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Metallic surface of a Mott insulator —Mott insulating surface of a metal
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The dynamical mean-field theoffPMFT) is employed to study the correlation-driven metal-insulator tran-
sition in the semi-infinite Hubbard model at half-filing and zero temperature. We consider the low-index
surfaces of the three-dimensional simple-cubic lattice, and systematically vary the model parameters at the very
surface, the intralayer and interlayer surface hopping, and the surface Coulomb interaction. Within the DMFT
the self-energy functional is assumed to be local. Therewith, the problem is self-consistently mapped onto a set
of coupled effective impurity models corresponding to the inequivalent layers parallel to the surface. Assuming
that the influence of the high-energy Hubbard bands on the low-energy quasiparticle resonance can be ne-
glected at the critical point, a simplified “linearized DMFT” becomes possible. The linearized theory, how-
ever, is formally equivalent to the Weiss molecular-field theory for the semi-infinite Ising model. This implies
that qualitatively the rich phenomenology of the Landau description of second-order phase transitions at
surfaces has a direct analog for the surface Mott transition. Motivated by this formal analogy, we work out the
predictions of the linearized DMFT in detail. It is found that under certain circumstances the surface of a Mott
insulator can be metallic, while a Mott-insulating surface of a normal metal is not possible. We derive the
corresponding phase diagrams, theean-field critical exponents and the critical profiles of the quasiparticle
weight. The results are confirmed by a fully numerical evaluation of the DMFT equations using the exact-
diagonalizationED) method. By means of the ED approach, we especially investigate the noncritical parts of
the phase diagrams and discuss thand layer dependence of the quasi-particle weight. For strong modifi-
cations of the surface model parameters, the surface low-energy electronic structure dynamically decouples
from the bulk.[S0163-18289)10135-9

[. INTRODUCTION For strongU the system is a Mott-Hubbard insulator with an
insulating gap in the one-electron spectrum, similar to the

The correlation-driven transition from a paramagneticHubbard-I1l approach® The insulating solution ceases to ex-
metal to a paramagnetic Mott-Hubbard insulafoconsti-  ist when U approaches another critical valug.; from
tutes one of the fundamental problems in solid-state theoryabove. In the entire coexistence regibh;<U<U, the
The Mott transition is interesting since strong electron cor-metallic solution is stable, and thus the transition is of second
relations lead to low-energy electronic properties that are@rder. The preformed gap opens discontinuously Uat
qualitatively different from those predicted by band theory. =U.

Since it has been recognized that the limit of infinite spa- It has been question¥t™’ whether the picture given by
tial dimensions D=«) is a well-defined and meaningful the IPT is correct. Recent numerical renormalization-group
limit also for itinerant-electron modefsand since the inven- calculationgNRG),*3*°however, corroborate the IPT results
tion of dynamical mean-field theorfDMFT),*° there has qualitatively, althoughJ. is found to be significantly smaller
been a renewed interest in the Mott transitidihe DMFT  than in the perturbational approathOn the other hand,
provides an(in principle) exact description of the transition there is a remarkable agreement of the NRG with the result
in infinite dimensions. While this is a somewhat artificial for U, in the projective self-consistent meth@dSCM.*
limit, the DMFT, as a mean-field concept, represents a pow- The NRG calculations show that, fol—U,, the quasi-
erful approach also for the study of finite-dimensional sys-particle resonance becomes more or less isolated from the
tems. Analogous to the Weiss molecular-field theory for lo-high-energy Hubbard band3.The resonance basically re-
calized spin models, the DMFT can be expected to give groduces itself in the self-consistent evaluation of the mean-
valuable mean-field picture of the physics of three-field equations. This fact can be used for a simplified treat-
dimensional itinerant-electron modéls. ment of the DMFT where the influence of the Hubbard bands

