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Ab initio calculation of ground-state properties of rare-gas crystals
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Cohesive energies, lattice constants, and bulk moduli have been calculated for the rare-gas crystals Ne
through Xe. The results are based on a many-body expansion of the interaction energy, with two- and three-
atom contributions evaluated in valence-only coupled-cluster calculations using relativistic pseudopotentials.
Although the two-body contributions dominate the cohesive energy in all cases, the influence of three-body
contributions is non-negligible and reaches nearly 7% of the cohesive energy for Xe.
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I. INTRODUCTION

Theab initio description of rare-gas crystals is a challen
ing problem of computational physics. Due to the weak v
der Waals interaction, very accurate methods are neces
for calculating the ground-state properties of such crystals
Hartree-Fock~HF! description does not yield binding at al
inclusion of electron correlation by means of perturbatio
methods such as second-order Mo” ller-Plesset theory~MP2!
usually leads to significant over-binding in the case of ra
gas dimers, and only with high-level correlatedab initio
methods is it possible to reliably evaluate the van der Wa
interaction. Density-functional methods, on the other ha
lead to severe overbinding for rare-gas dimers, in the lo
density approximation~LDA !;1,2 with gradient-corrected
functionals ~GGA!, results range from purely repulsive t
weakly bonding,1–4 but it is clear that the accuracy o
quantum-chemicalab initio methods cannot be reached
this level.

Wave-function-based correlation methods have b
mainly applied to dimers so far~see, e.g., Ref. 5 and refe
ences therein! and very rarely to crystals.6 In the present
paper, we want to apply an incremental method7 to the rare-
gas crystals neon, argon, krypton, and xenon, which
successfully applied to covalent8 and ionic9 crystals as well
as to polymers10 in the past. Here a many-body expansion
the ground-state energy is made in terms of rapidly conv
gent increments. Individual increments are determined in
nite fragments of the solid and hence accessible via stan
quantum-chemicalab initio calculations. A size-extensiv
correlation treatment is necessary for our purpose, and
use the coupled-cluster approach with single and double
citations and perturbative treatment of triples@CCSD~T!#.

In Sec. II, we briefly sketch our method and descr
some computational details. After discussing dimer result
Sec. III A, we proceed to the presentation and discussio
the results for the rare-gas crystals~Sec. III B!. Conclusions
follow in Sec. IV.
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II. COMPUTATIONAL DETAILS

A. Method of increments

In our previous applications for ionic crystals and sem
conductors, HF contributions to the ground-state energy
the crystal were taken from fully periodic calculations, and
many-body expansion in terms of local increments was m
for electron-correlation contributions only. In the prese
case, where atomic interaction is mainly due to correlat
effects and no long-range HF contributions are present,
expand the total ground-state energy as a whole:

E5(
A

e~A!1
1

2! (
A,B

De~A,B!1
1

3! (
A,B,C

De~A,B,C!

1•••. ~1!

Here A, B, andC denote~nonidentical! groups of occupied
localized orbitals that are chosen as thes2p6 valence shells
of the rare-gas atoms. The one-body termse(A) are simply
free-atom energies. The two-body increments describe
atomic interactions and are calculated as

De~A,B!5e~A,B!2e~A!2e~B!, ~2!

where e(A,B) is the ground-state energy of the~isolated!
composite system (A,B). The next termsDe(A,B,C) denote
three-body contributions and are defined analogously as

De~A,B,C!5e~A,B,C!2De~A,B!2De~A,C!2De~B,C!

2e~A!2e~B!2e~C!. ~3!

Clearly, if the summation in Eq.~1! could be continued to
infinity, the exact ground-state energy would be obtain
However, truncation is possible since the series rapidly c
verges with respect to the number of localized orbital grou
treated simultaneously and also with respect to the spa
distance between these groups.

The individual increments e(A), De(A,B), and
De(A,B,C) are calculated at the CCSD~T! level correlating
all valence electrons. Note that all energies needed fo
7905 ©1999 The American Physical Society
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7906 PRB 60ROŚCISZEWSKI, PAULUS, FULDE, AND STOLL
given increment are extracted from the same cluster of
oms, see Sec. II B. All calculations were performed using
ab initio program packageMOLPRO96.11

B. Selection of the clusters

The low-temperature phase of rare-gas crystals is a de
packed fcc structure with lattice constanta as shown in Fig.
1; the cluster fragments used for the calculation of the inc
ments are depicted in the figure. For the two-body inc
ments we considered three two-atom clusters, one w
nearest-neighbor distance (1/A2)a, one with next-nearest

neighbor distancea, and one with distanceA3
2 a The weight

factors per~primitive! unit cell are 6, 3, and 12, respectivel
As three-atom clusters, we selected triangles two side
which have nearest-neighbor distances. The possible an
are 60°, 90°, 120°, and 180°, with corresponding wei
factors 8, 12, 24, and 6, respectively. For test calculatio
we also considered a~regular! tetrahedron as a four-atom
cluster with weight 2.

