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Transition from the adiabatic to the sudden limit in core-level photoemission:
A model study of a localized system
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We consider core electron photoemission in a localized system, where there is a charge transfer excitation.
Examples are transition metal and rare earth compounds, chemisorption systems, and high-Tc compounds. The
system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core
level and one outer level is filled~a spinless two-electron problem!. This model system is embedded in a solid
state environment, and the implications of our model system results for solid state photoemission are discussed.
When the core hole is created, the more localized outer level~d! is pulled below the less localized level (L).
The spectrum has a leading peak corresponding to a charge transfer betweenL andd ~‘‘shakedown’’!, and a
satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and
the continuum states into which the core electron is emitted. The model is simple enough to allow an exact
numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in
lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate
the ratior (v) between the weights of the satellite and the main peak as a function of the photon energyv. The
transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the
photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described

by the energy scaleẼd . Without the coupling to the photoelectron, the corresponding ratior 0(v) shows a
smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic

energy scales areẼd and the satellite excitation energydE. When the interaction potential with the continuum

states is introduced an energy scaleẼs51/(2R̃s
2) enters, whereR̃s is a length scale of the interaction~scatter-

ing! potential. At threshold there is typically a~weak! constructiveinterference between intrinsic and extrinsic
contributions, and the ratior (v)/r 0(v) is larger than its limiting value for largev. The interference becomes

small or weakly destructive for photoelectron energies of the orderẼs . For larger photoelectron energies
r (v)/r 0(v) therefore typically has a weak undershoot. If this undershoot is neglected,r (v)/r 0(v) reaches its

limiting value on the energy scaleẼs for the parameter range considered here. In a ‘‘shake-up’’ scenario,
where the two outer levels do not cross as the core hole is created, we instead find thatr (v)/r 0(v) is typically
reduced for smallv by interference effects, as in the case of plasmon excitation. Even for this shake-down
case, however, the results are very different from those for a simple metal, where plasmons dominate the
picture. In particular, the adiabatic to sudden transition takes place at much lower energies in the case of a
localized excitation. The reasons for the differences are briefly discussed.@S0163-1829~99!11035-X#
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I. INTRODUCTION

X-ray photoemission spectroscopy~PES! is a useful tool
for studying the electronic structure of solids. The theoreti
description of PES is, however, very complicated1,2 and al-
most all work has been based on the so-called sud
approximation.3,4 The photoemission spectrum is then d
scribed by the electron spectral function convoluted by a l
function, describing the transport of the emitted electron
the surface. The sudden approximation becomes exact in
limit when the kinetic energy of the emitted electron b
comes infinite.3,4 In this limit we can distinguish betwee
intrinsic satellites, appearing in the electron spectral fu
tion, and extrinsic satellites, appearing in the loss functi
For lower kinetic energy, this distinction is blurred due
interference effects, and the satellite weights are expecte
PRB 600163-1829/99/60~11!/8034~16!/$15.00
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be quite different as we approach the opposite limit, the ad
batic limit, of low kinetic energy.3 It is then interesting to ask
at what kinetic energy the sudden approximation becom
accurate. This issue has been studied extensively for the
when the emitted electron couples to plasmons, and it
been found that the sudden approximation becomes v
only for very large (;keV) kinetic energies.4–6

A semiclassical approach has been found to work exce
ingly well for the study of plasmon satellites.4,5 In such a
picture, one may take the emitted electron to move as a c
sical particle away from the region where the hole was c
ated. The system then sees the potential from both the
ated electron and hole. Initially the electron potential canc
the hole potential, but as the electron moves away, the h
potential is gradually switched on. The switching on of t
hole potential may lead to the creation of excitations. If t
8034 ©1999 The American Physical Society
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PRB 60 8035TRANSITION FROM THE ADIABATIC TO THE SUDDEN . . .
kinetic energy of the electron is sufficiently large, we c
consider the hole potential as being switched on instan
and the creation of excitations around the hole then reach
limiting value, the sudden limit. In the semiclassical pictu
the perturbation is turned on during a timet5R0 /v, wherev
is the photoelectron velocity andR0 is the range of the in-
teraction~scattering! potential between the emitted electro
and the excitations. In this picture we also need to determ
the relevant time scaletmax so that the sudden limit is
reached ift!tmax or v@R0 /tmax. Our analysis within the
semi-classical framework shows that 1/tmax is related to the
energydE of the relevant excitation of the system and to t
strengthṼ of the scattering potential.

We find a different characteristic energy scaleẼs

51/(2R̃s
2), whereR̃s is a characteristic length scale of th

scattering potential. On dimensional grounds one may ar
that the adiabatic-sudden transition takes place when the
netic energy of the emitted electron is comparable toẼs .
This would differ dramatically from the semi-classical a
proach, where the transition takes place for energy of
order 1/(Ẽstmax

2 ), i.e. e.g., (dE)2/Ẽs or Ṽ2/Ẽs , i.e., the op-

posite dependence onẼs . Alternatively, and again on dimen
sional grounds, one may argue that the sudden approx
tion becomes valid when the kinetic energy of the emit
electron is much larger than the energydE of the relevant
excitations of the system,7 in strong contrast to the two cri
teria above. This latter criterion is, however, not true
general.8

For many systems with strong correlations, the core le
spectrum can be understood in a charge transfer scena9

This is illustrated in Fig. 1 for a Cu compound, e.g., a C
halide. In the ground state, Cu has essentially the config
tion d9 and all the ligand orbitals are filled. In the presen
of a Cu core hole, it becomes energetically favorable
transfer an electron from a ligand to thed shell, obtaining a
d10 configuration on the Cu atom with the core hole. Due
the hybridization between thed9 andd10 configurations, the
states are actually mixtures of the two configurations, as
dicated in Fig. 1. In the photoemission process there
nonzero probability that the outer electron will not stay
the ligand, but is transferred to the lower energyd-like state.
This ‘‘shake-down’’ process corresponds to the leading p
in the spectrum, while the process where the outer elec
stays on the ligand corresponds to the satellite. This kind
model has been applied to rare earth compounds,9,10 chemi-
sorption systems,11,12 transition metal compounds,13–17 and
high-Tc compounds.18

Our simple model allows an accurate numerical calcu
tion of the photocurrent either by integrating the tim

FIG. 1. Schematic view of the Cu 3s charge transfer photoemis
sion. Herea is the Cu 3d level andb is a ligand~L! valence state for
the symmetric case.
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dependent Schro¨dinger equation or by directly inverting
resolvent operator~QM!. We also derive analytic results wit
a separable potential. These results are compared with
semiclassical~SC! theory, and with first order perturbatio
theory ~PT!. In both these cases we have analytic resu
which is very useful for understanding the physics of t
problem.

The impurity model discussed here differs in certain i
portant aspects from a real solid. To start with, for a solid
never reach the limit of a pure intrinsic spectrum. When
cross section for extrinsic scattering goes to zero, the ra
from which the photoelectrons come goes to infinity, due
the mean free path going to infinity. Therefore the extrin
processes do not become negligible in a real solid. In
impurity model, on the other hand, the extrinsic scatter
approaches zero at high kinetic energies. Secondly, fo
solid, we discuss excitations in the continuum and not
here discrete energy levels.

For the coupling to plasmons, the adiabatic-sudden tr
sition takes place at large kinetic energies where the SC
proximation is very accurate.4,5 The relevant length scale i
given by the plasmon wave lengthl52p/q and the relevant
time by the inverse plasmon frequencyvq . Large interfer-
ence effects are then connected with a large phase velo
vq /q, as discussed, e.g., by Inglesfield.19 Since long wave-
length plasmons play an important role, these large inter
ence effects for smallq delay the approach to the sudde
limit, which only is reached at very high kinetic energie
(;keV).

For the localized excitations studied here the relev
length scale is much shorter. The SC theory then pred
that the transition takes place at correspondingly smaller
netic energies. This is indeed what we find from the ex
solution of our model. This has two consequences. First,
SC treatment itself is not very accurate at such small en
gies, and we have to rely on QM treatments. Actually,
though the SC treatment correctly predicts a small transi
energy, we find it predicts qualitatively wrong dependenc
on the relevant parameters. Secondly, the smaller en
scale means that the energy variation of the dipole ma
elements becomes very important. The dipole matrix elem
grows rapidly on an energy scaleẼd , which can become
very important for the adiabatic-sudden transition.

We study the ratior (v) between the weights of the sa
ellite and the main peak as a function of the photon energv
for the emission from a 3s level. First we consider the cas
when the scattering potential between the electron and
target is neglected. We find that the corresponding ra
r 0(v) strongly depends on the ratio between the excitat
energy dE and Ẽd . If dE/Ẽd!1, r 0(v) essentially ap-
proaches its limiting value from below~with a slight over-
shoot!, while it has a large overshoot ifdE/Ẽd@1. In both
cases the limit value is reached for photoelectron energie
the order of a few timesdE.

