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Effects of doping and interchain interactions on the metal-insulator transition
in trans-polyacetylene
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Using a tight-binding Hamiltonian the metal-insulator phase diagram fortrans-polyacetylene was calculated
as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic
system coincides with the gap closing, which occurs for certain combinations of critical values for the doping
concentration and the interchain interaction strength. The values found are in good agreement with the experi-
mentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite
chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the
metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is
shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction
strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order
of a few percent. The localization length is found to be substantially longer than the conjugation length of the
polymer.@S0163-1829~99!09635-6#
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I. INTRODUCTION

The metallic properties of heavily doped conjugated po
mers are well documented.1–6 For trans-polyacetylene~PA!
there is an onset of the Pauli susceptibility at a doping c
centration of 7 – 8 %, i.e., the density of states~DOS! at the
Fermi energy increase rapidly in this regime. However,
transition from nonmetallic to metallic behavior with a no
vanishing conductivity at 0 K occurs at a higher doping leve
since the conductivity is quite sensitive to disorder. Even
the highest doping levels, the metallic samples are close
disorder-induced transition into a nonmetallic state, as
been demonstrated for instance by applying a strong m
netic field to a metallic sample of poly~p-phenylenevinylene!
turning it into an insulator.6 There is an ongoing debate o
how the disorder is arranged in the polymers. The homo
neous model,7 in which the disorder is randomly distribute
over the polymer sample and the interesting properties of
conduction is controlled by Anderson localization in t
bulk. In the inhomogeneous8 model the polymer consists o
metallic islands with areas of strong disorder in betwe
This model is more of a percolation transition between n
metallic and metallic.

Doping of trans-polyacetylene is known to create so
tons, i.e., kinklike geometrical distortions, along the polym
chains.9 Each additional dopant charge is associated with
soliton. These distortions align in an ordered way and cre
a soliton lattice. The electronic structure associated with
soliton lattice consists of a midgap electronic band tha
widened with increasing doping concentration, decreas
the size of the bandgap. The soliton lattice can be consid
as a Peierls distortion since the length of the unit cell
commensurate with the band filling. For a single chain
Peierls state has a nonzero gap for all doping concentrat
and is thus never metallic. Disorder in the polymer will d
crease the size of the band gap10,11 but, in the strictly one-
dimensional system, disorder localizes all states12 however
PRB 600163-1829/99/60~11!/7939~5!/$15.00
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small the disorder is. Thus, both the Peierls effect and
presence of disorder lead to an insulating state in this kind
system.

Electron-electron interactions and lattice fluctuations ha
been investigated to clarify their effect on the Peierls gap
single chains of PA. The electron-electron interactions, m
eled by a Su, Schrieffer, and Heeger~SSH!-extended-
Hubbard model reduce the amplitude of the solitons, th
reducing the gap, but do not change the qualitative featu
of the soliton lattice in PA.13 The lattice fluctuations, at room
temperature, were shown to have an negligible effect on
mean positions of the carbon atoms.13 Therefore these fluc-
tuations can be considered as an additional source
disorder14 that, as discussed above, introduce localized st
in the band gap.

In order to observe metallic conductivity, i.e., finite co
ductivity at zero temperature we need to consider thr
dimensional effects, here manifested as interchain inte
tions. The importance of the interchain interactions has b
clearly shown in experiments where the polymer is subjec
to high pressures, increasing the interchain interaction, c
ing the samples to make a transition from insulator to
metallic state.3,5 The Peierls gap will be suppressed by t
interchain interaction, since it will widen the electron
bands. Therefore, a gapless state can be obtained even
presence of a soliton lattice. Furthermore the fact that
polymer chains interact and form a highly anisotropic thre
dimensional~3D! system allows for delocalization of th
wave function even in the presence of disorder. In an iso
pic 3D system, weak disorder will localize states near
band edges but there has to be a large amount of disord
localize all the states in the band. The size of the disor
required in the isotropic 3D system is demonstrated by
Ioffe-Regel condition,12 the elastic mean-free path has to
of the order of the lattice parameter in order to localize
wave function. This amount of disorder is not realistic in t
polymers discussed here. However, as we have shown i
earlier article,15 the large anisotropy of the lattice makes
7939 ©1999 The American Physical Society
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much more sensitive to disorder compared to an isotropic
lattice. Based on the previous work one can also expect
states at the Fermi energy will be very sensitive to disord
especially since the soliton lattice causes a low DOS at
Fermi energy.

