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Weak-coupling approach to interaction-induced deformation of the Fermi surface in the
two-dimensional Hubbard model

Shuntaro Yoda* and Kosaku Yamada
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 5 October 1998; revised manuscript received 30 November 1998!

We investigate the interaction-induced deformation of the Fermi surface in the two-dimensional Hubbard
model on the triangular lattice in the weak-coupling regime within the second-order perturbation theory. In
systems without frustration, at the filling equal to or close to half-filling, the direction of the deformation of the
Fermi surface is the direction toward the Fermi surface at half-filling with the smaller transfer amplitude set to
zero, whose nesting vector is commensurate with the underlying lattice. On the other hand, in systems with
frustration, the Fermi surface is not deformed by the interaction because of the frustration.
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I. INTRODUCTION

The form of the Fermi surface is a characteristic feature
a metal. Whether the metal is weakly correlated or stron
correlated, generally, the Fermi surface can be determ
experimentally by the angle-resolved photoemission sp
troscopy and/or the de Haas–van Alphen measurem
These experimental results are compared with band-struc
calculations, although the effect of the electron correlation
the Fermi surface beyond the band-structure calculation
mains unclear.

So far, the problem of the deformation of the Fermi s
face induced by the electron-electron interaction in the tw
dimensional Hubbard model has been studied only for
square lattice. Halboth and Metzner1 calculated for the
square lattice with only the nearest-neighbor transfer am
tude within the second-order perturbation theory. Zlatic´, En-
tel, and Grabowski2 calculated for the square lattice with th
anisotropic transfer amplitude in thex and y directions,
which is also within the second-order perturbation theo
Both have shown that close to half-filling the interaction e
hances the anisotropy of the Fermi surface. The square la
has no frustration for the antiferromagnetic spin orderi
therefore, at half-filling, we have the antiferromagne
ground state if the system is insulating. In contrast, in
case of a lattice with frustration for the antiferromagne
spin ordering, e.g., the triangular lattice, the antiferrom
netic ground state is unfavorable. Then, for the triangu
lattice, how is the deformation of the Fermi surface?

In this paper, we investigate the interaction-induced
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formation of the Fermi surface in the two-dimensional Hu
bard model on the triangular lattice in the weak-coupli
regime within the second-order perturbation theory. W
present the formulation of this problem in Sec. II and t
results of our numerical calculation in Sec. III. Then, w
make some discussion in Sec. IV and finally the conclus
is given in Sec. V.

II. FORMULATION

We consider the two-dimensional Hubbard model on
triangular lattice. The Hamiltonian is given by

H5H01H1 , ~1!

H052 (
i , j ,s

t i j cis
†cj s , ~2!

H15U(
i

ni↑ni↓ , ~3!

wheret i j is the transfer amplitude between sitei and sitej,
cis (cis

†) is the annihilation~creation! operator for the elec-
tron of spins at sitei, U is the on-site Coulomb interaction
andnis5cis

†cis . We take the transfer amplitude such as
t i j 5H t for the nearest neighbori , j in the first and second directions,

t3 for the nearest neighbori , j in the third direction,

0 otherwise.

~4!
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Here, the first, second, and third directions are the directi
shown in Fig. 1. We set a different transfer amplitude in o
direction, namely, in the third direction intentionally in ord
to control frustration systematically. We take the lattice sp
ing as the unit of length. The noninteracting dispersion of
band«k is given by

«k52S 4t cos
A3

2
kx cos

1

2
ky12t3 coskyD , ~5!

wherek is the momentum.
Our analysis is based on the formalism of the Gree

function.3 The noninteracting ~mean-field! one-particle
Green’s functionGk

(0)( ivn) is given by

Gk
(0)~ ivn!5

1

ivn2«k2Un/21m
, ~6!

