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Metal-insulator transition in the one-dimensional Holstein model at half filling
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We study the one-dimensional Holstein model with sbielectrons at half filling. Ground-state properties
are calculated for long chains with great accuracy using the density-matrix renormalization-group method and
extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon
frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice
fluctuations and that the system remains in a metallic phase with a nondegenerate ground state and power-law
electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon fre-
quency small, the system undergoes a transition to an insulating Peierls phase with a twofold degenerate
ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic
excitation spectrun.S0163-182609)09035-9

A long time ago, Peierls suggested that a one- electrons coupled to dispersionless phonons, represented by
dimensional metal should exhibit an instability against a pelocal oscillators. It has as Hamiltonian
riodic lattice distortion of wave vector equal to twice the
Fermi wave vector. Although this distortion increases the 1 K
, . ) 9 . : H=5= 2 pi+ 5 2 af—a gi(ni—1)
lattice elastic energy, it opens a gap in the electronic spec-
trum at the Fermi surface, lowering the electronic energy.
Thus, the Pelerls_lnsulatlng state can be energetically favored _tz (CiJrgCi+l¢r+ Ci‘r+ 14Cio) 1)
over the metallic state. A wide range of quasi-one-

dimensional materials, such &8X chains, charge-density- wherea: andp. are the osmon and momenturm oberators
wave (CDW) compounds, conjugated polymers and charge- di Pi P P
for a phonon mode at site c » andg; , are creation and

transfer salt$,have electronic properties that are dominated nn|h|l tion rators for an I tron of n sitei and
or at least affected by the Peierls instability. These system@ a o+0pe ato S%ho ﬁ Ifef?lc dob odsprro sitel, a d
are often modeled by the one-dimensional Holstein m6del Ci TC' 1 ol ,1Ci, - The halfl-lilled band case corresponds

the Su-Schrieffer-Heeger modklor various spin-Peierls 'to a denS|ty of one electron per site. At first sight, there are
models. four parameters in this model: the oscillator ma#sand

. . I . . _spring constank, the electron-phonon coupling constant
e & th eecion hopping ierakiaweter, pronon cre-
Y- ation and annihilation operators are denotedblf:)and b;,
esting and still controversial questlon is how the Pe|erl

ground state is modified when quantum lattice fluctuation reigﬁg:gﬁtlygé:;]e Holstein Hamiltonian can be writiep to
are taken into account. These quantum lattice fluctuations
could have an important effect in most quasi-one-
dimensional materials with a Peierls ground state because the H=w 2 blbi—y > (bf+b)(n—1)
lattice zero-point motion is often comparable to the ampli- ' '
tude of the Peierls distortichThus, this question has moti-
vated several studies of quantum lattice fluctuation effects —t2 (€4 1,Ci0H CuCit1o), ()
o

in the Holstein’™** Su-Schrieffer-Heegér,'°® and
spin-Peierl& -2’ models. In spinless fermion models and where the phonon frequency is given by=K/M (we set
spin-Peierls models these studies have shown that the trangi=1) and a new electron-phonon constant is definedyby
tion to a Peierls state occurs only when the electron-phonorr a @ with the range of zero-point phonon position fluctua-
coupling exceeds a finite critical value or when the phonortions given bya®= w/(2K). We can set the parameterand
frequency drops below some finite threshold value. Thus, im equal to 1 by redefining the overall energy scale and the
these systems quantum lattice fluctuations destroy the Peienlits of phonon displacements. Thus, the properties of the
instability for small electron-phonon coupling or large pho- Holstein Hamiltonian(2) depends only on the two interac-
non frequency. In more realistic models with sgirelec-  tion parametersn and vy.
trons, however, previous studl€s®"*have generally con- Mean-field theory predicts that the ground state of this
cluded that the ground state is a Peierls state for any finitenodel is a Peierls state for any nonzero electron-phonon cou-
electron-phonon coupling at finite phonon frequency, inpling andw<<. Early works based on strong-coupling per-
qualitative agreement with mean-field theory. turbation theory and quantum Monte-Carlo simulatiores

