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Metal-insulator transition in the one-dimensional Holstein model at half filling
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We study the one-dimensional Holstein model with spin-1
2 electrons at half filling. Ground-state properties

are calculated for long chains with great accuracy using the density-matrix renormalization-group method and
extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon
frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice
fluctuations and that the system remains in a metallic phase with a nondegenerate ground state and power-law
electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon fre-
quency small, the system undergoes a transition to an insulating Peierls phase with a twofold degenerate
ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic
excitation spectrum.@S0163-1829~99!09035-9#
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A long time ago, Peierls1 suggested that a one
dimensional metal should exhibit an instability against a
riodic lattice distortion of wave vector equal to twice th
Fermi wave vector. Although this distortion increases
lattice elastic energy, it opens a gap in the electronic sp
trum at the Fermi surface, lowering the electronic ener
Thus, the Peierls insulating state can be energetically favo
over the metallic state. A wide range of quasi-on
dimensional materials, such asMX chains, charge-density
wave ~CDW! compounds, conjugated polymers and char
transfer salts,2 have electronic properties that are domina
or at least affected by the Peierls instability. These syste
are often modeled by the one-dimensional Holstein mod3

the Su-Schrieffer-Heeger model,4 or various spin-Peierls5

models.
The Peierls instability is well understood in the static l

tice ~adiabatic! limit and within mean-field theory. An inter
esting and still controversial question is how the Peie
ground state is modified when quantum lattice fluctuatio
are taken into account. These quantum lattice fluctuati
could have an important effect in most quasi-on
dimensional materials with a Peierls ground state because
lattice zero-point motion is often comparable to the amp
tude of the Peierls distortion.6 Thus, this question has mot
vated several studies of quantum lattice fluctuation effe
in the Holstein,7–14 Su-Schrieffer-Heeger,15–19 and
spin-Peierls20–27 models. In spinless fermion models an
spin-Peierls models these studies have shown that the tr
tion to a Peierls state occurs only when the electron-pho
coupling exceeds a finite critical value or when the phon
frequency drops below some finite threshold value. Thus
these systems quantum lattice fluctuations destroy the Pe
instability for small electron-phonon coupling or large ph
non frequency. In more realistic models with spin-1

2 elec-
trons, however, previous studies7,9,16,17,19have generally con-
cluded that the ground state is a Peierls state for any fi
electron-phonon coupling at finite phonon frequency,
qualitative agreement with mean-field theory.

Here, we consider the one-dimensional Holstein mo
with spin-12 electrons at half filling. This model describe
PRB 600163-1829/99/60~11!/7950~6!/$15.00
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electrons coupled to dispersionless phonons, represente
local oscillators. It has as Hamiltonian

H5
1

2M (
i

pi
21

K

2 (
i

qi
22a(

i
qi~ni21!

2t(
is

~cis
† ci 11s1ci 11s

† cis!, ~1!

whereqi and pi are the position and momentum operato
for a phonon mode at sitei, ci ,s

† and ci ,s are creation and
annihilation operators for an electron of spins on sitei, and
ni5ci ,↑

† ci ,↑1ci ,↓
† ci ,↓ . The half-filled band case correspond

to a density of one electron per site. At first sight, there
four parameters in this model: the oscillator massM and
spring constantK, the electron-phonon coupling constanta,
and the electron hopping integralt. However, if phonon cre-
ation and annihilation operators are denoted bybi

† and bi ,
respectively, the Holstein Hamiltonian can be written~up to
a constant term!

H5v (
i

bi
†bi2g (

i
~bi

†1bi !~ni21!

2t(
is

~ci 11s
† cis1cis

† ci 11s!, ~2!

where the phonon frequency is given byv25K/M ~we set
\51) and a new electron-phonon constant is defined bg
5a a with the range of zero-point phonon position fluctu
tions given bya25v/(2K). We can set the parameterst and
a equal to 1 by redefining the overall energy scale and
units of phonon displacements. Thus, the properties of
Holstein Hamiltonian~2! depends only on the two interac
tion parametersv andg.

