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We consider core electron photoemission in a localized system, where there is a charge transfer excitation.
Examples are transition metal and rare earth compounds, chemisorption systems, ahddoigipounds. The
system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core
level and one outer level is fille@ spinless two-electron problgnThis model system is embedded in a solid
state environment, and the implications of our model system results for solid state photoemission are discussed.
When the core hole is created, the more localized outer lglyes pulled below the less localized levdl).
The spectrum has a leading peak corresponding to a charge transfer betaeed (“shakedown”), and a
satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and
the continuum states into which the core electron is emitted. The model is simple enough to allow an exact
numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in
lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate
the ratior () between the weights of the satellite and the main peak as a function of the photon en&fgy
transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the
photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described
by the energy scal&,. Without the coupling to the photoelectron, the corresponding rai®@) shows a
smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic
energy scales afe4 and the satellite excitation energf. When the interaction potential with the continuum
states is introduced an energy schle= 1/(2R?) enters, wherd; is a length scale of the interactigscatter-
ing) potential. At threshold there is typically(aeak constructiventerference between intrinsic and extrinsic
contributions, and the ratio{ w)/r o(w) is larger than its limiting value for large. The interference becomes
small or weakly destructive for photoelectron energies of the okderFor larger photoelectron energies
r(w)/ro(w) therefore typically has a weak undershoot. If this undershoot is negle¢ielfy o(w) reaches its
limiting value on the energy scalg, for the parameter range considered here. In a “shake-up” scenario,
where the two outer levels do not cross as the core hole is created, we instead fir{dlhej( ) is typically
reduced for smally by interference effects, as in the case of plasmon excitation. Even for this shake-down
case, however, the results are very different from those for a simple metal, where plasmons dominate the
picture. In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a
localized excitation. The reasons for the differences are briefly discUs$@t63-182099)11035-X]

[. INTRODUCTION be quite different as we approach the opposite limit, the adia-
batic limit, of low kinetic energy’.It is then interesting to ask

X-ray photoemission spectroscofyES is a useful tool at what kinetic energy the sudden approximation becomes
for studying the electronic structure of solids. The theoreticahccurate. This issue has been studied extensively for the case
description of PES is, however, very complicdtédnd al- when the emitted electron couples to plasmons, and it has
most all work has been based on the so-called suddelmeen found that the sudden approximation becomes valid
approximatior®*® The photoemission spectrum is then de-only for very large (~keV) kinetic energie$-®
scribed by the electron spectral function convoluted by a loss A semiclassical approach has been found to work exceed-
function, describing the transport of the emitted electron tdngly well for the study of plasmon satellitéS.In such a
the surface. The sudden approximation becomes exact in thgcture, one may take the emitted electron to move as a clas-
limit when the kinetic energy of the emitted electron be-sical particle away from the region where the hole was cre-
comes infinite** In this limit we can distinguish between ated. The system then sees the potential from both the cre-
intrinsic satellites, appearing in the electron spectral funcated electron and hole. Initially the electron potential cancels
tion, and extrinsic satellites, appearing in the loss functionthe hole potential, but as the electron moves away, the hole
For lower kinetic energy, this distinction is blurred due to potential is gradually switched on. The switching on of the
interference effects, and the satellite weights are expected twle potential may lead to the creation of excitations. If the
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Q) — dependent Schdinger equation or by directly inverting a
”EI_"‘-.‘ 'jﬂ“ PN AN resolvent operatailQM). We also derive analytic results with
Il “(© Uﬂ_.d (o "ﬂ_ a separable potential. These results are compared with the
. . . semiclassicalSC) theory, and with first order perturbation
.- < - theory (PT). In both these cases we have analytic results,
initial final (main) final (satellite) which is very useful for understanding the physics of the

o ~ problem.
~ FIG. 1. Schematic view of the CusZharge transfer photoemis-  The impurity model discussed here differs in certain im-
fr'lon' Hereatls_, the Cu 31 level andbis a ligand(L) valence state for o iant aspects from a real solid. To start with, for a solid we
€ symmetric case. never reach the limit of a pure intrinsic spectrum. When the
kinetic energy of the electron is sufficiently large, we can®ross se_ction for extrinsic scattering goes to zero, the range
consider the hole potential as being switched on instantlyzrom Wh'cr; the pr}[ﬁtoellectrton.s f(l:o_f[ne_lg_]rc])es ]:[0 'nf['r:"ty‘ ?ge to
and the creation of excitations around the hole then reaches ge mean ree path going fo Infinity. Theretore the extrinsic
processes do not become negligible in a real solid. In our

limiting value, the sudden limit. In the semiclassical picture,’ ; - .
the perturbation is turned on during a time Ry /v, wherev impurity model, on the other hand, the extrinsic scattering

is the photoelectron velocity arf, is the range of the in- approaches zero at high kinetic energies. Secondly, for a

teraction(scattering potential between the emitted electron solid, we discuss excitations in the continuum and not as

and the excitations. In this picture we also need to determingere discrete energy levels. . .
the relevant time scaler,, so that the sudden limit is For the coupling to plasmons, the adiabatic-sudden tran-

reached if7<< 7,5 OF V=>Ry/7max. Our analysis within the sitior_l tak_es place at large kigetic energies where the SC ap-
semi-classical framework shows that-}14, is related to the p_rOX|mat|on is very accurat®? The relevant length scale is
energySE of the relevant excitation of the system and to theJVen by the plasmon wave lengih=2/q and the relevant

~ ) . time by the inverse plasmon frequenay,. Large interfer-
strengthV of the scattering potential. ence effects are then connected with a large phase velocity

We find a different characteristic energy scal  w,/q, as discussed, e.g., by InglesfiéfdSince long wave-
= 1/(2~R§), Where~RS is a characteristic length scale of the length plasmons play an important role, these large interfer-
scattering potential. On dimensional grounds one may arguence effects for smalfj delay the approach to the sudden
that the adiabatic-sudden transition takes place when the kiimit, which only is reached at very high kinetic energies

netic energy of the emitted electron is comparableEto (~keV). _ o )
This would differ dramatically from the semi-classical ap- ~For the localized excitations studied here the relevant
proach, where the transition takes place for energy of th%ﬁ”?tt?] s;:ale !i mLt‘CL‘ sholrter. '[he SC theg_ry }hen plrledIEFS
= 5 B P ) at the transition takes place at correspondingly smaller ki-
ordgr VEs7mad. €. &0 6E) “.ES or V¥/Es, |._e., thel P~ etic energies. This is indeed what we find from the exact
posite dependence dy . Alternatively, and again on dimen- so|ution of our model. This has two consequences. First, the
sional grounds, one may argue that the sudden approxima&c treatment itself is not very accurate at such small ener-
tion becomes valid when the kinetic energy of the emittedyies, and we have to rely on QM treatments. Actually, al-
electron is much larger than the energl of the relevant  thoyugh the SC treatment correctly predicts a small transition
excitations of the systeﬁqm.str_ong contrast to the two cri-  energy, we find it predicts qualitatively wrong dependencies
teria above. This latter criterion is, however, not true ingn the relevant parameters. Secondly, the smaller energy
generaf’ scale means that the energy variation of the dipole matrix

For many syt;stemsdwith st(;o_ng corr:elations, thfe Coreeqr!ev_eblements becomes very important. The dipole matrix element
spectrum can be understood in a charge transfer sceharig . = .

