PHYSICAL REVIEW B VOLUME 60, NUMBER 11 15 SEPTEMBER 1999-I

Effects of doping and interchain interactions on the metal-insulator transition
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Using a tight-binding Hamiltonian the metal-insulator phase diagranrdos-polyacetylene was calculated
as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic
system coincides with the gap closing, which occurs for certain combinations of critical values for the doping
concentration and the interchain interaction strength. The values found are in good agreement with the experi-
mentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite
chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the
metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is
shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction
strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order
of a few percent. The localization length is found to be substantially longer than the conjugation length of the
polymer.[S0163-18289)09635-4

I. INTRODUCTION small the disorder is. Thus, both the Peierls effect and the
presence of disorder lead to an insulating state in this kind of
The metallic properties of heavily doped conjugated poly-system.
mers are well documentéd® For trans-polyacetyleng PA) Electron-electron interactions and lattice fluctuations have
there is an onset of the Pauli susceptibility at a doping conbeen investigated to clarify their effect on the Peierls gap in
centration of 7—8 %, i.e., the density of stateOS) at the  Single chains of PA. The electron-electron interactions, mod-
Fermi energy increase rapidly in this regime. However, thetled by a Su, Schrieffer, and Heeg€8SH-extended-
transition from nonmetallic to metallic behavior with a non Hubbard model reduce the amplitude of the solitons, thus
vanishing conductivity 80 K occurs at a higher doping level reducing the gap, but do not change the qualitative features

since the conductivity is quite sensitive to disorder. Even apf the soliton lattice in PA? The lattice quctga_ﬂons, atroom
tgmperature, were shown to have an negligible effect on the

. . o . mean positions of the carbon atofisTherefore these fluc-
disorder-induced transition into a nonmetallic state, as ha?uations can be considered as an additional source of

begn Qemonstrated _for instance by applying a s_trong m"’u;b'isorde'rL4 that, as discussed above, introduce localized states
netic field to a metallic sample of pdly-phenylenevinylene in the band gap

turning it into an insulatof. There is an ongoing debate on " ") der to observe metallic conductivity, i.e., finite con-

how the disorder is arranged in the polymers. The homogeg,ciivity at zero temperature we need to consider three-
neous modef,in which the disorder is randomly distributed gimensional effects, here manifested as interchain interac-
over the polymer sample and the interesting properties of thgons. The importance of the interchain interactions has been
conduction is controlled by Anderson localization in the C|ear|y shown in experiments where the p0|ymer is Subjected
bulk. In the inhomogeneofisnodel the polymer consists of o high pressures, increasing the interchain interaction, caus-
metallic islands with areas of strong disorder in betweening the samples to make a transition from insulator to the
This model is more of a percolation transition between nonmetallic state’® The Peierls gap will be suppressed by the
metallic and metallic. interchain interaction, since it will widen the electronic
Doping of trans-polyacetylene is known to create soli- bands. Therefore, a gapless state can be obtained even in the
tons, i.e., kinklike geometrical distortions, along the polymerpresence of a soliton lattice. Furthermore the fact that the
chains® Each additional dopant charge is associated with on@olymer chains interact and form a highly anisotropic three-
soliton. These distortions align in an ordered way and creatdimensional(3D) system allows for delocalization of the
a soliton lattice. The electronic structure associated with thevave function even in the presence of disorder. In an isotro-
soliton lattice consists of a midgap electronic band that ipic 3D system, weak disorder will localize states near the
widened with increasing doping concentration, decreasindpand edges but there has to be a large amount of disorder to
the size of the bandgap. The soliton lattice can be considerddcalize all the states in the band. The size of the disorder
as a Peierls distortion since the length of the unit cell isrequired in the isotropic 3D system is demonstrated by the
commensurate with the band filling. For a single chain thdoffe-Regel conditiort? the elastic mean-free path has to be
Peierls state has a nonzero gap for all doping concentratiorsf the order of the lattice parameter in order to localize the
and is thus never metallic. Disorder in the polymer will de-wave function. This amount of disorder is not realistic in the
crease the size of the band d&p but, in the strictly one-  polymers discussed here. However, as we have shown in an
dimensional system, disorder localizes all stftémwever earlier article!® the large anisotropy of the lattice makes it
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much more sensitive to disorder compared to an isotropic 30reated as a parameter and varied in the range 0.05-0.15 eV
lattice. Based on the previous work one can also expect thancluding the values that has been suggested fof%PA.
states at the Fermi energy will be very sensitive to disorder, To take the dimerization of the PA chains into accolas
especially since the soliton lattice causes a low DOS at thevell as soliton defects as described beldhe values of the
Fermi energy. intrachain hoppind' depends on the C-C bond length. Fol-