Presumably, the simplest model that includes the essemn the low-energy peak is neglect&dThis “linearized
tials of the Mott transition is the Hubbard model® From  DMFT” yields a simple algebraic equation for the quasipar-
the application of the iterative perturbation the¢iyT)* to ticle weight at the critical interaction, and thereby allows for
the D=0 Hubbard model at half-filling and zero tempera- an analytical estimate dfi,. The results are in good agree-
ture, the following scenario for the Mott transition has ment with the numerical values fds, obtained from NRG
emerged For small Coulomb interactiob, the system is a and PSCM on different latticé4. For inhomogeneous sys-
metallic Fermi liquid with a quasiparticle peak at the Fermitems, the linearized DMFT also determines the critical pro-
energy in the one-electron spectrum.Bspproaches a criti-  file of the quasiparticle weight and the dependenck pbn
cal valueU., from below, the quasiparticle weight vanishes the system geometry. Comparing with the numerical results
continuously, similar as in the Brinkman-Rice appro&ch. obtained from the exact diagonalizatiEBD) method, a con-
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vincing qualitative agreement with respect to the thicknessvhen there is spontaneous order also in the bulk. The tran-
and geometry dependence Of, has been found for thin sition atT, is termed the “ordinary transition.”
Hubbard films> (4) ForA<0 (A>A,) the surface layer orders at a tem-

It has been noticéd that the equation of the linearized peratureT . oy T puik ('surface transition’). In the regime
DMFT is of the same form as the linearized mean-field equaT, ,,, < T<T. s the bulk correlation lengt§ is finite, and
tion of the Weiss molecular-field theory for the Ising model the order parameter decays exponentially fast from its maxi-
(at the critical temperatuyeThere is a one-to-one correspon- mum valuem(x=0) at the surface toward zero in the bulk.
dence if one identifies the quasiparticle weighwith the At T=T_ ,,, (“extraordinary transition’), the divergence of
magnetizationm, the squared interactiod® with the tem- ¢ and the onset of order in the bulk induce singularities in the
peratureT, and the squared hopping integtalwith the ex-  behavior of surface response functions. For the order param-
change coupling: eter at the surfacen(x=0), there is a discontinuity of its
second derivative only. A= T, the order-parameter pro-
file decays algebraicallym(x) o« 1/x.

(5) It holds that T¢ sur— Te.pu)! Tepu A ~2. The tran-
sition at T=T¢ su= Tc pui iN the caseA =< is called the
The Weiss theory, on the other hand, can be considered &special transition.” ForA =« the order-parameter profile
being a coarse-grained realization of the classical Landais flat in the ordered phase; the trivial solution{x) = my
theory of second-order phase transitiéh€onsequently, the = const minimizes the Ginzburg-Landau free energy. In this
results of Landau theorffor T=T.) can be translated back situation the effect of missing neighbors at the surface is
into predictions concerning the Mott transition in the Hub- compensated for exactly. The topology of the phase diagram
bard model(for U=U,). (ordinary, extraordinary, surface, and special transjtion

While the Landau theory of phase transitions is rathershould be correcivhenevethe surface can support indepen-
simple for homogeneous systems, the mean-field theory afent order® For example, there is no surface transition in
critical behavior asurfacess much more involved, and nu- the semi-infinite two-dimensional Ising model since the
merous nontrivial results can be deriv@dThe idea of the “surface” is one dimensiond’
present paper is thus to take the Landau theory as starting (6) There are two critical exponents that are merely re-
point and motivation to work out the predictions of the lin- lated to the critical temperaturémstead of describing the
earized DMFT for Hubbard surfaces and finally to test thecritical behavior of order parameter and response functions
predictions, as far as possible, by comparing with a fullythe “shift exponent”\, and the “crossover exponent.
numerical solution of the DMFT equations. They are defined a§T (d)— T, (d==)]/T(d=wx)xd s

Within the classical Landau theory, the free energy is exfor d— o, whereT(d) is the critical temperature of a film of
panded in terms of the local order paramete(r). For a finite thicknessd, and [T su(A) = Te purd/ T pure (A/A¢
semi-infinite system(surface geometly one additionally — — 1) for A— A (special transition Within Landau mean-
considers a surface contribution to the free enérdyater-  field theory one haa =2 and¢=1/2.
ally, the order parameter is assumed to be homogeneous. We (7) Spontaneous order in the bulk always induces a finite
take thex axis be parallel to the surface normal and pointingorder parameter at the surfage(x=0)>0.
into the volume ¥>0), thenm=m(x), andm(x=0) is the The Landau theory also makes additional statements con-
surface value of the order parameter. Let us list those meamerning, e.g., the bulk and surface critical exponents of the
field predictions derived from the Ginzburg-Landau freeorder parameter as well as the exponents of response func-
energy® which—by means of the above-mentioned formaltions with respect to an external applied field. We do not
analogy—have a direct counterpart for the Mott transition mention such results in the present context, since either they