S P rows rapidly on an energy scakg;, which can become
This is illustrated in Fig. 1 for a Cu compound, e.g., a Cu(‘:j picly gy ey

; : .~ ~very important for the adiabatic-sudden transition.
halide. In the ground state, Cu has essentially the configura- We study the ratia () between the weights of the sat-

. 9 . . .
'g?nad Cjngofg t#;;'gﬁnge%fxgss aerneeII”:t(ijc.ellrI] ”}Z\,%rrzﬁgcte ellite and the main peak as a function of the photon energy
' g y %or the emission from a Slevel. First we consider the case

gﬁ)n;i:ciagrgi?ocrtlrgg ILoemC?l l;%g;dv\t/ﬁ;tfehi!’rg?lt;'g'anuz towhen the scattering potential between the electron and the
9 : target is neglected. We find that the corresponding ratio

. . . 10 . B
the hybridization betvyeen thé” andd conﬂguratu_)ns, the . ro(w) strongly depends on the ratio between the excitation
states are actually mixtures of the two configurations, as in-

dicated in Fig. 1. In the photoemission process there is &M€Y 0E and Eq. If SE/Eq<1, ro(w) essentially ap-
nonzero probability that the outer electron will not stay onProaches its limiting value from belo@ith a slight over-
the ligand, but is transferred to the lower enedgjke state.  shoo}, while it has a large overshoot #E/E4>1. In both
This “shake-down” process corresponds to the leading peakases the limit value is reached for photoelectron energies of
in the spectrum, while the process where the outer electrothe order of a few timesE.
stays on the ligand corresponds to the satellite. This kind of We then study the effects of the scattering potential by
model has been applied to rare earth compodifishemi-  focusing onr (w)/ro(w). For small energies there is typically
sorption system&-'2 transition metal compound$;*” and ~ &n overshoot due toonstructiveinterference in the shake-
high-T, compounds? down case, contrary to the shake-up case where, as for plas-
Our simple model allows an accurate numerical calculaons, r(w)/ro(w) is reduced by interaction effects. This
tion of the photocurrent either by integrating the time-happens on the energy scélg. If the scattering potential is
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TABLE I. The model Hamiltonian Eq(1) can describe various
charge transfer systems. The table indicates the meaning of the A=E (Mkclcc+ H.c), 3)
statesa andb for different cases. ke

where M is an optical transition matrix element. We take

a b the photoelectron interaction as
transition metal compounds d3state ligand state
CO on surface 2* state  bulksurface state V=, [naV(ki), + nbV(kﬁ), —V(kck),]clck, . (4)
Ce compounds # state 5 state kk’

Here V(k?, is a matrix element of the Coulomb potential

, ~ Vv)(r) from the charge density,(r) of the orbitalv,
very strong, this overshoot may extend to several tilags
Depending on the parameters there may be an undershoot for 0,(r")
higher energies, WhICh can extend up to quite high energle&/(kﬁ);f zﬁ’k‘(r)v(”)(r)zpk,(r)dr, v®(r)= f —,dr’
The undershoot is, however, rather small for the parameters Ir=r’]

we consider here, and should therefore not be very importanfpe potential determines the transition from the adiabatic
unless we want to calculate the spectrum with a high accug, the sudden limit. and/=0 corresponds to the sudden
racy. For Cu compounds and emission from the ®dre it ’

level, we find thatE4 and Es are comparable, and the rel-  The total Hamiltonian is given by
evant energy for (w)/rq(w) is then given byE~E,~E.

We present our model in Sec. Il and calculate various H=Ho+tT+V+A. ®)
matrix elements in Sec. Ill. The sudden approximation isthis Hamiltonian has two conserved quantities,
described in Sec. IV and exact numerical methods are given
in Sec. V. The perturbational and semiclassical treatments
are presented in Sec. VI. In Sec. VII we study the condition ”c+§k: n=1 and ng+ny=1. ©)
for the adiabatic-sudden transition qualitatively, using simple
analytic matrix elements. The results are discussed in Se€or simplicity we take the core electron and ttheslectron

VIII. potentials as equal/°=V?, and use the relation,+n,=1

to obtain,
Il. MODEL
_ T
We consider a Hamiltoniah(, describing a model with a V= nb% Vi CkCic » (@)

core levelc and two valence levela andb,

where
Ho= €N, + €pNp+ €N+ U nng+Upneng
— *
+t(cleptclca). (1) ka'=f P (N Ved 1) e (1)dr,

The first two terms give the bare energies of the leaasid 1

b, an.d.the last te_rm the hybrldlzatlon between them. TheVSC(r)EV(b)(r)—V(a)(r)=f dr’ , [pn(r') = pa(r')].
remaining terms involve the occupation numbgr of the [r—r’|

core levelc. In photoemission the core level is filled in the
initial state, and empty in the final, ang only enters as a
constant. It is trivial to diagonalizg{,, and one obtains two
dressed energids,(n.) andE,(n.) for the levelsa andb. In

a Cu compound, for instancemay represent the Cus3ore
level, a the Cu 3 valence level andb a ligand state. This is Ho=en+(e.+Un)n.+ enn+t(cic.+clc 8
schematically illustrated in Fig. 1. In our calculations we 0= €cNet (<a Mat €pMo +1(CaCht CoCa)s (8)
almost always treat the case whéfy(1)>Ey(1), and where the Coulomb integrdJ is given by

Ep(0)>E,(0). Themeaning of the levela andb for differ-

ent types of systems with localized excitations is indicated in B , 1 , ,
Table I. The full Hamiltonian also has a one-electron part for Y =Ya=Ub= | drdripe(r) ] [pa(r’) = pp(r')]-
continuum states, 9)

The (scattering potential V¢{r) describes the change in the
potential acting on the emitted electron when the electron in
the target hops from level to b.

Dropping a constant we can writé, as

Since the core level is very localized in space this leads to
T: 2 Gknk f (2)
K U=—V0). (10)

with the energies;, =k?/2, and wave functions obtained  For the different types of systems in Tablealrefers to a
from a one-electron potential correspondingnie=1. Then,  |ocalized level andb refers to a more extended level. For
are occupation numbenizcﬁck. We use atomic units with instance, for a copper dihalide compoudrefers to a Cu
e=m=#=1, and thus, e.g., energies are in Hartree3d orbital andb to a combination of orbitals on the ligand
(27.2 eV). The perturbation causing photoemission is sites. For simplicity, we approximate the six ligand orbitals
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by a spherical shell with the radilR,,?® whereR, is the
average Cu-ligand separation. The potential from the Gu 3
orbital V34(r) can be considered as purely Coulombic
(=—1Ir) atr=Ry. The charge from the spherical shell gives
a constant potential inside the radilg, and we have

/g, r<R0,

1
[_Vsd(f)+R—0

0;

Vsd) = 11
r>Rg.

Here ¢ is a constant chosen to maké= —V{0), which

may be thought of as being due to screening by the surround-

ing. SinceV;4(0)>1/R,, ¢ varies only weakly withRgy and
is approximately given by=V34(0)/U.
IIl. MATRIX ELEMENTS

To estimate the matrix elemenkd, andV,,, we must
approximate the photoelectron wave functiahgr). These

wave functions are calculated from the potential of a neutral

atom, which further is shifted to make the potential zero
outside a muffin-tin radiusy, . The states are then described
by spherical Bessel functions outsidg,, which are
matched to a solution of the atomic potential insigg. For
the energyk?/2 we obtain the partial wave

Ath(r), r<rm

R = 2
lr) \/%k[COSMkh(kr)_ singni(kn)],  r=wve
(12

where i, (r) is the solution of the radial Schdmger equa-
tion for the atomic potential inside the muffin-tin radias,
is a matching coefficient, ang,, a phase shift. The normal-
ization is given by

R
fo drr?Ra(r)=1, (13
whereR is the radius of a large sphere to which the con-
tinuum states are normalized. The factorR?/% is due to
the normalization and the asymptotic behaviorjik) for
largex.

Slater's rule$' are used to generate the orbitals and
charge densities, from which the potentidly(r) is calcu-
lated. This gives the scattering potentMl(r), which is
shown in Fig. 2a). We consider photoemission from a Cs 3
hole. Due to the dipole selection rules, the core electron i
then emitted into a continuum state wymmetry. The ma-
trix elementsV,,, of the scattering potentiaV/ {r) are
shown in Fig. 2b),

Vi f drr?Ry(r)Ved )Ry (1), (14
where the muffin-tin radius, is taken as the ionic radius of
Cu, ry=2.6 a.u., and we have dropped thendex, since
we always considekr=1. The dipole matrix elemenyl, is

given by

My ~ay(€— Ec)f drr2yrag(r)rgadr). (15
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FIG. 2. (a) The photoelectron scattering potenti&l{r) given
by Eqg. (11) with respect tor for CuChb (Ry=4.71 a.u. ande
=1.96). In the inset, we give the atomic configuration of Cu-ClI
octahedral(nearly octahedralcluster in CuCJ. (b) The diagonal
and off-diagonal matrix elements of the scattering potential multi-
plied by R. In the figurek;=1 a.u.,k,=5 a.u., anck;=10 a.u.
are taken.

We assume that the core level is deep, pntl much larger
than the energy difference between the ligand and copper
levels. We can then take the factef—e. as a constant,
which drops out since we always consider relative intensi-
ties. The result foM, is shown as the solid line in Fig(8.
These dipole and scattering potential matrix elements are
used in the following numerical calculations. Extensive cal-
culations of dipole matrix elements for many systems were
performed by Yeh and Lindags.