Here, we consider the one-dimensional Holstein modeivell as variational calculatioRseemed to support this point
with spin4 electrons at half filling. This model describes of view. However, the quantum Monte-Carlo results were
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limited to small systeméup to 16 sitesand their interpreta- Open boundary conditions are used because the DMRG
tion relied on a questionable finite-size-scaling analysis. Thenethod usually performs much better in this case than for
strong-coupling perturbation theory is based on the formaperiodic boundary conditions.

tion of small bipolarons in the/ w— < limit, but it has been In previous studies of the Peierls instability in the Hol-
argued that, as the coupling decreases, the bipolaron size Stein model the ground-state symmetry was explicitly broken
becomes large and the strong-coupling picture breakds in the mean-field and adiabatic approximatioht) Thus,
down?28 On the other hand, a functional integral calculationthe Peierls ground state was revealed by a lattice distortion

suggests that the transition occurs at finite electron-phonofflimerization
coupling? but the accuracy of this approach is hard to esti- (q)=(-1)'m 3)
mate. Moreover, the static and dynamical properties of small ' P
clusters(up to six sitey show that there is a sharp crossoverand a CDW
at a finite electron-phonon coupling from a quasifree electron
ground state to an ordered bipolaronic ground state, which

can be seen as a precursor to the Peierls ground state of they, 1, m =0 where(O) means the ground-state expecta-
e p 1

infinite systen?®~3! A similar crossover is observed in an i e of o). and q the ph p

approximate solution of the Hamiltonia2), where only a |:)n ;/a ueo C(I)pera ov, {;m mp an tr_n%are ep ingntﬁn

single-phonon mode .~ =;(—1)'b; is explicitly taken into electronic order parameter, reSpective for me,m,#0, the
ground state was twofold degenerétieis degeneracy corre-

2
account: onds to the two possible phases of the oscillati@hsind

In this paper, we discuss the ground-state properties of th . . o
Holstein model of spirk electrons in the thermodynamic :gt]i-sfl\yl/me that, as all eigenstates of the Holstein Hamiltonian

limit. We demonstrate that quantum lattice fluctuations sup-
press the Peierls instability for small electron-phonon cou- o
pling or large phonon frequency. In this regime, the ground (gi)= K((m}—l), (5)
state is unique, gapless, and shows only power-law correla-
tions between electron position and between phonon dishe order parameters are related by
placements. This ground state is similar to the ground state
of the noninteracting systemy&E0). When the electron- o«
phonon coupling becomes large or the phonon frequency be- PTK
comes small the system undergoes a transition to an insulat-
ing Peierls phase, which is qualitatively described by mean- Our DMRG method gives an excellent approximation to
field theory. In this regime the ground state is doublythe exact ground state of the Holstein model on a lattice of
degenerate, and there is a gap in the electronic spectrurfinite size. It is known exactly that the ground state of the
long-range CDW order and a dimerized lattice structure. half-filled Holstein model on a finite lattice is unique fer

Our results are based on density-matrix renormalization# 0, implying that there is no degenerate broken symmetry
group(DMRG) calculations® DMRG is as accurate as exact ground state at any finite electron-phonon coupling or non-
diagonalization on small systems but can be applied to muckero phonon frequency.Instead, there is a quasidegeneracy
larger systems while maintaining very good precision. It ha®f the ground state when the electron-phonon coupling ex-
already been applied successfully to the study of the Peieriseeds a finite critical valdé (this point will discussed in
instability in quantum lattices with spinless fermion or spin more detail later Therefore, we always findg;)=0 and
degrees of freedoi?:*2?°There have not been any applica- (nj)=1 in our calculations. This property follows directly
tions of DMRG to models of spig-electrons coupled to from the uniqueness of the ground state and the electron-hole
phonons yet, because these systems are significantly hardgmmmetry, i.e., the invariance of the Hamiltoniél) under
to deal with due to the additional degrees of freedom and théhe transformation
larger amplitude of phonon displacements. For this paper, we + i
have used an improved DMRG method for systems with Ci,—(=1)'Ciy, Ai——0i- 7

