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The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct
models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of
results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent
interlayer transport where the electron is scattered many times within a layer before tunneling into the next
layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance
oscillations(AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of
the magnetoresistance on the direction of the magnetic field is identical for both models except when the field
is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface
is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-
dimensional metals, respectively. A universal expression is given for the dependence of the resistance at
AMRO maxima and minima on the magnetic field and scattering tame thus the temperatyréVe point out
three distinctive features of coherent interlayer transgora beat frequency in the magnetic oscillations of
guasi-two-dimensional system§j) a peak in the angular-dependent magnetoresistance when the field is
sufficiently large and parallel to the layers, afiid) a crossover from a linear to a quadratic field dependence
for the magnetoresistance when the field is parallel to the layers. Propgrtesd (i) are compared with
published experimental data for a range of quasi-two-dimensional organic ni&@163-182609)02236-5

I. INTRODUCTION AMRO’s in the low-temperature  phase  of
a-(BEDT-TTF),MHg(SCN)[M=K,Rb,TI].”*

One of the most fundamental concepts in electronic trans- The explaination of the Lebed effect is controversial and a
port theory for elemental metals and semiconductors is thatumber of different theories have been propos&d?®It is
electronic transport involves the coherent motion of electron®ot clear that coherent transport models can explain the
in band or Bloch states associated with well-defined wavéngle-dependent magnetoresistance in the quasi-one-
vectors and group velocitiésAn important issue is whether dlmesnls(;???; ls(TMTSFQPFe at pressures of about 10
this concept is applicable to interlayer transport in stronglykbar,*****"*%r the anomalous AMRO’S. Consequently,
correlated  electron  systems such as high- We focus on the Danner and Yamaji oscillations here because

superconductor’,* organic conductorsand layered manga- ;Ehe'r Explanatlor]lmbterms of atth(;e?r-r?lmen_skonal Fermi S‘QF'
nite compounds with colossal magnetoresistgniéehe in- ace has generally been accepted. 1he resistance perpendicu-

terlayer transport is incoherent the motion between layers igar o the layers is a maximum when the field direction is

diffusive and it is not possible to define band states extend§UCh that the e_Iectro_n veIQC|(\perpendlcuIar_to the_ layers .
averaged over its trajectories on the three-dimensional Fermi

ing over many layers and a Fermi velocity perpendicular tosurface is zerg:2

the layers. In _that case a three-dimensional Fermi surface gg, /e different models for incoherent interlayer trans-
cannot be defined, and Bloch-Boltzmann transport theory,y have bheen considered previously. We shall distinguish

cannot describe the interlayer transport. between what we shall refer to aeaklyand stronglyinco-
Extensive experimental studies have been made of thgerent interlayer transport. The former occurs when there is
angular-dependent magnetoresistance oscillationgjrect transfer of the electron from one layer to another, and

(AMRO's)” which occur in layered organic conductdrs the intralayer momentum is conserved in the process. Con-
when the direction of the magnetic field is varied. The theosequently, interference between wave functions on adjacent
retical interpretation of these oscillations often involves alayers is possible. However, the transport can be incoherent
three-dimensional Fermi surface, and their observation i the sense that tunneling events are uncorrelated because
sometimes interpreted as evidence of the existence of the electron is scattered many times within the layer between
three-dimensional Fermi surface. In quasi-one-dimensionalinneling events. This model has been used to describe in-
metals these effects are are known as Dafriezbed (or  terlayer transport in the cuprafés?®and organicé” In con-
magic anglg'®~*?and third angular effects, depending on trast, strongly incoherent transport occurs if the the intralayer
whether the magnetic field is rotated in the-c, b—c, or ~ momentum is not conserved by tunneling and there is no
a—b plane, respectively(The most- and least-conducting interference between wave functions on adjacent layers. This
directions are thea and c axes, respectively In can occur because the tunneling is associated with elastic
quasi-two-dimensional systems, the effects observedcattering® because of inelastic processes such as coupling
include the Yamaff oscillations and the anomalous to a bath of phonon& or because of non-Fermi-liquid ef-
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TABLE |. For a range of quasi-two-dimensional materials, we list whether or not beats in magnetic
oscillations and a peak in the angular dependent magnetoresistance at 90° has been observed. For coherent
interlayer transport both these features should be present, provided a wide enough range of magnetic fields is
explored. A question mark indicates that the measurement has not been made.

Beats Peak at 90°

a-(BEDT-TTF),NH,Hg(SCN), no (Ref. 54 no (Ref. 54
a-(BEDT-TTF),KHg(SeCN), no (Ref. 28 no (Ref. 28
a-(BEDT-TTH,KHg(SCN), above 20 T ndRef. 55 no (Ref. 56
a-(BEDT-TTF),TIHg(SeCN), no (Refs. 57 and 58 ?
a-Et,Me, N[ Ni(dmit), ], ? yes(Ref. 59
a-(BEDT-TSF),KHg(SCN), above 6 kbar yesRef. 60 ?
Bu-(BEDT-TTF),l4 yes (Refs. 61 and 62 yes (Ref. 3)
B-(BEDT-TTF),IBr, yes(Refs. 51 and 68 yes (Ref. 63
k-(BEDT-TTF),l3 no (Ref. 64 yes(Ref. 65
k-(BEDT-TTF),Cu,(CN)5 at 7 kbar ? yesRef. 66
k-(BEDT-TTF),Cu(SCN), no (Ref. 67 2 (Ref. 69
0-(BEDT-TTF),l3 no (Ref. 69 yes(Ref. 70
SrL,RUO, yes(Ref. 7)) yes(Ref. 72

fects such as spin-charge separati®hFor both weakly and ous signatures of coherent interlayer transport and compare
strongly incoherent transport, the interlayer conductivity of athese signatures to published experimental data for a range of
bulk sample is determined by the tunneling rate between twguasi-two-dimensional metals.
adjacent layers. The interlayer resistance is then equal to the
number of layers in the sample times the resistance between II. ANGULAR-DEPENDENT
two layers. MAGNETORESISTANCE OSCILLATIONS

