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Comparison of coherent and weakly incoherent transport models for the interlayer
magnetoresistance of layered Fermi liquids
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~Received 7 December 1998; revised manuscript received 19 March 1999!

The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct
models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of
results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent
interlayer transport where the electron is scattered many times within a layer before tunneling into the next
layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance
oscillations~AMRO! in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of
the magnetoresistance on the direction of the magnetic field is identical for both models except when the field
is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface
is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-
dimensional metals, respectively. A universal expression is given for the dependence of the resistance at
AMRO maxima and minima on the magnetic field and scattering time~and thus the temperature!. We point out
three distinctive features of coherent interlayer transport:~i! a beat frequency in the magnetic oscillations of
quasi-two-dimensional systems,~ii ! a peak in the angular-dependent magnetoresistance when the field is
sufficiently large and parallel to the layers, and~iii ! a crossover from a linear to a quadratic field dependence
for the magnetoresistance when the field is parallel to the layers. Properties~i! and ~ii ! are compared with
published experimental data for a range of quasi-two-dimensional organic metals.@S0163-1829~99!02236-5#
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I. INTRODUCTION

One of the most fundamental concepts in electronic tra
port theory for elemental metals and semiconductors is
electronic transport involves the coherent motion of electr
in band or Bloch states associated with well-defined w
vectors and group velocities.1 An important issue is whethe
this concept is applicable to interlayer transport in stron
correlated electron systems such as highTc

superconductors,2–4 organic conductors,5 and layered manga
nite compounds with colossal magnetoresistance.6 If the in-
terlayer transport is incoherent the motion between layer
diffusive and it is not possible to define band states exte
ing over many layers and a Fermi velocity perpendicular
the layers. In that case a three-dimensional Fermi sur
cannot be defined, and Bloch-Boltzmann transport the
cannot describe the interlayer transport.

Extensive experimental studies have been made of
angular-dependent magnetoresistance oscillat
~AMRO’s!7 which occur in layered organic conductor8

when the direction of the magnetic field is varied. The the
retical interpretation of these oscillations often involves
three-dimensional Fermi surface, and their observation
sometimes interpreted as evidence of the existence
three-dimensional Fermi surface. In quasi-one-dimensio
metals these effects are are known as Danner,9 Lebed ~or
magic angle!,10–12 and third angular effects,13 depending on
whether the magnetic field is rotated in thea2c, b2c, or
a2b plane, respectively.~The most- and least-conductin
directions are the a and c axes, respectively!. In
quasi-two-dimensional systems, the effects obser
include the Yamaji14 oscillations and the anomalou
PRB 600163-1829/99/60~11!/7998~14!/$15.00
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AMRO’s in the low-temperature phase o
a-(BEDT-TTF)2MHg(SCN)4@M5K,Rb,Tl#.7,15

The explaination of the Lebed effect is controversial an
number of different theories have been proposed.5,12,16 It is
not clear that coherent transport models can explain
angle-dependent magnetoresistance in the quasi-
dimensional (TMTSF)2PF6 at pressures of about 1
kbar,5,10,11,17,18or the anomalous AMRO’s.19 Consequently,
we focus on the Danner and Yamaji oscillations here beca
their explanation in terms of a three-dimensional Fermi s
face has generally been accepted. The resistance perpen
lar to the layers is a maximum when the field direction
such that the electron velocity~perpendicular to the layers!
averaged over its trajectories on the three-dimensional Fe
surface is zero.9,20

Several different models for incoherent interlayer tran
port have been considered previously. We shall distingu
between what we shall refer to asweaklyandstrongly inco-
herent interlayer transport. The former occurs when ther
direct transfer of the electron from one layer to another, a
the intralayer momentum is conserved in the process. C
sequently, interference between wave functions on adja
layers is possible. However, the transport can be incohe
in the sense that tunneling events are uncorrelated bec
the electron is scattered many times within the layer betw
tunneling events. This model has been used to describe
terlayer transport in the cuprates21–23and organics.24 In con-
trast, strongly incoherent transport occurs if the the intrala
momentum is not conserved by tunneling and there is
interference between wave functions on adjacent layers. T
can occur because the tunneling is associated with ela
scattering,25 because of inelastic processes such as coup
to a bath of phonons,23 or because of non-Fermi-liquid ef
7998 ©1999 The American Physical Society
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TABLE I. For a range of quasi-two-dimensional materials, we list whether or not beats in mag
oscillations and a peak in the angular dependent magnetoresistance at 90° has been observed. For
interlayer transport both these features should be present, provided a wide enough range of magnetic
explored. A question mark indicates that the measurement has not been made.

Beats Peak at 90°

a-(BEDT-TTF)2NH4Hg(SCN)4 no ~Ref. 54! no ~Ref. 54!
a-(BEDT-TTF)2KHg(SeCN)4 no ~Ref. 28! no ~Ref. 28!
a-(BEDT-TTF!2KHg(SCN)4 above 20 T no~Ref. 55! no ~Ref. 56!
a-(BEDT-TTF!2TlHg(SeCN)4 no ~Refs. 57 and 58! ?
a-Et2Me2N@Ni(dmit)2#2 ? yes~Ref. 59!
a-(BEDT-TSF)2KHg(SCN)4 above 6 kbar yes~Ref. 60! ?
bH-(BEDT-TTF)2I3 yes ~Refs. 61 and 62! yes ~Ref. 31!
b-(BEDT-TTF)2IBr2 yes ~Refs. 51 and 63! yes ~Ref. 63!
k-(BEDT-TTF)2I3 no ~Ref. 64! yes ~Ref. 65!
k-(BEDT-TTF)2Cu2(CN)3 at 7 kbar ? yes~Ref. 66!
k-(BEDT-TTF)2Cu(SCN)2 no ~Ref. 67! ? ~Ref. 68!
u-(BEDT-TTF)2I3 no ~Ref. 69! yes ~Ref. 70!
Sr2RuO4 yes ~Ref. 71! yes ~Ref. 72!
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fects such as spin-charge separation.5,26 For both weakly and
strongly incoherent transport, the interlayer conductivity o
bulk sample is determined by the tunneling rate between
adjacent layers. The interlayer resistance is then equal to
number of layers in the sample times the resistance betw
two layers.

