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Elasticity of an electron liquid
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The zero-temperature response of an interacting electron liquid to a time-dependent vector potential of wave
vector g and frequencyw, such thatq<qg, qQue<w<Eg/#% (whereqg, vg, andEg are the Fermi wave
vector, velocity, and energy, respectivelis equivalent to that of a continuous elastic medium with nonvan-
ishing shear modulusx, bulk modulusk, and viscosity coefficientsy and {. We establish the relationship
between the viscoelastic coefficients and the long-wavelength limit of the “dynamical local-field factors”
G (1)(9,0), which are widely used to describe exchange-correlation effects in electron liquids. We present
several exact results fqr, including its expression in terms of Landau parameters, and practical approximate
formulas foru, 7, and{ as functions of density. These are used to discuss the possibilitytrahaverse
collective mode in the electron liquid at sufficiently low density. Finally, we consider impurity scattering
and/or quasiparticle collisions at nonzero temperature. Treating these effects in the relaxation)timpe (
proximation, explicit expressions are derived foiand % as functions of frequency. These formulas exhibit a
crossover from the collisional regimen¢<1), whereu~0 and »~nEgr, to the collisionless regimea(r
>1), whereu~nEg and ~0.[S0163-182609)02632-9

[. INTRODUCTION time it takes the system to return to thermal equilibrium after
being slightly disturbed from it. lfor<1 one is in the
The response of aolid body to external macroscopic collision-dominated(or hydrodynamit regime, in which
forces is described by the theory of elastidityy a homoge-  u(w) is negligible andy(w) and {(w) are finite. If, on the
neous and isotropic bodyhe response is controlled by two other hand,wr>1, one is in the collisionlesgor elastig
real elastic constants, the bulk moduldsand the shear regime, wherew(w) has a finite value, while the viscosities
modulusy; dissipation is negligible. are small. In either case, the bulk modulus does not show a
The macroscopic response oliguid system, on the other significant dependence on frequency.
hand, is usually described in terms of the Navier-Stokes In this paper we explore the possibility of describing the
equatiori of classical hydrodynamics. This is, at first sight, long-wavelength dynamics of a quantum Fermi liduikar
very different from elasticity. First of all, by the very defini- the absolute zero of temperature in terms of classical vis-
tion of a liquid, the shear modulus vanishes. Second, tisere coelastic equations of motion. Limiting ourselves to line
dissipation, due to the two viscosity coefficienis and ear responseof the quantum liquid to an external vector

{—the “shear” and “bulk” viscosities, respectively. Only potential ,&(q,w) of wave vectorq and frequencyw, we

the bulk modulus remains approximately the same in thghall show that the viscoelastic description is possiated
liquid as in the solid state. usefu) in the regime

Such a sharp distinction disappears at finite frequencies,
where liquids develop a solidlike characteristic, namely, a
nonvanishing shear modulus. Both liquids and solids follow qd<de, Q<owlvg, (1.3
a commonviscoelasticbehavior, which can be mathemati-
cally described by a single set of equatidisay the equa- wherevg is the quasiparticle Fermi velocity arg} is the
tions of elasticity with complex frequency-dependent elastic Fermi wave vector. In other words, the frequency must be
constants high compared to the characteristic energy of quasiparticle-
- quasihole pairs at wave vectqr which tends to zero when
K(w)=K(ow)—iol{(w) (1.)  g—0 (see Fig. L The viscoelastic coefficients will be ex-
pressed in terms of the long-wavelength limit of the dynami-
cal local-field factorsG, (1)(q,w): these are mathematical
(1.2 constructs(defined below that are widely used to describe
exchange-correlation effects in Fermi liquids.
The viscoelastic coefficient&, w, ¢, and  on the right- Most of this paper is devoted to the taskoaficulatingthe
hand side are all real functions of frequency. viscoelastic coefficients of an electron liquidoth in three
The crucial parameter that controls the prevalence of soland two dimensionsn the limit of w— 0, that is, in practice,
idlike or liquidlike behavior in the liquid isv7, the ratio of  for w<<Eg but still satisfying condition(1.3). Such coeffi-
the frequency to the inverse of the relaxation timethe cients are particularly relevant in the framework of time-

and

ww)=plw)-ion(o).
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L L standard “relaxation time approximation(RTA)!° to ap-
proximate the collision integral in the quasiparticle transport
Q be?* | equation. The low-frequency regime now splits into two dis-
tinct regimes: collisional ¢7<1) and collisionless ¢~
>1). The restriction given by Eq1.3) remains in force in
i both regimes. By solving the transport equation in the RTA
. we obtain explicit expressions for the elastic and viscous
— coefficients. In the collisionless regime, these expressions re-
1 duce to the ones derived in Sec. | this paper. In the colli-
1 sional regime, they are very different: the shear modulus
‘ ] vanishes(as expected for an ordinary liquidand the shear
eV v% viscosity tends to the limity= u7 whereu is the collision-
Q=av. i less shear modulus. Our simple analytic expressions clearly
exhibit the crossover from the collisional to the collisionless
regime!!
We have emphasized the importance of condititrB)
] that assures the possibility of a viscoelastic description of the
article—hole reg. i dynamics of the Fermi liquid. What happens if this condition
i ' . ' . L is violated? The behavior of the microscopic current-current
q response function of a Fermi liquid changes dramatically as
one goes from thg<w/vg regime to theg> w/vg regime,

FIG. 1. The region below the line=vgq is the quasiparticle- .
quasihole regime. The viscoelastic approach applies to the regio%ven thougfy andw remain small compared ig: andEg,

w>Vve(q. The line w=1/7 separates the collisional viscoelastic re- resPeCtNelY' The phy_S|0aI reason is that the respon_se in the
gime and the collisionless viscoelastic one. second region is dominated by electron-hole excitations that

are absent in the first. Because of the change in the character
dependent density-functional thecrwhere they fully deter-  of the response, the curretbes nobbey classical viscoelas-
mine the low-frequency regime. tic equations of motion in the second regime. Alternatively,

We first consider the case of a unifortranslationally if one insisted on casting the equation for the current in a

invariand electron gas at the absolute zero of temperature. Iniscoelastic form, one would be forced to use visco-elastic
this case the low-frequency elastic constafitsnd . can be  coefficients thadivergein the g—0 limit. This shows that
expressed exactly in terms of the Landau paramétgrd=,;,  the visco-elastic theory is not a natural description of the
andF,—at least insofar as the Landau theory of Fermi lig- physics foro<qvg .
uids applies. The result for the bulk modulusK This paper is organized as follows: In Sec. Il we briefly
=n?d?e(n)/dn? wheree(n) is the ground-state energy den- review elasticity, hydrodynamics, and the local-field factor
sity andn is the particle densifyhas been known for a long representation of the current-current response functions of a
time,"> and can be straightforwardly evaluated from theferm; liquid. We establish the relationship between the dy-
knowledge of the ground-state energyThe result for the  namical local field factors and the frequency-dependent
shear modulus igto the best of our knowledgeew and, jisco-elastic coefficients of Eqél.1) and (1.2). In Sec. Il
unfortunately, not so easy to evaluate. For this reason, Wge gerjve an exact expression for the shear modulus of the
propose an approach " W|gner, namely, we calculate Fermi liquid atT=0 in term of Landau parameters, and a
the shear modulus at both high and low densities—where th .

igorous upper bound on the value of the elastic constants. In

calculation can be done with relative ease—and interpolat%ec IV we present approximate analytical expressions for

between these two limits. The proposed interpolation func—th luati f the vi lasti ficients of an int ¢
tion is close to the results of recent mode-coupling calcula; € eévaluation of the visco-elaslic coetlicients ot an interact-

tions of the dynamical local-field factbat sufficiently high-  "d €lectron liquid as functions of density. These expressions
density. are u;ed to discuss _the possibility oftraansversesognd

We proceed in a similar way to the calculation of the Mode in the low-density electron gas. In Sec. V we include
viscosities. First the shear viscosityis analytically calcu- e_Iectro_n-|mpur|_ty, and thermally induced quasiparticle colli-
lated in the high density limit, making use the formalism of Slonsvia Mermin’s relaxation-time approximation. We pro-
Nifosi and co-workerfor the imaginary part of the dynami- Vide explicit formulas for the frequency-dependéan the
cal local-field factor. Then we devise a numerical fit thatScale of the inverse relaxation tijnshear modulus and vis-
reduces to the analytical result in the high-density limit andc0Sity, exhibiting the crossover between the collisional and
reproduces the numerical data of Ref. 9 at lower density. Th&ellisionless regimes.
bulk viscosity ¢ is found to be approximately zero in this
approach.

