since these can in many cases be
termined quite accurately, e.g., by a coulometric titrat
method ~see, for instance, Ref. 11! the experimental data
needed are available. This takes the relevant energy le
and reaction constants accurately into consideration. We
show that the effect of doping on native defect concen
tions can be presented by a simple power law of a sin
factor ~called doping factor,f ). Self-compensation is the
expressed in terms off. It is shown that with the aid off one
can find analytic expression for the self-compensation. L
iting values for the self-compensation can also easily
found.

II. METHOD OF CALCULATING THE
CONCENTRATIONS OF NATIVE DEFECTS AS A

FUNCTION OF DOPANT CONCENTRATION

A. General

Let us consider native point defects in an ionic semic
ductor. To be specific let us consider Cu2O as an example
and let us treat it as if it were a purely ionic solid~in the
sense that all defects have integer elementary charges!. We
start with considering native defects in the undoped host

Cu2O is a p-type semiconductor. There is considerab
disagreement between the various works on the defect
centration and their nature in Cu2O. We shall rely on results
of recent work done in our laboratory.11,12 The dominant
point defects are neutral ones, Cui

3 and VCu
3 . ~We use here

the Kröger-Vink notation for point defects13 indicating the
site and the relative charge of the defect.! Their concentra-
tion is approximately 0.3 cation % at 1200 K. The charg
defects are in the 0.04 cation % range or lower at 1200
The dominant charged point defects are holes (h•), copper
vacancies (VCu8 ), and oxygen interstitials (Oi9). Their relative
concentrations depend onT andP(O2).

The neutrality equation for the undoped material is

p05@VCu8 #012@Oi9#0 , ~2!

where 0 denotes, as before, zero concentration of dopa
The formation reactions of the native defects along with
corresponding mass action relations are
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O2~g!
OO

312VCu8 12h• ~3!

~where OO
3 is an oxygen on an oxygen site!,

p2@VCu8 #25~K1!2P~O2!1/2, ~38!

1

2
O2~g!1Vi

3
Oi912h•, ~4!

p2@Oi9#5K2P~O2!1/2. ~48!

Equations~3!, ~38!, ~4!, and ~48! hold for both the un-
doped material ~then p5p0 , @Oi9#5@Oi9#0, and @VCu8 #
5@VCu8 #0) and for the doped material.

The reaction constantsK1 and K2 can be expressed in
terms of the native defect concentrations at a givenP(O2)
and T, within the existence range of the undoped Cu2O
phase. We shall denote the corresponding values
P(O2), T, and native defect concentrations with the ind
m. The pointm can be chosen arbitrarily within the existen
range of the phase. From Eqs.~38!, ~48!:

K1~Tm!5
p0,m@VCu8 #0,m

P~O2!m
1/4

, K2~Tm!5
p0,m

2 @Oi9#0,m

P~O2!m
1/2

. ~5!

This allows one to eliminate the reaction constants from
concentration equations~38! and~48! and to express the con
centrations of the charged native defects in the undoped
terial for a givenTm in terms ofP(O2)/P(O2)m and experi-
mental valuesp0,m , @VCu8 #0,m , and @Oi9#0,m . See Appendix
A. Thus for the hole concentration Eq.~A1! yields

x0
32

V0,mw

V0,m11
x02

w2

V0,m11
50, ~6!

with x0[p0 /p0,m , w[@P(O2)/P(O2)m#1/4, and V0,m

[@VCu8 #0,m/2@Oi9#0,m . This is a cubic equation forp0 as a
function of P(O2) andT, sinceV0,m is a function ofT.

Introducing donors into the material must result in t
reduction of the hole concentration and the enhancemen
electron concentration. We therefore may write the new e
tron concentration as

n5 f n0 , ~7!

with f .1 called the doping factor.
For Cu2O, as well as for most semiconductors,

np5ni
2~T!, ~8!

which is simply the mass action relation for the creation a
annihilation of an electron hole pair. Asn is enhanced on
doping by a factorf .1 the new concentration of holes,p, is
reduced by the same factorf:

p5
p0

f
. ~9!