In this paper we present details of calculations of the
gular dependence of the interlayer magnetoresistance
both coherent and weakly incoherent interlayer transp
when there is a Fermi liquid within each layer. Our ma
result is that coherent interlayer transport is notnecessaryto
explain the Yamaji and Danner oscillations. Hence their
servation is not evidence of the existence of a thre
dimensional Fermi surface. In contrast, we point out th
properties of the interlayer magnetoresistance which oc
only if the interlayer transport is coherent:~i! a beat fre-
quency in the magnetic oscillations of quasi-tw
dimensional systems,~ii ! a peak in the angle-dependent ma
netoresistance when the field is parallel to the layers
sufficiently high fields, and~iii ! a crossover from linear to
quadratic field dependence when the field is parallel to
layers. A brief report of some of the results presented h
appeared previously.27

In Sec. II we present our main result@Eq. ~1!#, an analyti-
cal expression for the interlayer conductivity in the prese
of a magnetic field which is tilted at an angleu relative to the
normal to the layers. This result is valid for incoherent tra
port for all field directions and for coherent transport, pr
vided the field is not almost parallel to the layers. We th
use this expression to explain the basic features of the D
ner and Yamaji oscillations. Simple expressions are
scribed for the dependence of the interlayer resistance on
magnitude of the magnetic field and the scattering rate w
the angleu is at an AMRO maxima or minima. In Sec. III w
derive Eq.~1! for the case of coherent interlayer transport
both quasi-two- and quasi-one-dimensional systems. This
volves evaluating Chambers’ formula, a result of Bloc
Boltzmann transport theory. In Sec. IV we derive Eq.~1! for
weakly incoherent transport in both quasi-two- and qua
one-dimensional systems. In Sec. V we consider unamb
a
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ous signatures of coherent interlayer transport and com
these signatures to published experimental data for a rang
quasi-two-dimensional metals.

II. ANGULAR-DEPENDENT
MAGNETORESISTANCE OSCILLATIONS

We assume that each layer of the metal is a Fermi liq
whose elementary excitations are fermions with a wave v
tor (kx ,ky) and with a dispersion relation of the form
e(kx ,ky). We consider the simplest posssible dispersion
lations for quasi-one- and quasi-two-dimensional syste
~For a summary of our notation, see Table I in Ref. 27!. The
interlayer conductivity in the absence of a magnetic field
denotedszz

0 . In this paper we will show that in a tilted mag
netic field the interlayer conductivity, for both coherent i
terlayer transport~except for fields very close to the layer!
and weakly incoherent interlayer transport~for all field di-
rections!, is

szz~u!5szz
0 FJ0~g tanu!212(

n51

`
Jn~g tanu!2

11~nv0t cosu!2G ,

~1!

whereJn(x) is the nth-order Bessel function,v0 is the os-
cillation frequency associated with the magnetic field, andg
is a constant that depends on the geometry of the Fe
surface.27 The scattering timet is assumed to be independe
of the momentum of the electron, but can vary with tempe
ture.

If the field is sufficiently large and the temperature suf
ciently low that v0t@1, then the first term in Eq.~1! is
dominant. However, ifg tanu equals a zero of the zeroth
order Bessel function, then at that angleszz will be a mini-
mum and the interlayer resistivity will be a maximum.
g tanu@1, then the zeros occur at anglesun given by

g tanun5p~n2 1
4 ! ~n51,2,3, . . . !. ~2!

This condition was first derived for the quasi-two
dimensional case by Yamaji,14 and for the quasi-one
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8000 PRB 60PEREZ MOSES AND ROSS H. McKENZIE
dimensional case by Danner, Kang, and Chaikin.9 Determi-
nation of these angles experimentally provides a value fog,
and thus information about the intralayer Fermi surface. T
values of the Fermi surface area of quasi-two-dimensio
systems determined from AMRO’s are in good agreem
with the Fermi surface areas determined from the freque
of magneto-oscillations.7 Furthermore, AMRO’s can be use
to map out the actual shape of the Fermi surface within
layer ~see, for example, Refs. 20, 28, and 29!.

The angular dependence of the interlayer resistivityrzz
.1/szz,30 given by Eq.~1!, for parameter values relevant fo
typical quasi-two-dimensional systems is shown in Fig.
Figure 2 shows the angular dependence ofrzz for parameter
values relevant to (TMTSF)2ClO4. The results are similar to
the experimental results in Ref. 9, except near 90°. B
figures are very similar to the results of numerical integrat
of Chambers’ formula for coherent transport@Eq. ~17!#, ex-
cept near 90°. For coherent transport there is a small pea
rzz(u) at u590°.9,31 This is due to the existence of close
orbits on the Fermi surface when the field lies close to
plane of the layers. For incoherent tranport these orbits
not exist, and so the associated magnetoresistance is
present. Since Eq.~1! is also valid for incoherent interlaye
transport, the Danner and Yamaji oscillations can be
plained equally well in terms of weakly incoherent transpo

A. Asymptotic form

We want to find an expression forszz(u) as u→p/2.
Using the asymptotic form32

FIG. 1. Angular-dependent magnetoresistance oscillations.
dependence of the interlayer resistance for a typical quasi-t
dimensional system on the direction of the magnetic field is sho
for a range of magnetic fields.u is the angle between the field an
the normal to the layers.t is the scattering time within the layers
andv0 is the cyclotron frequency when the field is perpendicular
the layers. The curves shown are plots of Eq.~1!, which is valid for
all u for incoherent interlayer transport and for allu except close to
90° for coherent interlayer transport. Note that the location of
maxima and minima is independent of the field and the scatte
time. The dashed curve is a plot of the asymptotic expression~6!,
which can be seen to be a very good approximation foru.20°.
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Jn~z!5A 2

pz
cosS z2

np

2
2

p

4 D , ~3!

which is valid for z@n2, we can simplify Eq.~1! for the
conductivity. We rewrite it as

szz5szz
0 FJ0~m!212(

n51

`
Jn~m!2

11~nx!2G , ~4!

wherem5g tanu and x5v0t cosu. We can substitute Eq
~3! for Jn(m) provided thatx.1, so that the sum in Eq.~4!
converges rapidly. Separating the sum into the sum of e
and odd terms, and using the fact that 2cos2@m2(np/2)
2(p/4)#511 sin(2m) for evenn and 12 sin(2m) for odd n,
gives

szz5
2szz

0

pm F ~11 sin 2m!S 1

2
1 (

n51

`
1

11~2nx!2D
1~12 sin 2m!S (

n50

`
1

11~2n11!2x2D G . ~5!

These series can be evaluated using the residue theorem33 to
give

szz

szz
0

5
1

mx F cothS p

x D1
sin~2m!

sinhS p

x D G . ~6!

e
o-
n

e
g

FIG. 2. Dependence of the interlayer resistance of a quasi-o
dimensional system on the direction of the magnetic field.u is the
angle between the magnetic field and the least conducting direc
with the field in the same plane as the most conducting direct
The parameter which defines the anisotropy of the intralayer h
ping g[2ctc /\vF50.25. t is the intralayer scattering time, an
v0 is the frequency at which the electrons oscillate between
chains when the field is perpendicular to the layers. Except v
close to 90° this figure is similar to the experimental data
(TMTSF)2ClO4 in Ref. 9.
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For v0t.1, Eq.~6! actually turns out to be a good approx
mation for g tanu.1 ~see Fig. 1!. It will now be used to
analyze the field and temperature dependence of the AM
maxima and minima.