where vn5(2n11)pT is the fermionic Matsubara fre
quency at temperatureT, n is the filling of the band, andm is
the chemical potential. Generally, the one-particle spect
of the system is given by the pole of the one-particle Gree
function. The one-particle spectrum of the noninteract
system is nothing but the noninteracting dispersion of
band«k . The Fermi surface of the noninteracting system
calculated from«k . We introduce the polar coordinate
(k,f) in the momentum space to describe the deformation
the Fermi surface. The anglef is to be measured from thekx
axis. We denote the Fermi momentum of the noninterac
system bykF

(0) , which is a function of the anglef.
Now we consider the interacting system. We make

perturbation expansion of the self-energy with respect toU
around the nonmagnetic mean-field solution, where the H
tree term is already taken into account. Hence, it is enoug
take only the second-order term, is the lowest order t
causes the deformation of the Fermi surface. Here we c
sider only the paramagnetic state. The self-energySk( ivn) is
given by

Sk~ ivn!52U2
T

N (
qnn

Gk2q
(0) ~ ivn

2 inn!
T

N (
k1 ,v1n

Gk1

(0)~ iv1n!Gk11q
(0) ~ iv1n1 inn!,

~7!

whereq is the momentum,nn52npT is the bosonic Mat-
subara frequency, andN is the number of the lattice sites
The corresponding diagram is shown in Fig. 2. The intera

FIG. 1. The triangular lattice and the transfer amplitude.
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ing one-particle Green’s functionGk( ivn) is given by the
following Dyson equation,

Gk~ ivn!215Gk
(0)~ ivn!212Sk~ ivn!. ~8!

The one-particle spectrum of the interacting system, nam
the dispersion of the renormalized quasiparticlev5Ek is
given by the pole of the interacting one-particle Gree
function and is determined by the following equation:

Re@Gk
R~v!21#5v2«k2Un/22ReSk

R~v!1m50,
~9!

whereGk
R(v) andSk

R(v) are the analytic continuations o
Gk( ivn) and Sk( ivn), respectively, in the upper half com
plex plane with respect to the frequency. By expand
ReSk

R(v) with respect tov and taking the terms up to th
first order, we obtain

ReSk
R~v!5ReSk

R~0!1
] ReSk

R~v!

]v U
v50

v, ~10!

which is a good approximation for the Fermi liquid. By su
stituting Eq.~10! for Eq. ~9!, we obtain

Ek5zk@«k1Un/21ReSk
R~0!2m#, ~11!

wherezk is the so-called renormalization factor and is giv
by

zk5F12
] ReSk

R~v!

]v Uv50G21

. ~12!

The Fermi surface of the interacting system is calcula
from Ek in such a manner that the volume enclosed by
Fermi surface must be the same as that of the noninterac
system~the Luttinger’s theorem!.4 Equivalently, the interact-
ing Fermi surface is determined as the root of the equa
Ek50. Therefore, according to Eq.~11!, the renormalization
factor zk makes no contribution to the deformation of th
Fermi surface, and hence, the deformation of the Fermi
face is caused by the energy shift resulting from ReSk

R(0).
We denote the Fermi momentum of the interacting system
kF , which is a function of the anglef. We define the shift of
the Fermi surface in the radial directiondkF as

dkF5kF2kF
(0) , ~13!

FIG. 2. The diagram of the second-order self-energy. The s
and dotted lines denote the noninteracting Green’s functionG(0)

and the Coulomb interactionU, respectively.
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7888 PRB 60SHUNTARO YODA AND KOSAKU YAMADA
which is also a function of the anglef. If we expandkF in
the powers ofU, the first-order term ofU vanishes, thendkF
starts with the second-order term ofU. Therefore, in the
weak-coupling limit ofU→0, dkF is proportional toU2.

Strictly speaking, the Fermi surface of the interacting s
tem must be determined self-consistently from the point
view of the adiabatic continuation, which is the basic co
cept of the Fermi liquid.5 In this paper, however, we dete
mine the Fermi surface from the Green’s function, which
not self-consistently calculated.

