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Weak-coupling approach to interaction-induced deformation of the Fermi surface in the
two-dimensional Hubbard model
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We investigate the interaction-induced deformation of the Fermi surface in the two-dimensional Hubbard
model on the triangular lattice in the weak-coupling regime within the second-order perturbation theory. In
systems without frustration, at the filling equal to or close to half-filling, the direction of the deformation of the
Fermi surface is the direction toward the Fermi surface at half-filling with the smaller transfer amplitude set to
zero, whose nesting vector is commensurate with the underlying lattice. On the other hand, in systems with
frustration, the Fermi surface is not deformed by the interaction because of the frustration.
[S0163-18299)11435-9

I. INTRODUCTION formation of the Fermi surface in the two-dimensional Hub-

The f fthe Fermi surf . h teristic feat ard model on the triangular lattice in the weak-coupling
€ form ot tn€ ermi surtace IS a characterstic feature o egime within the second-order perturbation theory. We

a metal. Whether the metal is weakly correlated or strongly, osent the formulation of this problem in Sec. Il and the
correlated, generally, the Fermi surface can be determinethq its of our numerical calculation in Sec. Ill. Then, we
experimentally by the angle-resolved photoemission speGyake some discussion in Sec. IV and finally the conclusion
troscopy and/or the de Haas—van Alphen measuremeng given in Sec. V.
These experimental results are compared with band-structure
calculations, although the effect of the electron correlation to
the Fermi surface beyond the band-structure calculation re-
mains unclear. Il. FORMULATION

So far, the problem of the deformation of the Fermi sur- ) ) .
face induced by the electron-electron interaction in the two- _ We consider the two-dimensional Hubbard model on the
dimensional Hubbard model has been studied only for th&i@ngular lattice. The Hamiltonian is given by
square lattice. Halboth and Metzhecalculated for the
square lattice with only the nearest-neighbor transfer ampli- H=Ho+H;, (1)
tude within the second-order perturbation theory. Z|afia-
tel, and Grabowskicalculated for the square lattice with the
anisotropic transfer amplitude in the and y directions, +
which is also within the second-order perturbation theory. Ho=—i.2 lijCis Cjos @)
Both have shown that close to half-filling the interaction en- e
hances the anisotropy of the Fermi surface. The square lattice
has no frustration for the antiferromagnetic spin ordering;
therefore, at half-filing, we have the antiferromagnetic Hi=UX iy, Q)
ground state if the system is insulating. In contrast, in the '
case of a lattice with frustration for the antiferromagnetic
spin ordering, e.g., the triangular lattice, the antiferromagwheret;; is the transfer amplitude between sitand sitej,
netic ground state is unfavorable. Then, for the triangulac;, (c;,') is the annihilatior(creation operator for the elec-
lattice, how is the deformation of the Fermi surface? tron of spino at sitei, U is the on-site Coulomb interaction,

In this paper, we investigate the interaction-induced deandn;,=c;,'c;,. We take the transfer amplitude such as

t for the nearest neighboyj in the first and second directions,

o=
Il

ts for the nearest neighbayj in the third direction, (4)
0 otherwise.
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FIG. 1. The triangular lattice and the transfer amplitude.

Hr(]are, the 'il.rst,ls(i/(\‘,/ond,tanzl:?lrd ciliectlofns are tlhte(;jlr(_actlons FIG. 2. The diagram of the second-order self-energy. The solid

Z. OWO N Fg. I .e Sﬁ ah' ld((ajr.en _ran_s er Qmp IIIu _e |ndoneand dotted lines denote the noninteracting Green’s fundB8h
irection, name y,in the thir ( irection intentionally in-order 14 the Coulomb interactiod, respectively.

to control frustration systematically. We take the lattice spac-

ing as the unit of length. The noninteracting dispersion of the;ng one-particle Green’s functioB,(iw,) is given by the

bande is given by following Dyson equation,
3 1 i -1_ (0); “1_% (i
g=—| 4t cos\/;kxcosikﬁZtgcosky , ) Culiwn) =G i wn) "= Zi(ion). ®
The one-particle spectrum of the interacting system, namely,
wherek is the momentum. the dispersion of the renormalized quasiparticle-E, is