To interpret the results, it is useful to also perform ana-
lytical calculations. For this purpose we need models of the
matrix elements. Below we consider the limits of low and
high kinetic energies of the emitted electron. In the limit of
low kinetic energies, we replace the spherical Bessel func-
tion by its expansion for small arguments

S

XI

1
Jl(X)=(2|+—l)” , nl(x):_(ZI_l)”F (16)

and the solution},,(r) by its zero energy limit},o(r). This
leads to

L (kry)?
@IS g 2= D2l s D ke

2
A= ﬁk

Due to the matching, the coefficieaj, contains the ratio
E=rwmtio(rmo)! io(rvy) - The value of the coefficient there-

2141 (kry) 1
[+1+& 21+ ot

(17
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(a) whereEq=1/(2R3). Figure 3a) compares this model with
03 ' ' ' ' the full calculation for a 8 orbital. We obtain Ry
=1.3 a.u. For a & or 2s orbital the length scale is smaller
andR4~1/2 a.u. For other values dfthanl =1 considered
here, the behavior is primarily modified for small energies.

We next consider the matrix element,, . For small
values ofk andk’ and forl=1

M (an.)

2

2 (kk")? [rwme
ka,:ﬁ

(é+2)%2Jo

+ 2 (kk’)ZJRO
9R -

I Mt

o1 me)

Yho(r)Vedr)r2dr

1-¢g\r3
r+ Mt

2
2T§ r_2 Vs&r)rzdr.

(19

For small values ofk and k’ it then follows thatV,.

~ (kk’)?. For large values ok andk’ the matrix elements
become very small due to destructive interference between
the two wave functions unleds~k’. If k=k’ the matrix
elementsV,, approach a constant. These features are con-
tained in the model

RVip (an.)

k (au.)
V= B2 1
FIG. 3. (a) The dipole matrix elemeri¥l, as a function ok. The v :VRS (Rskk )2
exact resul{solid line) is obtained from Eq(15) and the simplified KR [1+ (R 1+ (Rek')2[1+R2(k—k")?]’
model by Eq.(18) is also shown(dashed ling The appropriate (20)
parameter isRy=1.30 a.u.(b) The matrix element®/,,, of the _ _ ~
scattering potential are given fok=k’, k’=1 a.u., andk’ whereRg andRg are appropriate length scales avidhas the

=5 a.u. The solid line is from the exact calculation for the modelenergy dimension. We recall that contains information
of CuCl, and the dashed line is based on the simplified mpgl  ghout the coefficiens, defined in Eq.(17) and therefore

(20)]. The parameters até=—0.36 a.u.,Rs=177 a.u.,an®Rss  gpout the atomic potential and thdtmay become particu-

=131 au. larly large close to a resonance. The potential matiix in
our simplified model20) is compared with the exact result

fore depends in an interesting way on the wave funciign (19 in Fig. 3

and its derivative, and if+ 1+ ¢ is close to zera, blows For large values ok andk’, the expression Eq20) sim-

up. Then the matrix elements of the scattering potential als@lifies to

blow up and we may expect strong deviations from the sud- ——

den approximation. In such a case the dipole matrix element Vv _V_Rs 1

M, also becomes large, i.e., there is a resonangg ( Kk ™R 1+R2(k—k')?’

=/2) in the photoemission cross section.

From Egs.(12) and(15) it follows that in the limit of a  An expression of this type can also be derived by assuming
small k the dipole matrix element is proportional @, that the wave function®R,(r) can be approximated by
~Kk'*1, The main peak and the satellites in the photoemisspherical Bessel functions in all of space, and by assuming
sion spectrum correspond to different kinetic energies angome shape o¥s(r), e.g., a linear dependence on
therefore have dipole matrix elements with differénval-
ues. This_is imp_ortant at low energies. For large energies the Vsc,(r):Vsc(O)( 1 L) 22)
variation inM,, is generally small over a range correspond- Ro
ing to the energy difference between the main peak and th
satellite. For the relative weights of the peaks, the dipol
matrix elements should then not play a role. For simplicity, ,
we assume that the dipole matrixpeleyments become ir?dep);n- Vsd0)Ry 1—cog (k—k")Ro]

~ ~ . . Kk’ = R ; >
dent ofk for Ryk>1, whereRy is some typical length scale [(k=k")Ro]
of the system. For our casé=1) we use the modghote

that any constant factor iN, drops out in our final expres- FOr this model we relat&=Rsq=Ro/3 to the rangeR, of
siong the potential and/=3V{0)/2. Using this identification in

Eqg. (21), leads to the correct average valuewgf and to the
correct width ink—k’ of V. The simple form(21), how-
B )2 = ever, neglects the effects of the oscillations of the cos-
(Rgk) € /Eq NG ,
= == —, (18)  function in Eq.(23) for large values of K—k')Ry, and it
1+ (Rgk)®  1+e/Eq therefore gives a worse representation of the linear potential

(21)

or large values ok andk’ we then obtain

(23

k
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(22) than the form(20) gives for the more realistic scattering
potential (11). Later we will find that it is a reasonable ap-

proximation to puiRy, Rsq, andRs equal to the same value
R, and introduce the corresponding eneky 1/(2R?).

IV. SUDDEN APPROXIMATION

We first discuss the photoemission in the sudden limit,
i.e., we neglect the scattering potential between the emitted

electron and the targe&0). The initial statg W) is the
ground state of{, with n.=1 and given by
|Wo)=— sin6| )| ¢ha) + cOSO| )| ), (24)
where
tan 20=2t/(ey;+U —€p) (25

and the corresponding ground state energy is

1 1
Eg=ect 5(€atU+ eb)—i\/(ea-i- U— ey)2+4t2
(26)
The final states of the target are given by the two eigenstat
of Hy with n.=0
|p1) = cose| ) — sine|yy),

|¢h2) = sine|i,) + cose| i), (27)
with
tan 20 =2t/(ep— €,) (28

and the corresponding energy eigenvalkgsandE, are

E;=%(6a+ €p) ¥ OE/2, (29
with
SE=(ey— €p)2+4t2 (30)
being the optical excitation energy of the system.
The photocurreni(w) (s=1,2) is given by
Ji()= (VA Vo) 80— e+ Eo—Ey), (3D

where |W$9 is a final state. According to the sudden ap-

proximation, it can be written as the final target state multi
plied by the photoelectron stafal’ $*) = y:)| ¢4). This gives

—sin(e+6), s=1,

cog o+ 6), s=2.
32

Jﬁ(w) gives the main lingcorresponding to the quasi par-
ticle line in metal and Jﬁ(w) the satellite line. The sche-

(TA[P ) =Mwe=mg,, W=

matic picture of the initial and final state for this system is

given in Fig. 1. Summing the kinetic energy distribution of
the photoelectron, we obtain the absorption spetifa),

1
Je(0)= 2 J(@)* =MW, ke=\2(w+Eo—Eo),
S

(33
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FIG. 4. The ratioro(w) of the satellite to the main peak in Eq.
(35 divided by the result for an infinite photon energgg(«)

=r4g]. Three values of the excitation enerd§ are considereds
measures the photon energy relative to the threshold energy for the
satellite.

where the threshold energies fdf(w) andJ,(w) are given
by E;—Ey and E;— Eg(=wy,), respectively. We can thus

also writek;=\2(w+ 0E— wy,) andk,= 2(w— wy,). The

dactor 1k comes from the&k summation over & function in
energy. For convenience we introduce the quandity o
— oy, and thuse,,= .

In the sudden approximation the kinetic energy of the

emitted electron is large, and we can tde=k,. The ratio
roo Of the satellite to the main peak intensity then is

Ja(w)
Ji(w)
Taking into account the energy dependence of the dipole

matrix element according to model E({.8) as well as the
factor 1k, we obtain

roo=lim =cof(¢+ 6). (34)

w—®

3/2 2

1+ (w+ SE)/Ey (%), (@5

1+ wlEy

w

ro(w)=rgg

w+ 6E

We now require that the ratioy(w) should reach a fraction
y(y=1) of its limiting valuery(«) for o=w, . This gives

3 1 ] -
w,— wth% E 1T)/ if SE< Ed, (36)
oE - ~
. Y?R(EqlSE)*?  if SE>E,.

This criterion refers to the energy wherg(w) reaches a
fraction vy in its rising part, and it does not consider that there

is a large overshoot foSE/E4>1. In this case we can in-

stead require thaty(w) is smaller thany~1 in its descend-
ing part. This gives the condition

wy_ Wth .

= SEIE;>1, y>1.