In this paper we will show how the interchain interactio
close the band gap and how disorder affects both the b
gap and the localization properties oftrans-polyacetylene at
various doping concentrations and strength of the interch
hopping. Using a tight-binding Hamiltonian we calculate t
band gap of the polymer and in the gapless state the lo
ization properties of the states at the Fermi energy. Due
the complexity of the problem we have been forced to lim
the calculations to a one-electron model and limit the p
sible kinds of disorder to randomly distributed chain brea
Other types of disorder can of course exist in the polym
samples, lattice fluctuations~as discussed above!, the poten-
tial from the dopant ions and imperfections in the alignm
between chains. The misalignment between chains is par
larly important in the model describing the polymeric ma
rial as metallic islands separated by regions in which
polymeric chains are more or less randomly oriented w
respect to each other. To treat chain misalignment in
model would be to introduce disorder int' and to effectively
reduce this interaction strength. In the presentation be
this type of disorder corresponds to the results in the lowt'
regime, thus, in an effective way we can also account for
type of disorder in our model.

Section II of this paper introduces the model used to
scribe PA and the methods used to calculate the band
and the localization properties of the electronic states.
sults and discussion are presented in Sec. III and a summ
of the results in Sec. IV.

II. METHODOLOGY

Conducting polymers in the solid state are built up
chains packed into a 3D structure. The electronic proper
of this type of system are well described by a simple tig
binding Hamiltonian with large intrachain hopping streng
(t i) and a relatively weak hopping perpendicular to the ch
direction (t'). All types of conjugated polymer structure
can be represented by a model of this type. In particu
more complicated polymeric structures than PA can
mapped onto a one-dimensional chain by a renormaliza
argument.16,17 We, therefore, expect that the results that
presented here also give a qualitatively correct picture
localization in other polymers.

Considering thep orbitals of the polymer chain we ge
the following one-electron tight-binding Hamiltonian wit
nearest-neighbor hopping only.

H5 (
k,l ,m

uk,l ,m&tk,l ,m
i ^k11,l ,mu1H.c.1uk,l ,m&t'

3^k,l 11,mu1H.c.1uk,l ,m&t'^k,l ,m11u1H.c.

The sum is to be taken over a 3D cubic lattice,uk,l ,m&
denote the orbitals at the sites along the chains (k) and in a
plane perpendicular to the chain axis (l ,m). The anisotropic
hopping in the direction perpendicular to the chain,t' is
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treated as a parameter and varied in the range 0.05– 0.1
including the values that has been suggested for PA.18

To take the dimerization of the PA chains into account~as
well as soliton defects as described below! the values of the
intrachain hoppingt i depends on the C-C bond length. Fo
lowing Su, Schrieffer, and Heeger19 ~SSH!, the hopping
strength is approximated astk,l ,m

i
5t02a(uk11,l ,m2uk,l ,m)

whereuk,l ,m is the displacement of thek,l ,mth carbon atom
in the direction parallel to the chain axis. The paramet
(t0 , a) were chosen to give a total bandwidth of 10 eV a
a band gap of 1.4 eV for a single perfectly dimerized P
chain @uk5(21)ku0#, this gives t0522.5 eV, au05
21.4/8 eV~only the productau0 is needed!.

In the unperturbed chains the alternating bond lengths
the PA chain were described byuk5(21)ku0 and the geo-
metrical disturbances of the solitons were modeled by set
the displacements of the carbon atoms to

uk5~21!ku0)
n

tanhFk2xn

7.0 G , ~1!

where xn is the position of the solitons. This form of th
displacements has been shown20 to correspond very well to
the optimized geometry. Each donor/acceptor charge co
sponds to one soliton in the lattice, the solitons were pla
at fixed distances from each other and from chain ends~de-
fects described below!, care was taken to place an even/o
number of solitons on chains with an even/odd number
carbon atoms to ensure that the first and last bond of
carbon chain is a double bond. The doping concentration
thus the soliton concentration will hereafter be denotedy ~no.
solitons per no. of carbon atoms!.

As discussed above the disorder present in heavily do
conducting polymers can be of various types. Here we fo
on the effect of conjugation breaking defects such as fin
chain lengths,sp3-hybridized carbon atoms, chain twisting
etc. We have simulated these types of defects by setting
hopping along the chaint i to a small value (t') between
randomly chosen~adjacent! sites with a given concentratio
(w). Other types of disorder have not been considered in
calculations, except for a short discussion of the effect
positioning the solitons randomly given in the next sectio
However, it is our experience that different types of disord
give rise to qualitatively similar results.