We then study the effects of the scattering potential
focusing onr (v)/r 0(v). For small energies there is typicall
an overshoot due toconstructiveinterference in the shake
down case, contrary to the shake-up case where, as for
mons, r (v)/r 0(v) is reduced by interaction effects. Th
happens on the energy scaleẼs . If the scattering potential is
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8036 PRB 60J. D. LEE, O. GUNNARSSON, AND L. HEDIN
very strong, this overshoot may extend to several timesẼs .
Depending on the parameters there may be an undershoo
higher energies, which can extend up to quite high energ
The undershoot is, however, rather small for the parame
we consider here, and should therefore not be very impor
unless we want to calculate the spectrum with a high ac
racy. For Cu compounds and emission from the 3s core
level, we find thatẼd and Ẽs are comparable, and the re
evant energy forr (v)/r 0(v) is then given byẼ;Ẽs;Ẽd .

We present our model in Sec. II and calculate vario
matrix elements in Sec. III. The sudden approximation
described in Sec. IV and exact numerical methods are g
in Sec. V. The perturbational and semiclassical treatme
are presented in Sec. VI. In Sec. VII we study the condit
for the adiabatic-sudden transition qualitatively, using sim
analytic matrix elements. The results are discussed in
VIII.

II. MODEL

We consider a HamiltonianH0 describing a model with a
core levelc and two valence levelsa andb,

H05eana1ebnb1ecnc1Uancna1Ubncnb

1t~ca
†cb1cb

†ca!. ~1!

The first two terms give the bare energies of the levelsa and
b, and the last term the hybridization between them. T
remaining terms involve the occupation numbernc of the
core levelc. In photoemission the core level is filled in th
initial state, and empty in the final, andnc only enters as a
constant. It is trivial to diagonalizeH0, and one obtains two
dressed energiesEa(nc) andEb(nc) for the levelsa andb. In
a Cu compound, for instance,c may represent the Cu 3s core
level, a the Cu 3d valence level andb a ligand state. This is
schematically illustrated in Fig. 1. In our calculations w
almost always treat the case whenEa(1).Eb(1), and
Eb(0).Ea(0). Themeaning of the levelsa andb for differ-
ent types of systems with localized excitations is indicated
Table I. The full Hamiltonian also has a one-electron part
continuum states,

T5(
k

eknk , ~2!

with the energiesek5k2/2, and wave functionsck obtained
from a one-electron potential corresponding tonc51. Thenk
are occupation numbersnk5ck

†ck . We use atomic units with
e5m5\51, and thus, e.g., energies are in Hartr
(27.2 eV). The perturbation causing photoemission is

TABLE I. The model Hamiltonian Eq.~1! can describe various
charge transfer systems. The table indicates the meaning o
statesa andb for different cases.

a b

transition metal compounds 3d state ligand state
CO on surface 2p* state bulk~surface! state
Ce compounds 4f state 5d state
for
s.
rs
nt
u-

s
s
n
ts
n
e
c.

e

n
r

e

D5(
kc

~M kck
†cc1H.c.!, ~3!

whereM k is an optical transition matrix element. We tak
the photoelectron interaction as

V5(
kk8

@naVkk8
(a)

1nbVkk8
(b)

2Vkk8
(c)

#ck
†ck8 . ~4!

Here Vkk8
(n) is a matrix element of the Coulomb potenti

V(n)(r ) from the charge densityrn(r ) of the orbitaln,

Vkk8
(n)

5E ck* ~r !V(n)~r !ck8~r !dr , V(n)~r !5E rn~r 8!

ur2r 8u
dr 8.

The potentialV determines the transition from the adiaba
to the sudden limit, andV50 corresponds to the sudde
limit.

The total Hamiltonian is given by

H5H01T1V1D. ~5!

This Hamiltonian has two conserved quantities,

nc1(
k

nk51 and na1nb51. ~6!

For simplicity we take the core electron and thed electron
potentials as equal,Vc5Va, and use the relationna1nb51
to obtain,

V5nb(
kk8

Vkk8ck
†ck8 , ~7!

where

Vkk8[E ck* ~r !Vsc~r !ck8~r !dr ,

Vsc~r ![V(b)~r !2V(a)~r !5E dr 8
1

ur2r 8u
@rb~r 8!2ra~r 8!#.

The ~scattering! potentialVsc(r ) describes the change in th
potential acting on the emitted electron when the electron
the target hops from levela to b.

Dropping a constant we can writeH0 as

H05ecnc1~ea1Unc!na1ebnb1t~ca
†cb1cb

†ca!, ~8!

where the Coulomb integralU is given by

U[Ua2Ub5E drdr 8rc~r !
1

ur2r 8u
@ra~r 8!2rb~r 8!#.

~9!

Since the core level is very localized in space this leads

U52Vsc~0!. ~10!

For the different types of systems in Table I,a refers to a
localized level andb refers to a more extended level. Fo
instance, for a copper dihalide compound,a refers to a Cu
3d orbital andb to a combination of orbitals on the ligan
sites. For simplicity, we approximate the six ligand orbita

he
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by a spherical shell with the radiusR0,20 where R0 is the
average Cu-ligand separation. The potential from the Cud
orbital V3d(r ) can be considered as purely Coulomb
(521/r ) at r 5R0. The charge from the spherical shell giv
a constant potential inside the radiusR0, and we have

Vsc~r !5H F2V3d~r !1
1

R0
G /«, r ,R0 ,

0, r .R0 .

~11!

Here « is a constant chosen to makeU52Vsc(0), which
may be thought of as being due to screening by the surrou
ing. SinceV3d(0)@1/R0 , « varies only weakly withR0 and
is approximately given by«.V3d(0)/U.

III. MATRIX ELEMENTS

To estimate the matrix elementsM k and Vkk8 we must
approximate the photoelectron wave functionsck(r ). These
wave functions are calculated from the potential of a neu
atom, which further is shifted to make the potential ze
outside a muffin-tin radiusr Mt . The states are then describe
by spherical Bessel functions outsider Mt , which are
matched to a solution of the atomic potential insider Mt . For
the energyk2/2 we obtain the partial wave

Rlk~r !5H alkc lk~r !, r ,r Mt,

A2

R
k@cosh lk j l~kr !2 sinh lknl~kr !#, r .r Mt,

~12!

wherec lk(r ) is the solution of the radial Schro¨dinger equa-
tion for the atomic potential inside the muffin-tin radius,alk
is a matching coefficient, andh lk a phase shift. The normal
ization is given by

E
0

R

drr 2Rlk
2 ~r !51, ~13!

where R is the radius of a large sphere to which the co
tinuum states are normalized. The factor (2/R)1/2k is due to
the normalization and the asymptotic behavior ofj l(x) for
largex.

Slater’s rules21 are used to generate the orbitals a
charge densities, from which the potentialV3d(r ) is calcu-
lated. This gives the scattering potentialVsc(r ), which is
shown in Fig. 2~a!. We consider photoemission from a Cu 3s
hole. Due to the dipole selection rules, the core electro
then emitted into a continuum state ofp symmetry. The ma-
trix elementsVkk8 of the scattering potentialVsc(r ) are
shown in Fig. 2~b!,

Vkk85E drr 2Rk~r !Vsc~r !Rk8~r !, ~14!

where the muffin-tin radiusr Mt is taken as the ionic radius o
Cu, r Mt52.6 a.u., and we have dropped thel index, since
we always considerl 51. The dipole matrix elementMk is
given by

Mk;ak~ek2ec!E drr 2c3s~r !rck~r !. ~15!
d-

l

-

is

We assume that the core level is deep, anduecu much larger
than the energy difference between the ligand and cop
levels. We can then take the factorek2ec as a constant,
which drops out since we always consider relative inten
ties. The result forMk is shown as the solid line in Fig. 3~a!.
These dipole and scattering potential matrix elements
used in the following numerical calculations. Extensive c
culations of dipole matrix elements for many systems w
performed by Yeh and Lindau.22

To interpret the results, it is useful to also perform an
lytical calculations. For this purpose we need models of
matrix elements. Below we consider the limits of low an
high kinetic energies of the emitted electron. In the limit
low kinetic energies, we replace the spherical Bessel fu
tion by its expansion for small arguments

j l~x!5
1

~2l 11!!!
xl , nl~x!52~2l 21!!!

1

xl 11
~16!

and the solutionc lk(r ) by its zero energy limitc l0(r ). This
leads to

tanh lk5
l 2j

l 111j

~krMt!
2l 11

~2l 21!!! ~2l 11!!!
;h lk ,

alk5A2

R
kF 2l 11

l 111j

~krMt!
l

~2l 11!!! G 1

c l0~r Mt!
. ~17!