Our analysis is based on the formalism of the Green'gJiven by the pole of the interacting one-particle Green's
function® The noninteracting (mean-field one-particle  function and is determined by the following equation:

'S f . (0)/; . .
Green’s functionGy (i w,) is given by REGR(w) 1= w— e Un/2—ReS, R(w) + u=0,

o 1 ©)
Gk (Iw“)_iwn—sk— uni2+u’ 6) whereG,X(w) and3 R(w) are the analytic continuations of

G(iwy) and 2, (iw,), respectively, in the upper half com-
where w,=(2n+ 1)« T is the fermionic Matsubara fre- plex plane with respect to the frequency. By expanding
quency at temperatufg nis the filling of the band, angt is  ReX,F(w) with respect tow and taking the terms up to the
the chemical potential. Generally, the one-particle spectrunfirst order, we obtain
of the system is given by the pole of the one-particle Green’s
function. The one-particle spectrum of the noninteracting R R dReX R(w)
system is nothing but the noninteracting dispersion of the ReX(w)=ReX (0)+T o, (10
bande, . The Fermi surface of the noninteracting system is @=0
calculated frome,. We introduce the polar coordinates which is a good approximation for the Fermi liquid. By sub-
(k, ¢) in the momentum space to describe the deformation o$tituting Eq.(10) for Eg. (9), we obtain
the Fermi surface. The angikis to be measured from thg
axis. We dt(eg;ote the Fermi momentum of the noninteracting Ex=2zlex+Un/2+Re3,R(0)— u], (11
system byki:", Wh'Ch 'S a funcnon of the angle. wherez, is the so-called renormalization factor and is given

Now we consider the interacting system. We make '[heD
perturbation expansion of the self-energy with respedt to y

around the nonmagnetic mean-field solution, where the Har- IRe3,R(w) -1
tree term is already taken into account. Hence, it is enough to ze=|1— Ehainl ] w=0} : (12
take only the second-order term, is the lowest order that dw

causes the deformation of the Fermi surface. Here we conrhe Fermi surface of the interacting system is calculated
sider only the paramagnetic state. The self-enérgyw,) IS from E, in such a manner that the volume enclosed by the

given by Fermi surface must be the same as that of the noninteracting
system(the Luttinger’s theorem Equivalently, the interact-
S (io)= —UZI 2 GO (i ing Fermi surface is determined as the root of the equation
K N a7, k=gt N E,=0. Therefore, according to E@L1), the renormalization
- factor z, makes no contribution to the deformation of the
N (0)/: 0) . Fermi surface, and hence, the deformation of the Fermi sur-
S klzwln Gii, (1010) Gigs gl @1+ vn), face is caused by the energy shift resulting fronE&0).

7) We denote the Fermi momentum of the interacting system by
ke, which is a function of the anglé. We define the shift of

whereq is the momentumy,=2n=T is the bosonic Mat- the Fermi surface in the radial directigikg as

subara frequency, and is the number of the lattice sites. 0

The corresponding diagram is shown in Fig. 2. The interact- Ske=ke—k{, (13
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FIG. 3. The noninteracting and interacting Fermi surfaces at FIGé 4. The angle dependence of the shift of the Fermi surface
various fillingsn with t=0.5, t;= 1.0, andU =4.0. The empty and Sk /U< at various fillingsn with t=0.5, t3=1.0, andU =4.0.

solid symbols denote the noninteracting and interacting Fermi sur-

faces, respectively. The dashed line is the Fermi surface at hamuantitative_manner, we ShQW tl_dedependence of the shift
filling with t=0. of the Fermi surfaceskz/U? in Fig. 4.