Mean-field theory predicts that the ground state of t
model is a Peierls state for any nonzero electron-phonon c
pling andv,`. Early works based on strong-coupling pe
turbation theory and quantum Monte-Carlo simulations,7 as
well as variational calculations9 seemed to support this poin
of view. However, the quantum Monte-Carlo results we
7950 ©1999 The American Physical Society
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PRB 60 7951METAL-INSULATOR TRANSITION IN THE ONE- . . .
limited to small systems~up to 16 sites! and their interpreta-
tion relied on a questionable finite-size-scaling analysis. T
strong-coupling perturbation theory is based on the form
tion of small bipolarons in theg/v→` limit, but it has been
argued that, as the couplingg decreases, the bipolaron siz
becomes large and the strong-coupling picture bre
down.28 On the other hand, a functional integral calculati
suggests that the transition occurs at finite electron-pho
coupling,10 but the accuracy of this approach is hard to e
mate. Moreover, the static and dynamical properties of sm
clusters~up to six sites! show that there is a sharp crossov
at a finite electron-phonon coupling from a quasifree elect
ground state to an ordered bipolaronic ground state, wh
can be seen as a precursor to the Peierls ground state o
infinite system.29–31 A similar crossover is observed in a
approximate solution of the Hamiltonian~2!, where only a
single-phonon modebp;( i(21)ibi is explicitly taken into
account.32

In this paper, we discuss the ground-state properties o
Holstein model of spin-12 electrons in the thermodynami
limit. We demonstrate that quantum lattice fluctuations s
press the Peierls instability for small electron-phonon c
pling or large phonon frequency. In this regime, the grou
state is unique, gapless, and shows only power-law corr
tions between electron position and between phonon
placements. This ground state is similar to the ground s
of the noninteracting system (g50). When the electron-
phonon coupling becomes large or the phonon frequency
comes small the system undergoes a transition to an ins
ing Peierls phase, which is qualitatively described by me
field theory. In this regime the ground state is doub
degenerate, and there is a gap in the electronic spect
long-range CDW order and a dimerized lattice structure.

Our results are based on density-matrix renormalizati
group~DMRG! calculations.33 DMRG is as accurate as exa
diagonalization on small systems but can be applied to m
larger systems while maintaining very good precision. It h
already been applied successfully to the study of the Pe
instability in quantum lattices with spinless fermion or sp
degrees of freedom.20,12,25There have not been any applic
tions of DMRG to models of spin-1

2 electrons coupled to
phonons yet, because these systems are significantly h
to deal with due to the additional degrees of freedom and
larger amplitude of phonon displacements. For this paper
have used an improved DMRG method for systems w
boson degrees of freedom, which has been described
previous work.34 With this approach both the error due to th
necessary truncation of the phonon Hilbert space and
DMRG truncation error can be kept negligible. The accura
of this DMRG technique has been demonstrated by comp
son with many numerical and analytical methods for the
laron problem~a single electron! in the one-dimensiona
Holstein model.34–36 The maximum number of density
matrix eigenstatesm used in our calculations is 800, givin
truncation errors from 1027 to 10211 depending on the sys
tem size and parameters. The error in the ground-state en
is estimated to be smaller than 1025t. The actual number o
phonon states kept for each local oscillator ranges from
32 depending on the electron-phonon coupling strength.
have studied open chains with an even numberN of sites~up
to 100! and extrapolate results to the thermodynamic lim
e
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Open boundary conditions are used because the DM
method usually performs much better in this case than
periodic boundary conditions.

In previous studies of the Peierls instability in the Ho
stein model the ground-state symmetry was explicitly brok
as in the mean-field and adiabatic approximations.7,9,10Thus,
the Peierls ground state was revealed by a lattice distor
~dimerization!

^qi&5~21! imp ~3!

and a CDW

^ni&511~21! ime , ~4!

with me ,mpÞ0, where^Ô& means the ground-state expect
tion value of operatorÔ, andmp andme are the phonon and
electronic order parameter, respectively.7 For me ,mpÞ0, the
ground state was twofold degenerate@this degeneracy corre
sponds to the two possible phases of the oscillations~3! and
~4!#. Note that, as all eigenstates of the Holstein Hamilton
satisfy

^qi&5
a

K
~^ni&21!, ~5!

the order parameters are related by

mp5
a

K
me . ~6!