In this paper we present details of calculations of the an- ) S
gular dependence of the interlayer magnetoresistance for We assume that each layer of the metal is a Fermi liquid
both coherent and weakly incoherent interlayer transporfVhose elementary excitations are fermions with a wave vec-
when there is a Fermi liquid within each layer. Our maintor (ky,ky) and with a dispersion relation of the form
result is that coherent interlayer transport is netessaryo  €(K.ky). We consider the simplest posssible dispersion re-
explain the Yamaji and Danner oscillations. Hence their oblations for quasi-one- and quasi-two-dimensional systems.
servation isnot evidence of the existence of a three- (FOr a summary of our notation, see Table | in Ref). Zhe
dimensional Fermi surface. In contrast, we point out thrednterlayer conductivity in the absence of a magnetic field is
properties of the interlayer magnetoresistance which occuilénotedo?,. In this paper we will show that in a tilted mag-
only if the interlayer transport is coherer(i) a beat fre- netic field the interlayer conductivity, for both coherent in-
quency in the magnetic oscillations of quasi-two- terlayer transportexcept for fields very close to the laygrs
dimensional systemsij) a peak in the angle-dependent mag_and weakly incoherent interlayer transpdiar all field di-
netoresistance when the field is parallel to the layers fofections, is
sufficiently high fields, andiii) a crossover from linear to

. . . . *° 2
quadratic field dependence when the field is parallel to the _ 0 ’ J,(ytan6)
layers. A brief report of some of the results presented here 724 0)= 021 Jo(y1ano) +2V§1 1+ (vwyrcosd)?|’
appeared previousk/. )

In Sec. Il we present our main res{iig. (1)], an analyti- yihereJ,(x) is the sth-order Bessel functionyy is the os-

cal expression for the interlayer conductivity in the presence.., . . . T
of a magnetic field which is tilted at an angleelative to the ?'"at'on frequency associated with the magnetic field, gnd .
is a constant that depends on the geometry of the Fermi

normal to the layers. This result is valid for incoherent trans_surface” The scattering time is assumed to be indenendent
port for all field directions and for coherent transport, pro- : 9 P

vided the field is not almost parallel to the layers. We thenOf tehe momentum of the electron, but can vary with tempera-

use this expression to explain the basic features of the Dart" o .- ,
ner and ngaji oscillatigns. Simple expressions are de- If the field is sufficiently large an_d the tem_perature _suffl-
scribed for the dependence of the interlayer resistance on tHf ent_ly Ic;wl_;chat w07>.f1 ’t th(;n the If'rSt term '? tchl) Isth
magnitude of the magnetic field and the scattering rate whe ominant. HOWEVer, Ify tang equais a z€ro ot the zeroth-
the angled is at an AMRO maxima or minima. In Sec. Il we order Bessel fqnctlon, then at Fh.at an_glgz will be a mini-
derive Eq.(1) for the case of coherent interlayer transport form?ma";nf tt?]e |nttherlayer reS'St'V'B; W'Hlbe a magqmum. If
both quasi-two- and quasi-one-dimensional systems. This in? an » then the zeros occur at anglésgiven by
volves evaluating Chambers’ formula, a result of Bloch- _ 1 _
’ i tanf,=m(n—z n=123...). 2
Boltzmann transport theory. In Sec. IV we derive ED. for Y n=mn=a) 3--) @
weakly incoherent transport in both quasi-two- and quasi-This condition was first derived for the quasi-two-
one-dimensional systems. In Sec. V we consider unambigwdimensional case by Yamdft, and for the quasi-one-
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FIG. 1. Angular-dependent magnetoresistance oscillations. The FIG. 2. Dependence of the interlayer resistance of a quasi-one-
dependence of the interlayer resistance for a typical quasi-twodimensional system on the direction of the magnetic fi@lis the
dimensional system on the direction of the magnetic field is showrangle between the magnetic field and the least conducting direction,
for a range of magnetic field®. is the angle between the field and with the field in the same plane as the most conducting direction.
the normal to the layers: is the scattering time within the layers, The parameter which defines the anisotropy of the intralayer hop-
andw is the cyclotron frequency when the field is perpendicular toping y=2ct./fve=0.25. 7 is the intralayer scattering time, and
the layers. The curves shown are plots of Hg, which is valid for ~ wq is the frequency at which the electrons oscillate between the
all @ for incoherent interlayer transport and for édlexcept close to  chains when the field is perpendicular to the layers. Except very
90° for coherent interlayer transport. Note that the location of theclose to 90° this figure is similar to the experimental data on
maxima and minima is independent of the field and the scatteringTM TSF),CIO, in Ref. 9.
time. The dashed curve is a plot of the asymptotic expreg€ipn

which can be seen to be a very good approximationgfe20°. [ ne
'JI"I(Z) - _Z E( ) ’

dimensional case by Danner, Kang, and Chafkidetermi-
nation of these angles experimentally provides a valueyfor
and thus information about the intralayer Fermi surface. Thavhich is valid for z>n?, we can simplify Eq.(1) for the
values of the Fermi surface area of quasi-two-dimensionatonductivity. We rewrite it as

systems determined from AMRO’s are in good agreement

3

with the Fermi surface areas determined from the frequency c 3 (w)?
of magneto-oscillation§ Furthermore, AMRO’s can be used o ng{Jo(M)2+22 LZ , (4)
to map out the actual shape of the Fermi surface within the =1 1+(vx)

layer (see, for example, Refs. 20, 28, and.29 ]

The angular dependence of the interlayer resistipity ~Whereu=ytané andx=w,7cosd. We can substitute Eq.
=1/0r,,,% given by Eq.(1), for parameter values relevant for (3) for Jo(x) provided thax>1, so that the sum in E¢4)
typical quasi-two-dimensional systems is shown in Fig. 1C0Nverges rapidly. Separgtmg the sum into the sum of even
Figure 2 shows the angular dependence gffor parameter and odd terms, and using the fact that ZEas (nm/2)
values relevant to (TMTSKELIO,. The results are similar to  —(7/4)]=1+ sin(Zu) for evenn and 1 sin(Zu) for odd n,
the experimental results in Ref. 9, except near 90°. Botf9'V€S
figures are very similar to the results of numerical integration
of Chambers’ formula for coherent transpfEg. (17)], ex- 2ng
cept near 90°. For coherent transport there is a small peak in EEZ
p,A06) at 6=90°°3 This is due to the existence of closed
orbits on the Fermi surface when the field lies close to the
plane of the layers. For incoherent tranport these orbits do +(1-sin2u)
not exist, and so the associated magnetoresistance is not
present. Since Ed1) is also valid for incoherent interlayer theaqe series can be evaluated using the residue th&biem
transport, the Danner and Yamaji oscillations can be SXgive
plained equally well in terms of weakly incoherent transport.