(37)

y—1

In Fig. 4 we show results fory(w) over a large range of
values forSE/E. The figure illustrates that the dipole matrix
element effect alone makes the sudden approximation invalid

for small kinetic energies. It is interesting that for somewhat
larger photon energies, overshoots. The reason is that in
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TABLE Il. Parameters used for copper-dihalide compounds. H(T)=Ho+T+V+Af(7). (39

U(eV) t(eV) OJE(eV) Ry(au) e r(o—x) The interaction is switched on at=0, using

CuBr, 1233 2.02 7.37 501 171 2.33 f(r)=coswr(e"7"—1) >0. (39
CuCl, 10.58 1.84 6.45 4.71 1.96 2.07 . ) )
CuF, 8.62 1.63 5.41 386 226 1.75 Here 7 is a small quantity to @ssure that the external field

is switched on smoothly. The initial7&0) state| V) is
_ given by the ground state 6{, with n;=1 in Eq.(1). After
our model (18) the matrix elementsM, saturate forex 3 timer, the statd (7)) of the system is

>E4, while the factor 4 in Eq. (33) favors the satellite. For
SE/E4=1, the result is rather close to the sudden limit for
wl/ SE~1. Finally, for SE/E4> 1, there is a substantial over-
shoot.

As discussed in the introduction, we would like to study n 40
how the adiabatic to sudden transition depends on certain ; Cor D)l 410 40
factors, such as the rang® of the potential and the energy . _

SE of the excitation causing the satellite. We therefore keeg N€ coefficients of ¥ (7)) can be determined by

ratio of t, U, and e, — €, fixed, but vary their magnitude. In p

this way we can vangE without varying the magnitude of iy _ P 41
the satellite in the sudden limit. EquatiohO) requires that I(97| () =H(D|¥(7), (41)
\c,jvigl\efztrr)i/é/ Sé(o%)sgsn:sv € ,ﬁaggie(v':f L:%éeé%'lbg?;;{g;)gngetlgsv which gives four differential equations for the four coeffi-
however, we do not impose E(L0), to be able to see the Ci€Ntsalr), b(7), cax(7), andcyy(7),

effect of varyingSE alone. We furthermore vary the range

|\I’(7)>:a(T)|¢a>|¢c>+b(7)|¢b>|¢c>+zk Cak(7)|¢a>|¢k>

Ry of the potential. From the definition E@Lll) it follows i—a(r=(e.+U+edalmr +tb(n+ S V(e
that this would also vary the strength of the potential. For 7 (n=(e €)a(m) +th(7) ; < (7)Car(7),
this reason we simultaneously vary the dielectric constant (42

so thatV¢{0) stays unchanged whdRry is changed. Alter-

natively, we can use the analytical matrix eleme(is), o d B ds

(20). We can then easily vary the length scale by changing I=-b(7)=(ep+ec)b(7) +1a(r) + ; Vi (7)Coi(7),

or the strength by changing. (43)
To know roughly what are interesting values for our pa-

rameters we use experimental results for some copper ¢ g
dihalides:®> We estimate the relative strength of the satellite i~ Cax(7) = (€a+ €1)Cak(7) T tCui(7) + Vi(7)a(7),
to the main peak, and the energy difference between the (44)

peaks. This gives two equations while in our model these
quantitiesr oo and SE, depend on three parameterd), and

€.~ €y. TO only have two parameters we considlee sym- iicbk( 7)=(€p+ € Cpi( 7) +tCan(7) + V(D) b(7)
metric cases,= e—U/2 ande,= € as shown in Fig. 1. In the ar

symmetric case we are restricted to the shake-down situation

since before the transition treelevel is above thé level, + % Vi Coer (7)), (45)
e, tU—€e,=U/2, while after the transition tha level is K’

below theb level, e,— e,=U/2. In the symmetric case we . .
have O< 0:(P<7T/4,b angr()o: coB 2¢>=U2>//(16t2). Once we whereVE(T)=Vol\_/I «f(7) with Vq represennr_]g th(_e strength_
know around where we hateandU, we can leave the sym- of the external field. We solye the equations in .th(-e limit
metric case, and also consider, e.g., shake-up cases whéfhienVo—0, and thus the ratio betweeny andcyy is in-
there is no level crossing;,>¢,. In the lowest final state dependent o,. The initial conditions area(0)= — siné,
the electron essentially stays on lebelwhile the transfer of b(0)= cos#, and c,,(0)=cp(0)=0. Thus the problem is
the electron to the level corresponds to a shake up satellite. reduced to solving the coupled differential equations, which
In this case we have 7/4< <0< #<mw/4 ande+ 6<0. is done using the Runge-Kutta fourth-order method.

Our calculations usually take the CyQlarameters as ref- The photoelectron currenfs (w) andJ,(w) correspond-
erence values. For CuClve haved= ¢=0.3, which gives ing to main and satellite lines, respectively, are given by

roo=2.1. FurtherV=-0.36 a.u.,E=0.195 a.u.(with R
=1.§ a.u.), andseE=0.237 a.u., i.e.,.V/E=-1.85 and Jl(w)zz |<q,flk|\1,(7)>|2:2 |coS@CL( 7)
SE/V=—0.66(see also Table ) k k

V. EXACT TREATMENT — singcp(7)[%, (46)

A. Time-dependent formulation

— 2k 2_ H
To obtain exact results for model E(), we use a time- ‘]2(‘”)_2,( [P ()] _; |in¢Cak(7)
dependent formulatidri and solve the Schdinger equation
for the Hamiltonian + COoSeChy( 7-)|2, (47)
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3 T T T T T where |5y (s=1,2) [Eq. (27)] are the exacttarge} eigen-
R J states ofHy(n.=0) andE= ¢+ E; is the energy of the final
i state. Using Eq.(50) we calculate the matrix element
S N e M(s,k)=(¥3A[P,)
é/ B // "" '
" ,":" CuBry
1F [ - =
1"’-" CuCly ————-- M(S!k) <¢k|<¢s| 1+VE_HO_T_V+|77 A|\II0>
L ) CuFy -------- - (51
% ' 1'0 ' 2'0 ' 30 Introducing a basis set
&) )=o) ). (52

FIG. 5. The ratior (w) between the satellite and the main peak the matrix elements o¥ can then be written as
for the divalent copper compounds CyBICuCh, and Cuk. The

parameters are given in Table Il. The dotted lines are the limit Vij=Visks'= Vi VeV - (53
values[r(«)] for the respective cases.

Here
wherer is a sufficiently large time. We let the system evolve
for a time of the order %f to obtain converged results for a Vo= )
given finite V. In principle, we should perform the calcula- Cose if s=2,

tion for a few small values ofy and then extrapolate t9  \yhere we have used Eqf),(27). The Hamiltonian matrix

=0 fo”ﬁwed byfa“ exctjfaﬁobti?'ﬂ’?—fo- ']jefe, for _S"T;P"C- IIin this basis set is diagonalized, which gives the eigenvalues
ity we have performed the calculation for one single smalle and the eigenvectors

value ofV,. The calculation was performed feg=0.1, 0.08,
0.02 eV, and the results were extrapolatedyte0 assuming

—sing, ifs=1,
(54)

the » dependenca(w) 7+ b(w) 7°+ ¢c(w). The error in this |V>:Ei cili). (55)
approach occurs primarily for smal(<5 eV), and it is ) o .
then less than 5% in(w)/ro(®). Using the completeness relatidii)(i|=1, we obtain
The approach above gives the relative intensity of the Vi clel(I[Alw)
main and satellite peaks =M (i) =/ D e A e e 4
M(sk)=M(D)=(i[A[¥o)+ 2 3 o=,
Ja(w) (56)
rw)= . (48 I . . .
Ji(w) The quantities(i|A|¥,) were given in Eq(32), (i|A|¥,)

=m;=mg=MWs. By organizing the sums in E¢56) ap-
It can be shown that the formul&46),(47) above give iden-  propriately, the calculation of this expression is very fast and
tical results to the more conventional formulatil) be-  the main time is spent in diagonalizing the Hamiltonian ma-
low, by performing derivations of the type made in, e.g., Ref.trix. We have found this method to be more efficient than the
24. time-dependent method above.

As an example of the results obtained in this formalism, |n the expressiof56), we can identify the first term as the
we show in Fig. 5 results for the copper dihalides CUBr intrinsic contribution, since this is the amplitude which is
CuCl, and Cuk. The corresponding parameters are showrpbtained if there is no interaction between the photoelectron
in Table Il and were estimated from experiméhThe figure  and the target. The extrinsic effects are then determined by
illustrates that there is a small “overshoot” for smallbut  the square of the absolute value of the second term. The
that the sudden limit is reached fairly quickly asis further interference between the intrinsic and extrinsic contributions

increased. We remind that in our CyQleference cas& is given by the cross product of these terms.