The last part of the paper is devoted to a treatment of Il. VISCOELASTIC CONSTANTS OF A FERMI LIQUID
relaxation effects caused either by collisions with impurities
or by collisions between thermally excited quasiparticles.
We assume that both effects can be described by a single The equation of motion for the elastic displacement field
relaxation timer, such that 1#/<Eg, and make use of the u(r,t) in a homogeneous and isotropic solid is

SIS
LRSI

RS
SRR

1/T

A. Macroscopic equations
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. e and the longitudinal vector potentidl, (q,w) is equivalent,
1=/ #|V(V- 0+ pViu+ Ry, moduloa gauge transformation, tosgalar potentialV(q, )
(2.2) such that

>

whereK and p are constants, known as the bulk and the I q -
shear modulus, respectivelyjs the number of space dimen- AL, @)= V(0. 0). (2.10

sions,lf(F,t) is an externally applied volume force density,

is the equilibrium number density, amdis the mass of the In writing these equations we have assumed that the external

particles. field ,&L includes, self-consistently, the contribution of the
We consider periodic forces of the form mean electrostatic field generated by the density fluctuation
B n, [the Hartree field/y=v(q)n,].
F(r,t)=F(q,w)e@ " “Ytcc., (2.2 Let us now consider the classical hydrodynamical equa-

tion for the current density in a liquitlin the linear approxi-

which induce periodic displacements mation with respect tg andA it has the form

J(F,t)=l](c*],w)e'(q'““’t)+c.c. (23) . K Iw{ 2 |(l)7] a[d’ J-)(avw)]
) . . ) —ilomj(q,w)= ———+<1——)
In order to make contact, later, with microscopic theories n d/ n lw
of Fermi liquids, we write the force as the time derivative of 0y g )
a vector potentiaf + mfl(gl,w) —iwnA(q,w), (2.11
E(f.)=n IA(r,t) 2.4 where we haye used the conti_nuity equatiard) to rewrite
' a ' the hydrostatic pressure term in the Euler equatam
and introduce the current density R dp(n). - dp(n)./q-j(q,)
. —Vp(q,0)= = =7 =VMm(q,0)= —5 =0 —— |-
- au(r,t) (212
jr=n—y 25 :

The constants; and { are the shear and bulk viscosity co-
as its conjugate field. The equation of moti¢hl), written  efficients, respectivelyp(n) is the equilibrium pressure as a
in terms of the Fourier transform of the current density, takesunction of density and is related to the bulk modulus by the

the form relationK=ndp(n)/dn.
Equationg2.11) and(2.6) are very similar. The hydrody-
.- K wlalg-j(g,0)] namic equation differs from the elastic equation through the
—lomj(q,0)=|—+|1- a) T e following replacements(i) The shear modulug is replaced

by the imaginary quantity-iw », which vanishes ab=0 in
agreement with the notion that a liquid has no resistance to
shear.(ii) The bulk moduluK acquires an imaginary part
—iwZ, where( is the bulk viscosity.

Both the current and the vector potential can be written as These observations suggest the use of a single language—
sums of longitudinal and transverse componépasallel and  say that of elasticity theory—to describe both the liquid and
perpendicular toq, respectively j=j, +jr and A=A, the solid. In this generalized scheme, the equation of motion

+A;, and the equations of motion for longitudinal and becomes
transverse components decouple. The solution of E6) is

f(a,w)—iwnzi(a,w). (2.6)

3|t

omiG.o) :{r«w) ( ) (o) |dld-j(d,0)]
- - n/m 1q iw
jL(g,0)= ALY FAL(d,0) (2.7
1= _2+2 1‘6)? mw? ,u(w)lq q —|wnA(q w), (2.13
and ~ ~ )
where u(w) and K(w) are the frequency-dependent vis-
n/m coelastic constants defined in the introducfiis.(1.1) and
j1(g,0)= ————5A(q,0). 28 (1.2] _ _ _ o
& NQ The solution of this equation of motion is
n? mo?
N - - n/m N
We note thatj (g,) is related to the induced density j.(Q,0)= R (@) 1 @] n SAL(0, @)
changml(ﬁ,w) by the continuity equation 1— @ 2(1__ o iz
n2 d n2 Mw
(2.149

n(g,)=—-j(q,0) (2.9

e la.

and
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n/m are complex functions of frequency, which satisfy Kramers-
i10,0)= ——=—-A(q,0). (2.15  Kronig dispersion relations between their real and imaginary
_ u(w) nq parts (see the discussion in Sec.)land «¥=¢, o(?=%,
n2 mo? a¥=2 oP=1

Comparing Eq.(2.19 with the macroscopic response
The key difference between a solid and a liquid is that thefunctions(2.14) and(2.15), we are led to the following iden-

solid has an essentially real (u finite, 7~0), whereas a tifications:
liquid has an essentially imaginagy (7% finite, u~0). As ~
for the generalized bulk modulus, its real parlated to the (@)= a{NEg+n?fycq(w) (2.21
compressibility is nearly the same in the two phases. The
bulk viscosity is generally of the same order of magnitude as
the shear viscosityput, in the case of the electron liquid, it _
will be shown to vanish within the mode-coupling approxi- K(w)=
mation of Ref. 9.

nEg

2
-[o- 2

2
B. Connection with microscopic linear-response theory +n9 fye(w)— . (222

2
2— a) fch(w)

Let us now turn to the microscopic formulation of the _ _ )
linear response of a homogeneous, isotropic body, subjected Separating the real and imaginary parts of these equa-
to an external vector potentiﬁl(ﬁ,w). The proper response tions, and taking the limi»— 0 (but still with w>qv), we

f . - dv( lonaitudinal and arrive at the promised expressions for the elastic and viscos-
unctionsy, (, ) andx(q,«) (longitudinal and transverse i coefficients in terms of the long-wavelength limit of the
respectively are defined by the relations

local-field factors:

