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Ab initio calculation of ground-state properties of rare-gas crystals
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Cohesive energies, lattice constants, and bulk moduli have been calculated for the rare-gas crystals Ne
through Xe. The results are based on a many-body expansion of the interaction energy, with two- and three-
atom contributions evaluated in valence-only coupled-cluster calculations using relativistic pseudopotentials.
Although the two-body contributions dominate the cohesive energy in all cases, the influence of three-body
contributions is non-negligible and reaches nearly 7% of the cohesive energy for Xe.

[S0163-182609)09435-1

I. INTRODUCTION I. COMPUTATIONAL DETAILS

A. Method of increments

Theab initio description of rare-gas crystals is a challeng- | our previous applications for ionic crystals and semi-
ing problem of computational physics. Due to the weak vargonductors, HF contributions to the ground-state energy of
der Waals interaction, very accurate methods are necessagiye crystal were taken from fully periodic calculations, and a
for calculating the ground-state properties of such crystals. Anany-body expansion in terms of local increments was made
Hartree-FockHF) description does not yield binding at all; for electron-correlation contributions only. In the present
inclusion of electron correlation by means of perturbationalcase, where atomic interaction is mainly due to correlation
methods such as second-ordev IMiBPlesset theoryMP?2) effects and no long-range HF contributions are present, we
usually leads to significant over-binding in the case of rareexpand the total ground-state energy as a whole:
gas dimers, and only with high-level correlated) initio 1 .
methods is it possible to reliably evaluate the van der Waals -~ _ - =
interaction. Density-functional methods, on the other hand, E_EA E(A)+2! AEB AG(A'B)+3! 20 Ae(AB.C)
lead to severe overbinding for rare-gas dimers, in the local-
density approximation(LDA);!? with gradient-corrected o @)
functionals (GGA), results range from purely repulsive to Here A, B, and C denote(nonidentical groups of occupied
weakly bonding;™ but it is clear that the accuracy of |ocalized orbitals that are chosen as #@® valence shells
quantum-chemicahb initio methods cannot be reached at of the rare-gas atoms. The one-body tereid) are simply
this level. free-atom energies. The two-body increments describe di-

Wave-function-based correlation methods have beematomic interactions and are calculated as
mainly applied to dimers so fasee, e.g., Ref. 5 and refer-
ences thereinand very rarely to crystafs.In the present Ae(A,B)=¢€(A,B)—€(A)—€(B), 2

paper, we want to apply an incremental methtmdthe rare- where «(A,B) is the ground-state energy of thimolated

gas crystals neon, argon, krypton, and xenon, which wag,mnqsite systemd,B). The next terma e(A,B,C) denote
successfully applied to covalérand ioni€ crystals as well three-body contributions and are defined analogously as
as to polymer¥ in the past. Here a many-body expansion of

the ground-state energy is made in terms of rapidly converAe(A,B,C)=¢e(A,B,C)—Ae(A,B)—Ae(A,C)—Ae(B,C)
gent increments. Individual increments are determined in fi-
nite fragments of the solid and hence accessible via standard —€(A)—€(B)—€(C). ©)

guantum-chemicahb initio calculations. A size-extensive Clearly, if the summation in Eq1) could be continued to

correlation treatment is necessary for our purpose, and Wgfinity, the exact ground-state energy would be obtained.

use the coupled-cluster approach with single and double eX{owever, truncation is possible since the series rapidly con-

citations and perturbative treatment of trip[€CSOT)]. verges with respect to the number of localized orbital groups
In Sec. Il, we briefly sketch our method and describetreated simultaneously and also with respect to the spatial

some computational details. After discussing dimer results inlistance between these groups.

Sec. Il A, we proceed to the presentation and discussion of The individual increments €(A), Ae(A,B), and

the results for the rare-gas crysté®&ec. lll B). Conclusions Ae€(A,B,C) are calculated at the CC$D) level correlating

follow in Sec. IV. all valence electrons. Note that all energies needed for a
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/) TABLE I. Exponents(in a.u) of the polarization functions of
basis seD, see the text.
Ne Ar Kr Xe
6d 6.471 1.873 2.223 1.349
2.213 0.763 1.025 0.669
0.747 0.311 0.473 0.332
0.273 0.116 0.218 0.165
0.0998 0.0433 0.100 0.0816
0.0365 0.0161 0.0463 0.0405
5f 4.657 1.325 1.350 1.323
1.524 0.543 0.656 0.612
(/ 0.689 0.294 0.318 0.283
0.311 0.159 0.155 0.131
FIG. 1. Clusters used for the incremental expansion are shown 0.148 0.0862 0.0750 0.0405
in the fcc unit cell: Tetrahedrosolid line, one face defines the 60°
three-atom clustgr 90° three-atom clustetdashed ling 120° 49 2.983 1.007 1.207 0.806
three-atom clustefdotted ling, and the linear three-atom cluster 1.224 0.459 0.521 0.369
(dash-dotted ling 0.502 0.209 0.225 0.169
0.206 0.0954 0.0970 0.0771