In this paper we will show how the interchain interactionslowing Su, Schrieffer, and Heedér(SSH, the hopping
close the band gap and how disorder affects both the barstrength is approximated aé,l,m:to_a(uk+1,l,m_uk,l,m)
gap and the localization properties toinspolyacetylene at  whereu,  , is the displacement of thie |, mth carbon atom
various doping concentrations and strength of the interchaith the direction parallel to the chain axis. The parameters
hopping. Using a tight-binding Hamiltonian we calculate the(t,, «) were chosen to give a total bandwidth of 10 eV and

band gap of the polymer and in the gapless state the locak band gap of 1.4 eV for a single perfectly dimerized PA
ization properties of the states at the Fermi energy. Due t@hain [u,=(—1)uy], this gives to=—2.5 eV, auy=

the complexity of the problem we have been forced to limit—1.4/8 eV (only the productru, is neededl

the calculations to a one-electron model and limit the pos- |n the unperturbed chains the alternating bond lengths of
sible kinds of disorder to randomly distributed chain breaksthe PA chain were described hy=(—1)*u, and the geo-
Other types of disorder can of course exist in the polymemmetrical disturbances of the solitons were modeled by setting
samples, lattice fluctuatior(as discussed abokehe poten-  the displacements of the carbon atoms to

tial from the dopant ions and imperfections in the alignment

between chains. The misalignment between chains is particu-

larly important in the model describing the polymeric mate- u=(—1) uo] tan}{
rial as metallic islands separated by regions in which the "

polymeric chains are more or less randomly oriented withyhere x, is the position of the solitons. This form of the
respect to each other. To treat chain misalignment in OUfisplacements has been shdto correspond very well to
model would be to introduce disordertin and to effectively  he optimized geometry. Each donor/acceptor charge corre-
reduce this interaction strength. In the presentation belo"!ponds to one soliton in the lattice, the solitons were placed
this type of disorder corresponds to the results in thedow- 4t fixed distances from each other and from chain ddés
regime, thus, in an effective way we can also account for thigects described belowcare was taken to place an even/odd
type of disorder in our model. number of solitons on chains with an even/odd number of
Section 11 of this paper introduces the model used to dexarhon atoms to ensure that the first and last bond of the
scribe PA and the methods used to calculate the band gafyrhon chain is a double bond. The doping concentration and

and the localization properties of the electronic states. Reys the soliton concentration will hereafter be dengtéub.
sults and discussion are presented in Sec. lll and a summagyjitons per no. of carbon atojs

k—X,
7.0

: (€Y

of the results in Sec. IV. As discussed above the disorder present in heavily doped
conducting polymers can be of various types. Here we focus
Il. METHODOLOGY on the effect of conjugation breaking defects such as finite

] ] ) ] chain lengthssp3-hybridized carbon atoms, chain twistings
Conducting polymers in the solid state are built up ofgtc We have simulated these types of defects by setting the
chalr_ls packed into a 3D structure. T_he electronl_c propertiefopping along the chaitl to a small value €*) between
of this type of system are well described by a simple tight-andomly chosertadjacent sites with a given concentration
binding Hamiltonian with large intrachain hopping strength (w). Other types of disorder have not been considered in the
(t_”) and a relatively weak hopping perpendicular to the chairggjcylations, except for a short discussion of the effect of
direction ¢*). All types of conjugated polymer structures positioning the solitons randomly given in the next section.
can be represented by a model of this type. In particularowever, it is our experience that different types of disorder
more complicated polymeric structures than PA can bf‘give rise to qualitatively similar results.
mapped og}g a one-dimensional chain by a renormalization The pand gap for a 3D crystal without chain breaks and a
argument.®*’ We, therefore, expect that the results that areonstant concentration of solitons, perfectly aligned with
presented here also give a qualitatively correct picture o§gjitons on the adjacent chains, were calculated from the
localization in other polymers. . band structure of a single chain adding the dispersion
Considering therr orbitals of the polymer chain we get 2ti(co§tky]+cos{kg) to calculate the 3D band gap. To inves-
the following one-electron tight-binding Hamiltonian with tigate what effect random alignment of solitons between
nearest-neighbor hopping only. chains has on the band gap we estimated it from calculations
on a finite bar of chains where the chain length was 110 or
111 sites and the bar was composed &f77 chains. Periodic
boundary conditions were used along the chains and “hard”
boundary conditions perpendicular to the chains. Averaging
X(k,I+1m[+H.ct[kl,mt (k| m+1[+H.c. the band gap for a large number of random systéorseach
y andt') and fitting the band gap to a polynomial tf (for
The sum is to be taken over a 3D cubic lattigle,,m) eachy) enabled us to determine the critical valuetbfthat
denote the orbitals at the sites along the chak)sahd in a  closes the band gap. The calculations also provided the
plane perpendicular to the chain axisni). The anisotropic Fermi-energy for different soliton concentrations, which was
hopping in the direction perpendicular to the chaih,is  used in the calculations of the localization length.