C. Pseudopotentials and basis sets

The heavier rare-gas crystals are only accessible to aab
initio treatment when the core shells are described
pseudopotentials. In our calculations, we used the ene
consistent pseudopotentials from Ref. 12, implicitly inclu
ing scalar-relativistic effects. For Xe, we supplemented
pseudopotential by a core-polarization potential~CPP!, in or-
der to account for core-valence correlation effects; para
eters were taken again from Ref. 12.

For a reliable description of the van der Waals interacti
a careful selection of the atomic basis sets is decisive.
started from the optimized (6s6p3d1 f )/@4s4p3d1 f #
„Ne: (7s7p3d1 f )/@4s4p3d1 f #… valence basis sets pub
lished with the pseudopotentials of Ref. 12~basisA). In a
first step, this basis was supplemented in an even-temp
way by diffuse 1s1p1d1 f sets yielding basisB. ~The ratio
for the additionalf exponent was chosen to be the same
for d.! Basis C is a (8s8p6d6 f )/@6s6p6d6 f #

FIG. 1. Clusters used for the incremental expansion are sh
in the fcc unit cell: Tetrahedron~solid line, one face defines the 60
three-atom cluster!, 90° three-atom cluster~dashed line!, 120°
three-atom cluster~dotted line!, and the linear three-atom cluste
~dash-dotted line!.
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„Ne: (9s9p6d6 f )/@6s6p6d6 f #… set, which was also pub
lished in Ref. 12 and which differs fromA by adding two
diffuse sp sets and introducing more flexible polarizatio
sets. The most elaborate basis chosen for our calculation
a (8s8p6d5 f 4g)/@7s7p6d5 f 4g# „Ne: (9s9p6d5 f 4g)/
@7s7p6d5 f 4g#… basis set~basisD). We decontracted one
sp set in basisA and added two diffusesp functions in an
even-tempered manner~scaling factor 2.81!. The polariza-
tion sets were determined as follows: for Ne and Ar, w
started with Dunnings 4d3 f 2g set13 and supplemented it by
diffuse 2d2 f 2g functions following the recipe given in Ref
13; for Kr and Xe, we optimized an even-tempered 4d3 f 2g
set at the CCSD energy of the free atom and added diff
2d2 f 2g functions in the same manner as above. The ex
nents of the polarization functions of basisD are listed in
Table I.

Even with these extended basis sets, basis-set super
tion errors are non-negligible, and we had to apply a co
terpoise~CP! correction.14 For the determination of the two
body incrementDe(A,B) in Eq. ~2!, e.g., we calculated the
one-body energye(A) in the same cluster ase(A,B), with a
ghost basis on positionB. Similarly, for the three-body in-
crementDe(A,B,C), Eq. ~3!, two ghost atoms were used fo
e(A), e.g., and one ghost atom for thee(A,B) involved in
De(A,B). With basis setB, the CP correction amounts t
between 22%~Ar! and 43%~Ne! of the dimer binding en-
ergy; corresponding values with basisD are;10% ~Ar-Xe!
and 16%~Ne!.

III. RESULTS AND DISCUSSION

A. Rare-gas dimers

Mainly as a test for our basis sets, we determined
equilibrium bond lengths and dissociation energies of
rare-gas dimers~see Table II!. For basis setC, our results are
very similar to those of Burdaet al.5 and Runeberg and
Pyykkö.15 Comparing these results with ‘‘exact’’ data,16

which are derived from semiempirical model potentials fitt

n

TABLE I. Exponents~in a.u.! of the polarization functions of
basis setD, see the text.

Ne Ar Kr Xe

6d 6.471 1.873 2.223 1.349
2.213 0.763 1.025 0.669
0.747 0.311 0.473 0.332
0.273 0.116 0.218 0.165
0.0998 0.0433 0.100 0.0816
0.0365 0.0161 0.0463 0.0405

5 f 4.657 1.325 1.350 1.323
1.524 0.543 0.656 0.612
0.689 0.294 0.318 0.283
0.311 0.159 0.155 0.131
0.148 0.0862 0.0750 0.0405

4g 2.983 1.007 1.207 0.806
1.224 0.459 0.521 0.369
0.502 0.209 0.225 0.169
0.206 0.0954 0.0970 0.0771
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TABLE II. Equilibrium bond lengthsRe @Å # and dissociation energiesDe @mH# for rare-gas dimers
evaluated with different basis sets, see the text, at the CCSD~T! level. For comparison, we also give DFT
GGA results~Ref. 3! and, under the heading ‘‘Expt.,’’ data from semiempirical model potentials fitte
experimental data.