In the same manner Eqs.~38!, ~48! yield for given T and
P(O2) the new values of@Oi9# and@VCu8 # for the doped ma-
terial:
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8140 PRB 60Y. TSUR AND I. RIESS
@VCu8 #5 f @VCu8 #0 , ~10!

@Oi9#5 f 2@Oi9#0 . ~11!

The concentration of every point defect~all assumed to be
dilute! changes by a simple power law,f k, of one and the
same factorf, wherek is an integer.k is fixed by the charge
k.0 for defects having charge opposite to that of the dop

An immediate consequence of Eqs.~7! and ~9!–~11! is
that when the electron concentration is negligible with
spect to other negative point defects (@VCu8 #0 ,@Oi9#0 here! it
also remains negligible under doping with donors. Of cour
the electron concentration increases~by the factor f ) but
those of@VCu8 # and@Oi9# increase as well. One increases bf
and the other byf 2.

B. Doping a nativep-type semiconductor with donors—change
in native defect concentrations

Let us assume thatD is a doubly charged donor~e.g.,
Co21) substituting for Cu in Cu2O to yield DCu

• . Then the
neutrality equation is

ND1
p0

f
5 f @VCu8 #012 f 2@Oi9#01 f n0 , ~12!

where we have used Eqs.~7! and ~9!–~11! for the native
defect concentrations.~One should keep in mind thatn0 is
negligible as compared to concentrations of other nega
ionic defects.! The neutrality equation is a cubic equation
f. It yields the dependence off on the dopant concentratio
@DCu

• #5ND , oxygen partial pressure, temperature, and
properties of the undoped material. It should be noticed
f does not depend on the nature of the dopant, only on
concentrationND . A dependence on the nature of the dopa
is introduced, in this case, only when one reaches the s
bility limit. 14 Equation~12! is not affected byDCu

3 , if it ex-
ists. It would be altered if, for instance, bothDCu

• and DCu
••

coexist. Thenf would depend onND5@DCu
• #12@DCu

•• # and
thus on the nature ofD, which affects the partition
@DCu

• #/@DCu
•• #. f would also be affected by formation of ass

ciates that contain the dopant. We limit our discussion in t
section to the case that only one charged dopant defect
DCu

• , exists.
The evaluation off in terms of the experimental values o

p0,m , @VCu8 #0,m , @Oi9#0,m , and as a function of the degree
of freedom of the systemT, P(O2), and ND is given in
Appendix B. The result is given in Eq.~B4!,

f 31G f22
D

V0,m
2

G2f 212G50,

D[
ND

2@Oi9#0,m

, G[
V0,mx0

w
. ~13!

The equation for the~normalized! electron concentration is
then Eq.~B8!,

ñ31
V0,m

w
ñ22

D

w2
ñ2

V0,m11

w2
50, ñ[

n

n0,m
. ~14!
t.
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f in the polynomial, in Eq.~13!, depends on parameter
@G andV0,m(T)# which do not depend on the dopant.f also
depends on the parameterD which is proportional to the
dopant concentration. In Fig. 1 we present the solution of
~13! graphically, for the caseV0,m50.17. ~We choose the
point m at the end of the phase range, under the partial p
sure for equilibrium of the undoped phases CuO/Cu2O.! This
value of V0,m is the relevant value for Cu2O at 1200 K.11 f
starts from unity forD50. f is a monotonic function, in-
creasing with the donor concentration and decreasing w
the oxygen partial pressure. We found experimentally14 that
the maximum value ofD at ;1200 K is;2.5, reflecting the
solubility limit of Co in Cu2O. For illustration purpose we
extended the calculation up toD56. However, even for
these conditions and lowP(O2), the doping factorf is less
than one order of magnitude.