(1) The transition in the bulk of the semi-infinite system have no obvious analog for the Mott transiti@pplied field
occurs exactly at the same critical temperattigg, as for  or they refer to temperaturéb—T, but T# T, where the
the infinitely extended systent:; pu=Te- mean-field equation cannot be linearized and where the for-

(2) Near the surface, the order-parameter proffilex) mal analogy{Eq. (1)] breaks down. We will, however, dis-
vanishes at a distanck beyond the surface if linearly ex- cuss a simple extension of the linearized DMFT tbr>U
trapolated from the boundary. The so-called “extrapolationbut U+ U, which recovers the resulte(U.—U) of the
length” A as well as thegbulk) correlation length¢ are the pPScm??
two length scales that characterize the order-parameter pro- To a certain extent, the phase diagram predicted by the
file in the continuum model. Microscopically, the extrapola- Landau theory or, respectively, by the linearized DMFT can
tion length is related to the model parameters at the surfac@e tested by comparing with a fully numerical evaluation of
In the molecular-field approximation of the Ising model we the DMFT equations. We need an approach that is suffi-
haveA ~'ec(A.—A), whereA is the modification of the ex- ciently simple for a systematic study of a large number of
change coupling within the surface laydf;=J(1+A), and  geometries and model parameters. For this purpose the
A=A, corresponds to\ = . exact-diagonalization method of Caffarel and Krafitrs

(3) For uniform parametersA=0) the mean field is well suited. We mainly focus on the noncritical parts in the
smaller at the surface due to missing neighbors. This impliephase diagram where the ED is able to give reliable results.
a weaker tendency to ordem(x=0) is smaller than Critical exponents, for example, cannot be calculated reli-
m(x—)=my,x, and m(x) monotonously increases with ably. The ED has successfully been employed beforehand for
increasingx (this impliesA >0). There is a finite order pa- the discussion of the Mott transition in thin Hubbard fifths
rametem(x=0)>0 at the surface only fofF<T, i.e.,, only  and at Hubbard surfacé8where the film and surface elec-

zem, U?skgT, 362<J/2. (1)
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tronic structure has been discussed in detail. Conversely, thmethod® which is introduced in Sec. VI. The corresponding
present paper focuses on the surface modification of theesults are discussed in Sec. VII. Finally, Sec. VIII concludes
model parameters and on surface phases, and thereby sube paper.
stantially extends the previous studies.

The Mott transition at a surface of the semi-infinite Hub- Il. SEMI-INFINITE HUBBARD MODEL

bard model has recently been investigated in a paper by

Hasegaw?? on the basis of the Kotliar-Ruckenstein slave- We investigate the Hubbard model on a three-

boson theory* With the present study we methodically im- dlme_nS|onaI_, simple-cubic, :_;\nd semnnflnltg Iatt|qe. The sys-

prove upon Hasegawa’s work. We will also show that fortem is considered to be built up by two—dlmgnsmnal layers

U U, the perturbation of the system that is introduced byParallel to the surface. Accordingly, the position vector to a

the presence of the surface deeply extends into the bulk. It &rticular site in the semi-infinite lattice is written &g

thus insufficient to assum@ocal) physical quantities to be — i+ Ra- HereR, stands for the coordinate origin in the

different from their value in the bulk only in the first few layera, and the layer index runs from=1 (topmost sur-

surface layers. Such a restriction gives rise to unphysicdfce layeJ to infinity (bulk). r; is the position vector with

singularities, e.g., in th&) dependence of the quasiparticle "€SPect to a layer-dependent origin, and runs over the sites

weight, as they are seen in Ref. 30. Within the slave-bosoMithin the layer. In this notation, the Hamiltonian reads

theory it is found that under certain circumstances a metallic

surface can coexist with an insulating bdfkCrucial for the He St

existence of this surface phase is a considerable decrease of ijaBo

U at the surface. This is an interesting and also plausible

result, although the required strong decreast aft the sur- o=1,] is the spin indexU,, is the (layer-dependent-Hub-

face appears to be quite unrealistic for real systems. bard interaction strength. The hopping integrals are restricted
A physically more relevant modification of the model pa- to be nonzero between nearest neighbors. The energy zero is

rameters is, in the first place, the enhancement or decrease @éfined by setting;, ;,=to="0 for sites in the bulk ¢—).