B. Field and temperature dependence of the resistivity at
critical angles

Resistivity maxima:For the resistivityrzz to be a maxi-
mum,u5umax

n , where

g tanumax
n 5S n2

1

4Dp. ~7!

From this we can simplify sin(2m) in Eq. ~6!, giving

sin~2m!5sin~2g tanu!52 cos~2np!521 ~8!

for all n. The resistivity is then written as

rzz~umax
n ,B!

rzz~B50!S n2
1

4Dp

5
v0t cosumax

tanhS p

2v0t cosumax
D . ~9!

This expression is plotted in Fig. 3. Now if the field is su
ficiently high and the temperature sufficiently low th
v0t cosu max

n @1, then the resistivity becomes

rzz~umax
n !

rzz~B50!
5

g

p
~v0t!2 sin~2umax

n !. ~10!

FIG. 3. Universal dependence of the interlayer resistivity on
magnetic field and scattering time when the field is tilted at an an
corresponding to an AMRO minimum (umin) and an AMRO maxi-
mum (umax). For high fields the resistivity at the minima becom
independent of field, and has the same temperature dependen
the zero-field resistivity. For high fields the resistivity at th
maxima increases quadratically with field, and has the same
perature dependence as the inverse of the zero-field resistivity.
curves are not plotted for smallv0t cosu because the results de
rived in the text are not valid in that regime.
O

Hence, at a fixed field the resistivity at the AMRO maxim
will have the same temperature dependence as the scatt
time, which is inversely proportional to the zero-field res
tivity.

Resistivity minima:Similar arguments will show that fo
the interlayer resistivity to be a minimumu5umin

n , where

g tanumin
n 5S n1

1

4Dp, ~11!

and the resistivity then becomes

rzz~umin
n ,B!

rzz~B50!S n1
1

4Dp

5v0t cosumin
n tanhS p

2v0t cosumin
n D .

~12!

This is plotted in Fig. 3. Whenv0t cosumin@1, then

rzz~umin!

rzz~B50!
5

p2

2 S n1
1

4D , ~13!

which is independent of the field and scattering rate. Thus
the AMRO minima the resistance will have the same te
perature dependence as the zero-field resistance.

Field in the layers:Now asu→p/2, xm→gv0t, andx
→0, taking these limits in~6! gives

szzS u5
p

2 D5
szz

0

gv0t
. ~14!

The resistivity is linear in field at moderately high field
However, caution is in order because in deriving Eq.~6!
above, we required thatx.1. That this is more restrictive
than need be is suggested by the fact that Fig. 1 shows
Eq. ~6! remains valid near 90°. Indeed, Eq.~14! is valid: it
agrees with the calculations of other authors for bo
coherent34 and incoherent transport35 in a quasi-two-
dimensional system, provided the field is not too large~see
Secs. IV B and V C!. Such a linear interlayer magnetoresi
tance has been observed in Sr2RuO4 ~Ref. 36! and
(TMTSF)2ClO4 ~Ref. 37!. However, for coherent transpo
the dependence on field becomes quadratic for sufficie
high fields34 ~see Sec. V!. Note that Eq.~14! is actually in-
dependent of the scattering timet. This means that for mod
erate fields the interlayer resistivity will only depend weak
on temperature. This was observed in (TMTSF)2ClO4: when
the temperature was increased from 0.9 to 8 K, the zero-fi
resistivity ~which is proportional to the scattering rate! in-
creased by a factor of about 6, but the resistance at 1
increased by less than 10%~Ref. 37, p. 64!.

III. COHERENT INTERLAYER TRANSPORT

If the interlayer transport is coherent, one can define
wave vectorkz perpendicular to the layers and a thre
dimensional dispersion relatione3D(kW ) of the form

e3D~kW !5e~kx ,ky!22tc cos~kzc!, ~15!

where tc is the interlayer hopping integral,c is the layer
separation, ande(kx ,ky) is the intralayer dispersion relation

e
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simple examples of which are given below. The electro
group velocity perpendicular to the layers is

vz5
1

\

]e~kW !

]kz
5

2ctc
\

sin~ckz!. ~16!

We calculate the interlayer conductivity by solving the Bo
zmann equation in the relaxation time approximation, wh
leads to Chambers’ formula1

szz5
e2t

4p3E vz~kW !v̄z~kW !S 2
] f ~E!

]E Dd3kW , ~17!

wheref (E) is the Fermi function andt is the scattering time
which is assumed to be the same at all points on the Fe
surface.v̄z(kW ) is the electron velocity perpendicular to th
layers, and is averaged over its trajectories on the Fe
surface,

v̄z~kW !5
1

tE2`

0

expS t

t D vz@kW~ t !#dt, ~18!

where kW (0)5kW . The time dependence of the wave vec
kW (t) is found by integrating the semiclassical equation
motion

dkW

dt
52

e

\2¹W ke3D3BW . ~19!

Now if the temperature is sufficiently low thatT!EF , then
] f /]E in Eq. ~17! can be replaced by ad function at the
Fermi energy, and Eq.~17! becomes

szz5
e2t

4p3E vz~kW !v̄z~kW !d@EF2e3D~kW !#d3kW . ~20!

A. Quasi-two-dimensional case

Here we consider a quasi-two-dimensional system w
the energy dispersion relation

e3D~kW !5
\2

2m! ~kx
21ky

2!22tc cos~kzc!, ~21!

wherem! is the effective mass of the electron. We assu
the interlayer hopping is sufficiently small thattc!EF . The
Fermi surface is then a warped cylinder~see Ref. 27!. Sub-
stituting the energy dispersion relation from Eq.~21! we ob-
tain the components of the group velocity

vW ~kW !5
1

\
¹W ke3D5S \kx

m! ,
\ky

m! ,
2ctc sin~ckz!

\ D . ~22!

In order to calculate the time dependence ofkz we must
integrate Eq.~19!, which can be written in the form

dkW

dt
5

e

m!~2kyB cosu,kxB cosu,kyB sinu!. ~23!

Terms of ordertc have been neglected once we assu
tc tanu!\2kF /m* c, wherekF is the Fermi wave vector, de
fined byEF5\2kF

2/2m* . Differentating thex andy compo-
nents of Eq.~23! with respect to time, we obtain a secon
c

h

i

i

r
f

h

e

e

order differential equation whose solution givesky(t)
5kF cos(vct) andkx(t)5kF sin(vct), and

vc5
eBcosu

m! ~24!

is the cyclotron frequency. Substitution of this into thez
component of Eq.~23!, and integrating, gives

kz~ t !5kz~0!1kF tanu sin~vct !. ~25!