At the filling equal to or close to half-filling, the direction
of the deformation is the direction to enhance the anisotropy
of the Fermi surface, in other words, the direction toward the

starts with the second-order term bf Therefore. in the Fermisurface at half-filling with=0, whose nesting vector
weak-coupling limit ofU—0, ske is proportional toU?. is Q_=(O_,7T), Whi_ch is the wave vector of_ the a_mtiferromag—
Strictly speaking, the Fermi surface of the interacting sys{1€ti¢ Spin ordering for the triangular lattice witk=0. The
tem must be determined self-consistently from the point ofO'M Of the interacting Fermi surface is determined by the
view of the adiabatic continuation, which is the basic con-COmPpetition between the self-energy Re'(0) and the non-
cept of the Fermi liquid. In this paper, however, we deter- interacting dispersion of the barmg . Therefore, in this case,

R . . . .
mine the Fermi surface from the Green's function, which isR€k"(0) is more anisotropic thasy , which enhances the
not self-consistently calculated. anisotropy of the Fermi surface. Then, why is the self-energy

ReZ R(0) more anisotropic than the original noninteracting
dispersion of the band,? The physical interpretation is as
lll. CALCULATED RESULTS follows. When the electrons are easier to move in the third
Odirection than in the first and second directiohgxt) in the
noninteracting system, the effective interactighe dimen-
Oisionless coupling constgnis larger in the first and second
gf'rections than in the third directiolJ(t>U/t3); hence as a
result of the many-body effect, the electrons become still
hharder to move in the first and second directions than in the
hird direction, which makes the self-energy more aniso-
tropic and enhances the anisotropy of the Fermi surface.
On the other hand, at the small filling, the direction of the
deformation is the direction to compensate the anisotropy of
the Fermi surface, in other words, the direction toward a
circle, although the magnitude of the deformation is smaller
than the case of the filling equal to or close to half-filling.
T= 2‘%' (14) The physical interp.retation' is as foIIovys. Wheg?t, 'the _
N energy cost by the interaction is larger in the third direction
than in the first and second directions, which makes the self-
Throughout our calculation, we halfe=0.06217, which is a energy less anisotropic and compensates the anisotropy of
low enough temperature. For the analytic continuation in thehe Fermi surface.
upper half complex plane with respect to the frequency, we Next, oppositely, the case of>t;. We taket=1.0 and
make use of the method of the Paajeproximant:® We fix ~ t;=0.5. The noninteracting and interacting Fermi surfaces at
U=4.0 throughout our calculation. various fillingsn are shown in Fig. 5, and thé dependence
In the first place, we show the result for the case withoubf the shift of the Fermi surfacéks/U? is shown in Fig. 6.
frustration for the antiferromagnetic spin ordering. First, theAt the filling equal to or close to half-filling, the direction of
case oft<ts. We taket=0.5 andt;=1.0. The noninteract- the deformation is the direction to enhance the anisotropy of
ing and interacting Fermi surfaces at various fillingare  the Fermi surface, in other words, the direction toward the
shown in Fig. 3. In order to describe the deformation in aFermi surface at half-filling withi;=0, whose nesting vec-

which is also a function of the angkg. If we expandkg in
the powers ofJ, the first-order term ob) vanishes, thedkg

We numerically calculate the self-energy directly base
on the expression of Eq7). These integrals are of the form
of the convolution; hence we can carry out the summation
both the momenta and the Matsubara frequencies with use
the algorithm of the fast Fourier transformatidrror the
momentum, we divide the first Brillouin zone into the mes
of 64X 64. On the other hand, for the frequency, we set
sufficiently large cutoff frequencw.=100 and divide the
range from— w to w. by n.=1024, then the temperatuiie
is given by
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FIG. 5. The noninteracting and interacting Fermi surfaces at FIG. 7. The noninteracting and interacting Fermi surfaces at
various fillingsn with t=1.0, t;=0.5, andU=4.0. The empty and various fillingsn with t=t;=1.0 andU =4.0. The empty and solid
solid symbols denote the noninteracting and interacting Fermi sursymbols denote the noninteracting and interacting Fermi surfaces,
faces, respectively. The dashed line is the Fermi surface at halfespectively.
filling with t;=0.

