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The problem of self-compensation of charged dopants is analyzed. Special emphasis is given to dopants in
binary oxides. It is shown that one can determine the degree of self-compensation from the properties of the
host material and dopant concentration alone. It is further shown that for a paipe semiconductor, donors
are compensated, mostly, by native ionic defects. On the other hand, doping with acceptors allows us to
increase significantly the hole concentration, i.e., self-compensation is low under high doping levels. For a
nativen-type semiconductor the opposite is true, namely, extrinsic acceptors are mainly compensated by native
ionic defects. It is shown that the changes in concentration of all the charged defects are simply related by a
single factor, the doping factdr or its powerf* wherek depends solely on the defect’s charge. Quantitative
calculations off and defect concentrations are presented foyfGCwhich was used as a model material. It is
found that forp-type CyO doping with donors results iinwithin the range of 1-10, depending on the dopant
concentration and?(0O,). This means that the hole concentration decreases and the electron concentration
increases at most by a factor of 10. Therefore one does not expect to obtain a changeoyertérontype
cuprous oxide by doping, under equilibrium conditions. Most of the donors are compensated by negative ionic
defects. Self-compensation in the presence of amphoteric defects and Fermi level stabilization are discussed,
using the former formalisn{S0163-18209)11335-3

[. INTRODUCTION as the concentration of all other native defects are functions
of the dopant concentration. However, this dependence is not

Doping semiconductors is of key importance in modernreadily apparent.
technology. In many cases the theoretical calculation of the There is no single answer to the question of self-
charged defect concentrations involved is simipla. such  compensation for a given doping level. As we shall see, the
cases the concentration of, e.g., electrons in an extrinsignswer depends on the nature of the native point defects,
n-type semiconductor equals to a good approximation thenheir relative concentration, and on the nature of the dopant,
difference between donor and acceptor concentrations.  whether single valued or not. We shall first present a method

However, when dealing with wide-gap ionic semiconduc-for calculating the concentrations of the native point defects
tors the question of self-compensation arises. Charged impygs a function of dopant concentration. We shall then apply
rities may be compensated not only by a change in electrothe method to analyze self-compensation under various con-
and hole concentrations but also by a change in ionic defegiitions.
concentrations. According to Agrinskaya and MashoYets, Al approaches, as well as ours, assume that one can iden-
self-compensation is the deviation of the ratiéNp (or tify in the material native and extrinsic ionic defects in the
p/N,) from unity, wheren andp are the concentrations of sense that the defects have integer, well defined charge.
electrons and holes, ardi, andNp are the equivalent con- Mandel’S approach is to guess the main compensating
centrationgconcentration times valencef charged, extrin-  specie, then estimate the reaction constants and try to fit this
sic acceptors and donors, respectively. For a more genergd the experimental results. Jansen and Sahkaye found
case, we define self-compensation) (as the trends in the native defect concentrations using a set of
ten independent reactions and two constraints to evaluate 12
unknowns. This method, while formally correct, has two
main drawbacks. The first one, as the authors have pointed
out, is that the results are extremely sensitive to small
changes in the numerical values of the reaction constants. In
where the subscript O denotes zero concentration of dopantaddition to that, it is difficult to get a better understanding of
This definition also takes into consideration the electron andhe system after applying this kind of calculations. Fasch-
hole concentrationsng andp,) present in the undoped solid, inger, Ferreira, and Sittef used the fact that the Fermi level
and that a change in bothandp is not considered as self- seems to be pinned at a rather fixed absolute value for groups
compensation. In compounds, and p, originate from de- of compounds. Starting from this approximate assumption
viation from stoichiometry and thermal excitation. they then discuss self-compensation.

The parameters of interest are the concentrations of the The calculation of the native point defect concentrations
electronic charge carriersor p and their dependence on the as a function of dopant concentration can be handled by the
dopant concentration. Obviously for a fixed temperature anavell known method of dilute point defect chemisfripoing
chemical potential of the componen(s.g., oxygen partial so, Maief has argued that the effect of doping can be in-
pressure for a binary oxiglethe concentrations, p as well  ferred from the neutrality condition. The trend is then that

_ n=p—(ng—po)

n=1 No—Np 1)
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effective positive dopants suppress other positive native de- 1
fect concentrations and enhance negative native defect con- 502(9)$Oé+2V(’;u+ 2h° (©)
centrations. Teramotoand Neumark used point defect
chemistry to discuss the effect of doping with amphoteric(where G is an oxygen on an oxygen site
impurities on the electron and hole concentrations.