In order to calculate thez component of the group velocity
we substitute the expression forkz(t) into the z component
of Eq. ~22!, giving

vz@kz~0!,f#5C sin@m sinf1kz~0!c#, ~26!

where

m5ckF tanu, ~27!

f is the angle around the orbit, andC52ctc /\. Integrating
the velocity in Eq.~26! over a period gives us the averag
velocity, which can be written as

^vz&}E
0

2p

sin~m sinf!df;J0~g tanu!, ~28!

and in the absence of scattering this average velocity is e
to zero wheng tanu equals a zero ofJ0. These particular
values ofu corrrespond to the peaks in the resistivity.

We can write Eq.~17! in a slightly simplified form in
order to highlight the fact that the integral is a surface in
gral. If the warping of the Fermi surface is small, we c
parametrize the surface usingkz andf, wherekx5kF cosf
andky5kF sinf, giving

szz5
e2tm*

4p3\2E
FS

dSvz~kW !v̄z~kW !

5
e2tm*

4p3\2E
2p/c

p/c

dkzE
0

2p

df vz~kW !v̄z~kW !. ~29!

Here v̄z(kW ) is defined in Eq.~18!, and the prefactorm* /\2

arises from thed function. In terms of the parametrized su
face, we have

v̄z~kW !5E
2`

0 df8

tvc
exp~f8/tvc!vz@kz~0!,f2f8#, ~30!

where we used the fact thatf85vct and vz@kW (t)#
5vz@kz(0),f2f8#. For closed electron orbits the electro
group velocities are periodic functions off andf8. Thus the
range of integration off8 can be cut up into segments ea
having length 2p. The conductivity is then

szz5
e2m*

4p3\2E
2p/c

p/c

dkz~0!
1

12 exp~22p/tvc!

3E
0

2p

df vz@kz~0!,f#E
22p

0 df8

vc

3vz@kz~0!,f2f8#exp~f8/tvc!. ~31!
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We use trigonometric identities to expand Eq.~26!, and sub-
stitute the Bessel generating functions32 to obtain

vz@kz~0!,f2f8#

5C sin@kz~0!c#FJ0~m!12(
k51

`

J2k~m!

3cos@~2k!~f2f8!#G1C cos@kz~0!c#

3F2(
k50

`

J2k11~m! sin@~2k11!~f2f8!#G . ~32!

If we substitute this into Eq.~30!, we obtain

v̄z~f!5CE
2`

0 df8

tvc
S sin@kz~0!c#FJ0~m!

12(
k51

`

J2k~m!cos@~2k!~f2f8!#G1 cos@kz~0!c#

3F2(
k50

`

J2k11~m!sin@~2k11!~f2f8!#G D
3exp~f8/tvc!. ~33!

Substituting equations for vz@kz(0),f2f8# and
vz@kz(0),f# into Eq. ~31!, we note terms that survive i
whenk5 l , since integrals such as*0

2pdf cos(2kf)cos(2lf)
5pdkl , wheredkl is the Kronecker delta, thus giving

szz5
e2~2ctc!

2m*

4p3\4vc
E

2p/c

p/c

dkz~0!

3F2ptvc sin@kz~0!c#2J0~m!2

1
4p

vct
S sin@kz~0!c#2(

k51

`
J2k~m!2

~2k!21~1/vct!2

1 cos@kz~0!c#2(
k50

`
J2k11~m!2

~2k11!21~1/vct!2D G . ~34!

Performing the integral overkz(0) yields the final expression
for the conductivity, which is of the form of Eq.~1!. This
result was previously given by Yagiet al.38

B. Quasi-one-dimensional case

For the quasi-one-dimensional case we begin with the
persion relation9

e3D~kW !5\vF~ ukxu2kF!22tb cos~kyb!22tc cos~kzc!
~35!

wherevF is the Fermi velocity andtb is the intrachain hop-
ping within the layers. The Fermi surface consists of t
sheets atkx>6kF . By proceeding as for the quasi-two
s-

dimensional case, the rate of change of the wave vector@and
defining the magnetic fieldBW 5(B sinu,0,B cosu)] is given
by

~36a!

dkW

dt
5

1

\2S 22bB cosuetb sin~bky!

eB\ cosuvF

2bB sinuetb sin~bky!
D , ~36b!

~36c!
where we neglect terms involvingtc by assuming thatvF
@vz tanu, i.e., the warping of the Fermi surface is small a
the magnetic field is not too close to the layers. Integrat
the second equation gives

ky~ t !5
vB

b
t1ky~0!, ~37!

where

vB[
eBbcosuvF

\
~38!

is the speed at which the wave vector traverses the Fe
surface. To obtainkz(t) we substitute Eq.~37! into Eq.~36c!,
and integrate to obtain

kz~ t !5kz~0!2
2ebtbB sinu

\2vB
cos@vBt1bky~0!#. ~39!

Substitution into thez component of the velocity yields

vz@kz~0!,f2f8#5
2ctc

\
sin@ckz~0!2g tanu cos~f2f8!#,

~40!

where f852vBt, f5bky(0), andg52ctb /vF\. This is
similar in form to thez component of the velocity for the
quasi-two-dimensional case@compare with Eq.~26!#. The
interlayer conductivity can then be written as

szz5
e2

4p3b\vF
E

2p/c

p/c

dkz~0!E
2p/b

p/b

df vz@kz~0!,f#

3E
22p

0 df8

vB

ef8/tvB

@12 exp~22p/tvB!#

3vz@kz~0!,f2f8#. ~41!

The integral from22p to 0 overf8 is obtained by noting
that the electron group velocity is a periodic function off8,
we can cut the range off8 into segments having length 2p.
The factor (12e22p/tvB) is a consequence of this. Procee
ing as for the quasi-two-dimensional case leads to a resu
the form of Eq.~1!. As far as we are aware, this expressi
has not been derived previously for quasi-one-dimensio
systems.

IV. WEAKLY INCOHERENT INTERLAYER TRANSPORT

Suppose that the coupling between the layers is su
ciently weak that the time it takes an electron to hop betw
the layers~approximately\/tc) is much longer than the sca
tering time. This means that the intralayer scattering rat
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much larger than the interlayer hopping integral

\

t
@tc , ~42!

and the mean free path perpendicular to the layers is m
smaller than the interlayer spacing. If this condition ho
then the interlayer transport will be incoherent in the se
that successive interlayer tunneling events are uncorrelat21

Previous estimates oftc and t in various layered organic
metals7,9,39 suggest these quantities may be comparable
low temperatures. Furthermore, the scattering rate usu
increases quadratically with temperature,40 and at tempera-
tures of the order of tens of K this condition will almo
certainly be satisfied.41 The interlayer conductivity is then
proportional to the tunneling rate between just two adjac
layers. If we assume that the intralayer momentum is c
served, the tunneling rate can be calculated using stan
formalisms for tunneling in metal-insulator-met
junctions.42 Modeling the interlayer transport in this way
reasonable, because many organic conductors consist of
ducting layers separated by insulating layers of anions
are several Å thick. Furthermore, intrinsic Josephson t
effects have been observed in the superconducting sta
k-(BEDT-TTF)2Cu(NCS)2 ~Ref. 43!.