H= > [k 1,m)th, o(k+1l,m/+H.c+|k,|, mytt
k,I,m ”
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To determine if the electronic states are localized or ex- tt (eV)
tended, we use a method developed edriénat treats a

system of coupled chains in a bar with a quadratic cross %1%
sectionM XM, whereM is the number of chains in each

direction perpendicular to the chain axis. For this system of
coupled chains, we get a transfer matrix that connects the

wave function in a slice of the bar with its value on the 510

nearest-neighbor slices. The product of transfer matrices
gives a connection between the wave function at the two
ends of the bar. However, this product cannot be used di-
rectly to determine whether the wave function is localized or
not because of numerical difficulties. Instead, we have cal- 0.05
culated the Lyapunov characteristic exponefi€E) from 0.06 0.08 0.10 0.12
the transfer matrices using an orthogonalization procedure
described by Benettiet al.?!?2 An estimate of the errors in
the calculated LCE was obtained from the standard devia- FIG. 1. Phase diagram showing the boundary between the gap-
tion. This estimate was also used to determine when thtess metallic statétop righy and the state with a gafower left) for
LCE’s had the required accuracy. Since this method of caldifferent soliton concentrationy] and coupling between chains
culating the LCE vyields higher accuracy for longer bars, the(th). Solid line shows perfect alignment of solitons between chains;
method can produce results of arbitrary high precision. Irflashed line, random alignment.

practice, however_, the size of _the system has to be ””.‘“ed To check how random alignment of the solitons between
due to the extensive computation times. In our calculationgpains and chain breaks change the size of the band-gap, we
for the cases Where the states Io_cahzes a 1% accuracy WeBlculated numerically the eigenvalues of the Hamiltonian
usually met, while fo_r the delocalized cases th_e accuracy gy 5 large lattice. Note that random alignment between soli-
harder to reach and in most cases the caljcgﬁl_)aﬂ_on was tefM5s on different chains does not affect the ordering of soli-
nated when the length of the bar reached® sites. (55 on the individual chains. Averaging over a large number
The localization lengthy, for a bar of cross section f ggjiton alignments we were able to estimate the size of the
M XM, was calculated as th_e inverse o_f thg smallest positive 5, gap, the Fermi energy and at which soliton concentra-
LCE. From the renormalized localization lengthy  tjon the band gap closed for each valuetof The perpen-

=\y /M for different sizesM of the bar(with the same  gicylar hopping: needed to close the band gap for the case
defect and soliton concentratiowe can determine whether o hq defects and random alignment of the solitons is shown

the wave functions are localized or not at the Fermi energy;, Fig. 1, dashed line. Compared to the case of perfectly
If the renormalized localization length increases/decrease§|igned solitons there is no large differences. Thus, at least
with increasing width 1) of the bar the states at this energy ¢|ose to the closing of the band gap, the alignment of the
is delocalized/localize®® Using the one parameter scaling solitons is unimportant as far as the band gap is concerned.
hypothesis, we were also able to estimate the localization pqcysing on the parameter space that is most relevant in
length of the wave functions in the thermodynamic liffit. the case ofrans-polyacetylene we note that the experimen-
tally observed rapid onset of the Pauli susceptibility occurs
IIl. RESULTS AND DISCUSSION aroun_dy=0.05—0.072.4 In the pres_ent_phase c_iiagra(rlﬁig.
1), this corresponds to an effective interchain hopping of

To investigate how the band gap varies with soliton con-strength oft* =0.10-0.14 eV, which agrees with the range
centration, interchain interaction strength, and defect concerof values that have been discussed in the literature for the
tration we have performed eigenvalue calculations on threghterchain hopping strengff.
cases, without chain breaks with the solitons perfectly Defects in materials are known to affect the band gap
aligned between different chains, with randomly alignedquite strongly. We have calculated the band gap for disor-
solitons and for the disordered case with chain breaks. Thdered finite bars of the same size as used above. Even at as
phase diagram, showing where the band gap is closed, fasw amounts of chain breaks as=1% the band gap closes
the two cases without chain breaks are shown in Fig. 1.  for all values oft' andy that are of practical interest. This