Due to the matching, the coefficientalk contains the ratio
j5r Mtc l08 (r Mt)/c l0(r Mt). The value of the coefficient there

FIG. 2. ~a! The photoelectron scattering potentialVsc(r ) given
by Eq. ~11! with respect tor for CuCl2 (R054.71 a.u. and«
51.96). In the inset, we give the atomic configuration of Cu-
octahedral~nearly octahedral! cluster in CuCl2. ~b! The diagonal
and off-diagonal matrix elements of the scattering potential mu
plied by R. In the figure,k151 a.u.,k255 a.u., andk3510 a.u.
are taken.
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fore depends in an interesting way on the wave functionc l0

and its derivative, and ifl 111j is close to zeroalk blows
up. Then the matrix elements of the scattering potential a
blow up and we may expect strong deviations from the s
den approximation. In such a case the dipole matrix elem
Mlk also becomes large, i.e., there is a resonanceh lk
5p/2) in the photoemission cross section.

From Eqs.~12! and ~15! it follows that in the limit of a
small k the dipole matrix element is proportional toak
;kl 11. The main peak and the satellites in the photoem
sion spectrum correspond to different kinetic energies
therefore have dipole matrix elements with differentk val-
ues. This is important at low energies. For large energies
variation inMlk is generally small over a range correspon
ing to the energy difference between the main peak and
satellite. For the relative weights of the peaks, the dip
matrix elements should then not play a role. For simplic
we assume that the dipole matrix elements become inde
dent ofk for R̃dk@1, whereR̃d is some typical length scal
of the system. For our case (l 51) we use the model~note
that any constant factor inMk drops out in our final expres
sions!

Mk5
~R̃dk!2

11~R̃dk!2
[

ek /Ẽd

11ek /Ẽd

, ~18!

FIG. 3. ~a! The dipole matrix elementMk as a function ofk. The
exact result~solid line! is obtained from Eq.~15! and the simplified
model by Eq.~18! is also shown~dashed line!. The appropriate

parameter isR̃d51.30 a.u.~b! The matrix elementsVkk8 of the
scattering potential are given fork5k8, k851 a.u., and k8
55 a.u. The solid line is from the exact calculation for the mo
of CuCl2 and the dashed line is based on the simplified model@Eq.

~20!#. The parameters areṼ520.36 a.u.,R̃s51.77 a.u., andR̃sd

51.31 a.u.
o
-

nt

-
d

e
-
he
e
,
n-

where Ẽd51/(2R̃d
2). Figure 3~a! compares this model with

the full calculation for a 3s orbital. We obtain R̃d
51.3 a.u. For a 1s or 2s orbital the length scale is smalle
andR̃d;1/2 a.u. For other values ofl than l 51 considered
here, the behavior is primarily modified for small energie

We next consider the matrix elementsVkk8 . For small
values ofk andk8 and for l 51

Vkk85
2

R F r Mt

c l0~r Mt!
G2 ~kk8!2

~j12!2E0

r Mt
c l0

2 ~r !Vsc~r !r 2dr

1
2

9R
~kk8!2E

r Mt

R0F r 1S 12j

21j D r Mt
3

r 2 G 2

Vsc~r !r 2dr.

~19!

For small values ofk and k8 it then follows that Vkk8
;(kk8)2. For large values ofk and k8 the matrix elements
become very small due to destructive interference betw
the two wave functions unlessk'k8. If k5k8 the matrix
elementsVkk approach a constant. These features are c
tained in the model

Vkk85
ṼR̃s

R

~R̃s
2kk8!2

@11~R̃sk!2#@11~R̃sk8!2#@11R̃sd
2 ~k2k8!2#

,

~20!

whereR̃s andR̃sd are appropriate length scales andṼ has the
energy dimension. We recall thatṼ contains information
about the coefficientalk defined in Eq.~17! and therefore
about the atomic potential and thatṼ may become particu-
larly large close to a resonance. The potential matrixVkk8 in
our simplified model~20! is compared with the exact resu
~19! in Fig. 3

For large values ofk andk8, the expression Eq.~20! sim-
plifies to

Vkk85
ṼR̃s

R

1

11R̃sd
2 ~k2k8!2

. ~21!

An expression of this type can also be derived by assum
that the wave functionsRlk(r ) can be approximated by
spherical Bessel functions in all of space, and by assum
some shape ofVsc(r ), e.g., a linear dependence onr

Vsc~r !5Vsc~0!S 12
r

R0
D . ~22!

For large values ofk andk8 we then obtain

Vkk85
Vsc~0!R0

R

12cos@~k2k8!R0#

@~k2k8!R0#2
. ~23!

For this model we relateR̃s5R̃sd5R0/3 to the rangeR0 of
the potential andṼ53Vsc(0)/2. Using this identification in
Eq. ~21!, leads to the correct average value ofVkk and to the
correct width ink2k8 of Vkk8 . The simple form~21!, how-
ever, neglects the effects of the oscillations of the c
function in Eq. ~23! for large values of (k2k8)R0, and it
therefore gives a worse representation of the linear poten

l
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~22! than the form~20! gives for the more realistic scatterin
potential~11!. Later we will find that it is a reasonable ap
proximation to putR̃d , R̃sd , andR̃s equal to the same valu
R̃, and introduce the corresponding energyẼ51/(2R̃2).

IV. SUDDEN APPROXIMATION

We first discuss the photoemission in the sudden lim
i.e., we neglect the scattering potential between the emi
electron and the target (V[0). The initial stateuC0& is the
ground state ofH0 with nc51 and given by

uC0&52 sinuucc&uca&1 cosuucc&ucb&, ~24!

where

tan 2u52t/~ea1U2eb! ~25!

and the corresponding ground state energy is

E05ec1
1

2
~ea1U1eb!2

1

2
A~ea1U2eb!214t2.

~26!

The final states of the target are given by the two eigenst
of H0 with nc50

uc1&5 coswuca&2 sinwucb&,

uc2&5 sinwuca&1 coswucb&, ~27!

with

tan 2w52t/~eb2ea! ~28!

and the corresponding energy eigenvaluesE1 andE2 are

E1
2
5

1

2
~ea1eb!7dE/2, ~29!

with

dE5A~ea2eb!214t2 ~30!

being the optical excitation energy of the system.
The photocurrentJk

s(v) ~s51,2! is given by1

Jk
s~v!5u^C f

skuDuC0&u2d~v2ek1E02Es!, ~31!

where uC f
sk& is a final state. According to the sudden a

proximation, it can be written as the final target state mu
plied by the photoelectron state,uC f

sk&5ucs&uck&. This gives

^C f
skuDuC0&5Mkws[msk , ws5H 2sin~w1u!, s51,

cos~w1u!, s52.
~32!

Jk
1(v) gives the main line~corresponding to the quasi pa

ticle line in metal! and Jk
2(v) the satellite line. The sche

matic picture of the initial and final state for this system
given in Fig. 1. Summing the kinetic energy distribution
the photoelectron, we obtain the absorption spectraJs(v),

Js~v!5(
k

Jk
s~v!}

1

ks
uMks

wsu2, ks5A2~v1E02Es!,

~33!
t,
d

es

-
-

where the threshold energies forJ1(v) andJ2(v) are given
by E12E0 and E22E0([v th), respectively. We can thu
also writek15A2(v1dE2v th) andk25A2(v2v th). The
factor 1/k comes from thek summation over ad function in
energy. For convenience we introduce the quantityṽ5v

2v th , and thusek2
5ṽ.

In the sudden approximation the kinetic energy of t
emitted electron is large, and we can takek15k2. The ratio
r 00 of the satellite to the main peak intensity then is

r 005 lim
v→`

J2~v!

J1~v!
5cot2~w1u!. ~34!

Taking into account the energy dependence of the dip
matrix element according to model Eq.~18! as well as the
factor 1/k, we obtain

r 0~v!5r 00F ṽ

ṽ1dE
G 3/2F11~ṽ1dE!/Ẽd

11ṽ/Ẽd
G 2

Q~ṽ!. ~35!

We now require that the ratior 0(v) should reach a fraction
g(g'1) of its limiting valuer 0(`) for v5vg . This gives

vg2v th

dE
'H 3

2

1

12g
if dE!Ẽd,

g2/3~Ẽd /dE!4/3 if dE@Ẽd.

~36!

This criterion refers to the energy wherer 0(v) reaches a
fractiong in its rising part, and it does not consider that the
is a large overshoot fordE/Ẽd@1. In this case we can in
stead require thatr 0(v) is smaller thang'1 in its descend-
ing part. This gives the condition

vg2v th

dE
'

1

g221
dE/Ẽd@1, g.1. ~37!