We consider the simplest possible model for the tunne
between layers, direct transfer described by the Hamilton

H1252tcE d2rW@c1~rW !†c2~rW !1c2~rW !†c1~rW !#, ~43!

wherec1(rW)† creates an electron in layer 1 atrW. Note that the
interlayer transport is coherent in the sense that during
tunneling process the phase information in the electro
wave function is not completely lost. However, it is incohe
ent in the sense that due to the large intralayer scattering
the interlayer transport cannot be described by Bloch st
extending over many layers. If we consider a sequence
tunneling events, they are uncorrelated because after a
neling event an electron is scattered many times befor
tunnels to the next layer.

The interlayer currentI associated withH12 and produced
by a voltageV can be calculated using the formalism dev
oped for metal-insulator-metal junctions.42 The result for the
interlayer conductivity is

szz5
c

LxLy

dI

dVU
V50

5
2e2tc

2c

\LxLy
E d2r E d2r 8E dE

2p
A1~rW,rW8,E!

3A2~2rW,rW8,E!
] f ~E!

]E
, ~44!

whereA1 andA2 are the spectral functions for layers 1 and
and Lx and Ly are the dimensions of the layers. It will b
seen below that in the presence of a tilted magnetic fieldA1
andA2 are not identical. The zero-field limit~for which A1
5A2) of this expression has been used in treatments of
coherent interlayer transport in the cupra
superconductors.22,23,26

If we assumeT!EF , then ] f (E)/]E can be replaced
with a d function to give
ch
s
e
.
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szz5
e2tc

2c

\pLxLy
E d2r E d2r 8A1~rW,rW8,EF!A2~rW8,rW,EF!.

~45!

This can be rewritten by noting that the spectral function c
be written as A1,2(rW8,rW,EF)521/i @G1,2

1 (rW,rW8,EF)

2G1,2
2 (rW8,rW,EF)#, leading to

szz~rW8,rW,EF!5
e2tc

2c

\pLxLy
E d2r E d2r 8

3@G1
1~rW,rW8,EF!G2

2~rW8,rW,EF!

1G1
2~rW8,rW,EF!G2

1~rW,rW8,EF!#. ~46!

In the Landau gauge, the vector potentialAW , for the mag-
netic fieldBW 5(Bx ,0,Bz)5(B sinu,0,B cosu), is

AW 5~0,xBz2zBx ,0!, ~47!

whereBW andAW are related byBW 5¹W 3AW . The vector potential
in the two layers~see Ref. 27! are not equal, and differ by a
gauge transformationAW 25AW 11¹W L where

¹W L5AW 12AW 25~0,2cB sinu,0!. ~48!

The Green’s functions in the two layers are not equal. T
reflects the fact that even though the magnetic field is inv
ant under a gauge transformation the Green’s function is
The Green’s function for layer 1 is thus multiplied by
phase factor exp$(i/\)e@L(rW)2L(rW8)#%, giving

G2
1~rW,rW8!5 expH i

\
eL~rW !J G1

1~rW,rW8!expH 2 i

\
eL~rW8!J .

~49!

Making use of this relationship, we have

szz5
2e2tc

2c

\p E d2r uG1
1~rW,0,EF!u2 cosS ecB

\
sinuyD ,

~50!

where we have used the fact thatuG1
1(rW,0,EF)u2 is transla-

tion invariant.
Note that Eq.~50! is a very general expression whic

holds provided that intralayer momentum is conserved
the interactions between the layers can be neglected.
valid in the presence of interactions within the layers and
a non-Fermi liquid.44 Second, this expression shows that f
weakly incoherent interlayer transport the interlayer cond
tivity is completely determined by theone-electron Green’s
function, whereas the intralayer conductivity is determin
by two-electron Green’s functions.35

It is the averaging of the phase factor over the spa
integral in Eq.~50! that gives rise to the AMRO effect. Th
length scale associated with the magnetic field for the qu
two-dimensional system is the cyclotron lengthR, which at
the Fermi energy isR5\kF /(eBcosu). For the quasi-one-
dimensional case the length scale associated with oscillat
perpendicular to the chains isR52tb /(evFB cosu).45 At this
length scale the phase difference between the wave func
of adjacent layers isL(R)5eBsinucR5g tanu. Naively,
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we might expect maximum resistivity when this phase d
ference is an odd multiple ofp, leading to a condition dif-
ferent from Eq.~2!. However, one must take into accou
averaging of the electron position over the perpendicular
rection.

We now proceed to evaluate Eq.~50! for the simplest
possible situation, where there is a Fermi liquid within ea
layer and the magnetic field is small enough that we can t
the semiclassical limit of the Green’s functions.

A. Quasi-two-dimensional case

The Green’s functions for layer 1, in the absence of sc
tering, can be written46

G~rW,rW8,t !15
m*

2p i\t

vct/2

sin~vct/2!
expS ivc

\
L D ~51!

and

L5
m*

2
F urW2rW8u2

2
cotS vct

2 D1~x1x8!~y82y!G , ~52!

wherevc5v0 cosu5eBcosu/m* is the cyclotron frequency
In order to calculate the conductivity we follow the sam
approach that Hackenbroich and von Oppen47 used to study
Shubnikov–de Haas oscillations in two-dimensional elect
systems. In the presence of scattering, the energy-depen
Green’s function is

G1~rW,rW8,E!5
1

i\E2`

`

dt expS i

\
~E1 iG!t DG~rW,rW8,t !,

~53!

whereG5\/2t is the scattering rate. The retarded Gree
functon is obtained usingG2(rW8,rW,E)5@G1(rW,rW8,E)#* . We
perform the integral in Eq.~53! by the stationary phas
method, which is valid in the semiclassical limit (\→0).
The stationary phase condition gives

E5
m* vc

2

8
S urW2rW8u

sin~vct/2!
D 2

. ~54!

This shows that if the cycloron radius isRc thenG1(rW,rW8,E)
vanishes forurW2rW8u.2Rc ; however, forurW2rW8u,2Rc there
exists two different cyclotron orbits and one finds an infin
set of stationary times given by47

Tn,q5
2pn

vc
1tq , ~55!

wheren determines the number of revolutions the electr
makes to get fromrW to rW8 and q5S or L denoting the two
different paths it can take~see Fig. 4!. The times to traverse
these paths are calculated using the the stationary phase
dition andE5m* Rc

2vc
2/2, to give

tS5
2

vc
arcsinS urW2rW8u

2Rc
D ,
-

i-

h
e

t-

n
ent

s

n

on-

tL5
2

vc
Fp2arcsinS urW2rW8u

2Rc
D G . ~56!