(1+ sin2w)

- 1
2 & 1+(2nx)2)

®)

- 1
nZO 1+(2n+1)2x2) '

We want to find an expression far,(6) as 6— /2. Oy, X

A. Asymptotic form 0z 1 . I_(’ﬂ) . sin(2u) ®
N
Using the asymptotic forfd sml—( x)
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e I L L R I Hence, at a fixed field the resistivity at the AMRO maxima
y
® B ] will have the same temperature dependence as the scattering
L Omax i time, which is inversely proportional to the zero-field resis-
16 — tivity.
m N Resistivity minimaSimilar arguments will show that for
L _ the interlayer resistivity to be a minimuig= 6;,,,, where
T o .
S|Z T ] 1
R g 0 7] ytanéh,=| n+ ki (11
N | —
= 80 i and the resistivity then becomes
8 __ 9min __
4 _ pZZ( 0m|n 1B) n ar
i i 1 = woT COSO,;tan ﬁ .
o — p,AB=0)| n+ Z)’JT @07 COSCmin
0 P TR TR R AN SR SR TR WA A SR S T N (12)
0 1 2 3
Wyt cos 6 This is plotted in Fig. 3. Whemy7 cosé,,>1, then
FIG. 3. Universal dependence of the interlayer resistivity on the Prh Omin) T2 1
magnetic field and scattering time when the field is tilted at an angle —p (B=0) :7 + 2/ (13
z

corresponding to an AMRO minimun®f,;,) and an AMRO maxi-

mum (fmay) - For high fields the resistivity at the minima becomes which is independent of the field and scattering rate. Thus, at
independent of field, and has the same temperature dependencethe AMRO minima the resistance will have the same tem-
the zero-field resistivity. For high fields the resistivity at the perature dependence as the zero-field resistance.

maxima increases quadratically with field, and has the same tem- Fie|d in the layers:Now as #— 7/2, Xu— ywqr, andx
perature dependence as the inverse of the zero-field resistivity. The, o taking these limits ir6) gives

curves are not plotted for smadl,7 cosé because the results de-
rived in the text are not valid in that regime.

(14

Ozz

2

0
77) Oy

0= :
yoor

For wg7>1, Eq.(6) actually turns out to be a good approxi-
mation for ytan6>1 (see Fig. 1 It will now be used to The resistivity is linear in field at moderately high fields.
analyze the field and temperature dependence of the AMR®lowever, caution is in order because in deriving Eg).
maxima and minima. above, we required that>1. That this is more restrictive
than need be is suggested by the fact that Fig. 1 shows that
Eqg. (6) remains valid near 90°. Indeed, Ed.4) is valid: it
agrees with the calculations of other authors for both
o _ o ~ coherent* and incoherent transpdtt in a quasi-two-
Resistivity maximaFor the resistivityp,, to be a maxi-  gimensional system, provided the field is not too lafgee
mum, 6= 6, Where Secs. IVB and V ¢ Such a linear interlayer magnetoresis-
tance has been observed in,Bu0, (Ref. 36 and
N 1 (TMTSF),CIO, (Ref. 379. However, for coherent transport
ytanby,,=| n— 2™ ™) the dependence on field becomes quadratic for sufficiently
high field$* (see Sec. ¥ Note that Eq.(14) is actually in-
From this we can simplify sin(@) in Eq. (6), giving dependent of the scattering timeThis means that for mod-
erate fields the interlayer resistivity will only depend weakly
; P _ _ on temperature. This was observed in (TMTSHD,: when
sin2p) =sin(2ytanf) cog2nm) ! ® the temperature was increased from 0.9 to 8 K, the zero-field
resistivity (which is proportional to the scattering rate-
creased by a factor of about 6, but the resistance at 12 T
increased by less than 100Ref. 37, p. 64.

B. Field and temperature dependence of the resistivity at
critical angles

for all n. The resistivity is then written as

P24 Onax,B) B ®T COSHmax ©
(B=0)| n— E - ta 77 Ill. COHERENT INTERLAYER TRANSPORT
Pz 4 2wyTCOSHm,

If the interlayer transport is coherent, one can define a
This expression is plotted in Fig. 3. Now if the field is suf- Wave vectork, perpendicular to the layers and a three-
ficiently high and the temperature sufficiently low that dimensional dispersion relatiosny(k) of the form
woT oSO .,>1, then the resistivity becomes .
e3p(k) = e(ky ky) — 2t cogk,C), (15

P24 Omax) =1(w H2sin(260 ) (10) wheret. is the interlayer hopping integrat is the layer
p,AB=0) 7 ° max’: separation, and(k,,ky) is the intralayer dispersion relation,
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simple examples of which are given below. The electronicorder differential equation whose solution givés(t)

group velocity perpendicular to the layers is =k cosf.t) andk,(t) =kg sin(w.t), and
1 de(K) ¢ty y 16 _eBcosf
VS g ok, — sin(cky). (16) W= (24)

We calculate the interlayer conductivity by solving the Bolt-js the cyclotron frequency. Substitution of this into the
zmann equation in the relaxation time approximation, whichcomponent of Eq(23), and integrating, gives
leads to Chambers’ formula

k,(1)=Kk,(0) + kg tanf sin(wt). (25

e’r L of(E _
Uzz:mj Vz(k)Vz(k)( - ;—E))d3k, (17)  In order to calculate the component of the group velocity,
we substitute the expression fly(t) into the z component
wheref(E) is the Fermi function ane is the scattering time of Eq. (22), giving
which is assumed to be the same at all points on the Fermi

surface.v,(K) is the electron velocity perpendicular to the Vel ky(0),¢]=Csinusing+k;(0)c], (26)
layers, and is averaged over its trajectories on the Fermjnere
surface,
1 o . u=Cckgtané, (27)
v, (k)= ;f_mex% ;)vz[k(t)]dt, (18 4 is the angle around the orbit, a®k 2ct, /%. Integrating

the velocity in Eq.(26) over a period gives us the average
where k(0)=k. The time dependence of the wave vectorVelocity, which can be written as
E(t) is found by integrating the semiclassical equation of on
motion <vz>°<f0 sin(u sing)d¢~Jo(y tan), (28)
ﬂ( =_ EzﬁkGSDX B. (19) and in the absence of scattering this average velocity is equal
dt h to zero whenytané equals a zero ofl,. These particular

Now if the temperature is sufficiently low that<Eg , then values ofé corrrespond to the peaks in the resistivity.