given increment are extracted from the same cluster of at=
oms, see Sec. |l B. All calculations were performed using the
ab initio program package&ioLPro96!! (Ne: (9s9p6d6f)/[6s6p6d6f]) set, which was also pub-
lished in Ref. 12 and which differs fromA by adding two
diffuse sp sets and introducing more flexible polarization
sets. The most elaborate basis chosen for our calculations is
The low-temperature phase of rare-gas crystals is a densa- (8s8p6d5f4q)/[7s7p6d5f4g] (Ne: (9s9p6d5fag)/
packed fcc structure with lattice constanas shown in Fig. [7s7p6d5f4g]) basis set(basisD). We decontracted one
1; the cluster fragments used for the calculation of the incresp set in basisA and added two diffussp functions in an
ments are depicted in the figure. For the two-body increeven-tempered mannéscaling factor 2.8l The polariza-
ments we considered three two-atom clusters, one withion sets were determined as follows: for Ne and Ar, we
nearest-neighbor distance (®)a, one with next-nearest- started with Dunnings d3f2g set® and supplemented it by

neighbor distance, and one with distances@a The weight diffuse 2d2f2g functions fpllpwing the recipe given in Ref.
factors perprimitive) unit cell are 6, 3, and 12, respectively. 13; for Krand Xe, we optimized an even-tempereaiB42g

As three-atom clusters, we selected triangles two sides ciet @t the CCSD energy of the free atom and added diffuse
which have nearest-neighbor distances. The possible anglé&2f2g functions in the same manner as above. The expo-
are 60°, 90°, 120°, and 180°, with corresponding Weightnems of the polarization functions of badisare listed in

factors 8, 12, 24, and 6, respectively. For test calculations-!-alble . . ) ) _
we also considered &egulaj tetrahedron as a four-atom Even with these extended basis sets, basis-set superposi-

cluster with weight 2. tion errors are non—pegljllligible, and we had to apply a coun-
terpoise(CP) correction.” For the determination of the two-
_ ) body incremeniA e(A,B) in Eqg. (2), e.g., we calculated the
C. Pseudopotentials and basis sets one-body energy(A) in the same cluster agA,B), with a
The heavier rare-gas crystals are only accessible @ban ghost basis on positioB. Similarly, for the three-body in-
initio treatment when the core shells are described bgrementAe(A,B,C), Eq.(3), two ghost atoms were used for
pseudopotentials. In our calculations, we used the energy(A), e.g., and one ghost atom for tle¢A,B) involved in
consistent pseudopotentials from Ref. 12, implicitly includ-Ae(A,B). With basis seB, the CP correction amounts to
ing scalar-relativistic effects. For Xe, we supplemented thédetween 22%Ar) and 43%(Ne) of the dimer binding en-
pseudopotential by a core-polarization poteni@®PP, in or-  ergy; corresponding values with baglsare ~10% (Ar-Xe)
der to account for core-valence correlation effects; paramand 16%(Ne).
eters were taken again from Ref. 12.
For a reliable description of the van der Waals interaction, 1. RESULTS AND DISCUSSION
a careful selection of the atomic basis sets is decisive. We
started from the optimized &p3dif)/[4s4p3dif]
(Ne: (7s7p3di1f)/[4s4p3dlf]) valence basis sets pub-  Mainly as a test for our basis sets, we determined the
lished with the pseudopotentials of Ref. flzasisA). In a  equilibrium bond lengths and dissociation energies of the
first step, this basis was supplemented in an even-temperedre-gas dimerésee Table ). For basis se€, our results are
way by diffuse 1p1dif sets yielding basi8. (The ratio  very similar to those of Burdat al® and Runeberg and
for the additionalf exponent was chosen to be the same a®yykko!® Comparing these results with “exact” dat,
for d) Basis C is a (88p6d6f)/[6s6p6d6f]  which are derived from semiempirical model potentials fitted

B. Selection of the clusters

A. Rare-gas dimers
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TABLE II. Equilibrium bond lengthsR, [A] and dissociation energids, [u«H] for rare-gas dimers
evaluated with different basis sets, see the text, at the CCSBvel. For comparison, we also give DFT-
GGA results(Ref. 3 and, under the heading “Expt.,” data from semiempirical model potentials fitted to
experimental data.