BasisA BasisB BasisC BasisD GGA Expt.

r e(Ne2) 3.240 3.170 3.131 3.105 3.085 3.091a

r e(Ar2) 4.009 3.865 3.841 3.793 4.027 3.757a

r e(Kr2) 4.315 4.160 4.134 4.065 4.355 4.008a

r e(Xe2) 4.656 4.500 4.495 4.409 4.363a

De(Ne2) 75.0 101.1 119.9 127.7 205 133.8a

130.7, . . . ,133.8b

De(Ar2) 238.7 348.3 375.3 415.9 224 453.5a

444.0c

De(Kr2) 291.0 456.0 514.7 580.9 243 637.1a

636.4, . . . ,640.9d

De(Xe2) 479.1 694.9 735.6 842.1 893.9a

871.6, . . . ,895.6e

aReference 16.
bReference 23.
cReference 22.
dReference 24.
eReference 25.
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to experimental data, between 90%~Ne! and 82%~Xe! of the
dissociation energy is recovered with basis setC. Basis setD
yields uniformly about 94% of the dissociation energy for
of the rare-gas dimers. This shows the large influence of
g functions, especially for the heavier dimers. The calcula
equilibrium bond lengths become shorter with improvi
basis-set quality. Whereas for basis setC the Re values are
by up to 3% too large, the deviations for basis setD are
between 0.5% and 1.4% only. Also shown in Table II are
best density-functional theory~DFT! results of Ref. 3, which
were obtained with the Perdew-Burke-Ernzerhof17 GGA
functional. The authors of Ref. 3 claim that a large part
the binding is due to atomic overlap and therefore access
to a density-functional treatment. However, the calcula
equilibrium distances are by up to 9% too large, and
dissociation energy, while being too large for Ne, is by
factor of 2.5 too small for Kr. This shows that for the van d
Waals interaction there is currently no alternative to us
the accurateab initio correlation methods such as CCSD~T!
and that extended basis sets includingg functions are neces
sary for a quantitative description of the binding of rare-g
dimers.

B. Rare-gas crystals

From the calculation of the dimers, we now switch to o
main goal, i.e., the rare-gas crystals. To show the degre
transferability from different clusters to the solid and the r
of convergence with increasing interatomic distance,
have listed individual two-body increments in Table I
These increments have been calculated in two-atom and
ous three-atom clusters. The difference, with basis setB, is
2.2% at most, for the nearest-neighbor increment. For in
ments further apart, transferability errors are of the sa
relative size but much smaller in magnitude. The conv
l
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gence with increasing distance of the two atoms is a
shown in Table III. The third-nearest-neighbor increment
<7% of the nearest-neighbor one, in all cases considere
we assume that the third-nearest-neighbor incremen
purely van der Waals-like and is dominated by the lead
C6 /r 6 term, we can extract the van der Waals constantC6
from it and use it for determining the long-range contributi
from two-body increments not calculated explicitly in o
approach. The corresponding results also can be foun
Table III. It is seen that the long-range estimate amounts
about 80% of the third-nearest-neighbor contribution.

For the two-body increments it was possible to emp
basis setD. However, for the three-body increments this w
not possible due to the drastically increasing computatio
effort with increasing number of correlated electrons. On
calculations with basis setB were feasible for all lattice con
stants; some test calculations were made with basis seC.
Whereas the Hartree-Fock part is well converged with ba
setB, this is not true for the correlation contribution. In ord
to correct for basis-set errors here, we assume the scalin
the correlation energy with the basis set to be the same
three-body as for two-body increments. We tested the r
ability of this scaling for Ne, where we performed CCS
calculations with basis setC and compared them with th
extrapolated values. For the cohesive energy, the extrap
tion works well~errors less than 1%!; for the lattice constant,
the error is about 0.5%. For the bulk modulus, on the ot
hand, which is calculated from the second derivative of
energy, the scaling is not as reliable. Thus, we can o
discuss qualitative trends for the three-body contributions
the bulk modulus.