III. SELF-COMPENSATION

A. General

Self-compensation depends on the nature of the host.
shall show that this dependence can be inferred from
concentrations of the native defects in the undoped host. T
will be demonstrated by discussing a few key examples
defect models. The first is a nativep-type semiconductor
doped with donors. It turns out that it is significantly se
compensated for all donor concentrations. The second
native p-type semiconductor doped with acceptors. It tur
out that it is only partially self-compensated, the compen
tion decreases with acceptor concentration. The third
fourth examples discuss amphoteric defects. Native amp
eric defects have a very different effect than extrinsic a
photeric impurities. For native amphoteric defects signific
self-compensation is found. For amphoteric dopants s
compensation may vanish. In the fifth example we discus
highly disordered compound. It may exhibit sel
compensation even if the electron energy gap is smal
long as the electron/hole concentration is smaller than
ionic defect concentration in the undoped material.

Another parameter of interest related to self-compensa
is Fermi level pinning. Obviously, if the electron~and hole!
concentrationn ~and p) does not vary withND then the
Fermi level is pinned. In this case self-compensation mus
high. We find Fermi level pinning, for equilibrium cond
tions, only in the case of extrinsic amphoteric dopants at h
concentrations.

FIG. 1. f vs P(O2) andND for donor doping of Cu2O at 1200 K.
w5@P(O2)/P(O2)0,m#1/4. D5ND/2@Oi9#0,m .
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PRB 60 8141SELF-COMPENSATION IN SEMICONDUCTORS
B. Self-compensation in a nativep-type semiconductor doped
with donors

Self-compensation,h, is now calculated for the abov
case, namely, a nativep-type semiconductor doped with do
nors. h can be expressed in terms off using Eq.~1!, NA
50, andn5 f n0,

h512
f n01p0

ND

f 21

f
. ~15!

It is shown here that for a nativep-type semiconductor
h.1/2 for all levels of donor doping within the dilute limit
Using Eq.~12! for p-Cu2O:

ND5 f @VCu8 #012 f 2@Oi9#01 f n02
p0

f
. ~16!

Expressingp0 in terms of@VCu8 # and@Oi9#, using Eq.~2! (n0

included! yields

ND5$~ f 221!~@VCu8 #01n0!1~ f 321!2@Oi9#0%
1

f
~17!

and

ND5
f 21

f
$~ f 11!p012 f 2@Oi9#0%. ~18!

Hence

h5
f ~12n0 /p0!1~2@Oi9#0 /p0! f 2

f 111~2@Oi9#0 /p0! f 2
~19!

~with f >1), and thus forn0!p0

1

2
<h<1 ~20!

depending onf and the ratio 2@Oi9#0 /p0. This leads to the
conclusion that a nativep-type semiconductor~i.e., n0
!p0) doped with donors is highly self-compensatedh
>1/2), with h→1 for large values of the donor concentr
tion ND ~i.e., f @1).

C. Doping a nativep-type semiconductor with acceptors

1. Change in native defect concentrations

Introducing acceptors into a nativep-type ionic semicon-
ductor results in the enhancement of the concentration
holes. Although we did not find an acceptor for Cu2O we
shall continue to use this material as an example for
theoretical discussion. We shall assume acceptors with
negative charge as compared to the unperturbed lattice
denote them asA8. Equations~7! and ~9!–~11! are being
replaced now with

p5 f ap0 , n5
n0

f a
, @VCu8 #5

@VCu8 #0

f a
, @Oi9#5

@Oi9#0

f a
2

~21!

and the neutrality equation~12! with
of

e
ne
nd

f ap05NA12
@Oi9#0

f a
2

1
@VCu8 #0

f a
. ~22!

We denotef now asf a , and we have neglected a termn0 / f a
in Eq. ~22!.

We further follow the analysis of Appendix B and find
cubic equation forf a ~and forx0f a5p/p0,m[ p̃) in analogy
to Eqs.~B4! and ~B5!:

~x0f a!32
A

V0,m11
~x0f a!22

V0,mw

V0,m11
~x0f a!2

w2

V0,m11
50,

~23!

wherex0 andw are defined as

x0[
p0

p0,m
, w[S P~O2!

P~O2!m
D 1/4

. ~24!

x0 is obtained from Eq.~6!. A in Eq. ~23! is defined as

A[
NA

2@Oi9#0,m

. ~25!