boson degrees of freedom, which has been described inf, gpserve the consequences of the Peierls instability we
previous work:* With this approach both the error due to the paye to ook at correlation functions. The most important

necessary truncation of the phonon Hilbert space and thgnes for a Peierls state are the staggered charge-density cor-
DMRG truncation error can be kept negligible. The accuracyg|ation function

of this DMRG technique has been demonstrated by compari-

son with many numerical and analytical methods for the po- Co(my=(—=1)"(nin;ym)—1) 8

laron problem(a single electronin the one-dimensional
Holstein modeP*~3® The maximum number of density-
matrix eigenstatem used in our calculations is 800, giving 1\

truncation errors from 10’ to 10 ** depending on the sys- Co(mM)=(= 1™ m)- ©

tem size and parameters. The error in the ground-state energyye have found that, for small electron-phonon couplngr

is estimated to be smaller than 1. The actual number of large phonon frequencw, both correlation functions de-
phonon states kept for each local oscillator ranges from 8 torease as a power-lam™# with 2=3>0 as a function of

32 depending on the electron-phonon coupling strength. Wéhe distancem. An example is shown in Fig.(4). As the
have studied open chains with an even nunYbef sites(up  electron-phonon coupling increases or the phonon frequency
to 100 and extrapolate results to the thermodynamic limit.decreases, the exponeditbecomes smaller. For sufficiently

(n)=1+(-1)'me, (4)

M. (6)

and the staggered phonon displacement correlation function
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FIG. 2. Electronic(circle) and phononic(square¢ staggered
FIG. 1. Staggered charge-density correlation funct@yfm) static susceptibilities as a function of the inverse chain length in the
(solid line) and staggered phonon displacement correlation functiormetallic phase fory=0.4 (a) and in the Peierls phase for=1 (b).
Cy(m) (dashed lingin the metallic phase foy=0.4(a) and in the  In both caseso=1. Solid lines are linear fits.
Peierls phase foy=1 (b). The distancem is calculated from the
middle of an open chain of 80 sitéa) and 40 sitegb), respec-  Figure 2Zb) showsx. and y, as a function of the inverse
tively. In both caseso=1. system size for a relatively strong electron-phonon coupling.
In this case, both susceptibilities remain finite koo and
large electron-phonon coupling or small phonon frequencyhus, reveals the presence of a Peierls state with long-range

the behavior of both correlation functions is completely dif- CDW order and lattice dimerization for the parameters con-
ferent. As seen in Fig.(b), in this case both functions tend sidered in this exampley=1,0=1).

to finite values at large distances, showing the existence of Using Egs.(6) and(12), one sees that
long-range order.
It is not always possible to determine the presence or a
absence of long-range order in the thermodynamic limit from Vxp= R\/E (13
the correlation functions of a finite chain. A better approach

is to compute the electronic and phononic static staggeregh the mean-field approximation. It is possible to demonstrate

susceptibilities defined as that this relation holds for the exact ground state in several
special cases, such as the adiabatic linat+{0) and the
:i E C 10 anti-adiabatic limit p—0). Although we can not prove the
Xe n(mM) (10 L ;
N “7 validity of Eq. (13) for the general case, our numerical re-

sults show that it is always satisfiédithin numerical errors
in an infinite system. This simply means that lattice dimer-
1 ization and CDW are two inseparable features of the Peierls
Xo=7 > Cqy(m), (1) ground state. Therefore, we define a unique order parameter
m as