In Fig. 4 we show results forr 0(v) over a large range o
values fordE/Ẽ. The figure illustrates that the dipole matr
element effect alone makes the sudden approximation inv
for small kinetic energies. It is interesting that for somewh
larger photon energiesr 0 overshoots. The reason is that

FIG. 4. The ratior 0(v) of the satellite to the main peak in Eq
~35! divided by the result for an infinite photon energy@r 0(`)

5r 00#. Three values of the excitation energydE are considered.ṽ
measures the photon energy relative to the threshold energy fo
satellite.



o
r-

dy
ta
y
e

f

,

e

o
t

g

a
p

lite
th
s

ti

e

-
wh

te

-

d

fi-

h
it

ich

.

8040 PRB 60J. D. LEE, O. GUNNARSSON, AND L. HEDIN
our model ~18! the matrix elementsMk saturate forek

@Ẽd , while the factor 1/k in Eq. ~33! favors the satellite. For
dE/Ẽd51, the result is rather close to the sudden limit f
ṽ/dE;1. Finally, fordE/Ẽd@1, there is a substantial ove
shoot.

As discussed in the introduction, we would like to stu
how the adiabatic to sudden transition depends on cer
factors, such as the rangeR0 of the potential and the energ
dE of the excitation causing the satellite. We therefore ke
ratio of t, U, andea2eb fixed, but vary their magnitude. In
this way we can varydE without varying the magnitude o
the satellite in the sudden limit. Equation~10! requires that
we varyVsc(0) as we varydE ~via U), e.g., by varying the
dielectric constant«. In some of the calculations below
however, we do not impose Eq.~10!, to be able to see the
effect of varyingdE alone. We furthermore vary the rang
R0 of the potential. From the definition Eq.~11! it follows
that this would also vary the strength of the potential. F
this reason we simultaneously vary the dielectric constan«
so thatVsc(0) stays unchanged whenR0 is changed. Alter-
natively, we can use the analytical matrix elements~18!,
~20!. We can then easily vary the length scale by changinR̃
or the strength by changingṼ.

To know roughly what are interesting values for our p
rameters we use experimental results for some cop
dihalides.15 We estimate the relative strength of the satel
to the main peak, and the energy difference between
peaks. This gives two equations while in our model the
quantities,r 00 anddE, depend on three parameters,t,U, and
ea2eb . To only have two parameters we considerthe sym-
metric caseea5e2U/2 andeb5e as shown in Fig. 1. In the
symmetric case we are restricted to the shake-down situa
since before the transition thea level is above theb level,
ea1U2eb5U/2, while after the transition thea level is
below theb level, eb2ea5U/2. In the symmetric case w
have 0,u5w,p/4, andr 005cot2 2w5U2/(16t2). Once we
know around where we havet andU, we can leave the sym
metric case, and also consider, e.g., shake-up cases
there is no level crossing,ea.eb . In the lowest final state
the electron essentially stays on levelb, while the transfer of
the electron to the levela corresponds to a shake up satelli
In this case we have2p/4,w,0,u,p/4 andw1u,0.

Our calculations usually take the CuCl2 parameters as ref
erence values. For CuCl2 we haveu5w50.3, which gives
r 0052.1. Further Ṽ520.36 a.u., Ẽ50.195 a.u.~with R̃
51.6 a.u.), anddE50.237 a.u., i.e.,Ṽ/Ẽ521.85 and
dE/Ṽ520.66 ~see also Table II!.

V. EXACT TREATMENT

A. Time-dependent formulation

To obtain exact results for model Eq.~5!, we use a time-
dependent formulation23 and solve the Schro¨dinger equation
for the Hamiltonian

TABLE II. Parameters used for copper-dihalide compounds

U(eV) t(eV) dE(eV) R0(a.u.) « r (v→`)

CuBr2 12.33 2.02 7.37 5.01 1.71 2.33
CuCl2 10.58 1.84 6.45 4.71 1.96 2.07
CuF2 8.62 1.63 5.41 3.86 2.26 1.75
r
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p

r

-
er

e
e
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en

.

H~t!5H01T1V1D f ~t!. ~38!

The interaction is switched on att50, using

f ~t!5cosvt~e2ht21! h.0. ~39!

Hereh is a small quantity to a,ssure that the external fiel
is switched on smoothly. The initial (t50) stateuC0& is
given by the ground state ofH0 with nc51 in Eq.~1!. After
a timet, the stateuC(t)& of the system is

uC~t!&5a~t!uca&ucc&1b~t!ucb&ucc&1(
k

cak~t!uca&uck&

1(
k

cbk~t!ucb&uck&. ~40!

The coefficients ofuC(t)& can be determined by

i
]

]t
uC~t!&5H~t!uC~t!&, ~41!

which gives four differential equations for the four coef
cientsa(t), b(t), cak(t), andcbk(t),

i
]

]t
a~t!5~ea1U1ec!a~t!1tb~t!1(

k
Vk

d* ~t!cak~t!,

~42!

i
]

]t
b~t!5~eb1ec!b~t!1ta~t!1(

k
Vk

d* ~t!cbk~t!,

~43!

i
]

]t
cak~t!5~ea1ek!cak~t!1tcbk~t!1Vk

d~t!a~t!,

~44!

i
]

]t
cbk~t!5~eb1ek!cbk~t!1tcak~t!1Vk

d~t!b~t!

1(
k8

Vkk8cbk8~t!, ~45!

whereVk
d(t)5V0Mkf (t) with V0 representing the strengt

of the external field. We solve the equations in the lim
when V0→0, and thus the ratio betweencak and cbk is in-
dependent ofV0. The initial conditions area(0)52 sinu,
b(0)5 cosu, and cak(0)5cbk(0)50. Thus the problem is
reduced to solving the coupled differential equations, wh
is done using the Runge-Kutta fourth-order method.

The photoelectron currentsJ1(v) andJ2(v) correspond-
ing to main and satellite lines, respectively, are given by

J1~v!5(
k

u^C f
1kuC~t!&u25(

k
ucoswcak~t!

2 sinwcbk~t!u2, ~46!

J2~v!5(
k

u^C f
2kuC~t!&u25(

k
usinwcak~t!

1 coswcbk~t!u2, ~47!
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wheret is a sufficiently large time. We let the system evol
for a time of the order 1/h to obtain converged results for
given finiteV0. In principle, we should perform the calcula
tion for a few small values ofh and then extrapolate toh
50 followed by an extrapolationV0→0. Here, for simplic-
ity we have performed the calculation for one single sm
value ofV0. The calculation was performed forh50.1, 0.08,
0.02 eV, and the results were extrapolated toh50 assuming
theh dependencea(v)h1b(v)h21c(v). The error in this
approach occurs primarily for smallṽ(&5 eV), and it is
then less than 5% inr (v)/r 0(v).

The approach above gives the relative intensity of
main and satellite peaks

r ~v!5
J2~v!

J1~v!
. ~48!

It can be shown that the formulas~46!,~47! above give iden-
tical results to the more conventional formulation~51! be-
low, by performing derivations of the type made in, e.g., R
24.

As an example of the results obtained in this formalis
we show in Fig. 5 results for the copper dihalides CuB2,
CuCl2, and CuF2. The corresponding parameters are sho
in Table II and were estimated from experiment.15 The figure
illustrates that there is a small ‘‘overshoot’’ for smallṽ but
that the sudden limit is reached fairly quickly asṽ is further
increased. We remind that in our CuCl2 reference caseẼ
50.195 a.u.55.3 eV.

B. Resolvent formulation

Alternatively, we can work in the energy space, and o
tain the spectrum by direct inversion of a resolvent opera
We consider the HamiltonianH,

H5H01T1V, ~49!

where byH0 we understandH0(nc50). The exact final pho-
toemission stateuC f

sk& is1

uC f
sk&5F11

1

E2H02T2V2 ih
VG ucs&uck&, ~50!

FIG. 5. The ratior (v) between the satellite and the main pe
for the divalent copper compounds CuBr2 , CuCl2, and CuF2. The
parameters are given in Table II. The dotted lines are the l
values@r (`)# for the respective cases.
ll

e

.

,

n

-
r.

where ucs&(s51,2) @Eq. ~27!# are the exact~target! eigen-
states ofH0(nc50) andE5ek1Es is the energy of the fina
state. Using Eq.~50! we calculate the matrix elemen
M (s,k)[^C f

skuDuC0&

M ~s,k!5^cku^csuF11V
1

E2H02T2V1 ihGDuC0&.

~51!

Introducing a basis set

u i &5ucs&uck&, ~52!

the matrix elements ofV can then be written as

Vi j [Vks,k8s85Vkk8vsvs8 . ~53!

Here

vs5H 2 sinw, if s51,

cosw if s52,
~54!

where we have used Eqs.~7!,~27!. The Hamiltonian matrix
in this basis set is diagonalized, which gives the eigenval
en and the eigenvectors

un&5(
i

ci
nu i &. ~55!