Putting all this together and performing the integrals,
obtain

G1
1~rW,rW8,E!5

m*

2i\ (
n50

`

(
q5S,L

S vc

p i\Esin~vcTn,q! D
1/2

3expS 2
Tn,q

2t D expS i

\
Sn,q2

ip

2
hn,qD ,

~57!

where

Sn,q5ETn,q1
m* vc

2
F urW2rW8u2

2
cotS vcTn,q

2 D
1~x1x8!~y82y!G , ~58!

andh is the Maslov or Morse index@the number of conju-
gate points along the orbit~Ref. 46, p. 223!#, hn,S52n, and
hn,L52n11. Equation~50! can be written

szz5
2e2tc

2c

\p E d2urW2rW8uuG1
1~rW,rW8,EF!u2

3cosS ec

\
BsinuUrW2rW8Usinf D , ~59!

wheref is the angle between the vectorurW2rW8u and thex
axis. Substituting the semiclassical expressions for
Green’s functions into the above equation and changing
integrals overr and r 8 to polar coordinates, one obtains
double sum@denoted by the subscripts~1 and 2! of n andq]
over the classical trajectories:

FIG. 4. Short and long semiclassical orbits joining two poin
within a layer of a quasi-two-dimensional system in a magne
field perpendicular to the layers.Rc is the radius of the cyclotron
orbit.
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szz5S m* etc

\2p
D 2S vcc

2EF
D (

n1 ,n250

`

(
q1 ,q25S,L

E
0

2p

dfE
0

2Rc
urW2rW8udurW2rW8u

3expS 2@Tn1 ,q1
1Tn2 ,q2

#

2t
D 1

Asin~vcTn1 ,q1
!sin~vcTn2 ,q2

!
expS i

\
@Sn2 ,q2

2Sn1 ,q1
#

2
ip

2
@hn2 ,q2

2hn1 ,q1
# D cosS ecB

\
sinuUrW2rW8Usinf D . ~60!

We make the simplification thatq15q2, for whenq1Þq2 the integrand oscillates; that is, as\→0 the oscillations cancel eac
other and therefore do not contribute. This gives

szz5S m* etc

\2p
D 2S vcc

2EF
D E

0

2p

dfE
0

2Rc
urW2rW8udurW2rW8u (

n1 ,n250

`

expS 2
p

vct
~n11n2! D

3Fexp~2tS /t!

sin~vctS!
1

exp~2tL /t!

sin~vctL! GcosS 2pF EF

\vc
2

1

2G~n22n1! D cosS ecB

\
sinuUrW2rW8Usinf D . ~61!

Terms withn1Þn2 correspond to the Shubnikov–deHaas oscillations. We neglect these by settingn15n2, since they will be
smaller that the leading order terms by a factor of order exp(2p/vct), and thus we have

szz5AE
0

2p

df (
n50

`

expS 2
2pn

vct
D H E

0

p/vc
expS 2

tS

t D cosFh sinS vctS

2 D GdtS1E
p/vc

2p/vc
expS 2

tL

t D cosFh sinS vctL

2 D GdtLJ ,

~62!
i
-

th

the

is
’s
where A5e2tc
2m* c/p2\4 and h5(2ec/\)B sinuRc sinf

52ckF tanu sinf52g tanu sinf. Combining the integra-
tions overtS and tL , and performing the summation overn,
one obtains

szz5
A

~12e22p/vct!
E

0

2p

df

3H E
0

2p/vc
exp~2t/t!cosFh sinS vct

2 D GdtJ . ~63!

To evaluate the integral overt, we make use of the identity32

cos~h sinb!5J0~h!12(
k51

`

J2k~h!cos~2kb!. ~64!

The conductivity then simplifies to

szz5AtE
0

2pFJ0~h!12(
k51

`
J2k~h!

11~ktvc!
2Gdf. ~65!

This integral is of the form*0
2pJ2k(z sinf)df, where z

52g tanu, which can be evaluated using the relation32

E
0

2p

J2k~z sinf!df52pJk~z/2!2. ~66!

We then obtain an expression for the conductivity which
of the form Eq.~1!. Previously, Yoshioka calculated the in
terlayer tunneling of a quasi-two-dimensional system in
absence of scattering.48
s

e

B. Quasi-one-dimensional case

The Hamiltonian within a layer in a magnetic field is

H5a i\vF

]

]x
22tb cosFbS 1

i

]

]y
2exBcosu D G , ~67!

wherea561 denotes which sheet of the Fermi surface
electron is on. The wave function within a layer is given by49

ckx ,ky ,a~x,N,t !5 expH i F2
et

\
1kxx1bkyN

2al sin~kyb2qx!G J , ~68!

whereN denotes the number of the chain, andx is the dis-
tance along the chain; the dispersion relations are

ea~kx ,ky!5a\kxvF ~69!

and

q5
ebBcosu

\
5

vB

vF
, ~70!

wherevB is the oscillation frequency given by Eq.~38!, and

l5
2tb

ebvFB cosu
. ~71!

The transverse motion of the electrons due to the field
approximately lb.45 The one-electron advanced Green
function in the absence of scattering is
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G1~x,x8,N,N8,t,0!

5 (
kx ,ky ,a

ckx ,ky ,a* ~x8,N,t !ckx ,ky ,a~x,N,0! ~72!

for t.0. Taking the Fourier transform~with respect to time!
of this and including a scattering rateG5\/2t,

G1~x,x8,N,N8,E!

5
1

i\E0

`

dt expH i

\
~E1 iG!tJ G1~x,x8,N,N8,t,0!. ~73!

After performing the integral int andkx
G152
i

\vF
(
ky ,a

1

a
exp$ i @bky~N2N8!1alL#%

3expH i ux2x8u
\vF

S E1
i\

2t D J , ~74!

where

L5 sin~kyb2qx8!2 sin~kyb2qx!. ~75!

This is similar to the quasiclassical Green’s function giv
by Gorkov and Lebed.50

Conductivity ~46! then becomes
szz5
e2tc

2c

\3vF
2pLxLy

(
N,N8

(
ky1 ,ky2 ,a

E dxE dx8FexpH i ~N2N8!S ky1b2ky2b2
ebcBsinu

\ D J
3exp$ ialS1%expH 2

ux2x8u
vFt J 1c.c.G , ~76!
m-

ux
where

S15L12L25 sin~ky1b2qx8!2 sin~ky1b2qx!

2 sin~ky2b2qx8!1 sin~ky2b2qx!. ~77!