After testing the quality of the incremental expansion, w
now discuss our final results in comparison with experim
and other theoretical approaches. The measured ground-
properties contain zero-point fluctuations not present in
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TABLE III. Test of transferability and convergence for two-body increments, calculated for var
two-atom and three-atom clusters with basis setB at a lattice constant near the experimental one:~Ne, 4.45
Å; Ar, 5.3 Å; Kr, 5.65 Å; Xe, 6.1 Å!. Energies are given inmH, distances in multiples of the lattice consta
a. The three-atom clusters are labeled according to their angles. In the last row of each block of the ta
two-atom two-body increment has been multiplied by the weight factor appropriate for the fcc structur
last row of the table gives estimates for van der Waals contributions from the region beyond third-n
neighbors, see the text.

Distance Cluster Ne Ar Kr Xe

1

A2
two atom 2100.86 2332.11 2417.49 2628.76

1

A2
three atom, 60° 2101.94 2336.32 2427.03 2640.34

1

A2
three atom, 90° 2101.39 2334.03 2421.85 2632.49

1

A2
three atom, 120° 2101.52 2333.82 2421.51 2632.05

1

A2
three atom, 180° 2101.73 2333.32 2420.34 2633.25

sum with weight 6 2605.16 21992.66 22504.94 23773.56

1 two atom 220.63 278.73 2109.71 2165.28
1 three atom, 90° 220.85 279.87 2112.12 2168.82

sum with weight 3 261.89 2236.19 2329.13 2495.86

A3

2
two atom 25.85 221.75 230.39 244.89

A3

2
three atom, 120° 25.94 222.12 231.22 246.17

sum with weight 12 270.20 2261.00 2364.68 2538.60

van der Waals 257.71 2214.66 2300.09 2443.33
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calculation. Thus, we have to correct the experimental va
in order to obtain proper values for comparison. For the
hesive energy we calculate the zero-point vibrational ene
using the Debye model98 kBTDebye,

18 where the Debye tem
perature is taken from Ref. 19. This energy is 267mH for
Ne, 328 mH for Ar, 257 mH for Kr, and 228 mH for Xe.
More sophisticated calculations by Aziz and Slaman20 yield
284 mH for Ar, which gives an indication of the error bar
of our estimates. For the lattice constant, we assume the
viation from the linear dependence of the lattice const
with temperature to be due to zero-point fluctuations. T
temperature dependence of the lattice constants is taken
Ref. 21. That means that our calculated lattice consta
should not be compared with the experimental ones at z
or very low temperatures but have to be compared with
linear extrapolation to zero temperature. These lattice c
stants are between 2.5%~Ne! and 0.5%~Xe! smaller than the
measured ones. The value for Ne is not very reliable~error
60.5%), because the linear part of the expansion curv
very small just before the melting point of the crystal.

Our results for the cohesive energy, the lattice const
and the bulk modulus are listed in Table IV. Then-body
increments extracted fromn-atom clusters have been used,
order to minimize the artifacts of the basis set superposi
error for n52; van der Waals estimates for contributio
s
-
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e-
t

e
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ts
ro
e
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n

beyond third-nearest neighbors have been included as
cussed above. In the first columns we report the two-bo
contributions calculated with different basis sets. We om
the very poor basis setA, because it yields only about 60% o
the cohesive energy. With basis setB, we obtain about 80%
of the cohesive energy, and with increasing basis-set qua
we reach about 100%~basis setD). Including the repulsive
three-body contributions, the calculated cohesive ener
are between 93% and 97% of the ‘‘experimental’’ value
The missing part is mainly due to the limited basis, but,
discussed before, a better description of the zero-point
ergy could also improve the agreement. The three-body c
tributions increase significantly from Ne~2.7% of the cohe-
sive energy! to Ar ~5.5%! and reach 6.5% for Kr and Xe.

Lattice constants are overestimated by up to 3% with
sis setB, when the many-body expansion is truncated af
the two-body increments. This turns out to be mainly due
basis-set incompleteness, whereas the effect of the th
body increments on the lattice constants is quite sm
(,0.04 Å). It is interesting, in this connection, to follow
trends of different energy contributions to the lattice co
stant: whereas the Hartree-Fock part of the two-body con
butions is purely repulsive, the three-body and four-bo
self-consistent-field~SCF! contributions tend to reduce th
repulsion. ~For Xe, e.g., the increments to the interacti
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TABLE IV. Cohesive energiesEcoh @mH# per atom, lattice constantsa @Å #, and bulk moduliB @kbar#
for rare-gas crystals, derived from CCSD~T! increments using different basis sets. For comparison, we
experimental values corrected for zero-point fluctuations, see the text.

Two-body contributions 1Three body
BasisB BasisC BasisD BasisD Expt.