af19E in Eq. (17) can be replaced by & function at the We can write Eq.(17) in a slightly simplified form in
Fermi energy, and Eq17) becomes order to highlight the fact that the integral is a surface inte-

gral. If the warping of the Fermi surface is small, we can

e’r [ > o parametrize the surface usikg and ¢, wherek,= kg cos¢
0'2224_773j Vo(K)VA(K) Sl Ep—e3p(K)]d°k. (200 andk,=k sin¢, giving

e?rm* R
A. Quasi-two-dimensional case 027~ 732 FSdsz(k)vz(k)
Here we consider a quasi-two-dimensional system with
. . - ezfrm* mlc J—
the energy dispersion relation -

2 N
= W 77/Cdkz d¢VZ(k)VZ(k). (29)

2 0

. h
w22y _
€ap(K) = 5w (Kt ky) =2t cogky), 21) Herev,(k) is defined in Eq(18), and the prefactom*/#?

arises from thes function. In terms of the parametrized sur-

. .
wherem* is the effective mass of the electron. We assumeface’ we have

the interlayer hopping is sufficiently small thiat<Er. The
Fermi surface is then a warped cylindsee Ref. 2Y. Sub- . 0 dg’
stituting the energy dispersion relation from Egl) we ob- Vz(k):f —exp @' Tw)V, [k, (0),p— '], (30
tain the components of the group velocity —=TWe

.. 1. fiky fik, 2ct;sin(cky) where we used the fact thath'=w.t and v [K(t)]
v(k)= ng63D= (220 =v,[k,(0),¢—¢']. For closed electron orbits the electron
group velocities are periodic functions ¢fand¢’. Thus the
In order to calculate the time dependencekgfwe must range of integration oy’ can be cut up into segments each
integrate Eq(19), which can be written in the form having length 2r. The conductivity is then

o

dk e _ _ePm* (e 4o 1
Gt~ mr(—kyBcost kB coso,kBsing). (23 O 4] A0) 7= oxp— 27l rag)

de

!
W¢

Terms of ordert, have been neglected once we assume 27 0
t. tand<7%2ke /m* c, whereke is the Fermi wave vector, de- X fo d¢Vz[kz(0),¢]f ,
fined by Er=%2kZ/2m* . Differentating thex andy compo- T
nents of Eq.(23) with respect to time, we obtain a second- XVK,(0),p— ' lexp(¢'/ Tw.). (31
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We use trigonometric identities to expand E26), and sub-
stitute the Bessel generating functiéh® obtain

Vz[kz(o)-¢_ ¢/]

=Csink,(0)c] Jo<m+2k21 Jo( )

X cog (2K)(p—¢")]|+Ccogk,(0)c]

X

ZIZO Jok+1(p) sinf(2k+1)(¢— ¢’)]] (32

If we substitute this into Eq30), we obtain

do’
o Jo(w)

— 0
wa=c|’ (sir{kz<0>c]

+ cog k,(0)c]

+2k§l Jon(p)cog (2K) (p—¢")]

220 Jor1(p)sin (2k+1)(p— ¢'>1D

X
Xexp o'l Twe). (33
Substituting  equations  for v, [k,(0),¢—¢'] and

v, k,(0),¢] into Eqg. (31), we note terms that survive is

whenk=1, since integrals such af%”d¢ cos(X¢)cos(29)
=8y, Wheredy, is the Kronecker delta, thus giving

dk,(0)

Oz~

e?(2cty)’m* F/C
471'3f14wC —ale

X| 21w, siMk,(0)c]?Jo( u)?

' ” Jok(w)?
sink(0)cl” Y Zi573 (Taror)?

T
+ —
W T

. (39

Jos1(p)?
k=0

+ COE{kZ(O)C]ZZ (2k+ 1)2+ (1/&)07')2

Performing the integral ovec,(0) yields the final expression

for the conductivity, which is of the form of Eq1). This
result was previously given by Yagt al*®

B. Quasi-one-dimensional case

COMPARISON OF COHERENT AND WEAKL . ..

8003

dimensional case, the rate of change of the wave véatat
defining the magnetic fiel= (B sin 6,0,B cosé)] is given

by
(368
. —2bB coséet, sin(bk,)
2_1( =27 eBh cosbve , (36b)
2bBsin fet, sin(bky)
(369

where we neglect terms involving by assuming that/¢
>v,tand, i.e., the warping of the Fermi surface is small and
the magnetic field is not too close to the layers. Integrating
the second equation gives

wpg
ky(t) = t+ky(0), (37)
where
eBbcosove

is the speed at which the wave vector traverses the Fermi

surface. To obtaik,(t) we substitute Eq37) into Eq.(360),

and integrate to obtain

2ebt,Bsing
ﬁsz

Substitution into the component of the velocity yields

k,(t)=k,(0)— cog wgt+bk,(0)]. (39

2ct,
VkA0),p—¢']= A

sinfck,(0)— ytandcog ¢p— ¢')],
(40)

where ¢’ = —wgt, ¢=bk(0), and y=2ct,/veh. This is
similar in form to thez component of the velocity for the
guasi-two-dimensional cageompare with Eq.(26)]. The
interlayer conductivity can then be written as

e2 wlc /b
by 0] T dovdi0).0

—lc
0 dd)' e(/)'/TwB
X _
f_zw wg [1—exp—27/Twg)]

XV ky(0), = "]. (42)

The integral from—27 to O over¢' is obtained by noting
that the electron group velocity is a periodic functiongsf,

we can cut the range @’ into segments having lengthr2

The factor (e 2™7“®g) is a consequence of this. Proceed-
ing as for the quasi-two-dimensional case leads to a result of
the form of Eq.(1). As far as we are aware, this expression

For the quasi-one-dimensional case we begin with the dishas not been derived previously for quasi-one-dimensional

persion relatioh

eap(K)=Ave( [k —ke) — 2t cog kyb) — 2t, cos(kzc)( )
35

wherevg is the Fermi velocity andy, is the intrachain hop-

systems.