The band gap for a 3D crystal without chain breaks an
constant concentration of solitons, perfectly aligned w
solitons on the adjacent chains, were calculated from
band structure of a single chain adding the dispers
2t'(cos@ky#1cos@kz#) to calculate the 3D band gap. To inve
tigate what effect random alignment of solitons betwe
chains has on the band gap we estimated it from calculat
on a finite bar of chains where the chain length was 110
111 sites and the bar was composed of 737 chains. Periodic
boundary conditions were used along the chains and ‘‘ha
boundary conditions perpendicular to the chains. Averag
the band gap for a large number of random systems~for each
y andt') and fitting the band gap to a polynomial oft' ~for
eachy) enabled us to determine the critical value oft' that
closes the band gap. The calculations also provided
Fermi-energy for different soliton concentrations, which w
used in the calculations of the localization length.



ex

os
h
o
th
e

ice
tw
d
o

ca

u

vi
th
a

th
I

ite
on
w

y
rm

tiv

r
g
s
y
g
tio

n
e
re
tl
ed
Th
, f

e
a

(

na
p-
rm
ed
tic
p

en
, we

ian
oli-
oli-
ber
the
tra-

se
wn

ctly
ast

the
ed.
t in
n-
urs

of
e
the

ap
or-
at as
s
s
uli
by

on-
ase
are
ery
d.
ons

ence
the
poly-
ts of

gap-

s
ins;

PRB 60 7941EFFECTS OF DOPING AND INTERCHAIN . . .
To determine if the electronic states are localized or
tended, we use a method developed earlier15 that treats a
system of coupled chains in a bar with a quadratic cr
sectionM3M , whereM is the number of chains in eac
direction perpendicular to the chain axis. For this system
coupled chains, we get a transfer matrix that connects
wave function in a slice of the bar with its value on th
nearest-neighbor slices. The product of transfer matr
gives a connection between the wave function at the
ends of the bar. However, this product cannot be used
rectly to determine whether the wave function is localized
not because of numerical difficulties. Instead, we have
culated the Lyapunov characteristic exponents~LCE! from
the transfer matrices using an orthogonalization proced
described by Benettinet al..21,22 An estimate of the errors in
the calculated LCE was obtained from the standard de
tion. This estimate was also used to determine when
LCE’s had the required accuracy. Since this method of c
culating the LCE yields higher accuracy for longer bars,
method can produce results of arbitrary high precision.
practice, however, the size of the system has to be lim
due to the extensive computation times. In our calculati
for the cases where the states localizes a 1% accuracy
usually met, while for the delocalized cases the accurac
harder to reach and in most cases the calculation was te
nated when the length of the bar reached 33105 sites.

The localization lengthlM , for a bar of cross section
M3M , was calculated as the inverse of the smallest posi
LCE. From the renormalized localization lengthLM
5lM /M for different sizesM of the bar ~with the same
defect and soliton concentration! we can determine whethe
the wave functions are localized or not at the Fermi ener
If the renormalized localization length increases/decrea
with increasing width (M ) of the bar the states at this energ
is delocalized/localized.23 Using the one parameter scalin
hypothesis, we were also able to estimate the localiza
length of the wave functions in the thermodynamic limit.22

III. RESULTS AND DISCUSSION

To investigate how the band gap varies with soliton co
centration, interchain interaction strength, and defect conc
tration we have performed eigenvalue calculations on th
cases, without chain breaks with the solitons perfec
aligned between different chains, with randomly align
solitons and for the disordered case with chain breaks.
phase diagram, showing where the band gap is closed
the two cases without chain breaks are shown in Fig. 1.

The band gap for the 3D polymer with alignment betwe
solitons on different chains and without chain breaks w
calculated for a large number of soliton concentrationsy)
and different hopping strength between chains (t'). The
value of t' that closes the band-gap, as a function ofy, is
shown as the solid line in Fig. 1. In the one-dimensio
case, i.e., att'50, the system remains insulating for all do
ing levels due to the Peierls distortion, here present in te
of the soliton lattice. As the interchain interaction is turn
on, the Peierls gap is reduced and closed at a certain cri
combination oft' andy. Increasingy decreases the band ga
for a 1D chain and thus lowers the value oft' needed to
close the gap.
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To check how random alignment of the solitons betwe
chains and chain breaks change the size of the band-gap
calculated numerically the eigenvalues of the Hamilton
for a large lattice. Note that random alignment between s
tons on different chains does not affect the ordering of s
tons on the individual chains. Averaging over a large num
of soliton alignments we were able to estimate the size of
band gap, the Fermi energy and at which soliton concen
tion the band gap closed for each value oft'. The perpen-
dicular hoppingt' needed to close the band gap for the ca
of no defects and random alignment of the solitons is sho
in Fig. 1, dashed line. Compared to the case of perfe
aligned solitons there is no large differences. Thus, at le
close to the closing of the band gap, the alignment of
solitons is unimportant as far as the band gap is concern