JLm (@)= xLm(0,0)ALm(d,0). (2.16 p=a\NEg+n?Ref (0, 2.23
A useful way of representing, (1 ist3 5
R K= a(d)—(Z—— a9 InEg
xLn(d,®) Xm(g.) ] a7
Lt @)= - 2, 200 (o '
1+v() Gy (. @) (g7 @) x (1)(0, @) 2
(M L(T) 2.1 +n?Re f, . (0)— 2= q]fer(0)], (229
where
Im fy.r(w)
A2 XC
INE PR N T 2f(exsq)— Flew) m=—nlim e (2.29
XL(T) q. m K m w+ €k+q €k
(218 — 12 Im fyc (w) P E Im fyer(w)
are the longitudinaktransversg response functions of the ¢=-n w'ino ® d ® :
noninteracting electron gasg,=k?/2m is the free particle (2.26
energy,f(e) is the Fermi distribution function, ark| 1, is
the longitudinal(transversg component ofk relative to a Equations(2.23—(2.26) are the main result of this sec-

andv(q) is the Fourier transform of the interactign(q)  tion. We underline the fact that they have been obtained
=4me?/q? andv(q)=2me?/q in three and two dimensions, under the assumptiogve<w. Outside this regime, e.g., for

respectively. The dynamical local-field factor§ )(q,0) ~ ©=dVF, the microscopic response functions do not yield
are effectivelydefinedby these equations: they take into ac- Viscoelastic equations of motion or, equivalently, the vis-
count exchange-correlation effects beyond the random-phag@elastic coefficients diverge for—0. The analysis of this
approximation. Note that, with these definitions, the longitu-Nonviscoelastic regime is beyond the scope of this paper.
dinal local-field factorG, coincides with the more familiar
scalar local-field factoG used in the theory of the density- Ill. CALCULATION OF THE ELASTIC CONSTANTS:
density response function in Ref. 13, for example. RIGOROUS RESULTS
Let us now consider the long-wavelength limitvz
<w) of x (1)(0,w). Expanding the noninteracting response
functions(2.18), we find The elastic constants of a Fermi liquid can be exactly
expressed in terms of Landau parameters, insofar as the Lan-
- . n (d) Er nq nq dau theory of Fermi liquids is valid. To see this, we begin by
XLm(a,0)= m 1JraL(T)F W“focL(T)(“’)W ’ deriving the equation of motion for the quasiparticle distri-
(2.19 bution function in the presence of a slowly varyimgctor
potential A(rt).
Following the discussion of Nozies and Pindswe treat
fyerm(@)=—limv(q)Gy () (d,») (2.20 the quasiparticles as a gas o_f nonintergctin_g classical par-
q—0 ticles governed by a self-consistent Hamiltonian

A. Expression in terms of Landau parameters

2 2

where
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(a \7p_ w)nlp(a!w) - a \7pn(,)( EP)

-

qu(F,ﬁ) = 6’;+A(F,t) + Z’ fpp/ 5npr(F,t)
p

L BACY ) X E fppynlp/(q,w)+%~A(q,w) =0.

=e(p)+ ———+ 2 fopony(r,p), P
> 37

(3.

. . The current response is obtained from the quasiparticle

wheree; is the quasiparticle energy,,e;=v,=p/m* isthe  distribution function via the relation

quasiparticle velocitym™* is the effective mass, arfg,,, are

Landau parameters. This approach is justified in the limit of . p . n. .

zero temperature and zero frequency, since the excited qua- J(q,w)ZEp N1p(g,0)+ —A(Q,0), (3.9

siparticles have an essentially infinite lifetime in this regime,

and their mutual collisions are negligible. where it must be noted that the bare mass, rather than the

The_self-conSISt_ent nature of the _quz;SIpartlcle . Ham'l'effective mass, enters the definition of the curfefihe den-
tonian is apparent in the last term, which is proportional to . T - -
the departure of the quasiparticle phase-space distributioflly_ "€SPONse is given by, (g, ») =2yn;,(q, w). _
Equation(3.7) can be solved for a given value of the ratio

function ny(r,t) from the local equilibrium distribution x=qVg /w, with bothq and  tending to zero. After setting

>

No(€p+A):
SNp(r,1)=ny(r,t) = No( €+ A) N1p(g, @) =150 A(G, @), (3.9
N . p-ArLY) i- i i
~ (7, 1) — Nl €p) — N €p) - we see thall;(x) obeys the equation of motion
’ 5'&(F!t) - =Rx E S _)-,
=Ny (el (3.2 I15(x) Rp(x)( m+§ foplp(x) |, (3.10

Hereng(ep) = 0(€p,— €p) is the true equilibrium distribution where
function at T=0 and chemical potentiak,_, no(ep) =

— 8(ep_— €p) is its derivative with respect to energy, and =’ x cog )

Nyp(r,H)=np(r,t) —no(e,) (3.3 . .
and 6 is the angle betweep andq.
is the departure of the distribution function framue equi- In the x—0 limit [see Eq.(1.3)] we expandR;(x) and
liorium. The fact that the departure from local rather thanﬁﬁ(x) in a power series ok as follows:
true equilibrium appears in E€3.1) is essential to guarantee
particle conservation and gauge invariance of the theory.
We now make use of the well-known Landau relafion

[

N — n

between bare and effective mass in a translationally invariant Rp(x)= no(ep)z‘l (xcost) (312
system

> s R and

pP_ P ' p'

E:E—Z fpp,no(ep,)ﬁ, (34) Y

i Foi1= ST Oy
np(x)_gO 7. (3.13

and rewrite the effective Hamiltonian in terms of the depar-
ture from true equilibriunfsee Eq.(3.2)]:
o Inserting these expansions in E.10 we obtain the
N - Pp-A(r,t) - recursion relation
Hqp(r,p) = €(p) + T+Z fopN1pr(F,0).
p
(3.9 5

ﬁ%”)z - n(’)(ep)%(cose)”
Finally, we write the classicdlinearized Liouville equa-

tion for the evolution of the quasiparticle distribution func- n-1i
tion underH,,. After introducing the Fourier representation - n(’)(ep)Z fop 20 Hg‘,“)(cose)”*m, (3.19
p/ m=
Nyp(r 1) =n1p(q, )€ @ "Vt cc,, (3.6)

with ﬁg’):O and ﬁ%l)z—né(ep)ﬁcoselm. The relevant
we obtain the desired equation of motion term is the one witm=2:
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H%2)= —no(esp){a(cose)2

>

—Z f,;,;,cosené(ep/)%cose’
p

. (319
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Substituting in Eqs(2.23 and (2.24), we obtain the fol-
lowing expressions for the elastic constants. In three dimen-
sions,

This enables us to calculate the current, and hence the rgpd

sponse function, exactly to ordef=(qvg/w)?. More pre-
cisely, making use of Eq3.8) we obtain(from now on, we
focus on three dimensions

 no? OF 3/5+4F,/75+Fy/3 a1
" me? m? 1+F,/3 (3.16
and
n p .
XL+2xT—35=Eﬁ RIS
ng? Gf 1+2F,/15+Fy/3 a1
Tmelm? 1+F,3 .17

d?e(n) 2nEr 1+F,
= 2 =
K=n’—0 3 1iiF (3.29
_ 2nEp 1+F,/5 -
K5 14 F,/3 3.29
In two dimensions,
1+F,
K:nE[: (32@
1+ 3F,
and
_ NEg 1+F,/2 -
K 1R 2 (3.29

These are the main results of this section. There is no
surprise as far as the bulk modulus is concerned: it is given
by the standard thermodynamic expression, where the energy
density can be calculated by the quantum Monte Carlo
method. The shear modulus, on the other hand, has an ex-
pression involving Landau parameters, which are not easily

whereF, are the usual dimensionless Landau paraméterscalculated from Monte Carlo simulations, even though some
The following partial results have been used to evaluate th@rogress in this direction has recently been repofted.

sums overp andp’ in three dimensions

> n(epno(ep) s (q-p)AQ-p')?

pp’
qeN(0) 4
S (F0+2—5F2) (3.18
and
2 No(ep)No(ep) 55(a-P)(A-P')(P-P')
pp
qiN(0) 2
= Fg (Fo+§F2), (3.19

whereN(0)=m*qg /72 is the three-dimensional density of
quasiparticle states at the Fermi surface.