Grabowsk? We can express their results in a universal way.
tors areQ=(27/+/3,0),(0,2r), which are the wave vectors  As for the result by Halboth and Metzrefor the case
of the antiferromagnetic spin ordering for the triangular lat-with only the nearest-neighbor transfer amplitudéhe di-
tice with t3;=0. On the other hand, at the small filling, the rection to enhance the anisotropy of the Fermi surface is
direction of the deformation is the direction to compensatenothing but the direction toward the Fermi surface at half-
the anisotropy of the Fermi surface. filling, whose nesting vector iQ = (7, 7). This result is not
Finally, we show the result for the case with frustration changed by introducing the next-nearest-neighbor transfer
for the antiferromagnetic spin ordering. We taket;=1.0.  amplitudet’. Whent>|t’|, irrespective of the sign df , at
The noninteracting and interacting Fermi surfaces at varioughe filling equal to or close to half-filling, the direction of the
fillings n are shown in Fig. 7, and th¢ dependence of the deformation is the direction to enhance the anisotropy of the
shift of the Fermi surfacékg/U? is shown in Fig. 8. In the  Fermi surface, in other words, the direction toward the Fermi
case with frustration, no deformation of the Fermi surface issurface at half-filling witht’ =0, whose nesting vector @
found in the weak-coupling regime. = (7, ), which is the wave vector of the antiferromagnetic
spin ordering for the square lattice with=0. This result
has been confirmed by the present authors.
IV. DISCUSSION As fo_r the resul_t by ZIE_;lfipEnteI, and Gr_abows%ifor the
case with the anisotropic transfer amplitude, namely, the
Now, let us reconsider the results for the square latticenearest-neighbor transfer amplitude in theirectiont, and
with various transfer amplitudes, which have already beeiin they directiont,, whent,>t,, the direction to enhance
obtained by Halboth and Metzrteand Zlatic Entel, and the anisotropy of the Fermi surface is nothing but the direc-
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FIG. 6. The angle dependence of the shift of the Fermi surface FIG. 8. The angle dependence of the shift of the Fermi surface
8ke /U2 at various fillingsn with t=1.0, t;=0.5, andU =4.0. 8kg /U2 at various fillingsn with t=t3=1.0 andU=4.0.
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tion toward the Fermi surface at half-filling with, =0, V. CONCLUSION

whose ne_stmg vector Q: (7.7’0)’Wh.'Ch Is the wave vector_ We have investigated the interaction-induced deformation

of the antiferromagnetic spin ordering for the square lattice . . ) .

With t.=0 of the Fermi surface in the two-dimensional Hubbard model
yo on the triangular lattice in the weak-coupling regime within

Unifying these results for the square lattice and our resul{ . .
. S . he second-order perturbation theory. Generally in systems
for the triangular lattice, in the case of the lattice and transfer P y y Y

amplitude without frustration for the antiferromagnetic spinWith(.)u.t frustration for the antiferromggnetic spin o'rdering, at
ordering, at the filing equal to or close to half-filling, the the filling equal to or close to half-filling, the direction of the
A . . .2 deformation of the Fermi surface is the direction to enhance
d|ref:t|on of the deformatlt_)n of the Fermi su_rf_ace IS the dI'the anisotropy of the Fermi surface, in other words, the di-
rection toward the Fermi surface at half-filling with the o qion toward the Fermi surface at half-filling with the

smaller transfer amplitude set to zero, whose nesting VeCtQiyier transfer amplitude set to zero, whose nesting vector
is commensurate with the underlying lattice. The interactiong commensurate with the underlying lattice. And, at the

has tendency to deform the Fermi surface toward the stronsmaj filling, the direction of the deformation of the Fermi

ger nesting only for systems without frustration. This state-syrface is the direction to compensate the anisotropy of the
ment will be valid generally for all the systems without frus- Fermi surface, in other words, the direction toward a circle.
tration for the antiferromagnetic spin ordering. This is aOn the other hand, generally in systems with frustration, the
universal feature of correlated electron systems, irrespectivEermi surface is not deformed by the interaction because of

of microscopic models. the frustration.
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