Using the completeness relation(u i &^ i u51, we obtain

M ~s,k![M ~ i !5^ i uDuC0&1(
n

(
j ,l

Vi , j cj
ncl

n^ l uDuC0&
ek1Es2en1 ih

.

~56!

The quantitieŝ i uDuC0& were given in Eq.~32!, ^ i uDuC0&
5mi5msk5Mkws . By organizing the sums in Eq.~56! ap-
propriately, the calculation of this expression is very fast a
the main time is spent in diagonalizing the Hamiltonian m
trix. We have found this method to be more efficient than
time-dependent method above.

In the expression~56!, we can identify the first term as th
intrinsic contribution, since this is the amplitude which
obtained if there is no interaction between the photoelect
and the target. The extrinsic effects are then determined
the square of the absolute value of the second term.
interference between the intrinsic and extrinsic contributio
is given by the cross product of these terms.

C. Separable potential

It is interesting to consider a separable potential

Vkk85Ṽbkbk8 , ~57!

since it is then possible to obtain an analytical expression
r (v). The operator in the denominator of Eq.~51! is written
as

~E1 ih2H02T2V! i j 5~E1 ih2e i !d i j 2Ṽcicj , ~58!

where againu i &5us&uk& is a combined index for the targe
states and the continuum statek,

e i[esk5ek1Es ~59!

it
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and

ci[csk5bkvs . ~60!

Using the fact thatV is separable, it is then straightforward
invert the expression in Eq.~58! and obtain

@~E1 ih2H02T2V!21# i j

5
d i j

E1 ih2e i

1Ṽ
cicj

~E1 ih2e i !~E1 ih2e j !@11~Ṽ/Ẽs!C~E!#
,

~61!

whereẼs51/(2R̃s
2) and

C~E!52Ẽs(
l

cl
2

E1 ih2e l
. ~62!

This leads to

r ~v!

r 0~v!
5U11 coswDk2

~E01v!/cos~w1u!

11 sinwDk1
~E01v!/sin~w1u! U

2

, ~63!

whereks is defined in Eq.~33!, and

Dk~e!52
Ṽ

Ẽs

bkE~e!

Mk@11~Ṽ/Ẽs!C~e!#
, ~64!

where

E~e!52Ẽs(
l

clml

e1 ih2e l
. ~65!

To obtain a model forVkk8 we can, for instance, put

bk5AR̃s

R

~R̃sk!2

11~R̃sk!3
. ~66!

Compared with the expression in Eq.~20!, there is no term
k2k8 in the corresponding expression forVkk8 . The neglect
of this term means thatVkk8 goes to zero more slowly as on
of the argumentsk or k8 goes to infinity. To compensate fo
this we use the power three forR̃sk in the denominator of
Eq. ~66!, while in Eq. ~20! the corresponding power is two
This is a reasonable approximation for smallk, but it breaks
down for largek.

D. On the variables in the intensity ratio

For the satellite to main line intensity ratio we have

r ~v!5
k1

k2
UM ~2,k2!

M ~1,k1!
U2

.

This ratio does not depend on any constant factor inMk ,
sinceM (s,k) is proportional toMk . If we take the param-
etersR̃d , R̃s , and R̃sd equal to a common typical radiusR̃
~as will be motivated later!, and use the analytic expressio
in Eqs.~18! and~20! thenr (v) or r (v)/r 0(v), apart fromw
and u, becomes a function ofdE/Ẽ, Ṽ/Ẽ, and ṽ/Ẽ, with
Ẽ5(2R̃2)21. We can see this sinceMk is a function ofkR̃,
andVkk8 a function ofkR̃ andk8R̃ apart from their prefac-
tors. The prefactor ofVkk8 is ṼR̃/R, while that forMk has no
influence. For eachV in a perturbation expansion of Eq.~51!
we have an energy denominator and ak summation. Thek
summation gives an integral and a factorRdk. Using vari-
ablesR̃k, theR̃/R in the prefactor vanishes. Factoring outẼ
in the energy denominator, we have a factorṼ/Ẽ for each
Vkk8 , and instead ofdE and ṽ we havedE/Ẽ and ṽ/Ẽ.

With u andw given,dE is proportional toU. U in turn is
equal to2Vsc(0), andthus somehow related to the streng
of the scattering potentialṼ. If we fix the value of the sud-
den limit r 005cot2(w1u) by choosing one of the angles, w
still have an independent parameter left. This parameter
be used to decouple the relation betweendE and Ṽ ~what-
ever it is!. Summarizing, we have found that the paramet
of our model system appear as the anglesu andw, and the
excitation energydE ~or U), while the coupling between the
photoelectron and the model system only appears in one
rameter,Ṽ/Ẽ52ṼR̃2, provided we useṽ/Ẽ as variable. We
have further motivated that we can vary the parametersdE
and Ṽ independently.

VI. APPROXIMATE TREATMENTS

A. Perturbation approach to lowest order in Vkk8

The same problem can be also studied using the stan
perturbation approach. We consider the expression for
matrix elementsM (s,k) in Eq. ~51!. To lowest order inV,
we can neglectV in the denominator of Eq.~51!. Inserting
the completeness relation( i u i &^ i u51 in terms of eigenstate
u i &[uk&us& we obtain

M ~s,k!5^su^kuDuC0&1 (
k8s8

Vks,k8s8

3@~E2H02T1 ih!21#k8s8,k8s8^s8u^k8uDuC0&.

~67!

Using Eqs.~53!,~54! we obtain

M ~1,k!52sin~w1u!Mk2 sin2 w sin~w1u!

3(
k8

F Vkk8Mk8

E2E12ek81 ih
G

2
sin 2w cos~w1u!

2 (
k8

F Vkk8Mk8

E2E22ek81 ih
G ,

~68!

M ~2,k!5cos~w1u!Mk1 cos2 w cos~w1u!

3(
k8

F Vkk8Mk8

E2E22ek81 ih
G

1
sin 2w sin~w1u!

2 (
k8

F Vkk8Mk8

E2E12ek81 ih
G ,

~69!
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where Vkk85^kuVscuk8& and Mk5^kuDucc&. We can then
immediately calculate the photoemission spectra using
~31!.

In Figs. 6 and 7 we compare the perturbation expans
with the exact time dependent calculation for a realistic sc
tering potential in the symmetric case. In the symmetric c
we have dE52tA11r 005(U/2)A111/r 00, and U5
2Vsc(0). Since the ratior 0(v) was discussed extensively i
Sec. IV, we here focus onr (v)/r 0(v), which describes the
effect of the scattering potential. We vary the excitation e
ergy dE by varying t, while keepingr 00 constant. We also
vary the potential range by replacingR0 in Eq. ~11! by DR0
and then varyingD. With r 00 fixed, dE is proportional to

FIG. 6. r (v)/r 0(v) from the semiclassical~SC! approximation,
the first order perturbation expansion~PT! as well as the exact time
evolution calculations for different values of the excitation ene
dE and for U/t55.76. The remaining parameters are taken fr
CuCl2 (R0

Cl54.71 a.u.)

FIG. 7. The same as in Fig. 6 but varying the rangeDR0 instead
of dE, whereD is a scale factor. The parameters of CuCl2 are used.
q.

n
t-
e

-

Vsc(0). Thus a smalldE and a smallD make the perturba-
tion weak. The calculations are made for a range of para
eter values around those given for CuCl2 in Table II.

B. Semiclassical approach

We can also perform the photoemission calculation
assuming a classical trajectory of the emitt
photoelectron,25 producing a time-dependent potential whic
drives the dynamics of the the model. It has been repo
that the semiclassical approach can give the unexpect
good results for the systems with coupling to plasmons.4,19,26

The essence of the semi-classical approach is to replace
scattering potentialVsc(r ) by a time-dependent potential us
ing the charge densityr(r ,t) of the emitted electron, i.e.,

Vsc~r !→E drVsc~r !r~r ,t!5Vsc~vt!, ~70!

where we have usedr(r ,t)5d(r2vt). We can then write
the Hamiltonian as

H~t!5H0~nc50!1V~t!, ~71!

where H0(nc50) can be expressed in terms of the exa
final states (c1 andc2) in the presence of a core hole

H0~nc50!5E1c1
†c11E2c2

†c2 . ~72!

The time-dependent potential takes the form

V~t!5nbVsc~vt!5V11~t!c1
†c11V22~t!c2

†c21V12~t!

3~c1
†c21c2

†c1!, ~73!

where@cf. Eq. ~54!#

V11~t!5 sin2 wVsc~vt!,

V22~t!5 cos2 wVsc~vt!,

V12~t!5V21~t!52
1

2
sin 2wVsc~vt!. ~74!

The remaining system~target! is still purely quantum me-
chanical, and we write its time-dependent wave funct
uC(t)& as

uC~t!&5a1v~t!uc1&e
2 iE1t1a2v~t!uc2&e

2 iE2t. ~75!