It is the purpose of this work to analyze the problem of P VL)%= (K1)2P(0,)Y2, (3)
self-compensation of charged dopants. We shall discuss the

changes in native defect concentrations with doping, follow- 1 o , .

ing the method of point defect chemistrywe shall also 502(9) + Vi =07 +2h’, 4
present a simple way of obtaining the changes in these con-

centrations with doping. This analysis refers to systems with P 0']=K,P(0,)2 (4)
dilute concentrations of point defects. Our approach is dif- !

ferent from those of MandélJansen and Sankéyand Fas- Equations(3), (3'), (4), and (4’) hold for both the un-

chinger, Ferreira, and Sittéf.We do not limit the discussion doped material (then p=py, [O/]1=[0'lo, and [V&,]
to one compensating specie at a time as Mandel ddks. =[VL.]o) and for the doped matelrial : .
do not look for explicit data of the defect energy levels and Tr::e C;eaction constants. and K c':an be expressed in
H ,10 1 2
Iﬁr tr(-iﬁctlon constan_tsfas d(i.ne bef&ﬁé)'.l Lr;st?ad V‘{ﬁ srllow Iterms of the native defect concentrations at a giF©,)
at the necessary nformation IS avarable from the Knowk, 4 1 \yithin the existence range of the undoped,Cu

edge of the concentrations of the native defects in the UNshase. We shall denote the corresponding values of
doped, host material. Since these can in many cases be (O,), T, and native defect concentrations with the index

:ﬁgph'ggc(isgg'tiofﬁg:{:;eclg' Sg‘” f])t/h: gfué?irpnit;'falt'g:gonm. The pointm can be chosen arbitrarily within the existence
' ’ j P ange of the phase. From Ed8!), (4'):

needed are available. This takes the relevant energy IeveT
and reaction constants accurately into consideration. We then Dol Vil 02 [O']

show that the effect of doping on native defect concentra- (T, )= o0 _CWOM e () TOM T OM g
tions can be presented by a simple power law of a single P(O,)¥4 P(0,)Y2

factor (called doping factorf). Self-compensation is then

expressed in terms df It is shown that with the aid dfone This allows one to eliminate the reaction constants from the

can find analytic expression for the self-compensation. Lim<Soncentration equatior{8’) and(4’) and to express the con-

iting values for the self-compensation can also easily p&entrations of the charged native defects in the undoped ma-

found. terial for a givenT, in terms ofP(O,)/P(0O,),, and experi-
mental valueom, [Vedom, and[Of]om. See Appendix

A. Thus for the hole concentration EGAL) yields
II. METHOD OF CALCULATING THE

CONCENTRATIONS OF NATIVE DEFECTS AS A
FUNCTION OF DOPANT CONCENTRATION

s Vome ¢?

X0 Vomt 170 Vot 1

with  Xo=pPo/Pom, @=[P(0,)/P(O)m]"* and Vo,

Let us consider native point defects in an ionic semicon-E[V/CU]Om/z[O;'](’)m. This is a cubic equation fop as a
ductor. To be specific let us consider Quas an example, fynction of P(O,) andT, sinceV,,, is a function ofT.
and let us treat it as if it were a purely ionic soliah the Introducing donors into the material must result in the
sense that all defects have integer elementary chardés  requction of the hole concentration and the enhancement of

start with considering native defects in the undoped host. - glectron concentration. We therefore may write the new elec-
Cu,0 is ap-type semiconductor. There is considerableign concentration as

disagreement between the various works on the defect con-
centration and their nature in g0. We shall rely on results n="fng, 7
of recent work done in our laboratoty}? The dominant
point defects are neutral ones, CandV¢,. (We use here
the Krager-Vink notation for point defects indicating the
site and the relative charge of the defgdtheir concentra- np=n2(T) ®)
tion is approximately 0.3 cation % at 1200 K. The charged P=ni(h),
defects are in the 0.04 cation % range or lower at 1200 Kwhich is simply the mass action relation for the creation and
The dominant charged point defects are holey,(copper  annihilation of an electron hole pair. Asis enhanced on
vacanciesY¢,), and oxygen interstitials (Q. Their relative  doping by a factoff >1 the new concentration of holgs, is
concentrations depend dhand P(O,). reduced by the same factbr