the hopping integrals at the surface. This may be caused byEhe energy scale is given by taking tlibulk) nearest-

relaxation of the interlayer distance, for example. Accordingneighbor hopping to bg;, jz=—t with t=1.

to the scaling law~r ~° for d electrong(cf., e.g., Ref. 32 a The presence of the surface implies a breakdown of trans-

top-layer relaxatiomr/r of a few percent results in a strong lational symmetry with respect to the surface normal direc-

change of the hopping integral. A surface modificatiort of tion. Lateral translational symmetry, however, may be ex-

up to about 10-20% appears to be realistic. Besides thploited by performing a two-dimensional Fourier

hopping we will also discuss a modification Ofat the sur-  transformation

face. In 3 transition metals, however, this effect seems to be

less important>3*In any casel is expected to be enhanced i

at the surfacé® On the contrary, it will be shown that the €ap(K)= N 4 e T Wi g ©)

interesting surface phase occurs foweredsurfaceU. An- :

other important aspect is the surface geometry which is exHerek is a two-dimensional wave vector of the first surface

pected to affect the surface phase diagram considerablgriliouin zone, andN; denotes the number of sites within
Open surfaces with a strong reduction of the surface coordieach layer Kj—). Let us briefly discuss the Fourier-

nation number will show the most pronounced surface eftransformed hopping matrix, which reads
fects in the electronic structure. We thus consider different

U
t a
ia,jﬁCiMCjBGJF% = NiaoNia-0- 2

low-index surfaces of & =3 simple-cubid(sg lattice. tie)(k)+ Aty tyoe, (k)
The basic assumption of DMFT is the strict locality of the
self-energy functional. Fab =3 dimensions this represents ) _ to€, (k) te(k)  te, (k)

a strong simplification of the problem. The local approxima-
tion is well justified for the weak-coupling regime, and also
for the case of surface geometrisge the discussion in Refs. Y Y 4)
29, 35, and 3p For the intermediate- to strong-coupling re-
gime, however, the assumption may be questioned. Ongor =2, the intralayekparalle) hopping and the interlayer
could alternatively investigate a surface ofDa= lattice  (perpendicular hopping are written ag,,(k)=te|(k) and
where the DMFT becomes exact. While this will be dis- €,.+1(K)=te, (k), respectively. We consider three different
cussed briefly, we otherwise consider surface®in3 di-  |ow-index surfaces of the sc lattice. The hopping matrix for
mensions. As in Refs. 23 and 29, we expect the mean-fielthe s¢100) surface is obtained from
concept to be a good starting point for=3.

The plan of this paper is the following: Section Il intro- €)(K) = —2[ cog ky) +cog ky)], le, (K)[?=1. (5
duces the model. The application of DMFT for surface ge-
ometries is briefly discussed in Sec. lll. We use two differentThe perpendicular hopping ksindependent in this case. For
methods to solve the DMFT equations: The first one is arthe (110 surface, we have
approximative linearization of the equations for=U .2
This is presented in Sec. IV. Section V then gives a discus- €|(k)=—2 cogky), le, (k)|?=2+2 cog \/§ky), (6)
sion of the analytical results. For the full solution of the
DMFT equations, we employ the exact-diagonalizationand, for the s(l11) surface,

te, (k) tEH(k)
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e”(k)=0, G (E)= 1 E 1
ERGIE V2 NE V172 i’ O F | Eprao-20)
€, (k)|*=3+2 cog+/2k,)+4 cog v3/2k,)cog \1/2k,).
vk 2k s ) 00d Y The self-energy matrix is taken to keindependent and di-