=0.195 a.u=5.3 eV. _
C. Separable potential

B. Resolvent formulation It is interesting to consider a separable potential
_Alternatively, we can Wo_rk in t_he energy space, and ob- Vi =Vbyb, | (57)
tain the spectrum by direct inversion of a resolvent operator.
We consider the Hamiltoniaf, since it is then possible to obtain an analytical expression for
r(w). The operator in the denominator of E§J1) is written
H=Ho+T+V, (49 as
where byH, we understand,(n.=0). The exact final pho- (E+in—Ho—T—V);=(E+in—e€)&;—Vcic;, (59)

. . S . 1
toemission statg¥$") is where againi)=|s)|k) is a combined index for the target

states and the continuum state

1
sky _
|‘Pf >_ 1+ E_HO_T_V_an |l/ls>|l/jk>’ (50) €j= €s— Ek+ ES (59)
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and

Ci=Csk= kaS' (60)

Using the fact thaV is separable, it is then straightforward to
invert the expression in E458) and obtain
[(E+in—Ho—T—V) 1]

E+in—e

CiC;
V(E+i n—€)(E+in—e€)[1+(V/E)C(E)]’

(61)
whereEs=1/(2R?) and
2
C(E)= EZI E+”7 o (62)
This leads to
r(w) |1+ coseDy (Eg+w)/coge+ 0)‘ 2
= (63)
ro(w)
wherek, is defined in Eq(33), and
v E
Dy(e)=—=— bELe) (64)
Es M1+ (VIEjC(e)]’
where
L cm
E(e)= Z etin—¢’ (65)

To obtain a model foW,,, we can, for instance, put

R (Rk)?
R1+(Rk)®

K= (66)
Compared with the expression in EQO), there is no term
k—k' in the corresponding expression 1@k, . The neglect
of this term means that,,, goes to zero more slowly as one
of the argument& or k' goes to infinity. To compensate for
this we use the power three fét;k in the denominator of
Eq. (66), while in Eq.(20) the corresponding power is two.
This is a reasonable approximation for snialbut it breaks
down for largek.

D. On the variables in the intensity ratio

For the satellite to main line intensity ratio we have

Ky
ko
This ratio does not depend on any constant factoMip,

since M (s,k) is proportional toM, . If we take the param-

etersRy, Ry, andRq equal to a common typical radil®
(as will be motivated latgr and use the analytic expressions

M(2k,)|?
M(1k;)

rw)=

J. D. LEE, O. GUNNARSSON, AND L. HEDIN
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in Egs.(18) and(20) thenr (w) or r(w)/ro(w), apart frome
and 6, becomes a function ofE/E, V/E, and »/E, with
E=(2R? 1. We can see this sindd, is a function ofkR,
andV,, a function ofkR andk’R apart from their prefac-
tors. The prefactor 0¥, is VR/R, while that forM, has no
influence. For eacl in a perturbation expansion of E¢p1)
we have an energy denominator an#t aummation. Thek
summation gives an integral and a fac®dk Using vari-
ablesRk, theR/R in the prefactor vanishes. Factoring dit
in the energy denominator, we have a facWE for each
Vi , and instead oBE andw we havesE/E and w/E.

With 6 and ¢ given, SE is proportional toJ. U in turn is
equal to—V¢{0), andthus somehow related to the strength
of the scattering potentidl. If we fix the value of the sud-
den limit r oo=cof(¢+ 6) by choosing one of the angles, we
still have an independent parameter left. This parameter can
be used to decouple the relation betwesh andV (what-
ever it i9. Summarizing, we have found that the parameters
of our model system appear as the angleand ¢, and the
excitation energyE (or U), while the coupling between the
photoelectron and the model system only appears in one pa-
rameter V/E=2VR?, provided we use/E as variable. We
have further motivated that we can vary the paramedérs
andV independently.

VI. APPROXIMATE TREATMENTS

A. Perturbation approach to lowest order in V.

The same problem can be also studied using the standard
perturbation approach. We consider the expression for the
matrix elementdV (s,k) in Eq. (51). To lowest order inV,
we can neglecV in the denominator of Eq51). Inserting
the completeness relatidhy|i)(i|=1 in terms of eigenstates
liYy=|k)|s) we obtain

M(S1k):<3|<k|A|\PO>+ 2 Vks,k’s’
k’s'

X[(E=Ho=T+in) e s (s [(K'|A]¥).

(67)
Using Eqgs.(53),(54) we obtain
M(1k)=—sin(¢+ 0)M — sir? ¢ sin(¢+ 6)
Vi M s
XE kk M _
E— El Ekr+|7]
sin 2@ COSQD"‘ 6) E kaer/
2 w |[E-E,—eu+in]
(68)
M(2k)=cog ¢+ 8)M+ cos ¢ cog ¢+ 6)
Vi M s
XE kk' Mk _
E— E2 Ekr+|77
sin2¢ sin(¢o+ 6 Vi M
N @ sin(e )2 kk M |
2 Kk’ E_El_Ekr+|77

(69
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V¢{0). Thus a smallsE and a smalD make the perturba-
tion weak. The calculations are made for a range of param-
eter values around those given for Cu@i Table IlI.

B. Semiclassical approach

We can also perform the photoemission calculation by
assuming a classical trajectory of the emitted
photoelectrorf® producing a time-dependent potential which
drives the dynamics of the the model. It has been reported
that the semiclassical approach can give the unexpectedly
good results for the systems with coupling to plasnibh<®
The essence of the semi-classical approach is to replace the
scattering potentiadV/;(r) by a time-dependent potential us-
ing the charge density(r,7) of the emitted electron, i.e.,

Vsc(r)_)f drVedr)p(r,7)=Ve{v7), (70)

where we have usegd(r,7)=6(r—v7). We can then write
the Hamiltonian as

FIG. 6. r(w)/ry(w) from the semiclassicdSC) approximation,
the first order perturbation expansi@fT) as well as the exact time H(7)="Ho(ne=0)+V(7),
evolution calculations for different values of the excitation energy )

SE and for U/t=5.76. The remaining parameters are taken fromwhere Hy(n.=0) can be expressed in terms of the exact
CuCh (R$'=4.71 a.u.) final states {; and ) in the presence of a core hole

—0V=F. 1 T
where Vo =(k|V¢dk') and M, =(k|A|¢.). We can then Ho(ne=0)=E1¢1gn+Exhaif.
immediately calculate the photoemission spectra using Edrhe time-dependent potential takes the form
(32).

In Figs. 6 and 7 we compare the perturbation expansion V(r)=n,Vs{V7)=V11(7) ¢l i1+ Voo 7) hsihp+ V1o 7)
with the exact time dependent calculation for a realistic scat-

(71

(72

tering potential in the symmetric case. In the symmetric case X (it W), (73
we haVe OoE= 2t\ 1+ roo: (U/Z)\ 1+ 1/r 00 a.nd U= Where[Cf Eq (54)]
—V{0). Since the ratio o(w) was discussed extensively in T
Sec. IV, we here focus on(w)/r(w), which describes the Viy(7) = sirf Vv T),
effect of the scattering potential. We vary the excitation en-
ergy SE by varyingt, while keepingr g constant. We also Voo 7)= c0% VeV 1),
vary the potential range by replacifgy in Eq. (11) by DR,
and then varyingD. With rqg fixed, SE is proportional to 1 .
Vi 7)=Voy(7)=— ESIn 20Ve{vT). (74
3 — T T T T T T T T 3 — T T T T T T T T
L D=05 The remaining systentargej is still purely quantum me-
2f mrfr‘::ggmg;: - chanical, and we write its time-dependent wave function
8C - r(w)froo - ] | W (7)) as
1 =
‘ | ] V(D) =aw(Dlyr)e 5+ az, (1)) " (75)
o "peors The classical electron velocity is determined by energy
af - conservation, that is;v?>=w. We have here chosen the ve-
P . locity corresponding to the satellite. We could also have per-
1/ ..... — formed two calculations, with the velocities corresponding to
4 . the leading peak and to the satellite, respectively. In contrast
Y e e e N B to the approach used here, this would, however, lead to the
r D=10 problem that the spectral weight would not be normalized.
2r Applying the time-dependent Schiioger equation to
| W (7)), we obtainay,(7) anda,,(7),
3 G _ ~isEr
I T T T S T R Iz_alv( 7)=V14( T)alv(7)+V12( T)aZV(T)e , (76)

FIG. 7. The same as in Fig. 6 but varying the raBgg, instead .9 _ i ET
. I—a =V a +V a e,
of 8E, whereD is a scale factor. The parameters of Cu@ie used. ar 2(7) = V2 7)32(7) + Var( )31y (7)