BasisA BasisB BasisC BasisD GGA Expt.
ro(N&,) 3.240 3.170 3.131 3.105 3.085 3.091
I o(Ar,) 4.009 3.865 3.841 3.793 4.027 3.757
ro(Kr») 4.315 4.160 4.134 4.065 4.355 4.008
ro(Xe,) 4.656 4.500 4.495 4.409 4.383
De(Ne,) 75.0 101.1 119.9 127.7 205 1338
130.7...,133.8°
Do(Ar,) 238.7 348.3 375.3 415.9 224 4535
444.0°
Do(Kry) 291.0 456.0 514.7 580.9 243 637.1
636.4 . ..,640.9¢
Do(Xe,) 479.1 694.9 735.6 842.1 8939

871.6...,895.6°

8Reference 16.
bReference 23.
‘Reference 22.
dreference 24.
®Reference 25.

to experimental data, between 9@Q#e) and 82%(Xe) of the  gence with increasing distance of the two atoms is also
dissociation energy is recovered with basisGeBasis seD  shown in Table IIl. The third-nearest-neighbor increment is
yields uniformly about 94% of the dissociation energy for all <7% of the nearest-neighbor one, in all cases considered. If
of the rare-gas dimers. This shows the large influence of theve assume that the third-nearest-neighbor increment is
g functions, especially for the heavier dimers. The calculategurely van der Waals-like and is dominated by the leading
equilibrium bond lengths become shorter with improvingCy/r® term, we can extract the van der Waals cons@gt
basis-set quality. Whereas for basis €ethe R, values are from it and use it for determining the long-range contribution
by up to 3% too large, the deviations for basis Betire  from two-body increments not calculated explicitly in our
between 0.5% and 1.4% only. Also shown in Table Il are theapproach. The corresponding results also can be found in
best density-functional theoOFT) results of Ref. 3, which  Table IIl. It is seen that the long-range estimate amounts to
were obtained with the Perdew-Burke-ErnzefioGGA  about 80% of the third-nearest-neighbor contribution.
functional. The authors of Ref. 3 claim that a large part of For the two-body increments it was possible to employ
the binding is due to atomic overlap and therefore accessiblpasis seD. However, for the three-body increments this was
to a density-functional treatment. However, the calculatechot possible due to the drastically increasing computational
equilibrium distances are by up to 9% too large, and theeffort with increasing number of correlated electrons. Only
dissociation energy, while being too large for Ne, is by acalculations with basis s& were feasible for all lattice con-
factor of 2.5 too small for Kr. This shows that for the van derstants; some test calculations were made with basiset
Waals interaction there is currently no alternative to usingWhereas the Hartree-Fock part is well converged with basis
the accuratab initio correlation methods such as CCSID  setB, this is not true for the correlation contribution. In order
and that extended basis sets includgfynctions are neces- to correct for basis-set errors here, we assume the scaling of
sary for a quantitative description of the binding of rare-gashe correlation energy with the basis set to be the same for
dimers. three-body as for two-body increments. We tested the reli-
ability of this scaling for Ne, where we performed CCSD
calculations with basis se&f and compared them with the
extrapolated values. For the cohesive energy, the extrapola-
From the calculation of the dimers, we now switch to ourtion works well(errors less than 19pfor the lattice constant,
main goal, i.e., the rare-gas crystals. To show the degree ale error is about 0.5%. For the bulk modulus, on the other
transferability from different clusters to the solid and the ratehand, which is calculated from the second derivative of the
of convergence with increasing interatomic distance, weenergy, the scaling is not as reliable. Thus, we can only
have listed individual two-body increments in Table Ill. discuss qualitative trends for the three-body contributions to
These increments have been calculated in two-atom and vatire bulk modulus.
ous three-atom clusters. The difference, with basisBsés$ After testing the quality of the incremental expansion, we
2.2% at most, for the nearest-neighbor increment. For increaow discuss our final results in comparison with experiment
ments further apart, transferability errors are of the samend other theoretical approaches. The measured ground-state
relative size but much smaller in magnitude. The converproperties contain zero-point fluctuations not present in our

B. Rare-gas crystals
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TABLE Ill. Test of transferability and convergence for two-body increments, calculated for various
two-atom and three-atom clusters with basisBett a lattice constant near the experimental die, 4.45
A: Ar, 5.3 A; Kr, 5.65 A; Xe, 6.1 A. Energies are given ipH, distances in multiples of the lattice constant
a. The three-atom clusters are labeled according to their angles. In the last row of each block of the table, the
two-atom two-body increment has been multiplied by the weight factor appropriate for the fcc structure. The
last row of the table gives estimates for van der Waals contributions from the region beyond third-nearest
neighbors, see the text.