The band gap for the 3D polymer with alignment betweenfact is consistent with the experimentally measured Pauli
solitons on different chains and without chain breaks wassusceptibility since the closing of the band gap is caused by
calculated for a large number of soliton concentratioys ( the disorder induced tails in the DOS of the soliton and con-
and different hopping strength between chains)( The  duction bands. The DOS at the Fermi energy is in this case
value oft" that closes the band-gap, as a functionypfs  small since the tails are barely overlapping. These tails are
shown as the solid line in Fig. 1. In the one-dimensionalalso clearly manifested in optical absorption spectra as a very
case, i.e., at" =0, the system remains insulating for all dop- broad absorption peak associated with the soliton Band.
ing levels due to the Peierls distortion, here present in term$he effect on the band gap of random placement of solitons
of the soliton lattice. As the interchain interaction is turnedon the individual chains has been studied previod$h}and
on, the Peierls gap is reduced and closed at a certain criticabserved to lead to closing of the band gap as a consequence
combination ot* andy. Increasing decreases the band gap of disorder, even for a single chain. Thus, even though the
for a 1D chain and thus lowers the value tof needed to  ordered system has a band gap the defects inherent in a poly-
close the gap. mer certainly closes the band gap even at modest amounts of

Soliton conc. (y)
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TABLE I. The critical concentration of chain breaka), with t+ (eV)
error estimates, needed to localize the wave functions at the Fermi 0.15
energy for different values df* andy. The largest bar cross sec-
tions (M X M) used in the calculations are shown undier, .
L 0, 0,
t eV Y (%) w (%) Mmax 010
0.075 10 1.50.5 10
0.0875 9 1.e¢0.5 10
0.0875 10 2.80.5 10
0.0875 11 2505 10 0.05
0.1 8 1.0:05 14 0.06 0.08 0.10 0.12
0.1 9 2.5-0.5 10 Soliton conc. (y)
0.1 10 3505 14 FIG. 2. Schematic metal-insulator phase diagram showing the
0.1 11 4.0-0.5 10 . : )
amount of disorderw) needed to localize the wave functions for
0.1 12 4.530.5 12 different coupling between chaing( and soliton concentration
0.1125 9 3505 10 (y). The contour lines are obtained from data calculated at the
0.1125 10 4.50.5 10 marked points. The lower line, taken from Fig(sblid line), shows
0.1125 11 5.860.5 10 the closing of the band gap for the ordered case.
0.125 10 5505 10

In Fig. 2, we clearly see that the wave functions localize
doping. However, as shown below, disorder causes localizéor small t* andy. This reflects that the DOS at the Fermi
tion of the states in the band gap. The transition to a truenergy is very important for the delocalization of states. As
metallic state in the presence of disorder can only take placee have shown earliér,a large DOS makes delocalization
at doping levels higher than those corresponding to closingasier. For smalt* andy the DOS at the Fermi energy
of the band gap for the perfect systéaee Fig. 1 caused by disorder is small, thereby making localization of
In order to test how sensitive the system of coupled polythe states easy. In contrast, lafgeandy will remove this
mer chains is to disorder we have performed calculations ofseudogap and the concentration of defects have to be large
the localization length. Using the concept of finite size scalto localize the states. The experiment by Regmhere
ing we have located the metal-insulator phase boundary assamples of heavily iodine-doped PA are shown to cross the
function of increasing disorder concentration and as a funcmetal-insulator transition when pressure is applied to the
tion of t* andy. The localization length for bars of polymers samples is easily interpreted from Fig. 2. Increasing the pres-
(\m,» whereM is the cross sectioM X M) were calculated sure will increase the interchain hopping strength causing
for the different values oft andy shown in Table | and for insulating samplegat normal pressurgso become metallic.
different amounts of chain breakw). Since the calculations The often used loffe-Regel condition states that localiza-
were carried out on bafguasi-1D all states always localize. tion will occur when the inelastic scattering length times the
To extrapolate and answer the question if the states at thaave vector at the Fermi energy is of the order of one, i.e.,
Fermi energy are localized in the infinite system we use th¢he inelastic scattering length is of the order of the lattice
finite size scaling argument, the states are localized if thgparameter. This is clearly a very large amount of disorder,
renormalized localization lengti\(, /M) decreases with in- however in the system that we are considering here, local-
creasingM. The Fermi energy used was obtained from theization appear for much lower amounts of disorder. This is
band-gap calculations described above, energies close to thitearly an effect of the highly anisotropic structure of the
energy are also checked to verify that the expected error imaterial*> The amount of disorder needed to localize the
the estimated Fermi energy does not significantly change thgtates at the Fermi energy for this model is considerably
results. smaller than for the wundimerized system studied
The metal-insulator phase diagram is shown in Fig. 2. Thepreviously®® In that case the Fermi energy lies in the middle
boundaries between localizetbwer left) and delocalized of the conduction band and essentially all states in this band
states(upper righy for different amounts of chain breaks are have to localize in order get a transition into an insulating
indicated by the lines. The numerical values used to generatgate. The case of the soliton lattice is markedly different in
the plot were calculated at the points marked in the figuréhat the Fermi energy lies in the region where the soliton and
and are listed in Table I. conduction bands join, as a consequence of the interchain
In the presence of disorder, the randomly distributedinteraction, making the states easier to localize.
chain interruptions can cause localization of the electronic The fact that the electronic states localize does not neces-
wave functions. In the cases where the band gap has not besarily imply that the transport properties will be dominated
closed by interchain interactions disorder move states fronby the disorder at all temperatures. At finite temperature the
the bands into the otherwise forbidden energy gap. Thereatio of the elastic to the inelastic scattering length will de-
fore, at the insulating side of the phase boundary in Fig. 1 théermine the importance of the disord@f the inelastic scat-
gap is reduced and is closed by this effect. However, théering length is shortin comparison with the elastic scatter-
disorder-induced tails in the DOS contain localized statesing length the polymer will behave more as a metal, even
Thus, the parameter space that involve the metallic region ithough the low temperature behavior is that of an insulator.
reduced by disorder, as can be seen in Fig. 2. The localization lengthX) of the infinite system has been
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A is more than 2 times W. This clearly shows the importance
108 of the interchain coupling permitting the wave function to
extend past chain breaks.