IV. WEAKLY INCOHERENT INTERLAYER TRANSPORT

Suppose that the coupling between the layers is suffi-
ciently weak that the time it takes an electron to hop between

ping within the layers. The Fermi surface consists of twothe layergapproximately/t;) is much longer than the scat-
sheets atk,=*kg. By proceeding as for the quasi-two- tering time. This means that the intralayer scattering rate is
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much larger than the interlayer hopping integral eztﬁc . oo
Ta= [ fder d?r’Ay(r,r’ Eg)Ax(r',r,Ep).
h Xy
—>t, (42) (45
This can be rewritten by noting that the spectral function can
and the mean free path perpendicular to the layers is muche  written  as A, r',r,Eg)=—10[G] Ar,r',Eg)

smaller than the interlayer spacing. If this condition holds_
then the interlayer transport will be incoherent in the sense

GiAr',r,Eg)], leading to

that successive interlayer tunneling events are uncorrefated. .. e’tc

Previous estimates df. and = in various layered organic ozz(r’,r,EF)sz dzrf d?r’

metal$®3° suggest these quantities may be comparable at Thxty

low temperatures. Furthermore, the scattering rate usually X[GF(F.F"Ef)G, (F',F,Eg)
increases quadratically with temperatffegnd at tempera- Lt R R

tures of the order of tens of K this condition will almost +G(r' F,ER)GS(r,r' Ep)]. (46

certainly be satisfied The interlayer conductivity is then

proportional to the tunneling rate between just two adjacent | the Landau gauge, the vector potenfialfor the mag-

layers. If we assume that the intralayer momentum is con- .. . _ .= ; ;
. ) netic fieldB=(B,,0B,)=(Bsin6,0,B cosé), is

served, the tunneling rate can be calculated using standaréa (Bx 2 =( )

formalisms for tunneling in  metal-insulator-metal A_

: ; . . . . . A=(0xB,—zB,,0), 4

junctions*? Modeling the interlayer transport in this way is ( 2~2B.,0) St

reasonable, because many organic conductors consist of cophereB andA are related byg=V x A. The vector potential

ducting layers separated by insulating layers of anions thah the two layergsee Ref. 2yare not equal, and differ by a

are several A thick. Furthermore, intrinsic Josephson typ auge transformatioﬁ2=51+ﬁA where

effects have been observed in the superconducting state of

x-(BEDT-TTF),Cu(NCS), (Ref. 43. €A=A1—52:(0,—chin 6,0). (48

We consider the simplest possible model for the tunneling
between layers, direct transfer described by the Hamiltoniafthe Green’s functions in the two layers are not equal. This
reflects the fact that even though the magnetic field is invari-
I - - - ant under a gauge transformation the Green'’s function is not.
H12=—th d?rfey(r)Tea(r) +ea(r)fes(N], 43 The Green's function for layer 1 is thus multiplied by a
) ) phase factor exji/A)el A(r)—A(r")]}, giving

wherec,(r)" creates an electron in layer 1ratNote that the _ _

interlayer transport is coherent in the sense that during the _ . - -, I - L, L -

tunneling process the phase information in the electron’s Gz (r.r')= exp[f—LeA(r)]Gl(r,r )EXP[76A” )]'

wave function is not completely lost. However, it is incoher- (49

ent in the sense that due to the large intralayer scattering ra@ ki f this relationshi h

the interlayer transport cannot be described by Bloch state aKing use ot this refationship, we have

extending over many layers. If we consider a sequence of 2e2t2c ecB

tunneling events, they are uncorrelated because after a tun- ¢,,= c f erIGf(F,OEFHZCOS( ——sin 0y>,

neling event an electron is scattered many times before it hm h

tunnels to the next layer. (50

The interlayer currenit assocrated. withd 1, and produced where we have used the fact tHQI(F,O,EF)IZ is transla-
by a voltageV can be calculated using the formalism devel-ion invariant.
oped for metal-insulator-metal junctioffsThe result for the Note that Eq.(50) is a very general expression which

interlayer conductivity is holds provided that intralayer momentum is conserved and
the interactions between the layers can be neglected. It is

2
- c ﬂ =2e2t00f dzrf d2r’f d—EA (F.7" E) valid in the presence of interactions within the layers and for
Ly dVv veo Thily 27 B a non-Fermi liquid®* Second, this expression shows that for
weakly incoherent interlayer transport the interlayer conduc-
- . _df(E tivity is completely determined by theneelectron Green’s
XAZ(—r,r’,E)L, (44) J il ¢

function, whereas the intralayer conductivity is determined
by two-electron Green'’s functions.
whereA; andA, are the spectral functions for layers 1 and 2, It is the averaging of the phase factor over the spatial
andL, andL, are the dimensions of the layers. It will be integral in Eq.(50) that gives rise to the AMRO effect. The
seen below that in the presence of a tilted magnetic #gld length scale associated with the magnetic field for the quasi-
andA, are not identical. The zero-field lim{for which A;  two-dimensional system is the cyclotron leng®hwhich at
=A,) of this expression has been used in treatments of inthe Fermi energy iR=7%kg/(eBcoséd). For the quasi-one-
coherent interlayer transport in  the  cupratedimensional case the length scale associated with oscillations
superconductor& 2526 perpendicular to the chainsi®= 2t /(evgB cos#).*® At this

If we assumeT<Eg, then df(E)/JE can be replaced length scale the phase difference between the wave function
with a & function to give of adjacent layers is\(R)=eBsin6cR=ytand. Naively,

JE
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we might expect maximum resistivity when this phase dif- )
ference is an odd multiple of, leading to a condition dif-
ferent from Eq.(2). However, one must take into account
averaging of the electron position over the perpendicular di-
rection.

We now proceed to evaluate E0) for the simplest
possible situation, where there is a Fermi liquid within each long
layer and the magnetic field is small enough that we can take orbit
the semiclassical limit of the Green'’s functions.

4

A. Quasi-two-dimensional case i-'

The Green'’s functions for layer 1, in the absence of scat-

tering, can be writtet? FIG. 4. Short and long semiclassical orbits joining two points

within a layer of a quasi-two-dimensional system in a magnetic
field perpendicular to the layerR. is the radius of the cyclotron

G(Fi £).m m* wct/2 iwcL 51 orbit.
(. 01= 5 0t siwgt2) A 7 (52) i
t, =—/| w—arcsi . 56)
and Lo, 2R, (
m* |F— F’|2 wt o Putting all this together and performing the integrals, we

=5 |75 o o | Fx+xDY' =y) |, (52 obtain
wherew.= wy cosf=eBcosé/m* is the cyclotron frequency. .
In order to calculate the conductivity we follow the same g m* g 12
approach that Hackenbroich and von Opffarsed to study Gi(r.r'.B)= 2ihih % | TRESINwe Ty g)
Shubnikov—de Haas oscillations in two-dimensional electron ’ ’
systems. In the presence of scattering, the energy-dependent Thg [ i
Green'’s function is XexXp = = XP £Snq™ 5 Tnal

- 1 (= i , - (57)