A direct comparison between Eg®.16) and(3.17) and
Eq. (2.19 yields the desired expressions figf (1)(0):

6Er s Fot+ a5 Foa— 3F4

Refy(0)= 5n 1+ % F, (3.20
and
2Er s Fo— 3F;

Ref,.{(0)= — ————— (3.21

XCT( 5n 1+ % Fl

Similar results are obtained iwo dimensions:
2E|: % I:O_ %Fl+ % F2

Ref, . (0)= — ; , (3.22

2E; §Fo— 5F
Ref, (0)=— 22 % % (3.23

no 1+3F,

B. Rigorous upper bounds on the elastic constants

In this section we derive two exact bounds on the elastic
constants, which follow from the Kramers-Kronig dispersion
relations between the real and imaginary part$,ef 1)(w).

The origin of these relations can be easily seen from the
formula
2

f =i w (0) 1—-1 _ .1
xeL(T)(@) |moa2'{[XL(T)] (0,0) = x (1)(q, @)}
ng
(3.28

which directly follows from representatid2.17) and defini-
tion (2.20. Both y and x(®) are analytic functions of fre-
quency in the upper half-plane of this variable, and both have
no zeros in this domait® This implies that their inverses are
also analytic everywhere in the upper half-plane. The large
frequency behavior of Eq.3.28 is regular becausg and
x'% have the same formin/m+0(g% w?)] in this limit.
From this, one can also see that tpe>0 limit is well be-
haved.

From these considerations we conclude that the Kramers-
Kronig relations must hold in the standard form

Ref o m(@)=Refyc (1)(*)
2 ©
+ —PJ do
m™ Jo
(3.29

whereP denotes the Cauchy principal part. The second law
of thermodynamicdpositivity of dissipation requires that
Imx m(gq,0)<0 at all positive frequencies. But
Im x{7(4,0) =0 for qve<w [see Eq(2.18]. Thus, from
Eq. (3.28, we see that

,w, Im fxcL(T)(w/)

(w1)2_w2
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Im fye ) (@)=<0 (3.30 with the coefficientsae defined after Eq(2.20. The useful-
ness of these inequalities arises from the fact that the quan-
tities on the right-hand sides are ground-state properties,
which can be calculated by the quantum Monte Carlo
frem(0)=fyc m(®). (3.3) method. Notice that the inequalities are satisfied as strict

Recall now that the right-hand side of E€8.31) can be equalities whenever the dissipation vanishes, i.e., when

expressed exactly, via the first moment of the current-currenf™ fxeumn =0 at all frequencies. In an electron liquid, this
spectral function, in terms of the expectation values of the'@PPens both in the first-order approximation with respect to

kinetic and potential energy in the ground stégebrief deri-  the strength of the Coulomb interactioweak-coupling re-

for all positive frequencies. It then follows from E(B.29
that

vation is given in Appendix A gime), and in the strong-coupling limit, when the electrons
are expected to form a Wigner crystalThis observation
1112 1+38@ leads us to suggest that the right-hand side of E2186 and
fXCL(W)=%[E(<ke>—<ke>o)+ T(pe} (3.37 may provide a good approximation to the elastic con-
(3.32 stants atll coupling strengths.
and
IV. APPROXIMATE EXPRESSIONS
1[4 @—1 FOR THE SHEAR MODULUS
fxer(2) =515 (k&) —(ke)o) + —5—(Pe) |, AND VISCOSITY OF AN ELECTRON LIQUID
(333 A. High-density limit

where(ke), (ke)o, and(pe) are the expectation values of | the regimenalds1, whereag is the Bohr radius, the
the kinetic energy, the noninteracting kinetic energy and thffect of the Coulomb interaction is small, and can be treated
potential energyper particle respectively,3?=1/2 and  py first-order perturbation theory. It is straightforward to
BR)=1/5. These quantities can be ex_pressed in terms of thgnow that thef .o, (y(w)’s are real and independent of fre-
exchange-correlation energy per partielg(n) as follows:  quency in this approximation. This is because, in the limit
g—0, the imaginary part of the current-current response

€xc ! functions arises from processes involving at le&sb
(ke)—(keyo=dn"" 1 —= (3.34  electron-hole pair excitations: such processes are not allowed
n in first-order perturbation theory. The vanishing of
and Im fy (m)(@), combined with the dispersion relatio(&29,

implies that Réd,. ) (w) is independent of frequency.
, Hence Eq.(3.3D) holds as a strict equality. Sincéke)
(pe)=—dn1+2’d(ﬁ> ’ (3.39 =(ke)o=[d/(d+2)]Eg, (pe)=—(3/4)e’ke/m for d=3
n2/d and (pe)=— (4/3)e’kg /7 for d=2, in the first-order ap-

. . . . . . roximation we obtain
whered is the dimensionality, and the prime denotes dlffer-p

entiation of the function in the round brackets with respect to
n. The functione,.(n) is given in Refs. 7 and 8 for three and

two dimensions, respectively. _ 2nEg  néeke
The w—oo limit of the longitudinallocal field factor was pn)= 5 * 10m “.
first calculated in three dimensions by PfffThat result is
usually referred to as the “third moment sum riifesince it
is related to the third moment of the dynamical structure(three dimensionsya3>1) and
factor—the spectral function of the density-density response
function y. Because of the relatiop= g%y, /w? (which fol-
Ipws from gauge invariance and from thg continuity equa- nEr  neke
tion) the third moment of the density-density response func- u(n)= T+ = 4.2

tion coincides with the first moment of the longitudinal
current-current response function. Straightforward exten-

sions to two dimensions and to the transverse case are out- . .
U({wo dimensionsna3>1). These results can also be ob-

lined in Appendix A. tained directly from Eqs(3.25 and (3.27 of Sec. Il A,

Combining the foregoing results with our expressions for : ) . .
the elastic constanf&gs. (3.25—(3.24], we obtain the rig- making use of the first-order expression for the spin symmet-

orous inequalities ric Landau parameter$ ;s = —v(p—p’)/2. o
Let us now turn to the calculation of the high-density limit

of the viscositiesy and {. Our starting point is the second-

order expression for Ify¢ m)(w), which is obtained from

Eq. (11) of Ref. 9 after replacing the response functignsr

by the noninteracting oneﬁE’T and setting the “exchange

correction factor” equal to 1:

p=afNEg+nfcq(), (3.36

2 (d) 2
K+ 2_a M=o I’]E,:+n fXCL(OO)Y (33D
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odw’ ddq 2 I‘g 2 5
|mfxc|_(-|—)(w):— o T (2—77)dn7V(CI) nzzanm JZO.OSSSn(—Ian—O.GS) (48)
S
q? 0 in two dimensions. It is interesting to notice that, in the same
Xl aym—Imx"(q,0") limit, the bulk viscosity{ vanishes, both in three and two
w 2 dimensions, due to the relationship/b;=2(d—1)/d.
q° N
+by ;2|m X(TO)(q,w/) B. Low-density limit
In the regimenag<1 the electron liquid is strongly cor-