IV. SUMMARY AND CONCLUSIONS

It is well known that conducting polymers are semicon-

10? ductors that turn metallic upon large doping. Using a model
Hamiltonian for the system of coupled polymer chains we
have shown how the band gaptmans-polyacetylendPA) is
affected by the doping-induced solitons, interchain interac-

101 tions and disorder. Our calculations show that the band gap

4 5 6 7 8 closes at a doping concentration-ef7 % for realistic values
of the interchain interaction strength in close agreement with
the experimentally observed onset of the Pauli susceptibility.
FIG. 3. Localization length, logarithmic scale in units of num- D_|sorder is shown to close t_he band gap for small a_mounts O.f
ber of carbon atoms, as a function of the amount of disorder. Solig',sorder' hOW?Vef_the de_nS|ty Of_ states at the Fermi energy is
ton concentratiory=0.10, t" =0.1 (eV). still small. Using finite size scaling, we have calculated the
effect of disorder on the electronic wave functions near the

estimated using the one-parameter scaling hypotR2die. Fermi energy. The disorder induced states in the band gap
calculatex we have fitted the localization length ) for ~ &ré always localized. Also when the band gap is closed at
the finite bars with cross sectiol X M to the expected hlgh dopmg concentrations the wave_functlons can be local-

+c/M behavior, for large disorder, whereis a constant. |zeq by disorder. The amount of chau_’l bre_aks needed to lo-
From the calculated localization length for the largest disoralize the states at the Fermi energy is quite small as a con-
der in conjecture with the scaling curve we can estimate theduence of the nearly one-dimensional structure of the
localization length for samples with smaller disorder. ThePolymer and the fact that the Fermi energy is located where

fact that the localization length calculated along the chains of'€ soliton and conduction band is joined. We have also

the polymer is larger than the size of the baké)(used to shown t_hat the localization length is conS|derab[y Ionge( th_an

calculate it, does not imply that the method is questionabld€ conjugation length of the chains, thus the interchain in-

since the localization length perpendicular to the chains ideractions enables the electrons to extend past chain breaks.
approximately a factot*/t, shorter than the localization
length along the chairfS.

In Fig. 3 is shown the localization length as a function of Computional resources were provided by the Swedish
disorder for systems witly=0.10 andt-=0.1 (eV). The  Council for High Performance ComputihlSO), also finan-
localization length decreases rapidly with increasmgrhe  cial support from the Swedish Research Council for Engi-
mean conjugation length for the chains with disorder isneering SciencéTFR) and the Swedish Natural Science Re-
~1/w. For all cases shown in Fig. 3, the localization lengthsearch Counci(NFR) are gratefully acknowledged.

Chain breaks, w (%)
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