The classical electron velocityv is determined by energy
conservation, that is,12 v25ṽ. We have here chosen the ve
locity corresponding to the satellite. We could also have p
formed two calculations, with the velocities corresponding
the leading peak and to the satellite, respectively. In cont
to the approach used here, this would, however, lead to
problem that the spectral weight would not be normaliz
Applying the time-dependent Schro¨dinger equation to
uC(t)&, we obtaina1v(t) anda2v(t),

i
]

]t
a1v~t!5V11~t!a1v~t!1V12~t!a2v~t!e2 idEt, ~76!

i
]

]t
a2v~t!5V22~t!a2v~t!1V21~t!a1v~t!eidEt, ~77!

y
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wheredE @Eq. ~30!# is the optical excitation energy. Equa
tions ~76! and ~77! are subject to the initial conditions@cf.
Eq. ~32!#

asv~0!5ws . ~78!

The final photoemission currentsJi(v) is

Ji~v!}uaiv~t0!u2, i 51,2. ~79!

It is sufficient to perform the calculation up tot5t0
[R0 /v, since the potential vanishes for larger values oft.
The relative intensity between main and satellite contri
tions is given byr (v)5J2(v)/J1(v) as before.

In Figs. 6 and 7 we compare the semiclassical and e
results for a realistic potential in the symmetric case. T
semiclassical theory is inaccurate over most of the ene
range considered here. For large energies however, the s
classical theory comes much closer to the exact result
does the PT. It is also clear that an increasingdE
@.Vsc(0)# does not noticeably affect the energy for t
adiabatic-sudden transition, where it strongly effects
maximum deviation. An increasingD on the other hand no
only strongly increases the maximum deviation, but a
makes the adiabatic-sudden transition energy smaller.
dependence on the parameters will be investigated more
tensively in the next section.

VII. ADIABATIC-SUDDEN TRANSITION

We are now in a position to address the adiabatic-sud
transition and its dependence on the parameters. The c
lations are performed with the analytical matrix elements
Eqs. ~18!,~20!. First we study the different characterist
lengths,R̃d for the dipole matrix elements, andR̃s and R̃sd
for the scattering potential matrix elements. We find tha
makes sense to use only one effective lengthR̃, and the
corresponding energyẼ51/(2R̃2). As we discussed in Sec
V D, r /r 0 as a function ofṽ/Ẽ depends on the paramete
dE/Ẽ andṼ/Ẽ, and also on the ‘‘system’’ parametersu and
w. We vary dE independently ofṼ, although for a given
model there is a direct relation between these two quanti
Part of this relation can be offset by using differentu andw
~with r 00 constant! but we do not explore this possibility. Th
exact solution with a separable potential is used to disc
the validity and breakdown of perturbation theory. We fi
that Ṽ/Ẽ has a large effect on the deviation from the sudd
limit, but little effect on the value ofṽ/Ẽ where the devia-
tion becomes small, whiledE/Ẽ has a comparatively sma
effect on both magnitude and range of the deviation.
simplicity we use the CuCl2 parametersu5w50.3, which
gives r 0052.1. For CuCl2 we further haveṼ520.36 a.u.,
Ẽ50.195 a.u. (R̃51.6 a.u.), and dE50.237 a.u., i.e.,
Ṽ/Ẽ521.85 anddE/Ṽ520.66. In our calculations, we
vary Ṽ/Ẽ anddE/Ṽ by typically a factor of 2 around thes
reference values.
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A. Exact numerical treatment with analytic matrix elements

We first illustrate the dependence on the ratio between
length scalesR̃d , R̃s , andR̃sd . In Fig. 8 we show the results
for different ratiosR̃d /R̃s keepingR̃sd /R̃s51. These results
are obtained forṼ/Ẽs522.0 anddE/Ṽ520.5, whereẼs

51/(2R̃s
2) is the energy scale set by the scattering poten

length scale. Fig. 8 shows that asR̃d /R̃s is reduced the mag
nitude of the ‘‘overshoot’’ is increased. There are, howev
no qualitative changes.

Figure 9 shows results for different values ofR̃sd /R̃s for a
fixed R̃d /R̃s51. From Eq.~20! it can been seen that thi
corresponds to varying the range of valuesk2k8 whereVkk8
is large, without changing the range over whichVkk varies.
The figure illustrates that the overshoot becomes large
R̃sd /R̃s is reduced. This is natural, since decreasingR̃sd ef-
fectively makes the scattering potential stronger by expa
ing the range of valuesk2k8 with large scattering matrix
elements. The qualitative behavior, however, is not chang
In view of Figs. 8 and 9, we study below the case wh
R̃sd5R̃s5R̃d , as mentioned in Sec. V D.

Figure 10 shows such results for different values of
strength of the scattering potentialṼ/Ẽ and for different val-
ues of the excitation energydE/Ṽ. In each paneldE/Ṽ is
kept fixed, but the ratio is varied by a factor of four fro
Figs. 10~a!–10~c!. Typically r (v)/r 0(v) has an overshoo
for small values ofṽ. For somewhat largerv the ratio ap-
proaches unity and possibly becomes smaller than unity.
overshoot can be fairly large and happens on a small en
scale (;Ẽ). In a few cases of a large overshoot,r (v)/r 0(v)
does not become approximately unity untilṽ is several times

FIG. 8. The ratior (v)/r 0(v) as a function ofR̃d /R̃s for a fixed

R̃sd /R̃s51 and forw5u50.3. The figure illustrates that there a
no qualitative changes as the length scales for the dipole and
tering matrix elements become different.

FIG. 9. The ratior (v)/r 0(v) as a function ofR̃sd /R̃s for a fixed

R̃d /R̃s51 and forw5u50.3. The figure illustrates that there is n
qualitative changes as the ratio of the two length scales in the s
tering matrix elements is varied.
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Ẽ, although the relevant energy scale is stillẼ. In the case of
an undershoot,r (v)/r 0(v) approaches unity from below
very slowly ~energy scale much larger thanẼ). The under-
shoot is, however, relatively small, and if we do not requ
a high accuracy, we consider the sudden approximation v
when the overshoot becomes small. This means that as
range of the scattering potential is made larger, the sud
limit is reached at a smaller energy. This is the opposite
what one would expect from the semiclassical theory. T
figure illustrates thatdE is not the relevant energy scal
Since in each panel we keepdE/Ṽ fixed, there is a variation
of dE/Ẽ by a factor of 4. Furthermore there is a variation
dE/Ṽ by a factor of 4 in going from the top to the botto
panel in Fig. 10. There is no corresponding change in
energy for the adiabatic to sudden transition.

B. Separable potential

It is interesting to study a separable potential, since i
then possible to obtain an analytical solution. This make
easier to interpret the results. It also allows the study of
effects of multiple scattering, i.e., the deviations from fi
order perturbation theory. Figure 11 shows results of the
act and first order theory using the same values ofdE/Ṽ and
Ṽ/Ẽ as in Fig. 10~b!. The separable potential overestimat
the magnitude of the overshoot inr (v)/r 0(v) quite substan-
tially. Otherwise the results are rather similar. For a qual
tive discussion, we can therefore use the separable pote

For simplicity, we considerdE50. We further putMk

5(R̃k)2/@11(R̃k)3#5bk . This is a poor approximation fo
largek, but then anyhow alsoVkk8 is poorly represented by
the separable potential. Our approximations lead to sim
results for the functionsC, D, andE entering in Eqs.~62!–
~65!.

C~e!52Ẽ(
k8

bk8
2

e2ek81 ih
~80!

FIG. 10. The ratior (v)/r 0(v) as a function ofṽ/Ẽ for differ-

ent values ofṼ/Ẽ and dE/Ṽ and for w5u50.3. The figure illus-

trates thatẼ is an appropriate energy scale for the adiabatic
sudden transition.
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andE(e)5 cosuM̃C(e). Then

D~e!52 cosu
Ṽ

Ẽ

C~e!

11~Ṽ/Ẽ!C~e!
. ~81!

SinceDk is independent ofk in this approximation, we have
dropped the indexk. The functionC(e) is shown in Fig. 12.
For w5u we can then write

r ~v!

r 0~v!

5U12~cos2 w/cos 2w!~Ṽ/Ẽ!C~ṽ !/@11~Ṽ/Ẽ!C~ṽ !#

12~1/2!~Ṽ/Ẽ!C~ṽ !/@11~Ṽ/Ẽ!C~ṽ !#
U2

.

~82!

For a level ordering as indicated in Fig. 1, 0,w,p/4 and
cos2 w/cos(2w)>1. In our standard case withw50.3,
cos2 w/cos(2w)51.11. Thus the term in the numerator of E
~82! dominates. The factor 11(Ṽ/Ẽ)C(ṽ) gives the mul-
tiple scattering, which is not included in the first order pe
turbation theory, i.e., the first order result is

F r ~v!

r 0~v!G
PT

5U12~cos2 w/cos 2w!~Ṽ/Ẽ!C~ṽ !