The neutrality equation for the undoped material is

0, (6

A. General

with f>1 called the doping factor.
For Cy,0, as well as for most semiconductors,

Po=[Veulot2[0] To, (2 P=7- (9)

where 0 denotes, as before, zero concentration of dopant] the same manner Eq§3’), (4') yield for given T and
The formation reactions of the native defects along with theP(O,) the new values ofO/'] and[V¢,] for the doped ma-
corresponding mass action relations are terial:
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[Ved =f[Veylo, (10
[0/1=f70O]To. (11

The concentration of every point defe@ll assumed to be
dilute) changes by a simple power la#f, of one and the
same factof, wherek is an integerk is fixed by the charge.
k>0 for defects having charge opposite to that of the dopant.
An immediate consequence of Ed¥) and (9)—(11) is
that when the electron concentration is negligible with re-
spect to other negative point defecf8/f,lo.[ O] here it
also remains negligible under doping with donors. Of course,
the electron concentration increasgsy the factorf) but FIG. 1.fvs P(O,) andN, for donor doping of CyO at 1200 K.
those of V] and[O/] increase as well. One increasesfby ¢=[P(02)/P(Oz)om]"". D=No/2[OJom-
and the other by2.

4Log(¢)

f in the polynomial, in Eq(13), depends on parameters
B. Doping a native p-type semiconductor with donors—change [ G andVom(T)] which do not depend on the dopahtlso
in native defect concentrations depends on the parametBr which is proportional to the
) dopant concentration. In Fig. 1 we present the solution of Eq.
'-ft us assume thad is a doubly qharg(a.d donae.g., (13 graphically, for the cas&/,,,=0.17. (We choose the
Co?") substituting for Cu in C4O to yield D¢,. Then the  pointmat the end of the phase range, under the partial pres-

neutrality equation is sure for equilibrium of the undoped phases CuG/Gu This
value of Vo, is the relevant value for GO at 1200 K**
Np+ @:f[védoﬂszz[Of']oJrfno, (12)  starts from unity forD=0. f is a monotonic function, in-
f creasing with the donor concentration and decreasing with

the oxygen partial pressure. We found experimentatiyat
the maximum value ob at ~1200 Kis~2.5, reflecting the
8olubility limit of Co in Cu,O. For illustration purpose we
extended the calculation up t©=6. However, even for
these conditions and low(O,), the doping factof is less
éhan one order of magnitude.

where we have used Egé7) and (9)—(11) for the native
defect concentrationgOne should keep in mind that, is
negligible as compared to concentrations of other negativ
ionic defects. The neutrality equation is a cubic equation in
f. It yields the dependence 6fon the dopant concentration
[Del=Np, oxygen partial pressure, temperature, and th
properties of the undoped material. It should be noticed that

f does not depend on the nature of the dopant, only on its lll. SELF-COMPENSATION
concentratioNp . A dependence on the nature of the dopant

is introduced, in this case, only when one reaches the solu- )
bility limit. * Equation(12) is not affected byD,, if it ex- Self-compensation depends on the nature of the host. We

ists. It would be altered if, for instance, boBy,, and DY shall show that this dependence can be inferred from the
- 1 ’ u u . . . .
; N . concentrations of the native defects in the undoped host. This
. = + X X :
coexist. Therf would depend orNo=[Dcyl +2[Dc,] and will be demonstrated by discussing a few key examples of

thus on the nature ofD, which affects the partition 0 . .
[DL.J/[DZ.]. fwould also be affected by formation of asso- defect models. The first is a natiyetype semiconductor
c Culr doped with donors. It turns out that it is significantly self-

ciates that contain the dopant. We limit our discussion in this

section to the case that onlv one charaed dopant defect Scompensated for all donor concentrations. The second is a
D°  exists y 9 P + SHhtive p-type semiconductor doped with acceptors. It turns
Cu» '

. . . out that it is only partially self-compensated, the compensa-
The evaluation of in terms of the experimental values of i, gecreases with acceptor concentration. The third and
Pom: [Veuom, [Oilom, @and as a function of the degrees ot examples discuss amphoteric defects. Native amphot-
of freedom of the systenT, P(O,), and Np is given in  gric defects have a very different effect than extrinsic am-
Appendix B. The result is given in E¢B4), photeric impurities. For native amphoteric defects significant
self-compensation is found. For amphoteric dopants self-
compensation may vanish. In the fifth example we discuss a
highly disordered compound. It may exhibit self-

A. General

D
f3+Gf?~ ——G*-1-G=0,

0 : . .
m compensation even if the electron energy gap is small as
long as the electron/hole concentration is smaller than the

D=——, G=——. (13) ionic defect concentration in the undoped material.
2[O0lom ¢ Another parameter of interest related to self-compensation

is Fermi level pinning. Obviously, if the electrdand hole
concentrationn (and p) does not vary withNp then the
Fermi level is pinned. In this case self-compensation must be
high. We find Fermi level pinning, for equilibrium condi-
=0, n=—1 (19 tions, only _in the case of extrinsic amphoteric dopants at high
® @2 ® Nom concentrations.