Our DMRG method gives an excellent approximation
the exact ground state of the Holstein model on a lattice
finite size. It is known exactly that the ground state of t
half-filled Holstein model on a finite lattice is unique forv
Þ0, implying that there is no degenerate broken symme
ground state at any finite electron-phonon coupling or n
zero phonon frequency.37 Instead, there is a quasidegenera
of the ground state when the electron-phonon coupling
ceeds a finite critical value31 ~this point will discussed in
more detail later!. Therefore, we always find̂qi&50 and
^ni&51 in our calculations. This property follows directl
from the uniqueness of the ground state and the electron-
symmetry, i.e., the invariance of the Hamiltonian~1! under
the transformation

cis
† →~21! icis , qi→2qi . ~7!

To observe the consequences of the Peierls instability
have to look at correlation functions. The most importa
ones for a Peierls state are the staggered charge-density
relation function

Cn~m!5~21!m~^nini 1m&21! ~8!

and the staggered phonon displacement correlation func

Cq~m!5~21!m^qiqi 1m&. ~9!

We have found that, for small electron-phonon couplingg or
large phonon frequencyv, both correlation functions de
crease as a power-lawm2b with 2>b.0 as a function of
the distancem. An example is shown in Fig. 1~a!. As the
electron-phonon coupling increases or the phonon freque
decreases, the exponentb becomes smaller. For sufficientl
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7952 PRB 60ERIC JECKELMANN, CHUNLI ZHANG, AND STEVEN R. WHITE
large electron-phonon coupling or small phonon freque
the behavior of both correlation functions is completely d
ferent. As seen in Fig. 1~b!, in this case both functions ten
to finite values at large distances, showing the existenc
long-range order.

It is not always possible to determine the presence
absence of long-range order in the thermodynamic limit fr
the correlation functions of a finite chain. A better approa
is to compute the electronic and phononic static stagge
susceptibilities defined as

xe5
1

N (
m

Cn~m! ~10!

and

xp5
1

N (
m

Cq~m!, ~11!

respectively. It is clear that bothxe and xp vanish in the
thermodynamic limit if there is no long-range order. For i
stance, both susceptibilities vanish as 1/N in the noninteract-
ing limit (g50). In Fig. 2~a! we show bothxe andxp as a
function of the inverse chain length for a weak electro
phonon coupling. Both quantities clearly tend to zero in
infinite chain. Thus, we conclude that there is no long-ran
CDW order nor lattice distortion in the ground state of t
Holstein model for the parameters (g50.4,v51) used in
this example. On the other hand, it is clear thatxe and xp
remain finite forN→` if there is long-range CDW order o
a lattice dimerization, respectively. For instance, in t
mean-field approximation, one finds

xe5me
2 , xp5mp

2 . ~12!

FIG. 1. Staggered charge-density correlation functionCn(m)
~solid line! and staggered phonon displacement correlation func
Cq(m) ~dashed line! in the metallic phase forg50.4 ~a! and in the
Peierls phase forg51 ~b!. The distancem is calculated from the
middle of an open chain of 80 sites~a! and 40 sites~b!, respec-
tively. In both casesv51.
y

of

r

h
d

-
n
e

e

Figure 2~b! showsxe and xp as a function of the inverse
system size for a relatively strong electron-phonon coupli
In this case, both susceptibilities remain finite forN→` and
thus, reveals the presence of a Peierls state with long-ra
CDW order and lattice dimerization for the parameters c
sidered in this example (g51,v51).