III. CALCULATED RESULTS

We numerically calculate the self-energy directly bas
on the expression of Eq.~7!. These integrals are of the form
of the convolution; hence we can carry out the summation
both the momenta and the Matsubara frequencies with us
the algorithm of the fast Fourier transformation.6 For the
momentum, we divide the first Brillouin zone into the me
of 64364. On the other hand, for the frequency, we se
sufficiently large cutoff frequencyvc5100 and divide the
range from2vc to vc by nc51024, then the temperatureT
is given by

T5
2vc

pnc
. ~14!

Throughout our calculation, we haveT50.06217, which is a
low enough temperature. For the analytic continuation in
upper half complex plane with respect to the frequency,
make use of the method of the Pade´ approximant.7,8 We fix
U54.0 throughout our calculation.

In the first place, we show the result for the case with
frustration for the antiferromagnetic spin ordering. First, t
case oft,t3. We taket50.5 andt351.0. The noninteract-
ing and interacting Fermi surfaces at various fillingsn are
shown in Fig. 3. In order to describe the deformation in

FIG. 3. The noninteracting and interacting Fermi surfaces
various fillingsn with t50.5, t351.0, andU54.0. The empty and
solid symbols denote the noninteracting and interacting Fermi
faces, respectively. The dashed line is the Fermi surface at
filling with t50.
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quantitative manner, we show thef dependence of the shif
of the Fermi surfacedkF /U2 in Fig. 4.

At the filling equal to or close to half-filling, the direction
of the deformation is the direction to enhance the anisotr
of the Fermi surface, in other words, the direction toward
Fermi surface at half-filling witht50, whose nesting vecto
is Q5(0,p), which is the wave vector of the antiferromag
netic spin ordering for the triangular lattice witht50. The
form of the interacting Fermi surface is determined by t
competition between the self-energy ReSk

R(0) and the non-
interacting dispersion of the band«k . Therefore, in this case
ReSk

R(0) is more anisotropic than«k , which enhances the
anisotropy of the Fermi surface. Then, why is the self-ene
ReSk

R(0) more anisotropic than the original noninteracti
dispersion of the band«k? The physical interpretation is a
follows. When the electrons are easier to move in the th
direction than in the first and second directions (t3.t) in the
noninteracting system, the effective interaction~the dimen-
sionless coupling constant! is larger in the first and secon
directions than in the third direction (U/t.U/t3); hence as a
result of the many-body effect, the electrons become s
harder to move in the first and second directions than in
third direction, which makes the self-energy more anis
tropic and enhances the anisotropy of the Fermi surface

On the other hand, at the small filling, the direction of t
deformation is the direction to compensate the anisotropy
the Fermi surface, in other words, the direction toward
circle, although the magnitude of the deformation is sma
than the case of the filling equal to or close to half-fillin
The physical interpretation is as follows. Whent3.t, the
energy cost by the interaction is larger in the third directi
than in the first and second directions, which makes the s
energy less anisotropic and compensates the anisotrop
the Fermi surface.

Next, oppositely, the case oft.t3. We taket51.0 and
t350.5. The noninteracting and interacting Fermi surface
various fillingsn are shown in Fig. 5, and thef dependence
of the shift of the Fermi surfacedkF /U2 is shown in Fig. 6.
At the filling equal to or close to half-filling, the direction o
the deformation is the direction to enhance the anisotropy
the Fermi surface, in other words, the direction toward
Fermi surface at half-filling witht350, whose nesting vec

t

r-
lf-

FIG. 4. The angle dependence of the shift of the Fermi surf
dkF /U2 at various fillingsn with t50.5, t351.0, andU54.0.
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PRB 60 7889WEAK-COUPLING APPROACH TO INTERACTION- . . .
tors areQ5(2p/A3,0),(0,2p), which are the wave vector
of the antiferromagnetic spin ordering for the triangular l
tice with t350. On the other hand, at the small filling, th
direction of the deformation is the direction to compens
the anisotropy of the Fermi surface.

Finally, we show the result for the case with frustrati
for the antiferromagnetic spin ordering. We taket5t351.0.
The noninteracting and interacting Fermi surfaces at vari
fillings n are shown in Fig. 7, and thef dependence of the
shift of the Fermi surfacedkF /U2 is shown in Fig. 8. In the
case with frustration, no deformation of the Fermi surface
found in the weak-coupling regime.