The equation for thénormalized electron concentration is
then Eq.(B8),
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B. Self-compensation in a nativep-type semiconductor doped
with donors

Self-compensationy, is now calculated for the above
case, namely, a natiyetype semiconductor doped with do-
nors.  can be expressed in terms blusing Eq.(1), Na
=0, andn=1fn,,

fng+po f—1

N, |

n=1 (15
It is shown here that for a nativetype semiconductor,

7n>1/2 for all levels of donor doping within the dilute limit.
Using Eq.(12) for p-Cu,O:

ND: f[v(,:u]o+ 2f2[0,":|0+ fno_ @

g (16)

Expressingp, in terms off V] and[ O], using Eq.(2) (ng
included yields

1
Np={(f*=1)([Vedo+no) + (= 1)2[O] o}y (17)

and
f—1 S

No=—5—{(f+1)po+2f2[ O/ Jo}. (18)

Hence
f(1—ng/po) +(2[O]Jo/po) f*
n= p 5 (19
f+1+(2[O]o/po)f
(with f=1), and thus fony<p,
1

depending orf and the ratio RO']o/po. This leads to the
conclusion that a nativg-type semiconductor(i.e., ng
<py) doped with donors is highly self-compensateg (
=1/2), with »—1 for large values of the donor concentra-
tion Np (i.e., f>1).

C. Doping a native p-type semiconductor with acceptors
1. Change in native defect concentrations

Introducing acceptors into a natiyetype ionic semicon-

SELF-COMPENSATION IN SEMICONDUCTORS
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Logf) 1

4Log(¢)

FIG. 2. f, vs P(O,) and N, for acceptor doping of GO at
1200 K. ¢=[P(02)/P(0y)oml A=Na/2[O/]om-

(0T
fa

[Veulo

fapO:NA+2 .
fa

+

(22)

We denotd now asf,, and we have neglected a termy/f,
in Eq. (22).

We further follow the analysis of Appendix B and find a
cubic equation foif, (and forx,f,= p/povaB) in analogy
to Egs.(B4) and(B5):

2

Vome ¢
3_ 2_ —’m B ——
(XOfa) VO,m+ 1 (Xofa) VO,m+ 1 (XOfa) VO,m+ 1 O,
(23)
wherex, and ¢ are defined as
Po ( P(O,) )1’4
Xo=—, = . 24
0 Pom ¢ P(O2)m 29

Xg is obtained from Eq(6). A in Eq. (23) is defined as

Na

A= ———.
2[Oi ]O,m

(25

The solution forf, of Eq. (23) is presented graphically in
Fig. 2. Comparing calculated foD at a givenP(O,) and T
with f, calculated for the samé(O,) andT with A=D one
findsf,>f [except for the very dilute limitA,D—0) where
in both cases,,f— 1]. In the heavily doped region the hole
concentration is independent of the oxygen partial pressure.
This takes place whehl, is greater than the native ionic

defect concentrations. Note that the latter concentrations are

diminished on doping with acceptors.

ductor results in the enhancement of the concentration of

holes. Although we did not find an acceptor for Quwe

shall continue to use this material as an example for the

2. Self-compensation in a nativp-type semiconductor doped
with acceptors

theoretical discussion. We shall assume acceptors with one gejf.compensation on acceptor doping of a natMgpe
negative charge as compared to the unperturbed lattice argmiconductor is considerably different from that resulting

denote them ag\’. Equations(7) and (9)—(11) are being
replaced now with

(0T
fa
(21)

[V,
(Ve = %“]"

p=fapo, n=+, [O]=
a

and the neutrality equatiof12) with

from doping the same host with donors, discussed in Sec.
Il B. Starting from Eq.(1) with Np=0 andny<py,

f.—1
1- Po(fa )'
Na

In analogy to Sec. Ill HEgs.(16)—(18)] the use of Eq(22)
results in

n= (26)
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n with fixed Ga chemical potential, the key ionic defects are
Ve and (GagVea)". The neutrality equation in the presence
0.6 of donorD" is
0’5 oo "
04 Np+3[Vas]+p=3[(GaxsVea "]+ N. (32)
0’3 The reaction of forming the associate is
02 (GaneVga)" = Ve + Gag,+ 6€’ (33
0.1 hence

fa m eseq 6
— [(GareVed"=[ViiIn (39

Equation(32) can be written in terms of the concentrations
of the native defects in the undoped material and the doping
factorf as