(77)
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where 6E [Eq. (30)] is the optical excitation energy. Equa- 1.6 E B 10
tions (76) and (77) are subject to the initial conditiorisf. 1A BYRo=0.8 ~
Eq. (32)] g 12y fR=0.6 e

£ 1t

2 o8} o=

= V/E=2.0

ae,(0)=ws. (79 06| SEN=-0.5
0.4 : : : ' : : ‘
, o ) 0 A 2 3 4 5 6 7 8

The final photoemission currenis(w) is o/E

FIG. 8. The ratiar (»)/ro(w) as a function oRy /R, for a fixed
Ji(w)oc|aiv(7'0)|2a i=1.2. (79) Ryg/Rs=1 and fore=6=0.3. The figure illustrates that there are
no qualitative changes as the length scales for the dipole and scat-
It is sufficient to perform the calculation up te=r, (€ring matrix elements become different.
=R, /v, since the potential vanishes for larger valuesrof
The relative intensity between main and satellite contribu- A- Exact numerical treatment with analytic matrix elements

tions is given byr () =Jy(w)/J1(w) as before. We first illustrate the dependence on the ratio between the

In Figs. 6 and 7 we compare the semiclassical and exagL, i, scale®,, R,, andR.4. In Fig. 8 we show the results
results for a realistic potential in the symmetric case. The . L2~ L=~
r different ratiosRy /R keepingRs4/Rs=1. These results

semiclassical theory is inaccurate over most of the energ{P ) 0 - -
range considered here. For large energies however, the serde obtained folV/Es=—2.0 and SE/V=—0.5, whereE
classical theory comes much closer to the exact result thas 1/(2R§) is the energy scale set by the scattering potential

does the PT. It is also clear that an increasing |ength scale. Fig. 8 shows that Bs/R; is reduced the mag-

[=Vs{0)] does not noticeably affect the energy for the pityde of the “overshoot” is increased. There are, however,
adiabatic-sudden transition, where it strongly effects theyo qualitative changes.

maximum deviation. An increasin on the other hand not Figure 9 shows results for different valuesRy,/R; for a
only strongly increases the maximum deviation, but also

makes the adiabatic-sudden transition energy smaller. Th€d Ra/Rs=1. From Eq.(20) it can been seen that this

dependence on the parameters will be investigated more e0'TeSPONds to varying the range of valkesk’ whereV
tensively in the next section. is large, without changing the range over whigf, varies.

The figure illustrates that the overshoot becomes larger as
R.4/Rs is reduced. This is natural, since decreadiyg ef-
VIl. ADIABATIC-SUDDEN TRANSITION fectively makes the scattering potential stronger by expand-

ing the range of valuek—k’ with large scattering matrix

W?_afe now in a position to address the ad'abat'C'SUddeQIements. The qualitative behavior, however, is not changed.
transition and its dependence on the parameters. The Ca|CH,|- view of Figs. 8 and 9, we study below the case when
lations are performed with the analytical matrix elements in. ~ ~ ) '

Egs. (18),(20). First we study the different characteristic Rsa~ Rs=Rd, as mentioned in Sec. V D.

lengths,R, for the dipole matrix elements, ari, and Ry Figure 10 shows such results for different values of the
1 1] S . T .

for the scattering potential matrix elements. We find that jtStrength of the scattering potentidlE and for different val-

makes sense to use only one effective lerthand the Ues of the excitation energyE/V. In each paneBE/V is

. ~ ~ . . kept fixed, but the ratio is varied by a factor of four from
— 2

corresponding enerdly =1/(2R"). As we discussed in Sec. rios 142)-10(c). Typically r(w)/ro(w) has an overshoot

V D, r/ry as a function ofw/E depends on the parameters

i N . ) for small values ofw. For somewhat larges the ratio ap-
6E/E andV/E, and also on the “system” parametefisand  proaches unity and possibly becomes smaller than unity. The
¢. We vary 6E independently ofV, although for a given overshoot can be fairly large and happens on a small energy

model there is a direct relation between these two quantitiegcale (-E). In a few cases of a large overshoatw)/r o( »)

Pa_rt of this relation can be offset by using d|ffereg1_a_nd<p does not become approximately unity uniils several times
(with r oo constant but we do not explore this possibility. The

exact solution with a separable potential is used to discuss
the validity and breakdown of perturbation theory. We find

thatV/E has a large effect on the deviation from the sudden
limit, but little effect on the value ofo/E where the devia-
tion becomes small, whiléE/E has a comparatively small

Bo/B10 ——
Bed/Ba=0.8 |
Rog/Ro=0.6 -

r{@)/rg(o)

08t

ViE=-2.0
effect on both magnitude and range of the deviation. For 06T SEN=-0.5
simplicity we use the CuGlparameters=¢=0.3, which 0t T . 3 f; s & - s
givesrgo=2.1. For CuCj we further haveV=—-0.36 a.u., o/E

E=0.195 au. R=l.§ au), anddE=0.237 au., 1e., FIG. 9. The ratia (w)/ro(w) as a function oR4/Rs for a fixed
V/IE=—1.85 and 6E/V=—-0.66. In our calculations, we Ry/Rs=1 and forp=6=0.3. The figure illustrates that there is no

vary V/E and 8E/V by typically a factor of 2 around these qualitative changes as the ratio of the two length scales in the scat-
reference values. tering matrix elements is varied.
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)N[/E=_1 _ 3 T T T T T T T T T
VE=2 25 |, exact ]
: T VEZTS T
OEV-025 £ 15 V/E = —4.0 --er- i
V/E=-1 — 1 3 N
B V/E=-2 ~ i = 1F S2a
< V/E—d == ] )
g 05 SEIV = —05 .
) SE/V=-0.50 ) 0 1 1 1 1 1 1 1 1 ]
— ,J 1 1 1 1 1 1 1 1 1
1.6 [“L. V/E=1 — A
14 F ™ V/E=-2 ) 25 PT i
1'2 _ Ny V/Em-gf e ] o
o/ e N 5 2k V/E=-1.0—— .
1.0 f —— = = SN V/E=-20-------
o8l T SERCTES i 15 e V/E =—4.0-------- -
0 2 ~4.~ 6 8 \;/ 1 [ Tl
o/E ;
o 0.5 JE/V = —05 =
FIG. 10. The ratia (w)/ro(w) as a function okw/E for differ- 0 | | | | | | | | |

ent values ofV/E and SE/V and for o= 6=0.3. The figure illus- 0 1 2 3 4 5 6 7 8 9 10
trates thatE is an appropriate energy scale for the adiabatic to
sudden transition.

~ L= FIG. 11. The ratia (w)/r(w) for a separable scattering poten-
E, although the relevant energy scale is ﬁu_lln the case of tial (57). According to t(he) efélct)result in Spper panel, the gvpershoot
an undershootr (w)/ro(w) approaches uglty from below is substantially overestimated by the separable potential compared
very slowly (energy scale much larger th&). The under-  to Fig. 1ab), but there is still a qualitative agreement with the more
shoot is, however, relatively small, and if we do not requirerealistic model(20). The lower panel shows how perturbation

a high accuracy, we consider the sudden approximation valitheory works and it illustrates the effects of multiple scattering.
when the overshoot becomes small. This means that as the

range of the scattering potential is made larger, the SUdde%dE(e): cosOMC(e). Then

limit is reached at a smaller energy. This is the opposite to

what one would expect from the semiclassical theory. The _

figure illustrates thatE is not the relevant energy scale. \ C(e)

~ D(e)=—coS0= ———=—=——.
Since in each panel we kedi/V fixed, there is a variation (€) E 1+(V/E)C(e)
of SE/E by a factor of 4. Furthermore there is a variation of

SE/V by a factor of 4 in going from the top to the bottom SinceDy is in.dependent ok in'this approximation, we have
panel in Fig. 10. There is no corresponding change in thé&lropped the indek. The functionC(e) is shown in Fig. 12.
energy for the adiabatic to sudden transition. For ¢= 6 we can then write

(81)

B. Separable potential rw)

It is interesting to study a separable potential, since it igo( w)
then possible to obtain an analytical solution. This makes it - - o~ |2
easier to interpret the results. It also allows the study of the |1~ (cos ¢/cos 2@)(V/E)C(w)/[1+(V/E)C(w)]‘
effects of multiple scattering, i.e., the deviations from first 1—- (12 (VIE)C(w)/[1+(VIE)C(w)] |
order perturbation theory. Figure 11 shows results of the ex-

act and first order theory using the same values®fV and (82)

VIE as in Fig. 10b). The separable potential overestimatesgo; 4 Jevel ordering as indicated in Fig. 1<@< m/4 and
the magnitude of the overshootiifw)/ro(w) quite substan- co€ ¢lcos(2)=1. In our standard case withp=0.3,

tially. Otherwise the results are rather similar. For a qualita;,2 ¢lcos(2p)=1.11. Thus the term in the numerator of Eq.