and

respectively. It is clear that botly, and x, vanish in the )
thermodynamic limit if there is no long-range order. For in- A=ayo~ “_\/—
stance, both susceptibilities vanish abl It the noninteract- Xp™ KV Xe
ing limit (y=0). In Fig. 2a) we show bothy, andx, as a o ]
function of the inverse chain length for a weak electron-Wherex, andy. are the infinite system extrapolation of the
phonon coupling. Both quantities clearly tend to zero in andround-state susceptibilitied0) and (11) calculated from
infinite chain. Thus, we conclude that there is no long-rangd®MRG simulations. If the ground state of the Holstein
CDW order nor lattice distortion in the ground state of themodel is a Peierls state, one has>0, and otherwiseA
Holstein model for the parametery€0.4w=1) used in =0. Obviously, this definition oA |s!ust a generallzanon of
this example. On the other hand, it is clear thatandy, ~ the usual gap parameter of mean-field thedgy:, which is
remain finite forN— o if there is long-range CDW order or related to the other mean-field order parametegsand m,,

a lattice dimerization, respectively. For instance, in theby

mean-field approximation, one finds

(14

Xe=MZ, xp=m>. (12) AMF:a|mp|:?|me|- (15
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FIG. 3. GapsEy, (circle) andEg, (squarg vs the inverse chain FIG. 4. Lowest excitation energy; (circle) and second lowest

length in the metallic phase far=0.4 (a) and vs the square of the excitation energy, (squarg as a function of the system si2ein
inverse chain length in the Peierls phasefer1 (b). In both cases the metallic phase foy=0.4 (a) and in the Peierls phase for
w=1. Solid lines are linear fits. =1 (b). In both cases=1. Solid lines are linear fits.

In the mean-field approximation the Peierls distortion V& think that m. this regime the system i's still a metal, as in
opens a gap &y in the electronic spectrum. It is some- the nomn_te_ractlng cas_e/(:O)._ However, if the grom_md state
times assumed that this relation between Peierls gap and o?f the infinite system is a Pelerls statA:éO),_we find that
der parameters remains valid when quantum lattice fluctuat-’Oth.ga.‘pS. ex.trapolate to a nonzero value in the thermody-
tions are taken into accouttin such a case the exact Peierls amic limit[Fig. 3b)]. For y=1 andw=1, E;; =0.82, and
gap would simply be given by®. However, it is likely that g2~ 0-18, which are much smaller than the value that one
the Peierls gap is more reduced by the quantum lattice ﬂucwould anticipate from_ the amplitude o_f the Peierls distortion
tuations than the dimerization or CDW amplitcand be- 2A=2.5. For comparison, thg meaq-fleld result for the same
comes smaller than the value\2obtained from Eq(14). ~ Parameters is &y=3.1. This confirms that the quantum
Unfortunately, calculating the optical gap of the Holstein lattice fluctuations hav_e a much stronger eff_ect on the Peierls
model with a DMRG method is not possible y&tTo find ~ 9aP than on the amplitude of the Peierls distorfiovever-
how the appearance of the Peierls ground state correlatdd€€ss, we have never found that eithgg or Eg, vanishes

with a gap in the infinite system we have calculated thd®' N— in the Peierls ground state. In small clusters, a
charge gaps sharp drop of the Drude weight occurs simultaneously with

the crossover to the ordered bipolaronic ground state.
Eq1=2[Eo(1)—E(0)] (16) Therefore, the opening of the electronic gap always seems to
accompany the appearance of long-range order in the ground
state and we conclude that a Peierls ground state is always an
_ insulator.