Since two nearest neighbors are always located in two difagonal, X ,45(E)= 6,52 ,(E), with layer-dependent ele-
ferent(adjacenk layer, the intralayer hopping vanishes in the ments: We assume that the self-energy is a strikibal
last case. Note that only the absolute square dk) enters  quantity.
the physical quantities we are interested in. In the case of an infinitely extended lattice with full trans-
At the very surface of the semi-infinite system, we con-lational symmetry, this basic assumption leads to the well-
sider three different possible modifications of the model paknown equations of dynamical mean-field théotywhich
rameters. First, the intralayer hopping within the topmostself-consistently map the bulk lattice problem onto a single-
surface layet; may differ from its bulk valudsee Eq(4)].  impurity problem!3’ The present case of reduced transla-
Second, we allow for an altered hoppihg=t,;#t between tional symmetry can be treated analogously: A local self-
the topmost and the first subsurface layer. Finally, the on-sitenergy implies that the Luttinger-Ward functiottatlepends
Coulomb interaction strength is assumed to be layer indeperen the local (but layer-dependentpropagators only:®
dent, U,=U=const, except for the topmost layé&f,_, =®[...,G,(E),...]. This in turn means that the self-
#U. energy of theath layer is solely a functional of the local
We restrict ourselves to the case of manifest particle-hol@ropagator: ., ,(E) = 6®/6G ,(E)=S[G,(E)]. The func-
symmetry, namely, a bipartitesc) lattice, nearest-neighbor tional S is the same as in the case of an impurity problem,
hopping and half-filling 0=2(n;,,)=1). In this case the e.g., the single-impurity Anderson mod@IAM), X,,(E)
Fermi energy is given by =ty+U/2. Itis fixed by the bulk  =S[Gjy(E) ], because the same type of skeleton diagrams
values for the on-site hopping and for the Hubbard interaceccur in the expansion of the impurity self-enef@y,,(E).
tion. Consider the atomic limit=0 for a moment: The po- With each layerw=1,2, ... wetherefore associate a SIAM,
sitions of the two Hubbard “bands” in the bulk spectrum are
given by Epy=to—u and Eygn=to—u+U, i.e., they lie
symmetricwith respect tou. In thermal equilibrium,u is
also the Fermi energy for the top layer. The Hubbard peaks
in the surface density of states lie Bf,,=to— u+ Aty and (a) 5t
Epigh="to+ Ato— 1+ U, where we have taken into account +% (ViTa,Co T H.c, (D
the top-layer modification of the interaction strength and . (@) . i
where we have introduced an additional modificatiog of ~ With €3 =tia i @nd where the conduction-band energies
the atomic level for top-layer sitdsee Eq(4)]. To maintain €k and hybridization strength¥{® chosen such that we
manifest particle-hole symmetry and to ens(re,,)=0.5 have
for =1, the Hubbard peaks must again lie symmetric with
respect tou. Thus we need

(10

H{® = ; eclc,+U,nn + % eYal ay,

AE)=E+pu—e?-S{NE)-G,(E)t (12

for the hybridization functionA(®)(E— u)=3=(V{?)?/(E
—€el™). [Eq. (12) only provides an implicit definition of the
With this choice for the top-layer on-site hopping, the localhybridization function Si_nCQi(rﬁ% depends or“’]. This im-
density of statep,,(E) = (— 1/7) Im{(c; 'CiT Y)e is a sym- plies at once the equality between the impurity Green func-
. i o ao ag . (a) _ . .
metric function of energy for each. tion of theath SIAM, Gj/(E), and the on-site lattice Green
We finally introduce the intralayer and interlayer coordi- function in theath layer G,(E) and ED)US the eqt(nglty be-
nation numbers andp which denote the number of nearest tween the respective self-energies;/(E) =S Gini(E)]
neighbors within the same layer and in one of the two adjaand2 ,(E)=S[G,(E)].

cent layers, respectively. We have The following iterative procedure then allows to solve the
semi-infinite Hubbard model within the dynamical mean-
q=4, p=1 forsd100), field approximation: Starting from a guess for the layer-
dependent self-energies ,(E), we calculate the on-site
q=2, p=2 forsql1l0), ©) Grgen function of the?th Ia)Eer)using Eq(10). Via Eq. (12),
q=0, p=3 forsqlll). G.(E) and 3 ,(E)=3{")(E) determine the hybridization
function A(Y(E) of the ath SIAM. The crucial step consists
The bulk coordination number =g+ 2p. The surface co- of solving the impurity models foe=1,2, ... toobtain the
ordination number i€<=q-+ p. impurity self-energiesS{*)(E) which are required for the
next cycle. The cycles have to be repeated until self-
lll. DYNAMICAL MEAN-FIELD THEORY consistency is achieved. o
FOR SURFACE GEOMETRIES Applying the DMFT to the semi-infinite Hubbard model