Focusing on the parameter space that is most relevan
the case oftrans-polyacetylene we note that the experime
tally observed rapid onset of the Pauli susceptibility occ
aroundy50.05– 0.07.24 In the present phase diagram~Fig.
1!, this corresponds to an effective interchain hopping
strength oft'50.10– 0.14 eV, which agrees with the rang
of values that have been discussed in the literature for
interchain hopping strength.18

Defects in materials are known to affect the band g
quite strongly. We have calculated the band gap for dis
dered finite bars of the same size as used above. Even
low amounts of chain breaks asw51% the band gap close
for all values oft' andy that are of practical interest. Thi
fact is consistent with the experimentally measured Pa
susceptibility since the closing of the band gap is caused
the disorder induced tails in the DOS of the soliton and c
duction bands. The DOS at the Fermi energy is in this c
small since the tails are barely overlapping. These tails
also clearly manifested in optical absorption spectra as a v
broad absorption peak associated with the soliton ban25

The effect on the band gap of random placement of solit
on the individual chains has been studied previously,10,11and
observed to lead to closing of the band gap as a consequ
of disorder, even for a single chain. Thus, even though
ordered system has a band gap the defects inherent in a
mer certainly closes the band gap even at modest amoun

FIG. 1. Phase diagram showing the boundary between the
less metallic state~top right! and the state with a gap~lower left! for
different soliton concentration (y) and coupling between chain
(t'). Solid line shows perfect alignment of solitons between cha
dashed line, random alignment.
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7942 PRB 60MAGNUS PAULSSON AND SVEN STAFSTRO¨ M
doping. However, as shown below, disorder causes loca
tion of the states in the band gap. The transition to a t
metallic state in the presence of disorder can only take p
at doping levels higher than those corresponding to clos
of the band gap for the perfect system~see Fig. 1!.

In order to test how sensitive the system of coupled po
mer chains is to disorder we have performed calculation
the localization length. Using the concept of finite size sc
ing we have located the metal-insulator phase boundary
function of increasing disorder concentration and as a fu
tion of t' andy. The localization length for bars of polymer
(lM , whereM is the cross sectionM3M ) were calculated
for the different values oft' andy shown in Table I and for
different amounts of chain breaks (w). Since the calculations
were carried out on bars~quasi-1D! all states always localize
To extrapolate and answer the question if the states at
Fermi energy are localized in the infinite system we use
finite size scaling argument, the states are localized if
renormalized localization length (lM /M ) decreases with in-
creasingM. The Fermi energy used was obtained from t
band-gap calculations described above, energies close to
energy are also checked to verify that the expected erro
the estimated Fermi energy does not significantly change
results.

The metal-insulator phase diagram is shown in Fig. 2. T
boundaries between localized~lower left! and delocalized
states~upper right! for different amounts of chain breaks a
indicated by the lines. The numerical values used to gene
the plot were calculated at the points marked in the fig
and are listed in Table I.

In the presence of disorder, the randomly distribu
chain interruptions can cause localization of the electro
wave functions. In the cases where the band gap has not
closed by interchain interactions disorder move states f
the bands into the otherwise forbidden energy gap. Th
fore, at the insulating side of the phase boundary in Fig. 1
gap is reduced and is closed by this effect. However,
disorder-induced tails in the DOS contain localized sta
Thus, the parameter space that involve the metallic regio
reduced by disorder, as can be seen in Fig. 2.

TABLE I. The critical concentration of chain breaks (w), with
error estimates, needed to localize the wave functions at the F
energy for different values oft' and y. The largest bar cross sec
tions (M3M ) used in the calculations are shown underMmax.

t' ~eV! y ~%! w ~%! Mmax

0.075 10 1.560.5 10
0.0875 9 1.060.5 10
0.0875 10 2.060.5 10
0.0875 11 2.560.5 10
0.1 8 1.060.5 14
0.1 9 2.560.5 10
0.1 10 3.560.5 14
0.1 11 4.060.5 10
0.1 12 4.560.5 12
0.1125 9 3.560.5 10
0.1125 10 4.560.5 10
0.1125 11 5.060.5 10
0.125 10 5.560.5 10
a-
e
ce
g

-
of
l-

a
c-

he
e
e

e
his
in
he

e

te
e

d
ic
en

m
e-
e
e
s.
is

In Fig. 2, we clearly see that the wave functions local
for small t' and y. This reflects that the DOS at the Ferm
energy is very important for the delocalization of states.
we have shown earlier,15 a large DOS makes delocalizatio
easier. For smallt' and y the DOS at the Fermi energ
caused by disorder is small, thereby making localization
the states easy. In contrast, larget' and y will remove this
pseudogap and the concentration of defects have to be l
to localize the states. The experiment by Reghu3 where
samples of heavily iodine-doped PA are shown to cross
metal-insulator transition when pressure is applied to
samples is easily interpreted from Fig. 2. Increasing the p
sure will increase the interchain hopping strength caus
insulating samples~at normal pressures! to become metallic.