FIG. 3. 5 vs f, for acceptor doping of @-type binary oxide,
with the dominant point defects/@ndh’ [i.e., the neutrality equa-
tion (2) becomes PO/ ]o=po]-

1 1
fa—1 Np+3[Vaclo— +Por =3[(GansVea"Jof >+ nof.
Na==7—{(f2+fa)po+2[ O/ o}. (27) S 5
a
Substituting this into Eq(26) yields Large dopant concentrations,, are those of the order of
the dominant native defects or higher. For lafgg values
fat+2[01o/po (@ there is significant self-compensation when
n (28)  [(GaneVga)"1of3>n,f which originates in part by the in-

= 2 /7 )
FatTat2[Olo/Po crease in negative native ionic defect concentration and in
One can evaluate limits fop recalling that 6<2[O]']/p,  Part by the decrease of the positive native ionic defect con-

<1 and therefore centration andb) n—p increase withNp but at a rate less
than linear.

1 1 Fermi level saturatior{pinning does not occur. To see

frl 77<fa+ 1)’ (290 this we examine the derivativéf/dNp . Fermi level satura-

tion, i.e., no change ofh (and p) on doping, requires
with 7=(f,+1)"1 if [Vido=po>2[0'] and n=[f, af/dNp=0. Differentiating Eq.(35) yields
+1/(f,+2)] 1 if 2[0']=pe>[V¢lo- Figure 3 shows the
latter — f, relations.

-1
1 1
o eeey T - " 2
This result is different from the result of Sec. Ill B. Inthe  gN, 9[VAs]0f4 *Po £2 +9[(GansVea"lof "+ o

present case is far from unity for all levels of doping. At (36)
the very dilute limit(wheref,~1) 1/2<%<2/3. In particu- . L. . . .
lar, for Cu,O at 1200 K#~0.65 atf,~1. This expression is positive, showing thiincreases with
In the high doping limitN > p,, Egs.(2), (A6), and(23) No- It vanishes only forf—c, i.e., when the neutrality
yield equation(35) reduces to
A Na No=3[(GarsVea"Tof%, f>1 (37)
f (30)

namely, whenf>N¥3. ThennocngNZ3.
Fermi level saturation does not occur. Using the Fermi
level dependence on electron concentration in the dilute case

2~ %o(Vot1)  po

thus f,>1 and Eq.(29) yields »—0, i.e., negligible self-
compensation. Alternatively substituting E(O) into Eq.

(26) yields er=€e2+kTInn (39
Po the change irer on doping is
7(NaZpo) =~ <L. (3 "

A Aep=KTInf. (39

This means that for high doping levels of acceptards TR .
small and the hole concentration can be enhanced signif!p the limit >1 Eq.(37) yields
cantly by acceptor doping, provided that the solubility of the N
dopant is high. AEF:_m—D
3 3[(GasVead"lo

D. Self-compensation in t_he presence of _native amphoteric andAe; changes logarithmically witNp, with a coefficient
defects as in gallium arsenide kT/3

(40)

We consider now self-compensation for the defect model The situation may be different when the amphoteric de-
discussed by Baraff and Schéu'® and WalukiewicZ®*'for  fect concentrationg,(GanVs2)"] and[Viae], are not gener-
GaAs. For a deviation in stoichiometry with, say, excess Gated by thermal excitation but under nonequilibrium condi-
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tions, e.g., by irradiation. This yields fixg@hot necessarily of nS/K3f2—1

equa) concentrations of (GaxsVea)"] and[Via.]. The neu- =f - . (49

trality equation then yields ° INo  2Npng/Ksf?+fpo+4[Vy,]o/ f2+no/f
Np=n—p—(Ng—Po), (41)  The denominator is definite positive and the sigrbfdNp

. . L depends on the sign of the numerator. Let us examine the
i.e., increasing the dopant concentration is compensated by a : ha 2

; ; numerator in the limitNp—0 (f—1). ng/K; can be ob-
change in the electron and hole concentrations.