Using Eqs.~6! and ~12!, one sees that

Axp5
a

K
Axe ~13!

in the mean-field approximation. It is possible to demonstr
that this relation holds for the exact ground state in seve
special cases, such as the adiabatic limit (v→0) and the
anti-adiabatic limit (v→`). Although we can not prove the
validity of Eq. ~13! for the general case, our numerical r
sults show that it is always satisfied~within numerical errors!
in an infinite system. This simply means that lattice dim
ization and CDW are two inseparable features of the Pei
ground state. Therefore, we define a unique order param
D as

D5aAxp'
a2

K
Axe, ~14!

wherexp andxe are the infinite system extrapolation of th
ground-state susceptibilities~10! and ~11! calculated from
DMRG simulations. If the ground state of the Holste
model is a Peierls state, one hasD.0, and otherwiseD
50. Obviously, this definition ofD is just a generalization o
the usual gap parameter of mean-field theoryDMF , which is
related to the other mean-field order parametersme andmp
by

DMF5aumpu5
a2

K
umeu. ~15!

n

FIG. 2. Electronic ~circle! and phononic~square! staggered
static susceptibilities as a function of the inverse chain length in
metallic phase forg50.4 ~a! and in the Peierls phase forg51 ~b!.
In both casesv51. Solid lines are linear fits.
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In the mean-field approximation the Peierls distorti
opens a gap 2DMF in the electronic spectrum. It is some
times assumed that this relation between Peierls gap an
der parameters remains valid when quantum lattice fluc
tions are taken into account.10 In such a case the exact Peie
gap would simply be given by 2D. However, it is likely that
the Peierls gap is more reduced by the quantum lattice fl
tuations than the dimerization or CDW amplitude6 and be-
comes smaller than the value 2D obtained from Eq.~14!.
Unfortunately, calculating the optical gap of the Holste
model with a DMRG method is not possible yet.38 To find
how the appearance of the Peierls ground state corre
with a gap in the infinite system we have calculated
charge gaps

Eg152@E0~1!2E0~0!# ~16!

and

Eg25E0~2!2E0~0!, ~17!

whereE0(x) is the DMRG ground-state energy withx elec-
trons added to (x.0) or removed from (x,0) the half-filled
band. In these definitions we implicitly use the electron-h
symmetry of the model at half filling, which implies tha
E0(2x)5E0(x). It should be noted that with these defin
tions the charge gaps incorporate lattice relaxation effe
occurring when the band filling is modified. Therefore,Eg1
and Eg2 are not always equal to the optical gap of the s
tem.Eg1 can be interpreted as the energy required to crea
quasiparticle excitation made of an electron dressed
phonons. Similarly, 2Eg2 represents the energy required
create a quasiparticle excitation, which is a bound pair
electrons dressed by phonons, when such electron bin
occurs (Eg2,Eg1). Otherwise, one expectsEg2'Eg1 . Fig-
ures 3~a! and 3~b! show both gaps for several system sizes
there is no long-range order (D50) we find that the gaps
extrapolate to zero in the limitN→` @Fig. 3~a!#. Therefore,

FIG. 3. GapsEg1 ~circle! andEg2 ~square! vs the inverse chain
length in the metallic phase forg50.4 ~a! and vs the square of th
inverse chain length in the Peierls phase forg51 ~b!. In both cases
v51. Solid lines are linear fits.
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we think that in this regime the system is still a metal, as
the noninteracting case (g50). However, if the ground state
of the infinite system is a Peierls state (D.0), we find that
both gaps extrapolate to a nonzero value in the thermo
namic limit @Fig. 3~b!#. For g51 andv51, Eg150.82, and
Eg250.18, which are much smaller than the value that o
would anticipate from the amplitude of the Peierls distorti
2D52.5. For comparison, the mean-field result for the sa
parameters is 2DMF53.1. This confirms that the quantum
lattice fluctuations have a much stronger effect on the Pei
gap than on the amplitude of the Peierls distortion.6 Never-
theless, we have never found that eitherEg1 or Eg2 vanishes
for N→` in the Peierls ground state. In small clusters
sharp drop of the Drude weight occurs simultaneously w
the crossover to the ordered bipolaronic ground stat31

Therefore, the opening of the electronic gap always seem
accompany the appearance of long-range order in the gro
state and we conclude that a Peierls ground state is alway
insulator.