IV. DISCUSSION

Now, let us reconsider the results for the square lat
with various transfer amplitudes, which have already be
obtained by Halboth and Metzner1 and Zlatić, Entel, and

FIG. 5. The noninteracting and interacting Fermi surfaces
various fillingsn with t51.0, t350.5, andU54.0. The empty and
solid symbols denote the noninteracting and interacting Fermi
faces, respectively. The dashed line is the Fermi surface at
filling with t350.

FIG. 6. The angle dependence of the shift of the Fermi surf
dkF /U2 at various fillingsn with t51.0, t350.5, andU54.0.
-
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Grabowski.2 We can express their results in a universal wa
As for the result by Halboth and Metzner1 for the case

with only the nearest-neighbor transfer amplitudet, the di-
rection to enhance the anisotropy of the Fermi surface
nothing but the direction toward the Fermi surface at ha
filling, whose nesting vector isQ5(p,p). This result is not
changed by introducing the next-nearest-neighbor tran
amplitudet8. Whent.ut8u, irrespective of the sign oft8, at
the filling equal to or close to half-filling, the direction of th
deformation is the direction to enhance the anisotropy of
Fermi surface, in other words, the direction toward the Fe
surface at half-filling witht850, whose nesting vector isQ
5(p,p), which is the wave vector of the antiferromagne
spin ordering for the square lattice witht850. This result
has been confirmed by the present authors.

As for the result by Zlatic´, Entel, and Grabowski2 for the
case with the anisotropic transfer amplitude, namely,
nearest-neighbor transfer amplitude in thex direction tx and
in the y direction ty , when tx.ty , the direction to enhance
the anisotropy of the Fermi surface is nothing but the dir

t

r-
lf-

e

FIG. 7. The noninteracting and interacting Fermi surfaces
various fillingsn with t5t351.0 andU54.0. The empty and solid
symbols denote the noninteracting and interacting Fermi surfa
respectively.

FIG. 8. The angle dependence of the shift of the Fermi surf
dkF /U2 at various fillingsn with t5t351.0 andU54.0.
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7890 PRB 60SHUNTARO YODA AND KOSAKU YAMADA
tion toward the Fermi surface at half-filling withty50,
whose nesting vector isQ5(p,0), which is the wave vector
of the antiferromagnetic spin ordering for the square latt
with ty50.

Unifying these results for the square lattice and our res
for the triangular lattice, in the case of the lattice and trans
amplitude without frustration for the antiferromagnetic sp
ordering, at the filling equal to or close to half-filling, th
direction of the deformation of the Fermi surface is the d
rection toward the Fermi surface at half-filling with th
smaller transfer amplitude set to zero, whose nesting ve
is commensurate with the underlying lattice. The interacti
has tendency to deform the Fermi surface toward the str
ger nesting only for systems without frustration. This sta
ment will be valid generally for all the systems without frus
tration for the antiferromagnetic spin ordering. This is
universal feature of correlated electron systems, irrespec
of microscopic models.
e
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r

-

or
n
n-
-

ve

V. CONCLUSION

We have investigated the interaction-induced deformat
of the Fermi surface in the two-dimensional Hubbard mo
on the triangular lattice in the weak-coupling regime with
the second-order perturbation theory. Generally in syste
without frustration for the antiferromagnetic spin ordering,
the filling equal to or close to half-filling, the direction of th
deformation of the Fermi surface is the direction to enha
the anisotropy of the Fermi surface, in other words, the
rection toward the Fermi surface at half-filling with th
smaller transfer amplitude set to zero, whose nesting ve
is commensurate with the underlying lattice. And, at t
small filling, the direction of the deformation of the Ferm
surface is the direction to compensate the anisotropy of
Fermi surface, in other words, the direction toward a circ
On the other hand, generally in systems with frustration,
Fermi surface is not deformed by the interaction becaus
the frustration.
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