G*(r,r’,E):mJ' dtex %(E+|F)t G(r,r',t),
(53  where
wherel'=#/27 is the scattering rate. The retarded Green’s
functon is obtained usinG ~(r’,r,E)=[G™(r,r’ ,E)]*. We M wc| [T =112 [@eTng
perform the integral in Eq(53) by the stationary phase Sna=EThg™ > > COf( 5 )
method, which is valid in the semiclassical limit--0).
The stationary phase condition gives
+(XEX)Y' =Y |, (58)

m*w§< |F—F’| )2
E= 5 | sinwa2)] - (54

and » is the Maslov or Morse indeghe number of conju-
This shows that if the cycloron radiusi®s thenG* (r,r’,E)  gate points along the orbiRef. 46, p. 228, 7, s=2n, and
vanishes fofr —r'|>2R,; however, forlr —r'|<2R, there ~ 7,L=2n+ 1. Equation(50) can be written
exists two different cyclotron orbits and one finds an infinite
set of stationary times given Y

2e%t2c .o -
- Tpr= h; Jd2|r—r’||Gf(r,r’,E,:)|2
= +
Thq o tq, (55 oo
wheren determines the number of revolutions the electron XCOS(WBS'M e S'n¢)’ (59

makes to get front to r’ andq=S or L denoting the two
different paths it can takésee Fig. 4. The times to traverse

these paths are calculated using the the stationary phase cd’ﬁbered’ IS t_he _angle betwee_n the_ vector—r| a_md thex
o a2 2 . axis. Substituting the semiclassical expressions for the
dition andE=m*RZw¢/2, to give

Green'’s functions into the above equation and changing the
5 r(|F_ F’|) integrals over andr’ to polar coordinates, one obtains a
=-—arcsi ,

double surdenoted by the subscripté and 2 of n andq]

tg=— . , .
O over the classical trajectories:

2R,
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2 w
m* et, (wcc) jzw J'2RC_) o

=\ > d r—r'|djr—r’
72z ( ﬁ277> 2E¢ n1%=0 ql,rg‘;s,L 0 ¢ 0 | d |

;{ - [Tnl,ql+Tn2,q2])
X ex
27

We make the simplification that, =
other and therefore do not contribute. This gives

2
m* et
UZZ:(—ﬁzﬂ) (ZEF)j dqbf Ir=r'|d|r—r" |n1n227 ex

005(277 7o, 2

We

exp(—tg/7)
sin(wts)

exp —t /1)
sin(wct; )

i ecB
[77n2 a,~ 7ng, ql] co TSIHG

Er
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: P( | [Sh Sh, .,
exp — -
. . q q
VSiN(@Tn g )SiNwcTn, ) (o 272 e
r—r’|sin qb) (60)

g», for whenq, # g, the integrand oscillates; that is, &is- 0 the oscillations cancel each

w
———(ny+n
o (Nt n2)

r—r’ (61)

1 ecB . )
= (n2—n1)>cos(Tsm0 smqb).

Terms withn,#n, correspond to the Shubnikov—deHaas oscillations. We neglect these by segtting, since they will be
smaller that the leading order terms by a factor of order exfifw.7), and thus we have

O'ZZ:AJO d¢2 ex

where A=e?t?m*c/#*4* and 7=(2ed#)B sindR.sin¢

=2ck:-tanf# singp=2ytanfsin¢y. Combining the integra-

tions overtg andt, , and performing the summation over
one obtains

2

27— (1— efZW/wCT) 0

27l wg ) th
x{fo exp(—t/r)cos{nsm(T)}dt]. (63

To evaluate the integral ovérwe make use of the identity

d¢

cod 7 sinB) = Jy( +2§‘, Jo(m)cog2kB).  (64)
The conductivity then simplifies to
2m o Jalm)
=A f J +2 —|d¢. 65
o2=AT | | Jo(7) g11+(kmc)2 ¢. (65

This integral is of the formf[3™J,(zsin¢)d¢, where z
=2ytan#, which can be evaluated using the relatfon

fszZK(Z sing)dp =27 (2/2)2. 66)
0

[ o {52

27 wg tL t
dts+ L/wc exy{—;) nsm( 5 ) dt ¢,

(62

B. Quasi-one-dimensional case

The Hamiltonian within a layer in a magnetic field is

(67)

, d 19
H=«aifive X—thcos{b TW_eXBCOSG)

wherea=*1 denotes which sheet of the Fermi surface the
electron is on. The wave function within a layer is givertby

et
- %'f‘kXX‘F bkyN

ka ,ky ,a’(x! N!t) = ex4 i

— a\ sin(kyb—qgx)

] : (68)

whereN denotes the number of the chain, and the dis-
tance along the chain; the dispersion relations are

ea(ky ky) = afik,ve (69)

and

ebBcostd wg

==y (70)

wherewg is the oscillation frequency given by E(8), and

A= — 71
~ ebvieBcosf’ 7D

We then obtain an expression for the conductivity which is

of the form Eq.(1). Previously, Yoshioka calculated the in- The transverse motion of the electrons due to the field is
terlayer tunneling of a quasi-two-dimensional system in theapproximately Ab.*® The one-electron advanced Green’s
absence of scatterif. function in the absence of scattering is
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G*(x,x",N,N’,t,0)

2 kX ND Y a(GNO) (72)

kx y

for t>0. Taking the Fourier transforitwith respect to timg
of this and including a scattering rate=%/2r,

G*(x,x',N,N’',E)

1

=7 dtexp{—(EﬂF)tJG (x,x",N,N",t,0). (73
After performing the integral in andk,

e’tc
Oz7—

. [x=x'|
Xexpli e\ S }exp; — +c.c.,
where
S]_:Ll_LZZ Sin(kylb_qx,)_ Sir‘(kylb_qx)
— sin(ky,b—qx’) + sin(ky,b—Qgx). (77

If we now letM . =N=N" then the sum ovek _ gives aé
function 2w 6[kyq1b,ky,b—(ebcBsind/f)]. Replacingky,b
with kb, the conductivity then simplifies to

e’tc
E fdxf dx’
7TV|:

X—x’
X exp{ia)\Sz}exp[ — | |} +c.c|, (78
VET
where
S,= sin(kyb—qx’) — sin(k,b—qx)
) ebcBsing ,
—sin kyb— T—qx
) ebcBsing
+sin kyb— T—qx). (79

Now shift kyb to kyb+qgx" and make the substitutiod
=ebcBsin /i, thusS, becomes

S,= sinkyb) — siMkyb—q(x—x")]— sin(kyb—A)

+ sinkyb—A—q(x—x")]. (80

We now letx. =
integral overx, . This simplifies the conductivity, giving

2e2tzc

+c.c.,

(81)

27

2t
J dtexp|i a)\Ss}exp{ -—

h’TTV':y

COMPARISON OF COHERENT AND WEAKL . ..