Eg2=Eo(2)~Eo(0), A7 We have also analyzed the scaling of the lowest excitation
whereEy(x) is the DMRG ground-state energy withelec-  energiess,=E,— E, with the system size, wherg, is the
trons added toX>0) or removed fromX<0) the half-filled  energy of thenth lowest eigenstate of the Hamiltonié®) at
band. In these definitions we implicitly use the electron-holehalf filling. In the phase without long-range order we have
symmetry of the model at half filling, which implies that found that thee, decrease as a power-law for increasing
Eo(—X)=Eo(x). It should be noted that with these defini- system size and vanish in the thermodynamic limit, as seen
tions the charge gaps incorporate lattice relaxation effecti Fig. 4(a). These results confirm that in this case the infinite
occurring when the band filling is modified. Therefokg,;  system has a unique ground state but is gapless; there is a
andEg4, are not always equal to the optical gap of the syscontinuous band of excitations starting from the ground state,
tem.Eg, can be interpreted as the energy required to create @as expected for a metal. In the Peierls phase, the energy
quasiparticle excitation made of an electron dressed byifferences; between the ground state and the first excited
phonons. Similarly, Eg4, represents the energy required to state is very small even in small chains and the other excited
create a quasiparticle excitation, which is a bound pair oktates have a much higher energy. Thus, the ground state
electrons dressed by phonons, when such electron bindirgppears almost degenerate in finite systems. Moreover, we
occurs Eg,<Egq). Otherwise, one expectsy,~Eg,. Fig-  observe completely different scalings for the. Figure 4b)
ures 3a) and 3b) show both gaps for several system sizes. Ifshows thate,; decreases exponentially with increasing sys-
there is no long-range ordeA&0) we find that the gaps tem size, while the energy differences between the two low-
extrapolate to zero in the liml—o [Fig. 3@]. Therefore, est eigenstates and the higher excited states remain finite in

and
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) ) FIG. 6. Order parameteA as a function of the phonon fre-
FIG. 5. Order parameteX (circle) as a function of the electron-  guencyw for A= 72/w=0.64. Foro=0 we show the exact adia-
phonon couplingy for w=1. The solid line is the mean-field result p4iic result.
AMF .

o . the evolution of the order parametaras a function of the
the thermodynamic limit. This shows that the ground state ogjectron-phonony for =1 in Fig. 5. We see that the tran-
the Peierls phase is twofold degenerate in the thermodysition to the Peierls state occurs aroupe 0.8. This is in
namic limit. We have also checked that the order paramet€jood agreement with calculations based on a functional in-
value as for the ground state in the thermodynamic limityhonon frequencyw=1.1. As the adiabatic and anti-

Therefore, both states are Peierls states with long-rangggiapatic limits are usually investigated for finite values of
CDW order and lattice dimerization, in qualitative agreementy,o electron-phonon  coupling  constank = a2/(2K)

with mean-field predictions. The gap between the degeneraie: v2lw with our choice of units we showA as a function
ground state and the other eigenstates also confirms the i ine phonon frequency for a fixed valuex =0.64 in Fig.

sulating nature of the system in the Peierls phase. 6. One can see that our results converge to the exact adia-
Our results demonstrate that the ground state of the ongsatic resylt for smalle and that the transition from the

dimensional Holstein model for spihelectrons at half fill- Peierls phase to the metallic phase occurs araurd..
ing can be either a metallic state or an insulating Peierls state |, summary, we have studied the ground-state properties

depending on the interaction parametgrand w. The SyS- 4t the one-dimensional Holstein model for sgielectrons at
tem undergoes a quantum phase transition between the mgs ¢ filling using DMRG. We have shown that this system
tallic phase and the Peierls insulating phase at finite C”t'catlmdergoes a transition from a metallic phase to an insulating

va!uels e and w.. In this aspect, the Holstein model for pgieris phase at finite values of the electron-phonon coupling
spin- electrons is similar to spin-Peierls and spinless fer-5,q of the phonon frequency.

mion models. Unfortunately, DMRG simulations become
less accurate and harder to carry out in the vicinity of the We thank S. Moukouri and |. Peschel for helpful discus-
transition while, at the same time, the finite-size-scalingsions. E.J. thanks the Institute for Theoretical Physics of the
analysis requires more accurate results and larger systebmiversity of Fribourg, Switzerland, for its kind hospitality
sizes. Therefore, determining the critical valugsand w.  during the preparation of this manuscript. S.R.W. acknowl-
for which this metal-insulator transition occurs demands sedges support from the NSF under Grant No. DMR-98-
substantial amount of computer time and we have not at70930, and from the University of California through the
tempted to draw a phase diagram. Nevertheless, we can shad@dampus Laboratory Collaborations Program.
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