12~1/2!~Ṽ/Ẽ!C~ṽ !
U2

. ~83!

We now compare the behaviors of Eqs.~82! and~83!, to see
the effects of using perturbation theory. For small values

o

FIG. 11. The ratior (v)/r 0(v) for a separable scattering poten
tial ~57!. According to the exact result in upper panel, the oversh
is substantially overestimated by the separable potential comp
to Fig. 10~b!, but there is still a qualitative agreement with the mo
realistic model ~20!. The lower panel shows how perturbatio
theory works and it illustrates the effects of multiple scattering.
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8046 PRB 60J. D. LEE, O. GUNNARSSON, AND L. HEDIN
ṽ, ReC(ṽ) is positive and then changes sign at abo

ṽ/Ẽ;2. Im C(ṽ) is always positive. Due to our crude ap
proximations forbk andMk , C(ṽ) rapidly becomes unreli-
able beyondṽ/Ẽ52. Comparingr (v)/r 0(v) for the exact
@Eq. ~82!# and the first order result@Eq. ~83!#, we find that
the exact solution is larger when ReC(ṽ)*Im C(ṽ), cf.
Fig. 11. This is consistent with second order perturbat
theory, which is found to enhancer (v)/r 0(v) for small ṽ

and reduce it for largeṽ. For ṽ50, C(ṽ) is purely real and
slightly larger than 0.1, thus multiple scattering gives a
vergence in bothJ1(ṽ) andJ2(ṽ) whenṼ/Ẽ;210. This is
due to the attractive potentialV forming a bound state from
the continuum states.

The important conclusion from analysing the separa
potential is that ifṼ is not too large, first order perturbatio
theory gives roughly the correct range over which there
essential deviations from the sudden limit, while multip
scattering increases the magnitude of these deviations
small ṽ and slightly decreases them for largerṽ.

We next discuss the physical interpretation of the expr
sion ~82! @or the perturbational expressions in Eqs.~67!–
~69!#. Here unity @the first term in Eqs.~67!–~69!# corre-
sponds to a direct transition into the final continuum st

FIG. 12. The functionC(e) relevant for a separable potential
given in the upper panel. The low panel gives the behaviors ofF(e)
defined in Eq.~84!. The dotted lines give the asymptotic behavio
of F(e) in Eq. ~88!.
t
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corresponding to energy conservation. The second term@the
last two terms in Eqs.~67!–~69!# corresponds to a virtua
transition into some other continuum state followed by o
or several scattering events with the electron ending up in
continuum state corresponding to energy conservation.
us consider the virtual emission into a continuum state wit
larger energy than the final state and let this be followed
one scattering event into the final state. For a negativeṼ the
interference with the direct event is then constructive. F
small photon energies such events dominate for two reas
First, there are many more states available above the en
corresponding to energy conservation than below, and
ondly the dipole matrix elements suppress the transition
the energies below. As a result, both the main peak and
satellite are enhanced by the scattering effects. For the va
of w and u considered here (,p/4), the relative effect is
stronger for the satellite. As a resultr (v)/r 0(v) is enhanced.
For larger photon energies ReC(ṽ) becomes negative. Th
density of states of partial waves with givenl andm quantum
numbers decreases with energy (;1/Ae). This favors virtual
emissions to states below the final continuum state. Depe
ing on the model forbk andMk , these matrix elements ma
have the same effect. As a result, ReC(ṽ) becomes slightly
negative for large energies and the ratior (v)/r 0(v) is
slightly smaller than 1.

The relevant energy scale forC(v) is Ẽ. This is a com-
bination of the two effects discussed above. The turn on
the dipole matrix elements on an energy scale of the ordeẼ
favors an increasing value ofC over this energy scale, while
the density of states effects becomes more important
larger energies. As a result, both ReC(v) and Im C(v)
have a maximum at an energy of the orderẼ.

C. Perturbational treatment with analytic matrix elements

In this section we study the perturbation theory express
in more detail and without relying on a separable potent
Instead we consider the more realistic matrix elements
Eqs.~18! and ~20!, assuming thatR̃d5R̃s5R̃sd5R̃. We de-
fine a functionFk by

(
k8

Vkk8Mk8

e2ek81 ih
[2

Ṽ

Ẽ
MkFk~e/Ẽ!, ~84!

which is possible due to the simple form ofVkk8 and Mk8 .
Explicitly we have

Fk~e!5
1

pE0

` x4dx

@11x2#2@11~R̃k2x!2#@x22e2 ih#
.

~85!

From Eqs.~68! and ~69! we have
r ~v!

r 0~v!
5U12 cos2 w~Ṽ/Ẽ!Fk2

~ṽ/Ẽ!2@sin 2w sin~w1u!/2 cos~w1u!#~Ṽ/Ẽ!Fk2
@~ṽ1dE!/Ẽ!]

12sin2 w~Ṽ/Ẽ!Fk1
@~ṽ1dE!/Ẽ#2@sin 2w cos~w1u!/2 sin~w1u!#~Ṽ/Ẽ!Fk1

~ṽ/Ẽ!
U2

. ~86!
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SinceR̃k25Aṽ/Ẽ andR̃k15A(ṽ1dE)/Ẽ @cf. Eq.~33!# we
see, as stated earlier, thatr /r 0 depends only onṼ/Ẽ, dE/Ẽ,
and ṽ/Ẽ.

First we consider the limit of small values ofk and dE.
For ṽ5dE50 we haveF0(0)51/16, and

r ~0!

r 0~0!
5F11~ uṼu/Ẽ!cosw cosu/@16 cos~w1u!#

11~ uṼu/Ẽ!sinw cosu/@16 sin~w1u!#
G 2

.

~87!

If the more localized levela is aboveb ~see Fig. 1! in the
initial state and belowb in the final state~‘‘shake down’’!,
we have 0,w,p/4 and 0,u,p/4, and the factor in the
brackets is larger than unity. Thus interaction effects enha
the ratior (v)/r 0(v). This corresponds to a constructive i
terference between intrinsic and extrinsic effects. This is
contrast to the destructive interference found for the plasm
case.4,5 The present treatment, however, refers to the sha
down scenario, and it is more appropriate to compare
plasmon case with the shake-up case (2p/4,w,0,u
,p/4 and w1u,0). Then the expression~87! for
r (v)/r 0(v) indeed becomes smaller than one, and the r
tive weight of the satellite is reduced for small energies. W
notice, however, that both the satellite and the main peak
enhanced by the interference, but that the main peak is
hanced more in the shake-up situation.

We next consider the case whenk is large.Fk(e) for large
k ande is ~with R̃k'Ae)

Fk~e!5
1

2Ae
F i 2

1

2Ae
1R̃k2AeG . ~88!

For the case whenu5w we obtain

r ~v!

r 0~v!
2152

uṼu

2ṽ

11dE/Ẽ

2 cos~2w!
1

uṼu2

4ṽẼ
S cos4 w

cos2~2w!
2

1

4D .

~89!

Thus the approach to the sudden limit goes as 1/ṽ with a
coefficient which depends on the parameters. With our s
dard CuCl2 parameters, we have

r ~v!

r 0~v!
21520.30

uṼu

ṽ
S 11

dE

Ẽ
D 10.24

uṼu2

ṽẼ
.

We note that for largeuṼu/Ẽ, and whenuṼu is large enough
compared todE, the last~positive! term dominates. The ap
proach to the sudden limit is then set byuṼu2/Ẽ52(R̃Ṽ)2.

To evaluate Eq.~86! whendE50 we only need the func
tion F(e),

F~e!5
1

pE0

` x4dx

@11x2#2@11~Ae2x!2#@x22e2 ih#
.

We showF(e) in the lower panel of Fig. 12. The results E
~88! for large values ofe are shown by the dotted lines in th
figure. Clearly the approach of ReF to its asymptote is very
slow. If we takedE50 we have the same form as in fir
order perturbation theory with a separable potential Eq.~83!,
ce

n
n

e-
e

a-
e
re
n-

n-

r ~v!

r 0~v!
5U12~cos2 w/cos 2w!~Ṽ/Ẽ!F~ṽ !

12~1/2!~Ṽ/Ẽ!F~ṽ !
U2

, ~90!

where we have putw5u. As shown in Fig. 12,F(e) has a
qualitatively similar behavior asC(e) for e/Ẽ&2. As in the
case of the functionC, the relevant energy scale isẼ.