The solution forf a of Eq. ~23! is presented graphically in
Fig. 2. Comparingf calculated forD at a givenP(O2) andT
with f a calculated for the sameP(O2) andT with A5D one
finds f a. f @except for the very dilute limit (A,D→0) where
in both casesf a , f→1#. In the heavily doped region the hol
concentration is independent of the oxygen partial press
This takes place whenNA is greater than the native ioni
defect concentrations. Note that the latter concentrations
diminished on doping with acceptors.

2. Self-compensation in a nativep-type semiconductor doped
with acceptors

Self-compensation on acceptor doping of a nativep-type
semiconductor is considerably different from that resulti
from doping the same host with donors, discussed in S
III B. Starting from Eq.~1! with ND50 andn0!p0,

h512
p0~ f a21!

NA
. ~26!

In analogy to Sec. III B@Eqs.~16!–~18!# the use of Eq.~22!
results in

FIG. 2. f a vs P(O2) and NA for acceptor doping of Cu2O at
1200 K.w5@P(O2)/P(O2)0,m#1/4. A5NA/2@Oi9#0,m .
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NA5
f a21

f a
2 $~ f a

21 f a!p012@Oi9#0%. ~27!

Substituting this into Eq.~26! yields

h5
f a12@Oi9#0 /p0

f a
21 f a12@Oi9#0 /p0

. ~28!

One can evaluate limits forh recalling that 0,2@Oi9#/p0

,1 and therefore

1

f a11
,h,

1

f a11/~ f a11!
, ~29!

with h5( f a11)21 if @VCu8 #0.p0@2@Oi9# and h5@ f a

11/( f a11)#21 if 2 @Oi9#.p0@@VCu8 #0. Figure 3 shows the
latter h2 f a relations.

This result is different from the result of Sec. III B. In th
present caseh is far from unity for all levels of doping. At
the very dilute limit~wheref a;1) 1/2,h,2/3. In particu-
lar, for Cu2O at 1200 Kh;0.65 at f a;1.

In the high doping limit,NA@p0, Eqs.~2!, ~A6!, and~23!
yield

f a>
A

x0~V011!
5

NA

p0
~30!

thus f a@1 and Eq.~29! yields h→0, i.e., negligible self-
compensation. Alternatively substituting Eq.~30! into Eq.
~26! yields

h~NA@p0!>
p0

NA
!1. ~31!

This means that for high doping levels of acceptorsh is
small and the hole concentration can be enhanced sig
cantly by acceptor doping, provided that the solubility of t
dopant is high.

D. Self-compensation in the presence of native amphoteric
defects as in gallium arsenide

We consider now self-compensation for the defect mo
discussed by Baraff and Schlu¨ter15 and Walukiewicz16,17 for
GaAs. For a deviation in stoichiometry with, say, excess

FIG. 3. h vs f a for acceptor doping of ap-type binary oxide,
with the dominant point defects Oi9 andh•

†i.e., the neutrality equa-
tion ~2! becomes 2@Oi9#0.p0‡.
fi-

l

a

with fixed Ga chemical potential, the key ionic defects a
VAs

••• and (GaAsVGa)-. The neutrality equation in the presenc
of donorD • is

ND13@VAs
•••#1p53@~GaAsVGa!-#1n. ~32!

The reaction of forming the associate is

~GaAsVGa!-�VAs
•••1GaGa

3 16e8 ~33!

hence

@~GaAsVGa!-#}@VAs
•••#n6 ~34!

Equation~32! can be written in terms of the concentratio
of the native defects in the undoped material and the dop
factor f as

ND13@VAs
•••#0

1

f 3
1p0

1

f
53@~GaAsVGa!-#0f 31n0f .

~35!

Large dopant concentrations,ND , are those of the order o
the dominant native defects or higher. For largeND values
~a! there is significant self-compensation whe
@(GaAsVGa)-#0f 3.n0f which originates in part by the in
crease in negative native ionic defect concentration and
part by the decrease of the positive native ionic defect c
centration and~b! n2p increase withND but at a rate less
than linear.