means mapping the original lattice problem onto an infinite
The one-particle Green funCtioﬁciw;C;rBU» contains  set of impurity problems. The mapping is mediated by the
any important information we are interested in. Its diagonalkelf-consistency equatioril2) for a=1,2,.... For a
eIementsGa(E)EGia,ia(E)E«ciw;c?m,»E can be written  given set of hybridization functions, each impurity model
in terms of the hopping matritd) and the self-energy can be treated separately. There is, however, an indirect cou-
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pling via Eg. (10) in the self-consistency cycle since the nitely sharp Kondo resonance fotJ=U; in the infinite
on-site Green function of a given layer depends on all layer{ng=) system. The layer-dependent weight of the reso-
dependent self-energies. The essential difference with rexancez, can be read off from the solution, determines the
spect to the case of an infinitely extended lattice with fullself-energy ,(E)=U /2+(1—2z,YE+---, and via Eq.
translational symmetry where only one single-impurity (10) the on-site Green function of theth layer at low ener-
model and only one self-consistency condition is neededgies. Using these results in the self-consistency equétipn

consists of the fact that, for a semi-infinite system, the sitegind insisting on the one-pole structure of the hybridization

within different layers have to be considered as nonequivafynction, yields a new coefficiem(N“ll. At this point the

lent. possible influence of the Hubbard bands is ignored. The final
equation that relatea (", to A{") reads
IV. LINEARIZED DMFT AT THE CRITICAL
INTERACTION () )
The zero-temperature Mott transition from a paramagnetic AN EB: KapAN™ 14
metal to a paramagnetic insulator is actually hidden due to
antiferromagnetic order which is realized in the true groundwhere we have defined the following semi-infinite tridiago-
state. To study the Mott transition, the solutions of the meannal matrix:
field equations have to be enforced to be spin symmetric.
There have been numerous DMFT studies of TRe0 Mott qtil/ui ptyt/U U
transition in the recent past using different methods to solve 2012 21112
the impurity problem: the iterative perturbation theory -36 ptiA/UU qt/u p /U
(IPT),11394% the ED approach®#1*2 the projective self- ptu?  qt?/u?
consistent methotf, and numerical renormalization-group
calculations-81° o o (15)
The IPT and, in first place, the NRG results show that for

U—U, the quasiparticle resonance &t-0 is more or less A self-consistent solution of the linearized mean-field

%(])Iated from the Elgh—eﬂergy Hu(tj)bard p.(taakh;:E&t itg/Z. hcequation(l4) is given by a nontrivial fixed point df. Let\,
€ resonance basically reproduces Hsell in he Sellyq e e eigenvalues &f. We can distinguish between
consistent procedure to solve the DMFT equations. A re

g twi : Iffx,|<1 for all r, there is the trivial solution
sonable assumption is therefore that fde=U. the low- at. 0 case(:z)_l)\r| or al 1, there IS the trivia' solutio
lim  AN”=0 only. This situation corresponds to the insu-

energy part of the SIAM hybridization functioA (¥ (E) N
consists of a single pole &=0 only, lating solution beyond the critical point. Conversely, if there
is at least ona,>1, A{") diverges exponentially asr>.
A This indicates the breakdown of the one-pole model for the
A(a)(E)H?, (13)  hybridization function in the metallic solution below the

critical point. The maximum eigenvalue thus determines, via
and that the effect of the Hubbard bands can be disregarded
completely. With this assumption a simplified, “linearized” M max= Amad 0, P, U, t11,105,Up) =1, (16)
DMFT becomes possibfé:?3 There is an attractive feature
of this method which outweighs the necessity for a furtherthe critical model parameters.
approximation: It allows for a fully analytic treatment of the At the critical point the mean-field equatid@4) can be
mean-field equations, and an analytical expressionJfois ~ written asz, =2 K, 52, since the layer-dependent quasipar-
obtained. Studying the dependenciesbf on the model ticle weightz,<A(®. Formally, this equation can be com-
parameters can provide a valuable first insight into the probpared with the Weiss mean-field equation for the layer mag-
lem. The predictions of the linearized theory have been comnetizationam,, in the semi-infinite Ising model with coupling
pared beforehand with fully numerical DMFT results for the constantJ. The linearized mean-field equation far=T¢
Bethe and the hypercubic lattice = ,?* and for the case reads m,=(J/2kgT)(qm,+pm,,,+pm,_,) (we assume
of thin Hubbard films$?® A satisfactory quantitative agree- the model parameters at the surface to be unmodified for the
ment has been noticed. This makes us confident that at leasiomenj. The formal analogy with Eqs(14) and (15) is
the correct trends can also be predicted for the case of @bvious and justifies the identification made in Et). and

semi-infinite lattice. the corresponding discussion in Sec. I.
The details of the method can be found in Ref. 22; here