tained from Eq.(45),

E. Doping with amphoteric dopants, as in zinc selenide

2 s
When the dopant enters in two or more valent states all E: [Lizo] ,
the corresponding concentrations need to be included in the Ks  [Li7] Ne 0
neutrality equation. A particular case is when one charge °
state is positive and the other is negative, as in nitrogen 5 ) ) )
doping of ZnSe® say, withN* andN’ . For concentrations of "€ ng/Ks is the ratio of the concentrations of the amphot-

the dopant exceeding the concentration of the native defec&C impurities in the infinite dilute limit. Depending on the

(50

the neutrality equation becomes characteristics of the amphoteric impurityy/Kz—1>0 or
nglK3—1<0 and so is the corresponding sign &fff N, .
[N"]=[N"]. (42)  Sincef changes monotonicalljsee Eq.(49)] it either in-

creases monotonically above unity in the first case or de-
Large concentrations dfN’] and[N'] may be generated creases monotonically below unity in the second case. For
under nonequilibrium conditions. Yet the electrons canhe gpecific example of Li impurities in Zn3R [Li']
equilibrate. As a resulp and the Fermi level are plnned., as <[Li/ ] for Np—0, ie.,nZ/Ky>1 andf=1.
can Ibe s,een from the mass _actlon relation for the Equation(49) shows thatf is bound by the upper limit
+2e’=N’ charge transfer reaction, fma=No/K52>1. When f—f .., f/ldNp—0. Under these
2 , conditionsn and the Fermi level are fixed independently of
[NIn"=K(TIN], “3) changes iMp . SinceNp might change by orders of magni-
using Eq.(42). Note that in that case the equivalent net con-tude it is of interest to see hoflbecomes independent Nf,
centration of the dopandfN"]—[N']] is relatively low. for f—f.. Rearranging Eq(48), using Eq.(46) to elimi-
Another possibility is the introduction of amphoteric im- natepo, yields
purities under thermal equilibrium conditiot$° For Li in

ZnSel? the following reactions and corresponding mass ac- 2 3 2
ND(

K . . i max ,
tion relations are of interest: -1 :Z[VZ’n]Of—2+nO :

(51)

Lii+Zny,+2€e’ =Lis+Zn+V*, (44)
The right hand side is definitely positive for-1. The term
[Li;In®=K[Liz,] forfixed Zn activity ~ (45)  (f2_/f2—1) vanishes af— f qy, hence the other term has to
diverge,Np— <. Under the conditiorf — f 5 the dominant
ferms in the neutrality equatiofd8) are Np=[Li;] and
Npn3/Ksf2=[Lij], i.e.,

and the creation-annihilation reaction of electron-hole pair
with the mass action relation of E(B). The neutrality equa-
tion for the undoped{-type) ZnSe is

Po=2[Vzalo+No (46) [Lit]=[Lib,]. (52)

and for the Li doped material
For other cases, when3/K3?<1, f decreases towards

[Lif]+p=[Liz]+2[VZ,]+n, (47 foin=no/K¥2. Under these conditions agadi/ N, —0 and

h h | I d for deviation f ichi the amphoteric defect concentration becomes dominant.
where we have also allowed for deviation from stoichiom- Self-compensation can formally be considered using Eq.

etry forming Zn vacancies. 1) with Ne=TLi*T andN.=[Li’.1. This vields forp-ZnS
Expressing[Liz,] in terms of[Li;] using Eq.(45 and E]S)Ir\:g Equ(46[) |(,Li|7)an a=[Liz]. This yields forp-znSe
definingf by p=fp,, the neutrality equation can be written R '

" ( )(f+1)
Po—No)(T+
" = . 53
NonZ  2[Vio ng 7= (po—ng) + (T + 1)po 53
20, + -2, (48)
K,f?2 f2 f

Np+ fpo=
For intrinsic ZnSe, i.e.pp=ng, 7=0, i.e., there is no self-
whereNp=[Li:]. Now Ny appears in both sides of the neu- compensation. It should be noticed that the extrinsic defects,
trality equation and it is not obvious whethEe=1 or f<1 Li; and Li,,, compensate each other as well. The net charge
(except thatf —1 for Np—0). Np—N, is self-compensated by, to a degree given by
Differentiating Eq.(48) with respect toNp yields of Eq. (53).
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F. Self-compensation in a highly disordered compound, as in (1) Self-compensation and defect concentrations depend
a—silver sulfide only on the nature of the host material and amount of dopant

a-Ag,S atT>177°C is highly disordered on the cation as long as the dopant i; introduced in a single charge state.
sublattice. The cation fraction of Agand V,, defects is They can be expressed in terms of the doping falctanich

larger than 0.1. The neutrality condition is is a solution of a poly_nomlal equation.
(2) Self-compensation can also exist in narrow-band-gap