Fermi level saturation~pinning! does not occur. To see
this we examine the derivative] f /]ND . Fermi level satura-
tion, i.e., no change ofn ~and p! on doping, requires
] f /]ND50. Differentiating Eq.~35! yields

] f

]ND
5S 9@VAs

•••#0

1

f 4
1p0

1

f 2
19@~GaAsVGa!-#0f 21n0D 21

.

~36!

This expression is positive, showing thatf increases with
ND . It vanishes only forf→`, i.e., when the neutrality
equation~35! reduces to

ND.3@~GaAsVGa!-#0f 3, f @1 ~37!

namely, whenf }ND
1/3. Thenn}n0ND

1/3.
Fermi level saturation does not occur. Using the Fer

level dependence on electron concentration in the dilute c

eF5eF
01kT ln n ~38!

the change ineF on doping is

DeF5kT ln f . ~39!

In the limit f @1 Eq. ~37! yields

DeF5
kT

3
ln

ND

3@~GaAsVGa!-#0

~40!

andDeF changes logarithmically withND with a coefficient
kT/3.

The situation may be different when the amphoteric d
fect concentrations,@(GaAsVGa)-# and@VAs

•••#, are not gener-
ated by thermal excitation but under nonequilibrium con
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PRB 60 8143SELF-COMPENSATION IN SEMICONDUCTORS
tions, e.g., by irradiation. This yields fixed~not necessarily
equal! concentrations of@(GaAsVGa)-# and@VAs

•••#. The neu-
trality equation then yields

ND5n2p2~n02p0!, ~41!

i.e., increasing the dopant concentration is compensated
change in the electron and hole concentrations.

E. Doping with amphoteric dopants, as in zinc selenide

When the dopant enters in two or more valent states
the corresponding concentrations need to be included in
neutrality equation. A particular case is when one cha
state is positive and the other is negative, as in nitro
doping of ZnSe,18 say, withN• andN8. For concentrations o
the dopant exceeding the concentration of the native def
the neutrality equation becomes

@N•#5@N8#. ~42!

Large concentrations of@N•# and @N8# may be generated
under nonequilibrium conditions. Yet the electrons c
equilibrate. As a result,n and the Fermi level are pinned, a
can be seen from the mass action relation for theN•

12e8
N8 charge transfer reaction,

@N•#n25K~T!@N8#, ~43!

using Eq.~42!. Note that in that case the equivalent net co
centration of the dopantu@N•#2@N8#u is relatively low.

Another possibility is the introduction of amphoteric im
purities under thermal equilibrium conditions.9,10 For Li in
ZnSe,10 the following reactions and corresponding mass
tion relations are of interest:

Li i
•1ZnZn

3 12e8
LiZn8 1Zn1Vi
3 , ~44!

@Li i
•#n25K3@LiZn8 # for fixed Zn activity ~45!

and the creation-annihilation reaction of electron-hole pa
with the mass action relation of Eq.~8!. The neutrality equa-
tion for the undoped (p-type! ZnSe is

p052@VZn9 #01n0 ~46!

and for the Li doped material

@Li i
•#1p5@LiZn8 #12@VZn9 #1n, ~47!

where we have also allowed for deviation from stoichio
etry forming Zn vacancies.

Expressing@LiZn8 # in terms of @Li i
•# using Eq.~45! and

defining f by p5 f p0, the neutrality equation can be writte
as

ND1 f p05
NDn0

2

K3f 2
1

2@VZn9 #0

f 2
1

n0

f
, ~48!

whereND5@Li i
•#. Now ND appears in both sides of the ne

trality equation and it is not obvious whetherf >1 or f <1
~except thatf→1 for ND→0).

Differentiating Eq.~48! with respect toND yields
y a

ll
he
e
n

ts

n

-

-

s

-

] f

]ND
5 f

n0
2/K3f 221

2NDn0
2/K3f 21 f p014@VZn9 #0 / f 21n0 / f

. ~49!