—_— > > dxf dx’
ﬁ3V|2:’7TLXLy N,N’ kyl,kyz,a f

(x£x")/2 andx_=v¢t, and perform the

8007

1 ) ,
3 ;exp{l[bky(N—N )+ arL]}
i|x—x’|( iﬁ)
Xex five E+Z’ , (74)

(79

where
L= sin(kyb—qgx’") — sin(kyb—qgx).

This is similar to the quasiclassical Green’s function given
by Gorkov and Lebed®
Conductivity (46) then becomes

) ) ebcBsing
exp i(N—N") kylb—kyzb—T
(76)
|
whereS; is given by
S;= sin(k,b) — sin(k, b —2wgt) — sin(k,b—A)
+sin(kyb—A —2wgt), (82

andwg=(qvg . This can be separated into two parts and sim-
plified using the appropriate trigonometric identities

S=p—p

=2 k,b 2 i 2
=ZCO0 y _E smE
A (A

—2co kyb—E—ZwBt sin| =

A A
=Aco kyb_E —Aco kyb—E—ZwBt, (83

N

where we have takeA<1. We can justify this by consid-
ering the dimensions of the unit cell and the magnetic flux
passing through the area of the ceII. If the magnetic fizld
~10 T, and the arehc~10"18 m?, then the flux®=Bbc
will be small and thusA = (I)/<DO<1 wheredy=rf/e is a
flux quantum. Rewriting the conductivity, we obtain

2e2t20 dt p{ w/b dk,
ex —
T2z~ ﬁ‘?’ﬂ'vF a 777/b277
Xexp{ —iakB}expliaku}+c.c. (84)
Using the identity?
[{ (h——” 2 h"J.(2), (85)
n=—w

the exponentials il and 8 become
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» C. Magnetic field parallel to the layers
exp{—|a)\,8}=n:2m —i"p(aNA) We consider here the field range over which resiut)
holds for incoherent interlayer transport. We define the mag-
A g 3_ . -
xexp in| kyb— = — 2wgt I’letIC field asB : (Bx,(_),O) and the _vector potentlal' a5 .
|2 =(0,—zB,,0). It is easiest to work with spectral functions in

(86)  the momentum representation; the interlayer conductivity is

©

, A then given by
explianu}= >, i" Jn,(a)\A)ex;{in’ k b——”
n'=—m
2:2

Substitution of these into Eq84) and performing the inte- Oyy= etee 2 A (K Ep)As(K,Ep), (89)
gral int gives

2t 7C ’ i -
oy 2 2 2 ZiN 3 (ahA)d,(ahA) whereA; andA, are the spectral functions for the two lay

ers. Due to momentum conversation, we can then write the

ﬁs’ﬂzv;: a N=—%® nl—_ o X )
spectral function for layer two in terms of layer one as

/b
—1+ianT J_W/bdkyexp{l(kyb—E [n"+n] ) e )
Al(k'EF):AZ k_ %A,EF :A(k,EF), (90)
+c.c. (87)
This integral is zero unless= —n’; thus where
ezthC Jn(az)?
0,,= ——|+c.c., (88
“ bhdmve @ nSx [1+inwgT A(K,Ep)= 2l (92)
L _ > 2 21
wherez=\A/A=(2ct,/Ave) (B sin /B cosh)=ytand, and [Be—e(]™+T

v is the same as for the coherent case. The summation over
a is performed by noting thal,(z)2=J,(—2)2 for all n.  andT'=#/27 and (k) is the dispersion within the layer.
Finally we include the complex conjugate to obtain an ex- We now specialize to the quasi-two-dimensional case.

pression which can be written as Hd). Substituting Eqs(91) and (90) into the conductivity gives
e’t’c r r
UZZ:WJ dkxdky 72 . 2 , Y ) e 21 2 2- (92
EF—Zm*(kX+ky) +I EF—W ks + ky+ %CB +I

Now, introduce polar coordinateg,(®), so k>2<+ k)2,=k2 andk,=k cos¢, and defineA=(ecB/%)? so that Eq(92) becomes

e’tc [P g r r
UZZ_WL fo ’ —ﬁz k2 " k2 2+F2 i : K2+ A+ 2e Bk 2+1“2. *
2m* F 2m* 2m 7 cBkeose
|
Suppose that the field is sufficiently large thdt 2e2t2cI'm*
<fieBk-c/m* (which corresponds tay7y>1); then the Oy~ T do 5 . (95
first spectral function has a sharp peak rleakg, whereas o —echc¢> 412
near that peak the second term varies slowly. Hence we set *
k=kg in the second term, and then integrate oké¢o give
eztﬁcl“m* o 1 Performing the integral gives E(l4), resulting in a magne-
UZZ:WJ 5 o > . toresistance which is linear in field.
0 {_* A+ —cBke cos¢ } +T2 When A~ecBk/#, that is, ecB/ike~1, deviations
2m h from this linear in field behavior will occur. IE~10A,

94 ckg~3, and therB~2000 T. Similar arguments apply to the
WhenA<ecBk /%, this integral will be dominated by the quasi-one-dimensional case. It will be shown in Sec. V that
behavior near the two zeros of c¢sso we can write the for coherent interlayer transport, the deviations from linear
integral as dependence can occur at much lower fields.
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V. DEFINITIVE TESTS FOR COHERENT INTERLAYER als, at sufficiently high fields, the angle-dependent magne-
TRANSPORT toresistance has a peak as the field direction approaches the

We have shown that the Yamaji and Danner oscillations!ayerls (e., at §=90°). TE.'S pelak |sda2bs|,_<|ent forkl_ncor;glrent
exist for both coherent and weakly incoherent interlayer!mer ayer transporisee rigs. - an ) anasakiet .
transport and so cannot be used to establish that the Ferr'r(11|entlflecj the peak as being due to closed orbits which occur

por . : . when the field is parallel to the layers. These orbits are as-
surface is three dimensional. We now consider three proper-_ - X
i i . . . sociated with the cyclotron frequency
ties which are different for coherent and incoherent interlayer

transport. 2t mc2
Cc
L

1/2 to\12
Cc

= wo?’(E—) : (98
A. Beats in magnetic oscillations F

For quasi-two-dimensional systems, definitive evidence oftnd SO will only be important when the field is sufficiently
the existence of a three-dimensional Fermi surface is the ofarge that7>1.
servation of a beat frequency in de Haas—van Alphen and Table | lists whether or not the peak has been observed