[Agi.]OZ[V,Ag]O- (54) semiconductors. This occurs when the concentration of na-

. tive ionic defects is large compared to the concentration of
Despite a low band gapof 0.4 eV the electron and hole electronic defects in the undoped host.

concentrations are orders of magnitude lower thag;], (3) The defect concentrations are enhanced or reduced on
and[Vag]o. doping by a factorfk, k=+1,+2,... (k is the charge in
On donor doping the material, the neutrality equation bethe Kroger-Vink notation and>0 for a charge with oppo-
comes site sign as compared to that of the dopaht the example
Ag of Cu,0, the defect concentrations in the doped and undoped
Ng -+ [ ?l]o ~ f[Viglo. (55 oxide are related by

_ 1 _ ! 7 £2 //
where the concentratioris, andp,/f, the electron and hole "=Mo. [Ved=flVedo,  [G]=F10o, and
concentrations, can still be neglecteéd;, is just compen- Po
sated by changes in the concentration of ionic defects. This p= T (56)
shows self-compensation in a narrow-band-gap material.
Thus the definition of large/small band gap depends on thevhere 0 denotes the state of the undoped material. Equation
relation of free electron/hole concentration to ionic defect(56) yields
concentrationsEy,, can be considered large as long as the

electronic concentration is relatively low. n n 1 [Vad )
The Fermi level changes according to E80). The Fermi - =const, T «fs,
NS . ; . . [Véd [O]] p
level in this case is not pinned &sncreases monotonically
with Np . .
P [O; 3 n .,
—of  and —of” (57)
IV. CONCLUSIONS P P

Self-compensation of dopants introduced into nonsto- (4) In a nativep semiconductor which is doped with do-
ichiometric semiconductors has been analyzed. Contrary toors, the dopant ions are significantly self-compensated by
the common practice in calculating self-compensation, wéhe native ionic defects. They are fully self-compensated for
did not use explicitly the energy levels of the defects or thdarge donor concentrations. In our notatigs-1 for f>1.
relevant reaction constants. Instead the method starts with (5) Doping a nativep-type semiconductor with acceptors
the neutrality equation, and invokes the relations betweeresults in enhancement of the hole concentratard reduc-
defect concentrations in order to reduce the number of untion of the electron concentratipnFor low concentrations
knowns. This yields a polynomial equation for a fadiocFhe  acceptors are partially self-compensated by reducing the con-
coefficients of the polynomial equation are determined bycentrations of negative native ionic defects. For large con-
the concentrations of native defects in the undoped host aneentration of acceptors, self-compensation is relatively low.
the concentration of the dopant. No explicit dependence on (6) In a nativep-type semiconducton is negligible with
the chemical nature of the dopant appears, as long as thespect to the concentration of negative ionic defects. In view
valence of the dopant defects is single. Specific detailed refof conclusion(3), this relation cannot be changed by doping
erence is given t@p-Cu,0, GaAs,p-ZnSe, anda-Ag,S as  Wwith donors. The electron concentration can be changed with

examples. respect to the hole concentration. The ratip is increased
The analysis assume@) low concentration of native by a factorf? by doping with donorsn/p=1f2ng/p,.
point defects, i.e., they follow Boltzmann statisti¢b) de- The electronic conductivity depends both on the concen-

tailed calculations were done assuming that the dopant igationsn andp and on the corresponding mobilities. There-
introduced in a single charge state and for amphoteric defore the dominant conductivity may change over frprtype
fects; formally it does not matter if the single defect is ato n type even if7 is close to unity. This may occur in the
single atomic point defect or associate of point defects; onease of high electron mobility as compared to that of holes.
anticipates that at elevated temperatures there will be poirtth wide-band-gap semiconductors the prodogtis small.
defects and at low temperatures associates;(enthe sys- Therefore in gp-type semiconducton<<p. If the material is
tem is in a state of equilibrium, except when specificallya nativep-type semiconductor theta) the concentration of
stated otherwise. the negative native ionic defects compensating the holes is
The conclusions referring to natiyetype semiconductors much larger tham and self-compensation of donors should
hold for nativen-type semiconductors as well, with the cor- occur, (b) it is not likely that the relatiomgy/py<<1 can be
responding interchange of the role of donors and acceptorgshanged intm>p by donor doping.
We express therefore these conclusions for one type only, (7) Large changes in or p, i.e., large values df, require
namely, nativep-type semiconductors. large solubility of the dopant. However, this is a problematic
Our conclusions are as follows. requirement for many of the ionic semiconductbts.
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(8) f and » depend on the host stoichiometry. For an Pom iN EQ. (A3) can be expressed in terms [0f¢,]om and