Distance Cluster Ne Ar Kr Xe
1 two atom ~100.86 ~332.11 —417.49 —628.76
2
i three atom, 60° —101.94 —336.32 —427.03 —640.34
V2
i three atom, 90° —101.39 —334.03 —421.85 —632.49
2
% three atom, 120° —101.52 —333.82 —421.51 —632.05
2
% three atom, 180° —-101.73 —333.32 —420.34 —633.25
2
sum with weight 6 —605.16 —1992.66 —2504.94 —3773.56
1 two atom —20.63 —78.73 —109.71 —165.28
1 three atom, 90° —20.85 —79.87 —112.12 —168.82
sum with weight 3 —61.89 —236.19 —329.13 —495.86
\[g two atom —-5.85 —-21.75 —30.39 —44.89
\/g three atom, 120° —-5.94 —22.12 —-31.22 —46.17
sum with weight 12 —70.20 —261.00 —364.68 —538.60
van der Waals —57.71 —214.66 —300.09 —443.33

calculation. Thus, we have to correct the experimental valuebeyond third-nearest neighbors have been included as dis-
in order to obtain proper values for comparison. For the cocussed above. In the first columns we report the two-body
hesive energy we calculate the zero-point vibrational energgontributions calculated with different basis sets. We omit
using the Debye mod%kBTDebye, 18 where the Debye tem- the very poor basis sé because it yields only about 60% of
perature is taken from Ref. 19. This energy is 26H for  the cohesive energy. With basis &twe obtain about 80%
Ne, 328 uH for Ar, 257 uH for Kr, and 228 uH for Xe.  of the cohesive energy, and with increasing basis-set quality,
More sophisticated calculations by Aziz and Slaflarield  we reach about 100%basis seD). Including the repulsive
284 uH for Ar, which gives an indication of the error bars three-body contributions, the calculated cohesive energies
of our estimates. For the lattice constant, we assume the defre between 93% and 97% of the “experimental” values.
viation from the linear dependence of the lattice constanf’he missing part is mainly due to the limited basis, but, as
with temperature to be due to zero-point fluctuations. Theliscussed before, a better description of the zero-point en-
temperature dependence of the lattice constants is taken froeigy could also improve the agreement. The three-body con-
Ref. 21. That means that our calculated lattice constantibutions increase significantly from N@.7% of the cohe-
should not be compared with the experimental ones at zersive energyto Ar (5.5% and reach 6.5% for Kr and Xe.
or very low temperatures but have to be compared with the Lattice constants are overestimated by up to 3% with ba-
linear extrapolation to zero temperature. These lattice corsis setB, when the many-body expansion is truncated after
stants are between 2.5@de) and 0.5%(Xe) smaller than the the two-body increments. This turns out to be mainly due to
measured ones. The value for Ne is not very religbleor  basis-set incompleteness, whereas the effect of the three-
+0.5%), because the linear part of the expansion curve ibody increments on the lattice constants is quite small
very small just before the melting point of the crystal. (<0.04 A). It is interesting, in this connection, to follow
Our results for the cohesive energy, the lattice constantrends of different energy contributions to the lattice con-
and the bulk modulus are listed in Table IV. Thebody  stant: whereas the Hartree-Fock part of the two-body contri-
increments extracted fromatom clusters have been used, in butions is purely repulsive, the three-body and four-body
order to minimize the artifacts of the basis set superpositiorself-consistent-field SCH contributions tend to reduce the
error for n=2; van der Waals estimates for contributions repulsion. (For Xe, e.g., the increments to the interaction
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TABLE IV. Cohesive energie&, [«H] per atom, lattice constants [A], and bulk moduliB [kbar]
for rare-gas crystals, derived from CCED increments using different basis sets. For comparison, we list
experimental values corrected for zero-point fluctuations, see the text.