The denominator is definite positive and the sign of] f /]ND
depends on the sign of the numerator. Let us examine
numerator in the limitND→0 ( f→1). n0

2/K3 can be ob-
tained from Eq.~45!,

n0
2

K3
5

@LiZn8 #

@Li i
•#
U

ND→0

, ~50!

i.e., n0
2/K3 is the ratio of the concentrations of the ampho

eric impurities in the infinite dilute limit. Depending on th
characteristics of the amphoteric impurity,n0

2/K321.0 or
n0

2/K321,0 and so is the corresponding sign of] f /]ND .
Since f changes monotonically@see Eq.~49!# it either in-
creases monotonically above unity in the first case or
creases monotonically below unity in the second case.
the specific example of Li impurities in ZnSe,10 @Li i

•#
,@LiZn8 # for ND→0, i.e.,n0

2/K3.1 and f >1.
Equation~49! shows thatf is bound by the upper limit

f max5n0 /K3
1/2.1. When f→ f max, ]f/]ND→0. Under these

conditionsn and the Fermi level are fixed independently
changes inND . SinceND might change by orders of magn
tude it is of interest to see howf becomes independent ofND
for f→ f max. Rearranging Eq.~48!, using Eq.~46! to elimi-
natep0, yields

NDS f max
2

f 2
21D 52@VZn9 #0

f 321

f 2
1n0

f 221

f
. ~51!

The right hand side is definitely positive forf .1. The term
( f max

2 /f221) vanishes asf→ f max, hence the other term has t
diverge,ND→`. Under the conditionf→ f max the dominant
terms in the neutrality equation~48! are ND5@Li i

•# and
NDn0

2/K3f 25@LiZn8 #, i.e.,

@Li i
•#.@LiZn8 #. ~52!

For other cases, whenn0
2/K3

1/2,1, f decreases toward
f min5n0 /K3

1/2. Under these conditions again] f /]ND→0 and
the amphoteric defect concentration becomes dominant.

Self-compensation can formally be considered using
~1! with ND5@Li i

•# andNA5@LiZn8 #. This yields forp-ZnSe
using Eqs.~46!, ~47!,

h5
~p02n0!~ f 11!

~p02n0!1 f ~ f 11!p0
. ~53!

For intrinsic ZnSe, i.e.,p05n0 , h50, i.e., there is no self-
compensation. It should be noticed that the extrinsic defe
Li i

• and LiZn8 , compensate each other as well. The net cha
ND2NA is self-compensated byVZn9 to a degree given byh
of Eq. ~53!.
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F. Self-compensation in a highly disordered compound, as in
a –silver sulfide

a-Ag2S at T.177 °C is highly disordered on the catio
sublattice. The cation fraction of Agi

• and VAg8 defects is
larger than 0.1. The neutrality condition is

@Agi
•#05@VAg8 #0 . ~54!

Despite a low band gap19 of 0.4 eV the electron and hol
concentrations are orders of magnitude lower than@Agi

•#0

and @VAg8 #0.
On donor doping the material, the neutrality equation

comes

ND1
@Agi

•#0

f
5 f @VAg8 #0 . ~55!

where the concentrationsf n0 andp0 / f , the electron and hole
concentrations, can still be neglected.ND is just compen-
sated by changes in the concentration of ionic defects. T
shows self-compensation in a narrow-band-gap mate
Thus the definition of large/small band gap depends on
relation of free electron/hole concentration to ionic def
concentrations.Egap can be considered large as long as
electronic concentration is relatively low.

The Fermi level changes according to Eq.~39!. The Fermi
level in this case is not pinned asf increases monotonically
with ND .

IV. CONCLUSIONS

Self-compensation of dopants introduced into nons
ichiometric semiconductors has been analyzed. Contrar
the common practice in calculating self-compensation,
did not use explicitly the energy levels of the defects or
relevant reaction constants. Instead the method starts
the neutrality equation, and invokes the relations betw
defect concentrations in order to reduce the number of
knowns. This yields a polynomial equation for a factorf. The
coefficients of the polynomial equation are determined
the concentrations of native defects in the undoped host
the concentration of the dopant. No explicit dependence
the chemical nature of the dopant appears, as long as
valence of the dopant defects is single. Specific detailed
erence is given top-Cu2O, GaAs,p-ZnSe, anda-Ag2S as
examples.