If we now let M 65N6N8 then the sum overM 2 gives ad
function 2pd@ky1b,ky2b2(ebcBsinu/\)#. Replacingky1b
with kyb, the conductivity then simplifies to

szz5
e2tc

2c

\3pvF
2Lx

(
ky ,a

E dxE dx8

3Fexp$ ialS2%expH 2
ux2x8u

vFt J 1c.c.G , ~78!

where

S25 sin~kyb2qx8!2 sin~kyb2qx!

2sinS kyb2
ebcBsinu

\
2qx8D

1sinS kyb2
ebcBsinu

\
2qxD . ~79!

Now shift kyb to kyb1qx8 and make the substitutionD
5ebcBsinu/\, thusS2 becomes

S25 sin@kyb!2 sin@kyb2q~x2x8!#2 sin~kyb2D!

1 sin@kyb2D2q~x2x8!#. ~80!

We now letx65(x6x8)/2 andx25vFt, and perform the
integral overx1 . This simplifies the conductivity, giving

szz5
2e2tc

2c

\3pvF
(
ky ,a

E
0

`

dt exp$ ialS3%expH 2
2t

t J 1c.c.,

~81!
whereS3 is given by

S35 sin~kyb!2 sin~kyb22vBt !2 sin~kyb2D!

1sin~kyb2D22vBt !, ~82!

andvB5qvF . This can be separated into two parts and si
plified using the appropriate trigonometric identities

S3[m2b

[2 cosS kyb2
D

2 D sinS D

2 D
22 cosS kyb2

D

2
22vBt D sinS D

2 D
5D cosS kyb2

D

2 D2D cosS kyb2
D

2
22vBt D , ~83!

where we have takenD!1. We can justify this by consid-
ering the dimensions of the unit cell and the magnetic fl
passing through the area of the cell. If the magnetic fieldB
;10 T, and the areabc;10218 m2, then the fluxF5Bbc
will be small and thusD5F/F0!1, whereF05\/e is a
flux quantum. Rewriting the conductivity, we obtain

szz5
2e2tc

2c

\3pvF
(
a

E
0

`

dt expH 2
2t

t J E
2p/b

p/b dky

2p

3exp$2 ialb%exp$ ialm%1c.c. ~84!

Using the identity32

expF z

2 S h2
1

hD G5 (
n52`

`

hnJn~z!, ~85!

the exponentials inm andb become
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exp$2 ialb%5 (
n52`

`

2 i nJn~alD!

3expH inFkyb2
D

2
22vBt G J ,

~86!

exp$ ialm%5 (
n852`

`

i n8Jn8~alD!expH in8Fkyb2
D

2 G J .

Substitution of these into Eq.~84! and performing the inte-
gral in t gives

szz5
e2tc

2tc

2\3p2vF
(
a

(
n52`

`

(
n852`

`

2 i ni n8Jn~alD!Jn8~alD!

3F 1

11 invBtG E
2p/b

p/b

dky expH i S kyb2
D

2 D @n81n#J
1c.c. ~87!

This integral is zero unlessn52n8; thus

szz5
e2tc

2tc

b\3pvF
(
a

(
n52`

` F Jn~az!2

11 invBtG1c.c., ~88!

wherez5lD/\5(2ctb /\vF)(B sinu/Bcosu)5g tanu, and
g is the same as for the coherent case. The summation
a is performed by noting thatJn(z)25Jn(2z)2 for all n.
Finally we include the complex conjugate to obtain an e
pression which can be written as Eq.~1!.
s

er

-

C. Magnetic field parallel to the layers

We consider here the field range over which result~14!
holds for incoherent interlayer transport. We define the m
netic field asBW 5(Bx,0,0) and the vector potential asAW
5(0,2zBx,0). It is easiest to work with spectral functions
the momentum representation; the interlayer conductivity
then given by

szz5
e2tc

2c

\p (
k

A1~kW ,EF!A2~kW ,EF!, ~89!

whereA1 andA2 are the spectral functions for the two lay
ers. Due to momentum conversation, we can then write
spectral function for layer two in terms of layer one as

A1~kW ,EF!5A2S kW2
e

\
AW ,EFD5A~kW ,EF!, ~90!

where

A~kW ,EF!5
2G

@EF2e~kW !#21G2
, ~91!

andG5\/2t ande(kW ) is the dispersion within the layer.
We now specialize to the quasi-two-dimensional ca

Substituting Eqs.~91! and ~90! into the conductivity gives
szz5
e2tc

2c

\p3 E dkxdky

G

FEF2
\2

2m* ~kx
21ky

2!G2

1G2

G

H EF2
\2

2m* Fkx
21S ky1

e

\
cBD 2G J 2

1G2

. ~92!

Now, introduce polar coordinates (k,f), sokx
21ky

25k2 andky5k cosf, and defineD[(ecB/\)2 so that Eq.~92! becomes

szz5
e2tc

2c

\p3 E
0

`

k dkE
0

2p

df
G

F \2

2m*
kF

22
\2

2m*
k2G2

1G2

G

F \2

2m*
kF

22
\2

2m* S k21D1
2e

\
cBkcosf D G2

1G2

. ~93!
e
hat
ar
Suppose that the field is sufficiently large thatG
!\eBkFc/m* ~which corresponds tov0tg@1); then the
first spectral function has a sharp peak neark5kF , whereas
near that peak the second term varies slowly. Hence we
k5kF in the second term, and then integrate overk to give

szz5
e2tc

2cGm*

p2\3 E
0

2p

df
1

F \2

2m* S D1
2e

\
cBkF cosf D G2

1G2

.

~94!

When D!ecBkF /\, this integral will be dominated by the
behavior near the two zeros of cosf, so we can write the
integral as
et

szz5
2e2tc

2cGm*

p2\2 E
2`

`

df
1

F \

m*
ecBkFfG2

1G2

. ~95!

Performing the integral gives Eq.~14!, resulting in a magne-
toresistance which is linear in field.

When D;ecBkF /\, that is, ecB/\kF;1, deviations
from this linear in field behavior will occur. Ifc;10 Å,
ckF;3, and thenB'2000 T. Similar arguments apply to th
quasi-one-dimensional case. It will be shown in Sec. V t
for coherent interlayer transport, the deviations from line
dependence can occur at much lower fields.
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V. DEFINITIVE TESTS FOR COHERENT INTERLAYER
TRANSPORT

We have shown that the Yamaji and Danner oscillatio
exist for both coherent and weakly incoherent interla
transport and so cannot be used to establish that the F
surface is three dimensional. We now consider three pro
ties which are different for coherent and incoherent interla
transport.