Ecoh ~Ne! 2800.7 2939.9 2999.0 2971.6 21002.0a

Ecoh ~Ar! 22716.4 22924.6 23224.3 23043.4 23268.0b

Ecoh ~Kr! 23559.0 23992.8 24490.6 24203.8 24502.0b

Ecoh ~Xe! 25372.2 25659.7 26474.2 26060.0 26239.0b

a ~Ne! 4.388 4.336 4.299 4.314 4.35c

a ~Ar! 5.354 5.320 5.255 5.284 5.23d

a ~Kr! 5.763 5.725 5.631 5.670 5.61e

a ~Xe! 6.239 6.228 6.110 6.137 6.10f

BasisB
B ~Ne! 14.3 17.5 19.0 14.6 10.9g

B ~Ar! 26.9 29.2 33.5 27.2 23.8h

B ~Kr! 28.1 31.8 37.5 28.6 36.1i

B ~Xe! 33.8 34.8 42.4 29.3 36.4j

aReference 26. fReference 31.
bReference 27. gReference 32.
cReference 28. hReference 33.
dReference 29. iReference 34.
eReference 30. jReference 35.
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energy near the experimental lattice constant are 6500mH,
2400 mH, and296 mH, respectively.! When the correla-
tion contributions are added, a minimum in the energy cu
develops with the two-body terms, which is shifted to larg
distances when three-body correlation terms are added
the highest level~basis setD, three-body terms included!,
our results for the lattice constants are too small for Ne
up to 1% too large for the other crystals. The deviation fro
experiment for Ne may well be due to the poor estimate
the zero-point fluctuations in this case, since further ext
sion of the basis is expected to decrease~rather than in-
crease! the calculated value of the lattice constant. High
order contributions than three-body ones can be estimate
have only a very small influence on the lattice constants

In the calculation for xenon, we applied the cor
polarization potential in order to account for core-valen
correlation involving mainly the outer-core 4d shell of the
Xe atom. We find that the CPP decreases the lattice cons
by about 1% and enhances the cohesive energy by a
500 mH. This is certainly an upper bound to the true co
polarization effect, due to mixing in of small static contrib
tions for the clusters, which would be absent for the bu
Nevertheless, the numbers show that even for krypton c
valence-correlation contributions~from the 3d shell! might
have a non-negligible influence on cohesive energy and
tice constant. A rough estimate of the magnitude can be
tained from theX81 core dipole polarizability, which forX
5Kr is about a quarter of the Xe value.

For bulk moduli, we did not correct the experimental va
ues for zero-point fluctuations~which should increase thei
magnitude!; it is difficult to achieve reliable numbers with
simple estimate—a full quantum-mechanical treatm
would be necessary here. Therefore, we shall only disc
e
r
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trends. With increasing basis-set quality, the bulk mod
increase~since lattice constants become shorter!. The three-
body contributions~the values in Table IV refer to basis s
B, i.e., no extrapolation to basis setD has been attempted!
have virtually no influence. In comparison with uncorrect
experimental values all of our calculated bulk moduli are t
large.

Finally, we want to compare our results with the Ar cry
tal data published by Lotrich and Szalewicz.6 For the two-
body contributions, which cover the main part of the bon
ing, these authors used a model potential fitted
experiment, and only the three-body contributions were c
culated byab initio methods. Using the model potential o
Aziz22 based on dimer data, they obtain a two-body ene
of 3459 mH, 7% higher than our value. This is a good es
mate of the error due to the limited basis set in ourab initio
calculation. For the three-body contributions, Lotrich a
Szalewicz applied symmetry-adapted perturbation the
~SAPT!. Their result is 15% larger in magnitude than o
three-body term, and it leads to an increase of the lat
constant by 0.04 Å as compared to a corresponding valu
0.03 Å in our work.

IV. CONCLUSION

We have used a many-body expansion of the interac
energy to determine cohesive energies, lattice constants,
bulk moduli of the rare-gas crystals neon, argon, krypt
and xenon, in the experimental dense-packed fcc structur
a first step, pair interaction energies were calculated at
CCSD~T! level, using relativistic energy-consistent pseud
potentials together with extended basis sets. Including,
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next step, corrections involving triples of atoms, we reco
about 95% of the experimental cohesive energy, while c
culated lattice constants are accurate within61%. As ex-
pected, the importance of three-body contributions increa
from Ne (;3%) through Xe (;7%), showing that the
heavier rare-gas crystals cannot be accurately described
purely two-body forces. The present results for van
ys

,
d

K
, K

ys
r
l-

es

ith
r

Waals crystals are of the same accuracy as our previous
culations for ionic crystals and semiconductors.
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