The analysis assumed~a! low concentration of native
point defects, i.e., they follow Boltzmann statistics;~b! de-
tailed calculations were done assuming that the dopan
introduced in a single charge state and for amphoteric
fects; formally it does not matter if the single defect is
single atomic point defect or associate of point defects;
anticipates that at elevated temperatures there will be p
defects and at low temperatures associates; and~c! the sys-
tem is in a state of equilibrium, except when specifica
stated otherwise.

The conclusions referring to nativep-type semiconductors
hold for nativen-type semiconductors as well, with the co
responding interchange of the role of donors and accep
We express therefore these conclusions for one type o
namely, nativep-type semiconductors.

Our conclusions are as follows.
-

is
l.
e
t
e

-
to
e
e
ith
n

n-

y
nd
n
he
f-

is
e-

e
nt

rs.
ly,

~1! Self-compensation and defect concentrations dep
only on the nature of the host material and amount of dop
as long as the dopant is introduced in a single charge s
They can be expressed in terms of the doping factorf which
is a solution of a polynomial equation.

~2! Self-compensation can also exist in narrow-band-g
semiconductors. This occurs when the concentration of
tive ionic defects is large compared to the concentration
electronic defects in the undoped host.

~3! The defect concentrations are enhanced or reduce
doping by a factorf k, k561,62, . . . (k is the charge in
the Kröger-Vink notation andk.0 for a charge with oppo-
site sign as compared to that of the dopant!. In the example
of Cu2O, the defect concentrations in the doped and undo
oxide are related by

n5 f n0 , @VCu8 #5 f @VCu8 #0 , @Oi9#5 f 2@Oi9#0 , and

p5
p0

f
, ~56!

where 0 denotes the state of the undoped material. Equa
~56! yields

n

@VCu8 #
5const,

n

@Oi9#
}

1

f
,

@VCu8 #

p
} f 2,

@Oi9#

p
} f 3, and

n

p
} f 2. ~57!

~4! In a nativep semiconductor which is doped with do
nors, the dopant ions are significantly self-compensated
the native ionic defects. They are fully self-compensated
large donor concentrations. In our notationh51 for f @1.

~5! Doping a nativep-type semiconductor with acceptor
results in enhancement of the hole concentration~and reduc-
tion of the electron concentration!. For low concentrations
acceptors are partially self-compensated by reducing the
centrations of negative native ionic defects. For large c
centration of acceptors, self-compensation is relatively lo

~6! In a nativep-type semiconductor,n is negligible with
respect to the concentration of negative ionic defects. In v
of conclusion~3!, this relation cannot be changed by dopin
with donors. The electron concentration can be changed w
respect to the hole concentration. The ration/p is increased
by a factorf 2 by doping with donors:n/p5 f 2n0 /p0.

The electronic conductivity depends both on the conc
trationsn andp and on the corresponding mobilities. Ther
fore the dominant conductivity may change over fromp type
to n type even ifh is close to unity. This may occur in th
case of high electron mobility as compared to that of hol
In wide-band-gap semiconductors the productnp is small.
Therefore in ap-type semiconductorn!p. If the material is
a nativep-type semiconductor then~a! the concentration of
the negative native ionic defects compensating the hole
much larger thann and self-compensation of donors shou
occur, ~b! it is not likely that the relationn0 /p0!1 can be
changed inton@p by donor doping.

~7! Large changes inn or p, i.e., large values off, require
large solubility of the dopant. However, this is a problema
requirement for many of the ionic semiconductors.14
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~8! f and h depend on the host stoichiometry. For
oxide, e.g., as for Cu2O, one can determine the value off as
a function of the oxygen chemical potential, temperatu
and dopant concentration@e.g., Eq.~13!#, and equivalently
find the electron or hole concentration under the same c
ditions @e.g., Eq.~14!#. In addition, the self-compensationh
has a simple relation tof.

~9! When the dopant enters in two~or more! charge states
with the same polarity~say,DCu

• and DCu
•• ) an extension of

the calculations is straightforward but results in more co
plicated equations. Self-compensation then also depend
the characteristics of the dopant via the concentration r
~e.g.,@DCu

• #/@DCu
•• #). This also holds in the very-dilute limit

Yet, the main general trends for donors are like those
countered for a single valenced donor. One has to bea
mind that the introduction of dopants with two charge sta
allows for a new conduction mechanism via an impur
band. This may significantly change the electrical proper
of the material.