@ related(via the long-range Coulomb interactjoand its be-
(0) o havior is expected to be similar to that of a classical Wigner
% M@ e=e’), (4.3 crystall’ The elastic constants of a classical Wigner crystal
have been calculated by various auth$rS Of particular
with (a_, ar, b_, by) equal to(23/30,8/15,8/15,2/6in interest is the case of the hexagonal lattice, which is expected
three dimensions and to (11/16,9/16,1/2,1/2) in two dimento be the stable crystal structure wo dimensiong® The
sions. elastic properties of this lattice are formally indistinguishable
The imaginary parts of the noninteracting response funcfrom those of a homogeneous and isotropic body, i.e., there
tions x(%, at smallw and finite g are directly calculated are only two elastic constants and «,* and they are given
from Eq.(2.18: by® 1=0.24’n*? andK = — 6 u. [The fact thak <0 in an
electron liquid should be no cause for alarm because this
q° (0) _ dn ® bulk modulus enters physical properties summed to the Fou-
L (q’w)__EE_FVLM 44 Jier transform of the Coulomb interaction(q), which is
large and positive at long wavelendtin three dimensions,
and the Wigner crystal has cubic symmetry, and anisotropic elas-
0 tic constants. The appropriate low-density limit for the
(0) e strongly correlated liquid, obtained by averaging over differ-
M X0 0)= =y qQve’ 4.5 ent orientation® is x=0.1%2n*® andK = — (10/3).
Remarkably, we find that in this case, as well as in the
weak-coupling limit, the inequality3.36 is obeyed as a

(w—w

for w/ve<q<2gg+ w/vg, and zero otherwise. The con-

stants ., yr) are given by @/2,3m/4) ford=3 and (1,2)  gyrict equality, namely, substituting on the right-hand side of
for d=2. o Eq. (3.36 the potential energy of the Wigner crystal

. From the .at')ove formulas, it is easy to see that BP (~—1.8k, Ry in three dimensions;- —2.2k¢ Ry in two
gives an infinite result, due to the divergence of the Unyimensiony and neglecting the kinetic energy, which tends
screened Coulomb interactiar(q) for g—0. The resultis 5 zer0 in the low-density limit, one obtains the correct value

indeed finite if the screening of the interaction is duly takeny w. This implies that the imaginary parts 6., ()’s
into account. In the high-density limit and at low frequency \anish in the low-density limit. et

this is accomplished by the use of the Thomas-Fermi stati-
cally screened interaction v(q)—Vv'F(q)=4me?/(q?
+0%;) (g2.=6mne’/Eg) in three dimensions, and(q)
—v'F(g)=2me¥(q+0dre) (dre=2/ag) in two dimen- At intermediate densities no exact results for the
sions. fyxe(m(@)'s are available. A mode-coupling calculation of
The first term in Eq(4.3), which involves the product of these quantities for both two-dimensional and three-
two )((LO)'S, is proportional taw®, and therefore does not con- dimensional electron gases was recently performed by Nifosi
tribute to the viscosity coefficientfsee Egs.(2.29 and and co-workerS. Their results are expected to be an im-
(2.26)]. As for the second term, we find, after some tediousProvement upon previous estimatésat least for coupling
but straightforward calculations, strengths that are not too large. Unfortunately, the values of
w obtained from this approximate theory do not conform to
B L — ) the physical expectation that should reduce to the shear
Im fyeum= _IBL(T)FJ0 a° [v'"(@)]°dg, (4.6  modulus of the classical Wigner crystal in the limit of large
F rs. In fact, the approximatg is found to become negative at
where B q)=(3/1287)b 1y for d=3 and B,y largers. We believe that this should be regarded as a failure
= (1/127%)by (1 for d=2. of the approximate theory. For this reason, we propose an
Evaluation of the integral and substitution in H8.25  interpolation formula foru that does not suffer from this
leads to our result for the high-density limit of the shearproblem: it reduces to the correct limits for high and low
viscosity, density, and does not differ substantially from the estimates
of Nifosi and co-workersin the range of  where the latter
nym 1 are expected to be reliable. Our approximate formula is

_ _ 32
" 40(agk)?? 60 “

C. Interpolation formula

n

win=ar_?+br '+ (c—b)

4.9

in three dimensions, and rs+20’'
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FIG. 2. Shear modulug/n (full curve) as a function of density FIG. 3. Shear viscosity; in d=2 and 3(in units ofn) from the
in three dimensiongmain figuré and two dimensionginsed. Dots ~ Mode-coupling calculation of Nifosand co-workers(Ref. 9
are from Ref. 9, open squares have been obtained from(&@§—  (crossescompared with the analytical expressions of Hgs?) and

(3.27) using estimates of the Landau parameters from Refs. 14 ant-8) (full curves.

22, dotted curves are the asymptotic behaviors of E44) and

(4.2) and from the Wigner crystasee Sec. IV B the full curve is ~ sponse functiofEq. (2.15]—which is valid forw>qvg—is
the upper bound of Eq3.36), and the dashed curve is the approxi- not applicable unless;>vr. One should instead use the

mate interpolation of Eqi4.9). response function in the limito/q=c,=const, which in-
volves all the Landau parameters, and is presently unknown.
wherea andb are obtained from the low; limit (in 3D, a The situation becomes much more favorable in the limit

= k§/5m and b=e?kg/107; in two dimensions,a:k§/4m of largerg (low density. In this limit, the transverse sound

and b=e?k:/67r) and c is obtained from the highg limit ~ velocity is large compared to the Fermi velocity, so that the

(c=0.24 Ry in three dimensions are=0.22 Ry in two Viscoelastic form of the transverse response function can be

dimensions The approximatew(ry) is plotted in Fig. 2, used. From Eq(2.15 one can immediately deduce the exis-

together with the values qf from Ref. 9. tence of a pole at
An analogous fit can be performed for the shear viscosity

7, with the caveatthat in this case the highs behavior is

unknown and the advantage that no sign problem is present

in the mode-coupling computation. The proposed formulas ) ) o ) )
are wherec;=u/mn. This result is independent of dimension-

ality. Note that the linewidth of the excitationy?/nm)
7=(60rg 2+ cyr st corg P+ cer; ¥ 7tn, (410 vanishes in the long-wavelength limit.
) ) ) From now on let us focus on the two-dimensional electron
where ¢, =80, c;=—40, andcz=62 in three dimensions, |iquid, since this is the system which, being closer to Wigner

7

smnd’ (412

and crystallization, provides the best chances for the observation
(2 > 1 1 of a transverse sound mode. At low density, making use of
7= (—Sln . /_+ Cor§ +C1r5_2+02fs_1/2+ el n, Eq. (4.12) and of the low-density form the shear modulus,
67 erg we obtain

(4.11

2
wherecy=0.25,¢,=21, ¢,=23, andc;=13 in two dimen- 3220-07?5, (4.13
sions. The resulting functions are compared in Fig. 3 with VE

th I Iculated in Ref. 9. . . . . o
€ values calculated In ke which grows with decreasing density, and justifies the use of

the viscoelastic form of the response function.
Equation(4.13 can be used to give a rough estimate of
A transverse collisionless sound mode will exist in thethe minimum value of ¢ above which the transverse sound
uniform electron liquid provided that the transverse currentmode would be observable. Requiriog/ve>1 we obtain
current response function has a pole close to the real axishe conditionrs>14. This minimum value of 4 is still sig-
Unfortunately, because such a mode must have a linear digificantly lower than the criticat ;=37 for Wigner crystal-
persion of the formw=c,q the viscoelastic form of the re- lization, as estimated from Monte Carlo calculatiéns.