Two-body contributions +Three body
BasisB BasisC BasisD BasisD Expt.
Econ (Ne) —800.7 —939.9 -999.0 —-971.6 —1002.07
Econ (Ar) —-2716.4 —2924.6 —3224.3 —3043.4 —3268.0°
Econ (Kr) —3559.0 —3992.8 —4490.6 —4203.8 —4502.0°
Econ (Xe) —5372.2 —5659.7 —6474.2 —6060.0 —6239.0°
a (Ne) 4.388 4.336 4.299 4.314 4.85
a (Ar) 5.354 5.320 5.255 5.284 5393
a (Kr) 5.763 5.725 5.631 5.670 5.61
a (Xe) 6.239 6.228 6.110 6.137 6.10
BasisB

B (Ne) 14.3 17.5 19.0 14.6 109
B (Ar) 26.9 29.2 335 27.2 238
B (Kr) 28.1 31.8 375 28.6 36/1
B (Xe) 33.8 34.8 42.4 29.3 364
aReference 26. Reference 31.

bReference 27. 9Reference 32.

°Reference 28. PReference 33.

dReference 29. iReference 34.

®Reference 30. iReference 35.

energy near the experimental lattice constant are 6660  trends. With increasing basis-set quality, the bulk moduli
—400 pH, and—96 wH, respectively. When the correla- increase(since lattice constants become short@he three-
tion contributions are added, a minimum in the energy curvéd0dy contributiongthe values in Table IV refer to basis set
develops with the two-body terms, which is shifted to largerB, i.e., no extrapolation to basis sBthas been attempted
distances when three-body correlation terms are added. Axve virtually no influence. In comparison with uncorrected
the highest levelbasis setD, three-body terms included €xperimental values all of our calculated bulk moduli are too
our results for the lattice constants are too small for Ne andgarge.
up to 1% too large for the other crystals. The deviation from Finally, we want to compare our results with the Ar crys-
experiment for Ne may well be due to the poor estimate ofal data published by Lotrich and SzalewfcEor the two-
the zero-point fluctuations in this case, since further extenbody contributions, which cover the main part of the bond-
sion of the basis is expected to decredsaher than in- ing, these authors used a model potential fitted to
crease the calculated value of the lattice constant. Higher-experiment, and only the three-body contributions were cal-
order contributions than three-body ones can be estimated g/lated byab initio methods. Using the model potential of
have only a very small influence on the lattice constants. Aziz”” based on dimer data, they obtain a two-body energy
In the calculation for xenon, we applied the core-0f 3459 uH, 7% higher than our value. This is a good esti-
polarization potential in order to account for core-valencemate of the error due to the limited basis set in abrinitio
correlation involving mainly the outer-cored4shell of the  calculation. For the three-body contributions, Lotrich and
Xe atom. We find that the CPP decreases the lattice constafgalewicz applied symmetry-adapted perturbation theory
by about 1% and enhances the cohesive energy by abo(fAPT). Their result is 15% larger in magnitude than our
500 wH. This is certainly an upper bound to the true core-three-body term, and it leads to an increase of the lattice
polarization effect, due to mixing in of small static contribu- constant by 0.04 A as compared to a corresponding value of
tions for the clusters, which would be absent for the bulk.0.03 A in our work.
Nevertheless, the numbers show that even for krypton core-
valence-correlation contribution$rom the 3 shel) might
have a non-negligible influence on cohesive energy and lat-
tice constant. A rough estimate of the magnitude can be ob-
tained from thex®* core dipole polarizability, which fok We have used a many-body expansion of the interaction
=Kr is about a quarter of the Xe value. energy to determine cohesive energies, lattice constants, and
For bulk moduli, we did not correct the experimental val- bulk moduli of the rare-gas crystals neon, argon, krypton,
ues for zero-point fluctuation@vhich should increase their and xenon, in the experimental dense-packed fcc structure. In
magnitude; it is difficult to achieve reliable numbers with a a first step, pair interaction energies were calculated at the
simple estimate—a full quantum-mechanical treatmentCCSIO(T) level, using relativistic energy-consistent pseudo-
would be necessary here. Therefore, we shall only discugsotentials together with extended basis sets. Including, in a

IV. CONCLUSION
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next step, corrections involving triples of atoms, we recoveMWaals crystals are of the same accuracy as our previous cal-
about 95% of the experimental cohesive energy, while caleulations for ionic crystals and semiconductors.

culated lattice constants are accurate withii%. As ex-

pected, the importance of three-body contributions increases ACKNOWLEDGMENT

from Ne (~3%) through Xe 7%), showing that the
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