We have also analyzed the scaling of the lowest excita
energies«n5En2E0 with the system size, whereEn is the
energy of thenth lowest eigenstate of the Hamiltonian~2! at
half filling. In the phase without long-range order we ha
found that the«n decrease as a power-law for increasi
system size and vanish in the thermodynamic limit, as s
in Fig. 4~a!. These results confirm that in this case the infin
system has a unique ground state but is gapless; there
continuous band of excitations starting from the ground st
as expected for a metal. In the Peierls phase, the en
difference«1 between the ground state and the first exci
state is very small even in small chains and the other exc
states have a much higher energy. Thus, the ground s
appears almost degenerate in finite systems. Moreover
observe completely different scalings for the«n . Figure 4~b!
shows that«1 decreases exponentially with increasing sy
tem size, while the energy differences between the two lo
est eigenstates and the higher excited states remain fini

FIG. 4. Lowest excitation energy«1 ~circle! and second lowes
excitation energy«2 ~square! as a function of the system sizeN in
the metallic phase forg50.4 ~a! and in the Peierls phase forg
51 ~b!. In both casesv51. Solid lines are linear fits.
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7954 PRB 60ERIC JECKELMANN, CHUNLI ZHANG, AND STEVEN R. WHITE
the thermodynamic limit. This shows that the ground state
the Peierls phase is twofold degenerate in the thermo
namic limit. We have also checked that the order param
D calculated for the first excited state tends to the same fi
value as for the ground state in the thermodynamic lim
Therefore, both states are Peierls states with long-ra
CDW order and lattice dimerization, in qualitative agreem
with mean-field predictions. The gap between the degene
ground state and the other eigenstates also confirms th
sulating nature of the system in the Peierls phase.

Our results demonstrate that the ground state of the o
dimensional Holstein model for spin-1

2 electrons at half fill-
ing can be either a metallic state or an insulating Peierls s
depending on the interaction parametersg andv. The sys-
tem undergoes a quantum phase transition between the
tallic phase and the Peierls insulating phase at finite crit
valuesgc and vc . In this aspect, the Holstein model fo
spin-12 electrons is similar to spin-Peierls and spinless f
mion models. Unfortunately, DMRG simulations becom
less accurate and harder to carry out in the vicinity of
transition while, at the same time, the finite-size-scal
analysis requires more accurate results and larger sy
sizes. Therefore, determining the critical valuesgc and vc
for which this metal-insulator transition occurs demand
substantial amount of computer time and we have not
tempted to draw a phase diagram. Nevertheless, we can s

FIG. 5. Order parameterD ~circle! as a function of the electron
phonon couplingg for v51. The solid line is the mean-field resu
DMF .
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the evolution of the order parameterD as a function of the
electron-phonong for v51 in Fig. 5. We see that the tran
sition to the Peierls state occurs aroundg50.8. This is in
good agreement with calculations based on a functional
tegral approach,10 which predictsgc'1 for a slightly larger
phonon frequencyv51.1. As the adiabatic and ant
adiabatic limits are usually investigated for finite values
the electron-phonon coupling constantl5a2/(2K)
(5g2/v with our choice of units!, we showD as a function
of the phonon frequencyv for a fixed valuel50.64 in Fig.
6. One can see that our results converge to the exact a
batic result for smallv and that the transition from the
Peierls phase to the metallic phase occurs aroundv51.

In summary, we have studied the ground-state proper
of the one-dimensional Holstein model for spin-1

2 electrons at
half filling using DMRG. We have shown that this syste
undergoes a transition from a metallic phase to an insula
Peierls phase at finite values of the electron-phonon coup
and of the phonon frequency.

We thank S. Moukouri and I. Peschel for helpful discu
sions. E.J. thanks the Institute for Theoretical Physics of
University of Fribourg, Switzerland, for its kind hospitalit
during the preparation of this manuscript. S.R.W. ackno
edges support from the NSF under Grant No. DMR-9
70930, and from the University of California through th
Campus Laboratory Collaborations Program.

FIG. 6. Order parameterD as a function of the phonon fre
quencyv for l5g2/v50.64. Forv50 we show the exact adia
batic result.
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