D. Transverse collective mode in the electron liquid
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V. INCLUSION OF COLLISIONS 2 R 2 R R
[[ongy]~ ony,—aon;)=0, 5.6

A. Relaxation-time approximation ) pILong] ) p(ony P) (5.6

Up to this point, we have neglected processes that limithat is, the locally relaxed distribution function must yield

the lifetime of a quasiparticle, such as quasiparticle-impuritythe same canonical current density as the true distribution
and quasiparticle-quasiparticle collisions. In this section we&ynction:

reinstate these processes, and study their effect at the phe-

nomenological level. The starting point of our analysis is still > _ - R -

the kinetic equation for the quasiparticle distribution func- Jc(q"")zzp nlp(q,w)p/m=2p N1p(d,@)p/m.

tion, but now we include a collision term (5.7)

(a'Jp_w)nlp(aaw)_ci'\;)pné(ep) On the other hand, thielll locally relaxed current density
> jR=Jc+nAg/m (5.8

- p - - .
X ’ ’ +—- - — . . o L.
% fopNip' (G ) m A(Q.0) npl, G- must vanish, because it is the current of a systemxjuilib-

) o rium. This fixes the value of théR potential as
wherel[ny,] is the collision integral.
Without going into the details of the collision process, we Ar(,@)=—(m/n)j(q, o). (5.9
shall simply assume that collisions attempt to restore a “lo- o
cally relaxed” equilibrium distribution functiomf=ny(e,) ~ The value ofVg is still given by Eq.(5.5).
+ n?p, with a characteristic relaxation time namely,
B. Solutions of the transport equation

—nR in the relaxation-time approximation

_ N1p 1p
'[Ngp]= T (5.2 Equation(5.1) can be solved to yield the density-density

. . . , (x) and the transverse current-curremt:( response func-

Equation(5.2) is generally referred to as the “relaxation- yiong of the systerwith collisions, in terms of those of the

time approximation. o R systemwithout collisions, i.e., with 1# set to zero. We de-
The locally relaxed distribution function;(r,t) is de-  scribe our method of solution in Appendix B.

fined as the distribution that, at any given instant, would be |n the case ofmpurity scattering(no current conserva-

in equilibriumin the presence of appropriate scalar and vection) we obtain

tor potentialsVg(r,t) andAg(r,t), chosen so as to make Eq.

(5.1 obey the conservation of particle number amehen 1 o 1 N ilT 1
approprlz(ajtktpgllrtlcle current. Let us discuss this construction Qo) ©HilTyqotils o+ilTx90)’
in some detail. (5.10

(i) Impurity scattering In this case collisions conserve the
local quasiparticle numbé.e., the density but not the cur-  where y7(q,w) is the density-density response function in-
rent. Therefore, we must require cluding collisions, andy(q,w+i/7) is the same quantity
without collisions, but calculated at the complex frequency

_ - w+i/7. Similarly, for the transverse current-current response
Ep '[n1p] % (N1p~N1p) =0, 53 function we obtain:
that is, the locally relaxed distribution function must yield 1 w+tilr 1

(5.11

the same density as the true distribution function = = N
x7(0, o) ©  xr(q0+il7)

ny(q,w)=>, nlp(q,w)=2 n?p(q,w). (5.4  The longitudinal current-current response function is, of
P P course, obtained from the density-density response function

. . . . i th tinuit ti lati [(q,
This is accomplished by deﬂnlnggz as the instantaneous via ) 2e Eon mu',y eq‘fa on reallon Xi(G,@)
=(w“/q9°) x"(g,w), which continues to hold in the presence

equilibrium distribution function in the presence of a scalar_f a W . . hat the ab .
potentialVg such that of scattering. We note, in passing, that the above equations,

when used to calculate the electrical conductivity, lead to the
Ve=x"1(0)ny(q, ), (5.5) familiar' Drgde formula, wherer is the electron-impurity
scattering time.
where x(0) is the static =0) density-density response In the case oturrent-conserving scatterintpe above two
function in theq— 0 limit. Because there are no additional equations are modified as follows:

constraints, the vector potentiﬁk remains equal to the real

oneA. 1 o 1 N ilr 1
(i) Quasiparticle-quasiparticle scatteringln this case, Y (qw) @FilTy(qe+ilr) otiltx(q,0)
the collisions conserve not only the local humber, but also _
the local momentum, i.e., the current density. Therefore, in Mo (5.12

addition to Eq.(5.3), we must require rng?
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and 1 1 1
—_—=—t —, (5.17)

1 wtilT 1 i Tett 71 T2

m
X%((i,w) I XT(a.eri/T) T orn’ (5.13 This_ can be proved straightfor_wardly, by_applying. transfor—
mations(5.15 and(5.16 twice in succession, the first time

Notice the additional terms on the right-hand sides of thes&ith relaxation timer; and the second time with relaxation

equations, which guarantee current conservation. time 7,. The result is the same that one would obtain by
In both cases, we define the exchange correlation kerneRpplying the transformation only once, with relaxation time

fYeLm(@) in the presence of collision, by direct generaliza- 7efs -

tion of Eq.(3.28, namely

C. Elastic constants and viscosity in the presence of collisions

£ (@)= lim “’_2 1 _ 1 In order to calculate the elastic constants and viscous co-
xeL(T) g0 d° X)) ximdo)] efficients in the presence of collisions we first substitute in
(5.14) Egs.(5.10 and(5.1]) the long-wavelength forms of theol-
- lisionlessresponse functions derived in Sec. Il. These are
where the “reference” response functiwﬁ(TT)(q,w), inthe  conveniently rewritten as
presence of collisions, is obtained from the solution of the

kinetic equation(5.1) with all the Landau parameters set B, ng? 2\w(w)| ng?
equal to zero. o X(Q0)~ g 1+ ﬁz+(2—a)7 s
We notice that our “reference function” is not the same (5.19
as the noninteracting response function, because it contains '
the relaxation time which is determined, at least in part, byand
electron-electron interactions. Thdg. is a mathematical -
construct: its purpose is to take into accosameinteraction - w(w) neg?
effects which admit description in terms of Landau param- XT(q’“’)~E 1+ n2 mo2l’ (5.19

eters. Additional interaction effects are phenomenologically

included in the relaxation time, and are already contained invhere () is the collisionless generalized shear modulus,

the reference response function. and where we have taken into account the fact that, accord-
With the above definitions, the collisional exchange-ing to our previous discussion, the bulk viscosity of the elec-

correlation kernels are found to be related to the collisionlesgon gas vanishes, arfé(w) =K, at low frequency. We also

kernels by relationships that closely parallel the analogougeed the long-wavelength form of the static density-density

ones for the inverse response functions: response function, which is
¢ o ¢ ” i/T d%e.(n) R n2
xeL(@)= == Ty (@i T)+w+i/7'v x(4,0~ = . (5.20
(519 Then Egs.(5.10 and (5.11) yield, in the case of impurity
and scattering,
w+ilt i
f7 (0)= ———f A w+ilT). (5.16 1 _Moletln o [52+(2_3)
w (G, ) nq w+il7n d
Note that these formulas hold for both types of scattering. ~ y y K
In practice, under the assumption that-%/E, one can x'“(‘*”L' Dl__1 T 5 (5.21)
approximatef e (ry(w+i/7)=f,c () (w). This is justified n? w+ilTn
because theollisionless f.'s are smooth functions ob,
which vary significantly on a scale set by the Fermi energy"lnd
(or plasmon frequengy Therefore, the fractional error intro- ) ~ . 5
duced by neglecting %/in the argument of,.'s is expected 1 mletiln) @ wlotilT) a
to be of order #Fg7<1. X0, ) Nw o+ilt 2 w?
Equations(5.15 and (5.16 provide the basis for an ap- (5.22

proximation to the frequency-dependence of the exchange- .

correlation kernels, which interpolates smoothly between thé\gain, we can negledt = in the argument of. with a rela-
static limit and the dynamic low-frequency limit across ative error of order Ig7.