The often used Ioffe-Regel condition states that locali
tion will occur when the inelastic scattering length times t
wave vector at the Fermi energy is of the order of one, i
the inelastic scattering length is of the order of the latt
parameter. This is clearly a very large amount of disord
however in the system that we are considering here, lo
ization appear for much lower amounts of disorder. This
clearly an effect of the highly anisotropic structure of t
material.15 The amount of disorder needed to localize t
states at the Fermi energy for this model is considera
smaller than for the undimerized system studi
previously.15 In that case the Fermi energy lies in the midd
of the conduction band and essentially all states in this b
have to localize in order get a transition into an insulati
state. The case of the soliton lattice is markedly different
that the Fermi energy lies in the region where the soliton a
conduction bands join, as a consequence of the interc
interaction, making the states easier to localize.

The fact that the electronic states localize does not ne
sarily imply that the transport properties will be dominat
by the disorder at all temperatures. At finite temperature
ratio of the elastic to the inelastic scattering length will d
termine the importance of the disorder.12 If the inelastic scat-
tering length is short~in comparison with the elastic scatte
ing length! the polymer will behave more as a metal, ev
though the low temperature behavior is that of an insulat

The localization length (l) of the infinite system has bee

mi

FIG. 2. Schematic metal-insulator phase diagram showing
amount of disorder (w) needed to localize the wave functions fo
different coupling between chains (t') and soliton concentration
(y). The contour lines are obtained from data calculated at
marked points. The lower line, taken from Fig. 1~solid line!, shows
the closing of the band gap for the ordered case.



or
th
he
s

b

o

i
th

e
to

n-
del
we

ac-
gap

ith
lity.
s of
y is
he
the
gap

at
cal-

lo-
con-
the
ere
lso
an
in-
aks.

ish

gi-
e-

-
o

PRB 60 7943EFFECTS OF DOPING AND INTERCHAIN . . .
estimated using the one-parameter scaling hypothesis.22 To
calculatel we have fitted the localization length (lM) for
the finite bars with cross sectionM3M to the expectedl
1c/M behavior, for large disorder, wherec is a constant.
From the calculated localization length for the largest dis
der in conjecture with the scaling curve we can estimate
localization length for samples with smaller disorder. T
fact that the localization length calculated along the chain
the polymer is larger than the size of the bars (M ) used to
calculate it, does not imply that the method is questiona
since the localization length perpendicular to the chains
approximately a factort'/t0 shorter than the localization
length along the chains.26

In Fig. 3 is shown the localization length as a function
disorder for systems withy50.10 andt'50.1 ~eV!. The
localization length decreases rapidly with increasingw. The
mean conjugation length for the chains with disorder
;1/w. For all cases shown in Fig. 3, the localization leng

FIG. 3. Localization lengthl, logarithmic scale in units of num
ber of carbon atoms, as a function of the amount of disorder. S
ton concentrationy50.10, t'50.1 ~eV!.
e
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is more than 2 times 1/w. This clearly shows the importanc
of the interchain coupling permitting the wave function
extend past chain breaks.

IV. SUMMARY AND CONCLUSIONS

It is well known that conducting polymers are semico
ductors that turn metallic upon large doping. Using a mo
Hamiltonian for the system of coupled polymer chains
have shown how the band gap intrans-polyacetylene~PA! is
affected by the doping-induced solitons, interchain inter
tions and disorder. Our calculations show that the band
closes at a doping concentration of;7% for realistic values
of the interchain interaction strength in close agreement w
the experimentally observed onset of the Pauli susceptibi
Disorder is shown to close the band gap for small amount
disorder, however the density of states at the Fermi energ
still small. Using finite size scaling, we have calculated t
effect of disorder on the electronic wave functions near
Fermi energy. The disorder induced states in the band
are always localized. Also when the band gap is closed
high doping concentrations the wave functions can be lo
ized by disorder. The amount of chain breaks needed to
calize the states at the Fermi energy is quite small as a
sequence of the nearly one-dimensional structure of
polymer and the fact that the Fermi energy is located wh
the soliton and conduction band is joined. We have a
shown that the localization length is considerably longer th
the conjugation length of the chains, thus the interchain
teractions enables the electrons to extend past chain bre
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