tive discussion, we can therefore use the separable potenti%gz) dominates. The factor & (V/E)C(») gives the mul-

Eor 2S|mpl|clty, 3we conS|d.er§E=0. Wwe furthgr pgth tiple scattering, which is not included in the first order per-
= (RK)“/[1+ (Rk)“]=by. This is a poor approximation for yrpation theory, i.e., the first order result is
largek, but then anyhow als¥\, is poorly represented by

the separable potential. Our approximations lead to simple

~ = ~. |2
results for the function€, D, andE entering in Eqs(62)— rlo) | _ 1—(cos g/cos 2KP)(V/E)C(CU)‘ ©3
(65). ro(@)]or 1-(12(VE)C@®) |
2
Cle)= —~EE bie (80) We now compare the behaviors of E¢82) and(83), to see

K €—€utiny the effects of using perturbation theory. For small values of
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0.2 T T T T T T T corresponding to energy conservation. The second féren
Re C(e last two terms in Eqs(67)—(69)] corresponds to a virtual
0.15 - Im Cgeg _______ ] transition into some other continuum state followed by one
or several scattering events with the electron ending up in the
01 N ] continuum state corresponding to energy conservation. Let
0.05 us consider the virtual emission into a continuum state with a

larger energy than the final state and let this be followed by

one scattering event into the final state. For a negafivie
interference with the direct event is then constructive. For
_0.05 1 1 T L L L small photon energies such events dominate for two reasons.
First, there are many more states available above the energy
corresponding to energy conservation than below, and sec-
ondly the dipole matrix elements suppress the transitions to
the energies below. As a result, both the main peak and the
satellite are enhanced by the scattering effects. For the values
of ¢ and 6 considered here<{/4), the relative effect is
stronger for the satellite. As a resuliw)/r o(w) is enhanced.

For larger photon energies Réw) becomes negative. The
gy density of states of partial waves with giveandm quantum

0 2 4 6 8 10 12 14 numbers decreases with energy1/ye). This favors virtual
emissions to states below the final continuum state. Depend-
ing on the model fob, andM, these matrix elements may

FIG. 12. The functiorC(e) relevant for a separable potential is have the same effect. As a result, R w) becomes slightly
given in the upper panel. The low panel gives the behavioF{ef  negative for large energies and the ratipw)/ro(w) is
defined in Eq(84). The dotted lines give the asymptotic behaviors slightly smaller than 1.
of F(e€) in Eq. (89).

T —___1

The relevant energy scale f@{(w) is E. This is a com-
bination of the two effects discussed above. The turn on of

o, ReC(w) is positive and then changes sign at aboutthe dipole matrix elements on an energy scale of the cﬁder
DIE~2. Im C(@) is always positive. Due to our crude ap- favors an increasing value @f over this energy spale, while

L ~ . . the density of states effects becomes more important for
proximations forb, andM,, C(w) rapidly becomes unreli-

ble b 0/ (0)/ro(w) for th larger energies. As a result, both R¥ w) and Im C(w)
able beyondw/E=2. Comparingr (w)/ry(w) for the exact h ; t fth e
[Eq. (82)] and the first order resulEqg. (83)], we find that ave a maximum at an energy ot tne or@er

the exact solution is larger when R¢w)=ImC(w), cf. C. Perturbational treatment with analytic matrix elements

Fig. 11. This is consistent with second order perturbation ) _ _ ]
theory, which is found to enhanaw)/r o(w) for small o _ In this section we s_tudy the p_erturbann theory expression
i ~ ~ ~ " in more detail and without relying on a separable potential.

alr,‘d reduce it for large. Foro=0, C(w) is purely real and |ngtead we consider the more realistic matrix elements in
slightly Iar_ger than~0.l, thus ~mul'ﬂple fcgtterlng glvgs _a d'_Eqs.(18) and (20), assuming thaRy=R.=R.=R. We de-
vergence in botld; (») andJ;(w) whenV/E~—10. Thisis  qa 5 functionF, by
due to the attractive potenti® forming a bound state from
the continuum states. Vi Mo v 5

The important conclusion from analysing the separable — =M F\(€/E), (84)
potential is that ifV/ is not too large, first order perturbation E
theory gives roughly the correct range over which there argynich is possible due to the simple form Wf,, and M, .
essential deviations from the sudden limit, while multiple expjicitly we have
scattering increases the magnitude of these deviations for

small » and slightly decreases them for larger E o 1 (= x*dx
We next discuss the physical interpretation of the expres- k€)= —J 22 = o 2irez 1"
sion (82) [or the perturbational expressions in E¢87)— 0 [1+XT L+ (Rk=x)7)[ X"~ e~i7]

K €—€utin

T

(69)]. Here unity[the first term in Eqs(67)—(69)] corre- (85)
sponds to a direct transition into the final continuum state=rom Eqs.(68) and(69) we have
f(w) |1-cos e(VIE)F (w/E)—[sin2¢sin(¢+6)/2 coge+0)](VIE)F [(w+ SE)/E)] 2
(86)

ro(@) | 1-sir? o(VIE)F| [(w+ SE)/E]—[sin 2¢ cog ¢+ 6)/2 sin ¢+ 6)J(VIE)Fy (w/E) '
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SinceRk,= \o/E andRk, = v(@+ 6E)/E [cf. Eq.(33)] we f(w) |1—(cog glcos 2p)(V/E)F(w)|*
see, as stated earlier, thdt, depends only oW/E, SE/E, ro(w) 1—(12(VIE)F() ‘ . (90
and w/E.

First we consider the limit of small values &fand JE. where we have pup= 6. As shown in Fig. 12F(¢€) has a
For o= 8E=0 we haveF,(0)=1/16, and qualitatively similar behavior a€(€) for e/E<2. As in the

o 2 case of the functior€, the relevant energy scale s
r(0) | 1+(|VI/E)cose cosb/[16 cose+6)] In Fig. 13 we show (w)/ro(®) as a function ofw/E for

ro(0) | 1+ (|V|/E)sine cosO/[16siM o+ 6)] ] a few values ofSE/V and V/E. We see that (w)/r(w)
(87) starts at a positive valusee Eq(87)], and reaches a broad

If the more localized leve is aboveb (see Fig. 1in the ~ Maximum at about/E~0.5-1.5. Compared to the sepa-
initial state and belowb in the final statg“shake down”),  rable potential solution in Fig. 11, the overshoot behavior is
we have G<o<m/4 and 0<#<m/4, and the factor in the robust up to fairly large energies, which is due to F{w)

brackets is larger than unity. Thus interaction effects enhancgecaying more slowly than IrrC(Z)). For much larger val-

the ratior (w)/ry(w). This corresponds to a constructive in- Les ofw,(r/ro—1) decays as ¥, as shown in Eq(89).

terference between intrinsic and extrinsic effects. This is iNere based on the discussion in Sec. VII B. we can expect
contrast to the destructive interference found for the plasmop, és multiple scattering becomes .import,ant the region
45 - . . . '
gase. The present dtr.?qtment, however,_rttafetrs to the ShatkrSNhere there is an overshoot is substantially reduced and the
lown scenario, a'rt]h Ithls n;:)rf appropria e/4c; cc;rgrf;e ?egion with an undershoot becomes larger. At the same time,
plasmon case wi e _shake-up casen(4<¢ the overshoot intensity will be enhanced. These behaviors

<mw/4 and ¢+ 60<0). Then the expression87) for tuall firmed b : ith th t calcula-
r(w)/ro(w) indeed becomes smaller than one, and the relat{21re acwia’ly conmirmed by comparing wi © exact caieila

. . o ) ions given in Fig. 10.

tive weight of the satellite is reduced for small energies. We Fi 13 il hat for i di lues iof
notice, however, that both the satellite and the main peak are "~'9!"® ! u'strates that for intermediate va~ue§@
enhanced by the interference, but that the main peak is eNthen Re F dominates, (/ro—1) goes as roughlyV|/ e if

hanced more in the shake-up situation. SE/E is not too large. For largebut not too larggvalues of
We next consider the case whiers large.F(¢) forlarge ), ReF becomes small and If dominates. Since Re is
k and € is (with Rk~ \/¢e) positive for small energies, this leads to a constructive inter-
ference between intrinsic and extrinsic effects. For energies
1] ~ of the orderE, ReF changes sign, and the interference be-
Fr(e)= 2\e ' 2\e +Rk= \/E] (88) comes weakly destructive. For somewhat larger energies the
extrinsic effects are mainly determined by the imaginary part
For the case wheA= ¢ we obtain of F. From Eq.(89) it follows that in perturbation theory the
- - - extrinsic effects become small on the energy SS&UE.
rw) . [V 1+6E/E  [V]2[ cod g 1)
ro(w) 20 2C082¢)  4uE\cof(2¢) 4] D. Semiclassical approximation
(89