region of width 14 in frequency. The form of the depen-  Next, we compare the long-wavelength forms of the re-
dence off,. on the inverse scattering times shows that thesponse function$5.21) and (5.22) with the ones obtained
following additivity property holds: If there are two indepen- from generalized elasticity theory in the presence of colli-
dent scattering mechanisms operating simultaneously witgions. In order to do this, we return to E@.13 and add a
relaxation timesr; and 7,, then their combined effect is relaxation term—j,(qg,w)/7 on the right-hand side in the
equivalent to that of a single scattering mechanism with arcase of impurity scatteringn the case of current-conserving
effective relaxation timerg¢; such that scattering no additional term is neededhe elastic con-
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stants must also be modified to include the effect of colli-1.5 —————T71T 7T T 1 T
sions: we callK™ and " the generalized elastic constants, - §
which depend on frequency on the scale af. Bolving the UTe i
modified equations of motion, we obtain the density-density | ™\ |
and transverse current-current response functions in the fol \\
lowing forms: i \ T
1 \ .U
. ~ ~ \
1 Mo(w+ilr) | K™ 2\ u(w) L \ ]
> = 2 - _2 +|2—= -2 \
X'(q,w) ng n d/ n i N 1
(5.23 L AN .
\
and L \ |
1 Mo+il7) wi(w) o2 0T |
w 7)) M(w .
T2 = n - 2 _2 (524) I Sa ]
XT(q’w) w n @ L \\\\ 4
Comparing Egs(5.23 and(5.24) to Egs.(5.21) and(5.22), - \“\\__n:
respectively, we accomplish our goal of expressing the elas: [ *n
tic constantK” and u” in terms of their collisionless coun- Y S T T RS ST R
terpartsK and . 0 1 2 3 4
~ 0~ FIG. 4. Shear modulug” (full curve) and viscosityn™ (dashed
T =
() w+ilT plw) (529 curve in the presence of collisions, as functions@f, from Egs.

(5.27 and(5.28. The dots mark the7=0 andw 7= asymptotic

and limits.

K'(w)=K(w)=K. (528 incorporated into the effective theory by means of a simple

It is straigthforward to verify that the same results are alsgelaxation-time approximation. An interesting prediction of

obtained in the case of current-conserving scattering. our work is the possibility of the existence of a transverse
From Eq.(5.26 we see that the bulk modulus and the sound mode in a high purity two-dimensional electron liquid

bulk viscosity coefficient are unaffected by collisions. Forat largerg, before crystallization occurs.

the shear modulus and the shear viscosity we obtain, after

separating the real and imaginary parts of E§25, the ACKNOWLEDGMENTS
following equations, accurate within corrections of order
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. 1 (w7)?
n —/1,7'1+(w7_)2 + 7]1+ (wr)z' (5.28 APPENDIX A: HIGH-FREQUENCY LIMITS

OF THE EXCHANGE-CORRELATION KERNELS
In reaching the final form of these equations, we have used
the fact thaty/ 7~ 1/Er7<u, wheren and p are thecolli-
sionlessviscosity and shear modulus.

This appendix gives a self-contained derivation of the
high-frequency limits of the exchange-correlation kernels,

Equations(5.27) and (5.28 clearly exhibit the crossover based on the_equation of motion for the current-current re-
from hydrodynamic to dynamic regime. Their qualitative be-SPONS€ function. The Eurre-nt-current- response fuqcuon
havior is plotted in Fig. 4, and one can observe the opposit&ij(d:®)=(n/m)&;; + R;;(q,») is determined by a Fourier
behaviors ofy™ and 7 as functions of frequency, which is transform o
consistent with the Kramers-Kingg dispersion relations. R

Rij(a,t)=—i0(t)([iqi(t).j-q,(0)]), (A1)

wherej ;= E,;(ﬁ/m)cg_a/zc5+a,2 is the canonical current op-
In this paper we have shown that viscoelasticity is theg otor The time derivative ORi'(a t) evaluated at=0
effective theory that describes the dynamical response of a ) .,
Fermi liquid at low temperature, long wavelength, and low9'Ves the first frequency moment &;(q, ),

(but finite) frequency. We have presented rigorous results . do  d

and approximate expressions for the viscoelastic coefficients\..(q) =i j Rii (0, @) o—=—([jsi(t),j_¢:(0)])

of an electron liquid in two and three dimensions. We have . o dere @ t=0
also shown how quasiparticle scattering mechanisms can be (A2)

VI. CONCLUSION
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which is clearly real, i.e., only the imaginary part of response function evalutated at the complex frequeacy

Rij(ﬁ,w) contributes to the frequency integration. We now +i/7. The dependence cﬁl which plays no significant role
evaluate the right-hand side of E@A2). This gives in the computation, will henceforth be dropped. The collision
integral (5.2) describes relaxation to a local equilibrium dis-
d : ; ; tribution n®, which was defined as the equilibrium solution
gillai®,i-q; @D ={H.igqili-qD, A P _ -
t=0 in the presence of appropriate vector and scalar potertjals

whereH is the Hamiltonian and all operators on the right- andVg. ) R

hand side are evaluated &t 0. Straightforward evaluation ~ In Sec. V we determined the value Ak and Vg from the

of the commutators allows us to obtaimij(ﬁ) in terms of condition that the transport equati@.1) obeys the conser-
o . vation of particle number an@when appropriate particle

the momentum d|str|but|on5=<cgc,;> and the static struc- P dw ppropriatep

“p” ) current. The results of those calculations will be crucial in
ture factorS(q) of the electron liquid. The resulting expres- the following development.

sion is, up to terms of ordey?, In order to facilitate the solution of the transport equation,
quipj+(l5 d)(piqj+qipj) it is convenient to introduce a “dynamic correction to the
Mij(a)zz n; g +v(p)S(p) quasiparticle distribution function,” defined as follows
pA. oL D=_i/TR B1
W49 g P PatRd pp1-dg’ R By
m? p2 m? m>| 2 p?

Making use of the equilibrium condition fom?p, it is a
d2—1 (5,5)2)1 straightforward computation to verify that the collisional

5 (Ad)  transport equatiofb.1) for n,, is equivalent to theollision-
P lesstransport equation fom?p with a modified frequency
where inversion symmetry has been used to eliminate terms i/7 and modified potentials
of first order ing.
From the Kramers-Kronig relations one obtains the high- S ilT .

4

. Ap=A— ——A B2
frequency behavior of the real part gf;(q, ), D w+ilT R (B2)
- n 1 - and
Rexij(d,0—%)=—5;+ —M;;(q). (AS5) y
ilT
The longitudinal and transverse componentsyoére then Vp=V=——=7V&. (B3)

obtained fromy, = q;x;;q; and xr=tix;;t; . (t is a unit vec-
tor perpendicular t@=g/q; a sum over repeated indices is !t follows that the density and current response$

implied). Comparison with Eq(2.19) yields =35, J°=3,ng,p/m+nYAP/m are related to the modi-
fied fieldsAp, Vp by the collisionless response functions
: o - B evaluated at frequenay +i/ 7
lim fyer (@)= lim nz—szL(T)(Q) A quenay :
w—® q—0 N
(AB) (o+il7)q-Ap

nP(q,w)=x(w+il/7)| Vp+ (B4)

In an isotropic system, the first line in EGA4) is propor- q°
tional to the average kinetic energy, and the remaining to th%nd
average potential energy, leading to E@32 and(3.33 of

the main text. We finally remark that full isotropy is not -
needed to obtain Eq$3.32 and(3.33—indeed, only aver- ~(D) _ +i/PALT+ i/ v
ages of second- and fourth-order terms appear irf(&4). In : xer(@ I DAG + x (@ T)w+i/7 D

the case of the two-dimensional triangular lattice, such aver- (BS)
ages are identical to those of an isotropic flu{at?)=r?2/2, " :