In Fig. 13 we showr (v)/r 0(v) as a function ofṽ/Ẽ for
a few values ofdE/Ṽ and Ṽ/Ẽ. We see thatr (v)/r 0(v)
starts at a positive value@see Eq.~87!#, and reaches a broa
maximum at aboutṽ/Ẽ;0.521.5. Compared to the sepa
rable potential solution in Fig. 11, the overshoot behavio
robust up to fairly large energies, which is due to ImF(ṽ)
decaying more slowly than ImC(ṽ). For much larger val-
ues of v,(r /r 021) decays as 1/ṽ, as shown in Eq.~89!.
Here, based on the discussion in Sec. VII B, we can exp
that as multiple scattering becomes important, the reg
where there is an overshoot is substantially reduced and
region with an undershoot becomes larger. At the same ti
the overshoot intensity will be enhanced. These behav
are actually confirmed by comparing with the exact calcu
tions given in Fig. 10.

Figure 13 illustrates that for intermediate values ofṽ,
when Re F dominates, (r /r 021) goes as roughlyuṼu/ṽ if
dE/Ẽ is not too large. For larger~but not too large! values of
ṽ, ReF becomes small and ImF dominates. Since ReF is
positive for small energies, this leads to a constructive in
ference between intrinsic and extrinsic effects. For energ
of the orderẼ, ReF changes sign, and the interference b
comes weakly destructive. For somewhat larger energies
extrinsic effects are mainly determined by the imaginary p
of F. From Eq.~89! it follows that in perturbation theory the
extrinsic effects become small on the energy scaleṼ2/Ẽ.

D. Semiclassical approximation

In this section we analyze the adiabatic-sudden transi
within the semiclassical framework. From the coupled diffe

FIG. 13. The ratior (v)/r 0(v) as a function ofṽ/Ẽ for differ-

ent values ofṼ/Ẽ anddE/Ṽ.
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ential equations Eqs.~76! and~77! we can obtain differentia
equations for]uaiv(t)u2/]t, i 51,2. Integration of these
equations, leads to

ua2v~t0!u22ua2v~0!u2

52 Im E
0

t0
V12~t!a1v~t!a2v* ~t!eidEtdt, ~91!

where t05R0 /v is the time at which the emitted electro
with the velocity v leaves the rangeR0 of the scattering
potential.uaiv(t0)u22uaiv(0)u2 is a measure of the deviatio
from the sudden limit. For small values oft both the coef-
ficientsaiv(t) and the exponenteidEt are approximately rea
and there is a small contribution to the imaginary part of
integral in Eq.~91!. As t grows there is, however, a contr
bution from both these sources.

To obtain a qualitative understanding of the semiclass
approximation, we solve the Schro¨dinger equations Eqs.~76!
and ~77! to lowest order in 1/v. This leads to

a1v~t!5a1v~0!2 i E
0

t

dt8@V11~t8!a1v~0!1V12~t8!a2v~0!#

~92!

and a similar result fora2v(t). This gives

ua2v~t0!u22ua2v~0!u2

5
1

2
sin~2w!H 1

2
sin~2u!F E

0

t0
dtVsc~t!G2

1 sin~2w12u!dEE
0

t0
dttVsc~t!J . ~93!

To discuss the result, we for a moment assume a simpt
dependence ofVi j (t)

Vi j ~t!5Vi j ~0!S 12
t

t0
D , ~94!

which corresponds to ther dependence used in Eq.~22!. We
note, however, that this form is too simple to describe
behavior of the more realistic potential in Eq.~11!. Inserting
Eqs.~92! and ~94! in Eq. ~93! gives

D2[ua2v~t0!u22ua2v~0!u25
1

4
Vsc~0!sin~2w!

3F1

4
sin~2u!Vsc~0!1

1

3
sin~2w12u!dEGt0

2 .

~95!

We now extend this treatment to intermediate values ov
where the adiabatic to sudden transition takes place. U
the expressions Eqs.~25!, ~28!, and ~30! to relatedE and
U52Vsc(0) we obtain

r ~v!

r 00
215

D2

sin2~2w!cos2~2w!
52

sin~2w!

sin~2u!

~dE!2t0
2

12
.

~96!

Within the semiclassical theorythe condition for the sudden
approximation is then
e

al

e

ng

v
R0

5
1

t0
@dEA sin~2w!

12 sin~2u!
. ~97!

We are now in a position to discuss the approach to
sudden limit. Within a semiclassical framework it seem
clear that we have to require that the hole potential is fu
switched on after a ‘‘short’’ timet05v/R0, i.e., that the
emitted electron leaves the range of the scattering pote
after a short time. The question is, however, what we m
by ‘‘short.’’ From Eq. ~95! it follows that the time-scale is
set by both the inverse ofdE and the inverse ofVsc(0). In
Eq. ~97! we have used the relation betweendE andVsc(0) to
removeVsc(0) from Eq.~97!.

From Eq. ~97! we obtain the condition for the sudde
approximation within the SC theory

ṽ5
1

2
k2@~dE!2R0

25
~dE!2

2Ẽ
;

Vsc~0!2

Ẽ
. ~98!

Thus, according to the semiclassical theory, the sudden
proximation requires thatek@(dE)2/Ẽ. Comparison with
the full quantum mechanical calculations in Fig. 10 sho
that this criterion is not appropriate for the range of para
eters considered here. The reason is that we have consid
a parameter range where the semi-classical theory is not
accurate.

It is interesting that the SC theory correctly predicts th
the weight of the satellite goes to zero at threshold. Nev
theless, the SC theory does not give the correct physics a
threshold. In the full quantum mechanical calculation t
weight of the satellite goes to zero due to the effects of
dipole matrix element, which becomes very small at sm
photoelectron energies. This effect is not included in the
theory. In the semiclassical treatment, the small weight of
satellite is due to the fact that the scattering potential
tween the outgoing slow electron and the excitation me
that the hole potential is only switched on slowly. In th
quantum mechanical treatment, on the other hand, the s
tering potential leads to an enhancement of the rela
weight of the satellite close to the threshold for the sha
down case.

VIII. DISCUSSION

We have studied the photoemission spectrum of a sim
model with a localized charge transfer excitation. We ha
obtained exact numerical results for the spectrum as a fu
tion of the photon energyv and in particular focussed on th
ratio r (v) between the weights of the satellite and the m
peak. These calculations are compared with perturbatio
and semiclassical treatments. The results have been ana
using the latter two approaches.

An important effect in the ratior (v) is due to the energy
dependence of the dipole matrix elements and a fa
1/(]ek /]k);1/k in the expression for the spectrum. Th
leads to a suppression of the satellite close to the thresh
but can lead to an overshoot further away from the thresh
This effect was discussed in Sec. IV and is described
r 0(v). If the interaction between the emitted electron and
target is weak, this effect dominates. It is determined by
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excitation energydE and the relevant energy scaleẼd of the
dipole matrix element. IfdE/Ẽd is small, r 0 essentially
reaches its limiting value from below~with a slight over-
shoot!, while there is a large overshoot ifdE/Ẽd@1. In both
casesr 0 reaches its limiting value for a kinetic energy of th
order a few timesdE.

To study the effects of the scattering potential betwe
the emitted electron and the target we have focussed on
ratio r (v)/r 0(v). This quantity shows an overshoot fo
small values ofv in the shake-down situation studied her
Depending on the parameters there may be an undershoo
larger energies, which extends over a large energy ra
This undershoot is, however, fairly small for the cases c
sidered here. The sudden approximation is then valid t
reasonable accuracy when the overshoot has become s
We show that this happens on the energy scaleẼ51/(2R̃2),
whereR̃ is a typical length scale of the scattering potenti

One of the main results of this paper is that for a coupl
to localized excitations, the adiabatic to sudden transit
takes place at quite small kinetic energies of the photoe
tron. This is in contrast to the large kinetic energies nee
for the case of coupling to plasmons. In the plasmon ca
the kinetic energy is typically so large that the semiclass
treatment is a very good approximation. The adiabatic
-

d
,
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.
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-
a
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.
g
n
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d
e,
l

o

sudden transition is then expected to happen on the en
scale (vql)2,19 wherevq andl are the plasmon frequenc
and wavelength, respectively. Since the long wavelen
plasmons dominate the transition, this happens at very la
energies. For a localized excitation, the relevant length s
of the scattering potential is smaller, and the transition
expected to take place at a smaller energy scale. Actually
transition takes place at such a small energy that the se
classical theory is usually not valid any more. It is interesti
that the semiclassical theory therefore predicts the oppo
dependence on the rangeR̃ of the scattering potential
namely asR̃2 instead ofẼ51/(2R̃2).

For the shake-down scenario considered here~the two
outer levels cross as the hole is created!, we find constructive
interference@increase ofr (v)/r 0(v)# between the intrinsic
and extrinsic processes at low photoelectron energies. Th
in contrast to the destructive interference found in the pl
mon case and to the reduction ofr (v)/r 0(v) found here for
the shake-up case~no level crossing!.
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