Shubnikov—de Haas oscillatioR&The frequencyF of these ~ fOf @ range of quasi-two-dimensional metals. Note that the
oscillations is determined by extremal area®f the Fermi ~ Presencéabsencgof the peak is not always consistent with

surface,F=#A/(27€) (Ref. 7. For the warped cylindrical the observed presencabsencg of beats. This can be be-
Fermi surfacesee Fig. 1 in Ref. 27there are two extremal Cause the two sets of measurements were done on different
areas, corresponding to the “neck” and “belly” orbits. The samples of different purityand thus had different values of

small difference between the two areas leads to a beating 9 ©" because the field was not Iargoe enough to observe the
the corresponding frequenci€s and F,. In a tilted mag- Peak. The presence of a peak at 90° in the AMRO teate

netic field the frequency difference is (TMTSF),CIO, suggests that it has coherent interlayer
transport.
Fi—F, 4t
Fip - E_F‘]O(kFC tane). (96) C. Crossover from linear to quadratic field dependence for a

) o ) . magnetic field parallel to the layer
Table | lists several materials in which such beat frequencies i ) )
have been observed. In B-(BEDT-TTE)l; and Schofield, Wheatley, and Coopérconsidered the inter-

B-(BEDT-TTF),IBr, the angular dependence of the beatla_yer magnetqresistance for quasi—two-dimensilongl systems

frequency is consistent with E¢96) andt,/Er=1/175 and with coherent mterlaygr transport and a magnetic field paral—

1/280, respectivel§: lel to th_e layer. Equat|0(12_5)_ of Ref. 34 gives an expression
However, Table | indicates that in many other quasi-two—for the interlayer conductivity for all values of the magnetic

dimensional organic metals no beat frequency has been off€!d- They showed that whefir<1 the magnetoresistance
served. This could be because the interlayer transport is i

{ncreases linearly with field, as in E¢l4). However, for
coherent or because the interlayer hopginis so small that Q71 the field dependence becomes quadratic and is given
the beats cannot be resolved experimentally. Suppose thQY

oscillations but no beats are seen in the field range Bam ,(B) 1.96 /EF 12
2 .

to Bihax- This means that cpam(F,—F,)/B] has no zeros in - S — (99)
this field range, implying that 0,40)  (ywor)?| te
B.. B The deviations from linear behavior will occur wheénr
Fi-Fo<g mn gax . (97)  >1,i.e,wor>(1/y)(Er/t)Y2 For typical organic samples
max_ Pmin this will happen in the field range of 10—100 T. In contrast

This together with Eq(96) can be used to establish an upper for incoherent interlayer transport, it was shown in Sec. IVC
bound fort./Er. For x-(BEDT-TTF),l; the absence of thatthe deviation from the linear field dependence would not

beating has been used to establishE-<1/30007° This ~ occur until about 2000 T. We are unaware of any material in
implies a resistivity anisotropyp,,/p,,~ (t./Eg)2<10~7.  Which a search for this linear to quadratic crossover has been
However, the observéd anisotropy in the Mmade. Th|s fleld.dependence is to bg conltrasted.to that at
«k-(BEDT-TTF),X materials is about IC%. This inconsis- angles slightly d|fferent from 90°, which W_'” be given by
tency suggests that the interlayer transport may be incohereR@- (14). The ratio of these two expressions provides a
in k-(BEDT-TTF),l5. However, it could be that the mea- Means to determing/Eg sincey andwo7 can be deduced
sured value of 10° is too large because resistivity anisot- rom AMRO data.

ropy is too large because the measuremenp,Qfinvolves

some component of,, due to an imhomogeneous current VI. CONCLUSIONS
distribution or the current path being changed by sample . . .
defects P g g y P We have presented detailed calculations of the interlayer

magnetoresistance of quasi-one- and quasi-two-dimensional
Fermi liquids in a tilted magnetic field. Two distinct models
were used for the interlayer transport. The first involved co-
Numerical solutions of Chambers’ formul20) for coher-  herent interlayer transport and made use of results of semi-
ent interlayer transport show that for both classical or Bloch-Boltzmann transport theory. The second
quasi-one-dimensiorahnd quasi-two-dimensiorialmateri-  model involved weakly incoherent interlayer transport where

B. Peak in the angle-dependent magnetoresistance at 90°
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the electron is scattered many times within a layer before= K,Rb,TI]. The angular dependence of the latter is inverted
coherently tunneling into the next layer. We found that thecompared to that of the Yamaiji effect. In particular, the mag-
dependence of the interlayer magneoresistance on the diregetoresistance is smallest when the field is in the layers, the
tion of the magnetic field is identical for both models exceptopposite of what one expects based on the simple Lorentz
when the field is almost parallel to the layers. An importantforce arguments relevant to semiclassical magnetoresistance.
implication of this result is that coherent transport is notynderstanding this may require knowledge of the effect of
necessary for the observation of the Yamaji and Danner osan orbital magnetic field on a strongly correlated electron
cillations. Hence observation of one of these effects in &ystem. Little is known about this problem except in the
particular material cannot be interpreted as evidence that thétreme quantum limit of a partially filled lowest Landau
material has a three-dimensional Fermi surface. Instead, wavel 5 which is far from the situation considered here where

propose three unambiguous tests for coherent interlaygisyally of the order of tens of Landau levels are filled.
transporti(i) a beat frequency in the magnetic oscillations in

guasi-two-dimensional system@i) a peak in the angular-
dependent magnetoresistance when the field is parallel to the
layers, andiii) a crossover from a linear to a quadratic field
dependence for the interlayer magnetoresistance when the This work was supported by the Australian Research
field is parallel to the layers. A survey of published experi-Council, the Australian Department of Industry, Science and
mental data on a wide range of quasi-two-dimensional orTechnology, and the USA National High Magnetic Field
ganic metals suggests that some have propefitiesnd (ii) Laboratory which is supported by NSF Cooperative Agree-
others do not. ment No. DMR-9016241 and the state of Florida. We thank

In future publications we will examine the frequency de-C. C. Agosta, P. W. Anderson, N. Bonesteel, J. S. Brooks, P.
pendent interlayer conductivity and the Lebed and third anM. Chaikin, E. I. Chashechkina, S. Hill, B. E. Kane, I. J. Lee,
gular effects in quasi-one-dimensional systems. A muchA. H. MacDonald, J. Merino, K. A. Moler, and J. S. Qualls
greater challenge is to explain the AMRO observed infor helpful discussions. We thank J. Wosnitza for helpful
(TMTSF),PF, at pressures of about 10 kbd®and in the comments on the manuscript and providing experimental
low-temperature phase af-(BEDT-TTF),MHg(SCN),[ M data prior to publication.
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