A. Beats in magnetic oscillations

For quasi-two-dimensional systems, definitive evidence
the existence of a three-dimensional Fermi surface is the
servation of a beat frequency in de Haas–van Alphen
Shubnikov–de Haas oscillations.27 The frequencyF of these
oscillations is determined by extremal areasA of the Fermi
surface,F5\A/(2pe) ~Ref. 7!. For the warped cylindrica
Fermi surface~see Fig. 1 in Ref. 27! there are two extrema
areas, corresponding to the ‘‘neck’’ and ‘‘belly’’ orbits. Th
small difference between the two areas leads to a beatin
the corresponding frequenciesF1 and F2. In a tilted mag-
netic field the frequency difference is

F12F2

F1
5

4tc

EF
J0~kFc tanu!. ~96!

Table I lists several materials in which such beat frequen
have been observed. In b-(BEDT-TTF)2I3 and
b-(BEDT-TTF)2IBr2 the angular dependence of the be
frequency is consistent with Eq.~96! and tc /EF.1/175 and
1/280, respectively.51

However, Table I indicates that in many other quasi-tw
dimensional organic metals no beat frequency has been
served. This could be because the interlayer transport is
coherent or because the interlayer hoppingtc is so small that
the beats cannot be resolved experimentally. Suppose
oscillations but no beats are seen in the field range fromBmin
to Bmax. This means that cos@2p(F12F2)/B# has no zeros in
this field range, implying that

F12F2,
BminBmax

Bmax2Bmin
. ~97!

This together with Eq.~96! can be used to establish an upp
bound for tc /EF . For k-(BEDT-TTF)2I3 the absence o
beating has been used to establishtc /EF,1/3000.7,39 This
implies a resistivity anisotropyrxx /rzz;(tc /EF)2,1027.
However, the observed52 anisotropy in the
k-(BEDT-TTF)2X materials is about 1023. This inconsis-
tency suggests that the interlayer transport may be incohe
in k-(BEDT-TTF)2I3. However, it could be that the mea
sured value of 1023 is too large because resistivity aniso
ropy is too large because the measurement ofrxx involves
some component ofrzz due to an imhomogeneous curre
distribution or the current path being changed by sam
defects.

B. Peak in the angle-dependent magnetoresistance at 90°

Numerical solutions of Chambers’ formula~20! for coher-
ent interlayer transport show that for bo
quasi-one-dimensional9 and quasi-two-dimensional31 materi-
s
r
mi
r-
r

f
b-
d

of

s

t

-
b-
n-

at

r

nt

le

als, at sufficiently high fields, the angle-dependent mag
toresistance has a peak as the field direction approache
layers ~i.e., at u590°). This peak is absent for incohere
interlayer transport~see Figs. 1 and 2!. Hanasakiet al.31

identified the peak as being due to closed orbits which oc
when the field is parallel to the layers. These orbits are
sociated with the cyclotron frequency

V5v0S 2tcmc2

\2 D 1/2

5v0gS tc

EF
D 1/2

, ~98!

and so will only be important when the field is sufficient
large thatVt.1.

Table I lists whether or not the peak has been obser
for a range of quasi-two-dimensional metals. Note that
presence~absence! of the peak is not always consistent wi
the observed presence~absence! of beats. This can be be
cause the two sets of measurements were done on diffe
samples of different purity~and thus had different values o
t) or because the field was not large enough to observe
peak. The presence of a peak at 90° in the AMRO data9 for
(TMTSF)2ClO4 suggests that it has coherent interlay
transport.

C. Crossover from linear to quadratic field dependence for a
magnetic field parallel to the layer

Schofield, Wheatley, and Cooper34 considered the inter-
layer magnetoresistance for quasi-two-dimensional syst
with coherent interlayer transport and a magnetic field pa
lel to the layer. Equation~25! of Ref. 34 gives an expressio
for the interlayer conductivity for all values of the magne
field. They showed that whenVt!1 the magnetoresistanc
increases linearly with field, as in Eq.~14!. However, for
Vt@1 the field dependence becomes quadratic and is g
by

szz~B!

szz~0!
5

1.96

~gv0t!2S EF

tc
D 1/2

. ~99!

The deviations from linear behavior will occur whenVt
.1, i.e,v0t.(1/g)(EF /tc)

1/2. For typical organic samples
this will happen in the field range of 10–100 T. In contra
for incoherent interlayer transport, it was shown in Sec. IV
that the deviation from the linear field dependence would
occur until about 2000 T. We are unaware of any materia
which a search for this linear to quadratic crossover has b
made. This field dependence is to be contrasted to tha
angles slightly different from 90°, which will be given b
Eq. ~14!. The ratio of these two expressions provides
means to determinetc /EF sinceg andv0t can be deduced
from AMRO data.

VI. CONCLUSIONS

We have presented detailed calculations of the interla
magnetoresistance of quasi-one- and quasi-two-dimensi
Fermi liquids in a tilted magnetic field. Two distinct mode
were used for the interlayer transport. The first involved c
herent interlayer transport and made use of results of se
classical or Bloch-Boltzmann transport theory. The seco
model involved weakly incoherent interlayer transport whe
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the electron is scattered many times within a layer bef
coherently tunneling into the next layer. We found that t
dependence of the interlayer magneoresistance on the d
tion of the magnetic field is identical for both models exce
when the field is almost parallel to the layers. An importa
implication of this result is that coherent transport is n
necessary for the observation of the Yamaji and Danner
cillations. Hence observation of one of these effects in
particular material cannot be interpreted as evidence tha
material has a three-dimensional Fermi surface. Instead
propose three unambiguous tests for coherent interla
transport:~i! a beat frequency in the magnetic oscillations
quasi-two-dimensional systems,~ii ! a peak in the angular
dependent magnetoresistance when the field is parallel to
layers, and~iii ! a crossover from a linear to a quadratic fie
dependence for the interlayer magnetoresistance when
field is parallel to the layers. A survey of published expe
mental data on a wide range of quasi-two-dimensional
ganic metals suggests that some have properties~i! and ~ii !
others do not.

In future publications we will examine the frequency d
pendent interlayer conductivity and the Lebed and third
gular effects in quasi-one-dimensional systems. A mu
greater challenge is to explain the AMRO observed
(TMTSF)2PF6 at pressures of about 10 kbar,10,18 and in the
low-temperature phase ofa-(BEDT-TTF)2MHg(SCN)4@M
e
e
ec-
t
t
t
s-
a
he
e

er

he

the
-
r-

-
h

5K,Rb,Tl#. The angular dependence of the latter is inver
compared to that of the Yamaji effect. In particular, the ma
netoresistance is smallest when the field is in the layers,
opposite of what one expects based on the simple Lore
force arguments relevant to semiclassical magnetoresista
Understanding this may require knowledge of the effect
an orbital magnetic field on a strongly correlated electr
system. Little is known about this problem except in t
extreme quantum limit of a partially filled lowest Landa
level,53 which is far from the situation considered here whe
usually of the order of tens of Landau levels are filled.
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