~10! Native amphoteric defects contribute to se
compensation of the dopant. They do not lead, under e
librium, to Fermi level pinning. Extrinsic amphoteric defec
on the other hand, yield donors and acceptors that, at
concentrations, are mutually compensating, resulting in p
ning of the Fermi level. In some cases self-compensa
may not occur at all, as in ZnSe withp05n0 in the undoped
material.

ACKNOWLEDGMENT

This research was supported by the Basic Research F
dation, administered by the Israel Academy of Sciences
Humanities.

APPENDIX A

Finding the concentrations of the native defects in
undoped material as a function of the oxygen partial press
goes as follows. We first eliminate the reaction consta
from the mass action relations. For the example of Cu2O, let
us express@VCu8 #0 and @Oi9#0 using Eq.~5! as

@VCu8 #05
w

x0
@VCu8 #0,m , @Oi9#05S w

x0
D 2

@Oi9#0,m , ~A1!

where

x0[
p0

p0,m
, w[S P~O2!

P~O2!m
D 1/4

. ~A2!

We next write an equation forp0 at Tm as a function
P(O2) in the undoped material. Substituting Eqs.~A1!, ~A2!
into the neutrality equation~2! yields a cubic equation forx0.
This expressesx0 ~or p0) as a function ofw @or P(O2)#:

p0,mx05
w

x0
@VCu8 #0,m12S w

x0
D 2

@Oi9#0,m . ~A3!
,

n-

-
on
io

n-
in
s

s

i-
,
h
-
n

n-
d

e
re
ts

p0,m in Eq. ~A3! can be expressed in terms of@VCu8 #0,m and
@Oi9#0,m using the neutrality equation~2!. This yields

~@VCu8 #0,m12@Oi9#0,m!x05
w

x0
@VCu8 #0,m12S w

x0
D 2

@Oi9#0,m ,

~A4!

which can be rewritten as

x0
32

V0,mw

V0,m11
x02

w2

V0,m11
50, ~A5!

where

V0,m[
@VCu8 #0,m

2@Oi9#0,m

~A6!

is a concentration ratio which is determined from measu
ments on the undoped material11 at Tm andP(O2)m .

APPENDIX B

We demonstrate here how to evaluatef for the case of
donor doped cuprous oxide, discussed in Sec. II B. Using
~A1! in Eq. ~12!,

f ND1p0,mx05 f 2
w

x0
@VCu8 #0,m1 f 3S w

x0
D 2

2@Oi9#0,m .

~B1!

Substituting into Eq.~B1! p0,m using the neutrality equation
~2! and usingV0,m of Eq. ~A6! yields

f 31
V0,mx0

w
f 22

Dx0
2

w2
f 2

V0,m11

w2
x0

350, ~B2!

where

D[
ND

2@Oi9#0,m

. ~B3!

We may rewrite Eq.~B2! using the relation betweenx0 and
f of Eq. ~6! to eliminatex0

3,

f 31G f22
D

V0,m
2

G2f 212G50, G[
V0,mx0

w
. ~B4!

It is also straightforward to write an equation for the ele
tron concentration under doping. Equation~B2! can be writ-
ten as

S f

x0
D 3

1
V0,m

w S f

x0
D 2

2
D

w2 S f

x0
D2

V0,m11

w2
50. ~B5!
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Equation~B5! is a cubic equation for the normalized electr
concentration. This is because, using Eq.~A2!,

f

x0
5

f p0,m

p0
. ~B6!

Using Eq.~8!, p0 andp0,m are expressed in terms ofn0 and
n0,m which together with Eq.~7! yield

f

x0
5

n

n0,m
[ñ. ~B7!

Substituting Eq.~B7! into Eq. ~B5! yields

ñ31
V0,m

w
ñ22

D

w2
ñ2

V0,m11

w2
50. ~B8!
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