(x"=3r¥8, (x2y?)=r*8), and therefore the same resultsln_wr't'ng these equations we have gsci:d the fact that the
hold in the crystal and in the liquid. This is not the case inmMixed density-current response functiogg. and x.q are
any of the crystals with cubic symmetry, such as simple cuPurely longitudinal, and are related to the density-density

bic in two diensions and fcc in three dimensions. response function bycq= x4c=qwx/q?=qx. /.
Finally, note  that n{?(w)=n(w)-[i/7(w
APPENDIX B: SOLUTION OF THE LANDAU EQUATION +i/7)In{¥(w), and that a similar relation g (w)= ()
OF MOTION WITHIN THE RTA —[i/r/(w+i/7)]f§(w) holds between the canonical cur-

This appendix discusses the details of the computation dfentstD and f? as well as between the full currerif@ and
the response functions within the RTA. As in the main text,jRSincejR=0 (the full current vanishes in an equilibrium

we denote by (g, w) the response function in the presencestatg one concludes thai=j®). We now discuss the two
of a relaxation timer, and byx(qg,o+i/7) the collisionless different cases mentioned in Sec. V.
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1. Impurity scattering

In this casesee Sec. YAg=A,; andVj is fixed from the
constraint of local density conservationn{?(q,w)
=ny(q,). _ o _ _

(a) Density excitations, scalar external potentiai this

case botiA andAR vanish. Density conservation givEfsom
Eq. (5.9]

ny X'(w)
Vg= = . B6
X0 X (B9
Sincen{P=n,, we obtain
w+ilT ) w+ilT ]
ny=— —"ny'= x(w+ilT)Vp, (B7)
ie.,
. _w+i/7 cirnl1 x(w) ilT BS
x'(o)=—"=x(otiin) 1= =767 T | (B8

which, after some algebra, gives E§.10.
(b) Density excitations, longitudinal vector potentidh

this case the scalar external potentie=0 and there is a

purely longitudinal external vector potential This is com-

pletely equivalent to the previous case, modulo a gauge
transformation. We carry out the computation only as a

check. The total density fluctuation is

* i A,
n(Go)=x(w) T ),

(B9)

and the potentials of the fictitious system are givenAyy
=A andVg=[x[()/x(0)]q-Alw. If follows that

- ” 1) il g°x{(w)].
=Xt v in? w x0) |
(B10)
which gives
w(w+ilT) 1 _w2 1 i/T 1
?? xotiln @ x[(o) wo+iltx(0)
(B11)
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Sincex (o+i/7)=(w+i/7)?q ?x(w+i/7), this is equiva-
lent to the previous result of E@5.10.

(c) Transverse excitations. The external vector poteﬁtial
is purely transverse. There is no density fluctuatidf,
=Vr=Vp=0, andAR=A1. Thus, from the combination of
Egs.(B2) and(B5), we obtain

[(@.0)=——xt(w+ilnAQw),  (B12

which is equivalent to Eq(5.11).

2. Current-conserving scattering

Here Vy is fixed as in Eq.(B6) , and moreoveAg is
given by Eq.(5.9, Ag=—(m/n)j..

(d) Density excitations, scalar external potentibllere,&
=0 andj.=j (the full current and the canonical current

coincidd. Thus Ag= —(m/n)j = —(mw/nq) x"V,, and Vg
is the same as in E@B6). It follows that

w
n(®) =

=—7)77N
1 ot+ilr t

i Mo

X(w) il .
+;n—qu () |V,

=x(oti/r) 1= x(0) w+ilr

(B13)

which is equivalent to Eq5.12. The same computation can
be done using a longitudinal vector potential, with the same
result.

(e) Transverse excitationdHere V=Vz=0; and AR=

—(m/n)j=[1—mxyX(w)/n]A, which gives

. w i/ m

= ——t—— — XN |A.
Ao w+ilt w+|/TnXT(w)A

(B14)

Finally, since X{(w)E\:XT(wH/T),&D, we obtain Eg.
(5.13.

L. D. Landau and E. LifshitzTheory of Elasticity3rd ed. Course
of Theoretical PhysicéPergamon Press, Oxford, 1986

2Such as, for instance, a polycrystalline solid.

3L. D. Landau and E. LifshitzMechanics of Fluids2nd ed.

Course of Theoretical Physi¢Bergamon Press, Oxford, 1987

4D. Pines and P. Nozies, The Theory of Quantum Liquid8en-
jamin, New York, 1968 Vol. 1.

5G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Letf, 4878
(1997.

p. Noziees, The Theory of Interacting Fermi Systef@enjamin,
New York, 1964.

’D. M. Ceperley and B. J. Alder, Phys. Rev. Letf, 566(1980.

8B. Tanatar and D. M. Ceperley, Phys. Rev3®& 5005(1989; F.

Rapisarda and G. Senatore, Aust. J. PH@s.161(1996.

9R. Nifos|, S. Conti, and M. P. Tosi, Phys. Rev. 5B, 12 758
(1998; see also S. Conti, R. Nifgsand M. P. Tosi, J. Phys.:
Condens. Matte®, L475(1997; H. M. Bohm, S. Conti, and M.
P. Tosi,ibid. 8, 781(1996.

10N, D. Mermin, Phys. Rev. B, 2362(1970; see also A. K. Das,
J. Phys. F5, 2035(1975.

we note that similar calculations of the viscosity for 3He in the
collisional regime were carried out by A. A. Abrikosov and I.
M. Khalatnikov, Rep. Prog. Phy&2, 330(1959. These authors
predicted a diverging viscosity~ 1/T2 proportional to the qua-
siparticle lifetime(1/T?)—a prediction later confirmed by
experiments[see the review article by W. P. Halperin and



7980 S. CONTI AND G. VIGNALE PRB 60

E. Varoquaux, irHelium 3 edited by W. P. Halperin and L. P. 16R. D. Puff, Phys. Rev137, A406 (1965.

Pitaevskii (Elsevier, Amsterdam, 1990p. 353, and references ’E. P. Wigner, Phys. Rev6, 1002 (1934.

therein. 18R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys.
12The tranverse part of the vector potential gives rise to a magnetic 395 (1960.

field that exerts a Lorentz force on the electric current. It is L. Bonsall and A. A. Maradudin, Phys. Rev. B, 1959(1977.

evident that the Lorentz force is a second-order effect, since th&The energy of a deformation field(q) is in general given by

induced current is a first-order effect: it therefore does not play E= %Aij(ﬁ,{éi})uiuj , where{éi} characterize the orientation of

any role in linear response theory. the crystal latticge.g., they could be a basis for the given lat-

13K. s. Singwi and M. P. Tosi, irSolid State Physic®dited by H. tice). By rotation average we mean the average of
Ehrenreich, F. Seitz, and D. Turnbul\cademic, New York, )\i,—(d,{ﬁei})uiuj over all rotationsR. In practice, this amounts
1981, Vol. 36, p. 177. to using angular-averaged values ®(p) andn, in Eq. (A4).

4y, Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev.5®, Note that the above definition is equivalent to the average of
1684(1994). Nij(Ra{e}) (Ru)i(RU); .

15L. D. Landau and E. LifshitzStatistical PhysicsCourse of The-  2'E. K. U. Gross and W. Kohn, Phys. Rev. Lef6, 2850(1985;
oretical Physics, Vol. §Pergamon Press, Oxford, 198@t. 1, 57, 923E) (1986.

Chap. 123. 22H. Yasuhara and Y. Ousaka, Int. J. Mod. Phys, B089(1992.