oxide, eg., as for GO, one can c_jetermine t_he valuefads [O/]om Using the neutrality equatiof®). This yields
a function of the oxygen chemical potential, temperature,

and dopant concentratidme.g., Eqg.(13)], and equivalently
find the electron or hole concentration under the same con- ® e\
ditions[e.g., Eq.(14)]. In addition, the self-compensatiop ([Vedomt 2[O€,]0,m)X0:X_[V(,:U]0,m+ Z(X—) [O]Tom:
has a simple relation tb 0 0 (Ad)
(9) When the dopant enters in twor more charge states
with the same polaritysay, D¢, and D¢) an extension of
the calculations is straightforward but results in more comWhich can be rewritten as
plicated equations. Self-compensation then also depends on
the characteristics of the dopant via the concentration ratio
(e.9.,[ D¢ J/[DE). This also holds in the very-dilute limit. 3 Vome R
Yet, the main general trends for donors are like those en- 0 Vomt1 0 VomT1
countered for a single valenced donor. One has to bear in
mind that the introduction of dopants with two charge states
allows for a new conduction mechanism via an impurity Where
band. This may significantly change the electrical properties
of the material. ,
(100 Native amphoteric defects contribute to self- — [Veulom (A6)
compensation of the dopant. They do not lead, under equi- om 2[0om
librium, to Fermi level pinning. Extrinsic amphoteric defects, '
on the other hand, yield donors and acceptors that, at higl$ & concentration ratio which is determined from measure-
concentrations, are mutually compensating, resulting in pinments on the undoped matetiaét T, and P(Oy) .
ning of the Fermi level. In some cases self-compensation
may not occur at all, as in ZnSe witly=n, in the undoped
material. APPENDIX B

2

0, (A5)

We demonstrate here how to evaluétéor the case of
donor doped cuprous oxide, discussed in Sec. Il B. Using Eq.
This research was supported by the Basic Research FoufAl) in Eq. (12),
dation, administered by the Israel Academy of Sciences and
Humanities.
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(P /!
X_o) z[oi ]O,m .
(B1)

¢
fNp+ pPomXo=f2—[Viulom+ 2
APPENDIX A o+ Pomo= 175 IVeulom
Finding the concentrations of the native defects in the o ) ) ]
undoped material as a function of the oxygen partial pressurgubstituting into Eq(B1) po, using the neutrality equation
goes as follows. We first eliminate the reaction constant$2) and usingVor, of Eq. (A6) yields
from the mass action relations. For the example of@uet

’ G . Vo X DX2 V +1
us expres$Ve,lo and[ O/, using Eq.(5) as g3, YomXo., “Xo. Vom x3=0, (B2)
¢ ¢? ¢?
! (P ’ /! (P 2 U Where
[VCu]OZX_O[VCu]O,m! (O ]o= Xo [Oflom, (A1)
N
D=———. (B3)
2[O/Jom

where

We may rewrite Eq(B2) using the relation betweex, and
f of Eq. (6) to eliminatexg,

P(O 1/4
xo= 12, E< ( 2)) (A2)
Pom P( 02) m D VO mXo
f3+Gf*~ ——G*f-1-G=0, G=——. (B4
om ¢
We next write an equation fopy at T,, as a function ) _ ) )
P(0O,) in the undoped material. Substituting E¢al), (A2) It is also straightforward to write an equation for the elec-
into the neutrality equatiof®) yields a cubic equation fo,.  tron concentration under doping. Equati@®) can be writ-
This expressex, (or py) as a function ofp [or P(O,)1: ten as
2 3 2
e, e\% f Vom| f D[f| Vomtl
pO,mXO_X_O[VCLl]O,m+2 X [Oilom- (A3) (X_o) + T(X_o AT =0. (B9
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Equation(B5) is a cubic equation for the normalized electron ny,, which together with Eq(7) yield
concentration. This is because, using ER),

f_"_; (B7)
—=—=n.
¢ Xo  Nom
== FIC)JO’m' (86)  Substituting Eq(B7) into Eq. (B5) yields
0 0
-V D. Vyptl
, , R+ 22— —R— 2= 0, (B8)
Using Eq.(8), pp and pg,, are expressed in terms nf and ¢ © 1)
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