In this section we analyze the adiabatic-sudden transition
Thus the approach to the sudden limit goes as Wwith a  Within the semiclassical framework. From the coupled differ-

coefficient which depends on the parameters. With our stan-

dard CuC} parameters, we have 16
14
Mo Y, SE V|2 12 |-
@) 1o 0adY 1+ ) +024e)
ro(w) ) E wE 08 | SEA=-0.25
We note that for largéV|/E, and whenV| is large enough 16 P ' ' g;éj; ]
compared toSE, the last(positive term dominates. The ap- £ :; iy —
proach to the sudden limit is then set BY{%/E=2(RV)?. 3 10F
To evaluate Eq(86) when SE=0 we only need the func- “ 08
tion F(e),
1.6
14
Fro- L f x“dx 12 [
€)=— .
™o [1+ X1+ (Ve=x)?] [P~ e=in] os | ~
_ ) <l , ) SE/N=-1.00
We showF () in the lower panel of Fig. 12. The results Eq. 0 > 4 6 8
(88) for large values ot are shown by the dotted lines in the Q/E

figure. Clearly the approach of RE to its asymptote is very s
slow. If we takeSE=0 we have the same form as in first  FIG. 13. The ratiar (w)/ro(w) as a function ofw/E for differ-
order perturbation theory with a separable potential(B§), ent values ofV/E and SE/V.
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ential equations Eq$76) and(77) we can obtain differential v 1 sin(2¢)

equations ford|a;,(7)|%/dr, i=1,2. Integration of these —=—>6E\/m—F~ 97
. RO ) 12 S|r(20)

equations, leads to

|asy(70)|2—|az,(0)|2 We are now in a position to discuss the approach to the
sudden limit. Within a semiclassical framework it seems
clear that we have to require that the hole potential is fully
switched on after a “short” timery=v/R,, i.e., that the
emitted electron leaves the range of the scattering potential
where 7o=Ry/v is the time at which the emitted electron after a short time. The question is, however, what we mean
with the velocity v leaves the rang®, of the scattering py “short.” From Eg. (95) it follows that the time-scale is
potential.|a;, (o) |*—|a;,(0)|? is a measure of the deviation set by both the inverse ofE and the inverse o¥(0). In
from the sudden limit. For small values ofboth the coef-  Eq. (97) we have used the relation betwedl andV{0) to
ficientsa;,(7) and the exponerd' °5” are approximately real removeV{0) from Eq.(97).
and there is a small contribution to the imaginary part of the  From Eq. (97) we obtain the condition for the sudden
integral in Eq(gl) As T grows there is, however, a contri- approxima’[ion within the SC theory
bution from both these sources.

To obtain a qualitative understanding of the semiclassical 1
approximation, we solve the Sclifinger equations Eq$76) w=-k?>(5E)?R2=
and(77) to lowest order in V. This leads to 2

=21Im j Tovlz( m)ay(7)aj,(r)e Fdr, (91)
0

2 2
@ ~ VS{O) . (98)
2F E

(7, , , Thus, according to the semiclassical theory, the sudden ap-
21y(7)=21,(0) 1 fodT [Via(7)25u(0) +Vaa 72z, (0)] proximation requires thak,>(SE)%/E. Comparison with
(92)  the full quantum mechanical calculations in Fig. 10 shows
that this criterion is not appropriate for the range of param-
eters considered here. The reason is that we have considered
|2y (70)|2— |8, (0)]2 a parameter range where the semi-classical theory is not very
accurate.

and a similar result foa,, (7). This gives

1 . 1 . 70 2 It is interesting that the SC theory correctly predicts that
=5Sin(2¢) 53'”(29){ Jo dTVsc(T)} the weight of the satellite goes to zero at threshold. Never-
theless, the SC theory does not give the correct physics at the
, 0 threshold. In the full quantum mechanical calculation the
+sin(2e+20) 5Ef0 d77Ved T)]- (93)  weight of the satellite goes to zero due to the effects of the
dipole matrix element, which becomes very small at small
To discuss the result, we for a moment assume a simple photoelectron energies. This effect is not included in the SC
dependence o¥;; (7) theory. In the semiclassical treatment, the small weight of the
satellite is due to the fact that the scattering potential be-
(94) tween the outgoing slow electron and the excitation means
' that the hole potential is only switched on slowly. In the
: . guantum mechanical treatment, on the other hand, the scat-
which corresponds to thedependence used in EZ2). We tering potential leads to an enhancement of the relative
%eight of the satellite close to the threshold for the shake-
down case.

Vij(T):Vij(O)(l_T_:)

behavior of the more realistic potential in E41). Inserting
Eqgs.(92) and(94) in Eq. (93) gives

1 . VIIl. DISCUSSION
A2E|512v(7'o)|2_|5‘2v(0)|2:ZVsc(O)S”"'(2<P)
We have studied the photoemission spectrum of a simple
1 1 model with a localized charge transfer excitation. We have
X Zsir(ZG)VSC(O)+§sin(2<p+20) )= 7(2). obtained exact numerical results for the spectrum as a func-
tion of the photon energy and in particular focussed on the
(95 ratio r (w) between the weights of the satellite and the main
We now extend this treatment to intermediate valueg of Peak. These calculations are compared with perturbational
where the adiabatic to sudden transition takes place. Usingnd semiclassical treatments. The results have been analyzed
the expressions Eq$25), (28), and (30) to relate SE and  Using the latter two approaches.

U=—V{0) we obtain An important effect in the ratio(w) is due to the energy
dependence of the dipole matrix elements and a factor
r(w) A, sin(2¢) (3E)?75 1/(de/9k)~1/k in the expression for the spectrum. This

leads to a suppression of the satellite close to the threshold,
but can lead to an overshoot further away from the threshold.
(96) This effect was discussed in Sec. IV and is described by
Within the semiclassical theotthe condition for the sudden ry(w). If the interaction between the emitted electron and the
approximation is then target is weak, this effect dominates. It is determined by the

o0 T Si(2¢)coL(2¢)  siN20) 12
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excitation energysE and the relevant energy scaig of the ~ sudden trarzlsiigion is then expected to happen on the energy
dipole matrix element. IfSE/E4 is small, r, essentially scale q))”, ™ where wg apd)x are the plasmon frequency
reaches its limiting value from belovwith a slight over- and wavelength, respectively. Since the long wavelength

. ) ~ plasmons dominate the transition, this happens at very large
shoo}, while thert_a IS a _Igrge overshoot&i_E/Eq>1. In both energies. For a localized excitation, the relevant length scale
cases, reaches its limiting value for a kinetic energy of the ¢ yhe scattering potential is smaller, and the transition is

order a fe(;/v ti?eséflfi. f th . Al b expected to take place at a smaller energy scale. Actually, the
h To st 3’ tI e efiects do ht N scattennr? pot;anUa 3tweer1ransition takes place at such a small energy that the semi-
the emitted electron and the target we have focussed on trlfl"assical theory is usually not valid any more. It is interesting

ratio r(w)/ro(w). This quantity shows an overshoot for yhat the semiclassical theory therefore predicts the opposite
small values ofw in the shake-down situation studied here ~ . .
?pendence on the randge of the scattering potential,

Depending on the parameters there may be an undershoot fg = ~ -
larger energies, which extends over a large energy rang8amely ask® instead ofE=1/(2R"). )
This undershoot is, however, fairly small for the cases con- For the shake-down scenario considered highe two
sidered here. The sudden approximation is then valid to QUter levels cross as the hole is cregteet find constructive
reasonable accuracy when the overshoot has become smdiiterferencefincrease of (w)/ro(w)] between the intrinsic
We show that this happens on the energy s&atel/(2R?) and extrinsic processes at_low_ photoelectron energies. This is
~ . ) . ' in contrast to the destructive interference found in the plas-
whereR is a typlqal length scalg—:- of the _scatterlng potentl_al. mon case and to the reductionrdfw)/r o(w) found here for
One of the main results of this paper is that for a coupllngthe shake-up cas@o level crossing

to localized excitations, the adiabatic to sudden transition

takes place at quite small kinetic energies of the photoelec-

tron. This is in contrast to the large kinetic energies needed ACKNOWLEDGMENTS

for the case of coupling to plasmons. In the plasmon case,
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