we simply repeat the main idea and the final result: In the
ansatz for the hybridization functiofi3), Af\,“) denotes the
layer-dependent coefficient in thHth step of the self- From the basic equatiofi6) we can calculate the critical
consistency cycle. The aim is to calculak ‘1)1. The one- parameters for different cases. First, we consider a system
pole structure of the hybridization function corresponds to &hat is built up by a finite number aflayers(film geometry.
well-defined SIAM withns=2 sites which can analytically The model parameters are taken toumgform i.e.,t;;=14>

be solved for eaclr. In the one-particle excitation spectrum =t and U;=U (at both surfaces The eigenvalues of the

of the ath SIAM, there are twos peaks att~=*+U,/2 as  d-dimensional matri{15) can be calculated analytically for
well as two 8 peaks neaE=0 corresponding to théinfi-  this case?

V. ANALYTICAL RESULTS
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U=U, puk the bulk undergoes the metal-insulator transition
, (17 irrespective of the state of the surface.
Under certain circumstances an additional discfeser-

36t ) rar
)\r—F q+2pco m

with r=1, ... d. Taking the maximum eigenvalue and solv- face”) eigenvaluex, may split off the bulk conjilnuum. If a
ing for U yields the thickness dependence of the criticaldiscrete eigenvalue exists, we must h&@ig\s) ~=0. Us-
interactior?® ing the result(21) to determineGy(\) from the recurrence

relation Go(\) "*=N—a’ —b’?G(\), we obtain the follow-

™ ing equation for the eigenvalue:
U.(d)=6t\/g+2pcog ——]. (18)
d+1 L
Expanding the result fod in the limit of d—« yields As—a'—b'? @(As—ai Virg—a)2—4b?%) |=0
Uc(d)—Ug( (23
(D-Ue=) oy, 19

Uc() [+ (As—a)>0]. Solving the equation fok yields the po-
sition of the eigenvalue in the spectrumkof SinceK is real

with & “shift exponent”\s=2. and symmetric, only a solutiong with ImA,=0 is mean-
In the limit d=0o0 any of the two film surfaces represents . y » ONly S s

a semi-infinite system. From E(L8) we obtain, for the criti- ingful; a discretes must fie outside the bulk continuum
cal interaction (22). Only the maximum eigenvalue in the spectrum is

physically relevan{Eq. (16)]. Thus we are interested in a

Ue puic= 6t /—q+2p=6t\/z (20) solution that is split off the upper edge of the continuum:
which is the same result as is found when applying the ReNg>a+2b. (24)

method to the infinitely extended bulk system direéfiyve Sinceb=0 only the— sign must be considered in E@3).

notice that for the case of uniform model parameters the Whether or not conditioi24) can be met depends on the

Imea}r!ze'd.DMFT y|elds.a unique critical interaction for theésurface parameters’ andb’. Solving Eq.(23) for A, and
semi-infinite system which is the same as the bulk value. N . S X )
nserting the solution into Eq24), yields the following re-

surface phase is found. This observation is fully consisten:[aﬁon fora’ andb':
with what has been obtained in previous numerical DMFT '

studies of the Mott trar_lsition at Hubbard surfacdsr uni- 2b%+b(a—a’)—b'2<0, (25)

form parameters. Despite the fact that at the surface the elec-

tronic structure has turned out to be modified considerably, &vhich must be fulfilled to obtain ghysically relevantsur-
surface critical interaction different from the bulk value hasface mode. Note that the relation cannot be satisfied with
not been found. uniform parameters, i.ea’=a andb’=b.

In the following we thus concentrate on a semi-infinite  The interpretation is the following: In a semi-infinite sys-
system withmodifiedparameters at the very surface. Also in tem with surface parametets;, t;,, andU; that do not
this case, conditiori16) can be treated analytically: To sim- obey condition(25), there is only the “ordinary” transition
plify the notation let us writeK;;=a’, K;,=K,;=b’ and  from a metallic to a Mott insulating state &t=U p,x When
Koo=2a, K ,+1=bfora=2 (a,b,a’,b’=0). LetK(n) be increasing the interaction strength. The critical interaction
the matrix that is obtained from the semi-infinite matiix U pui IS given by Eq(20). At this point all layer-dependent
=K(0) by deleting its firstn rows and columns. Further- quasiparticle weightg,, in the bulk as well as at the sur-
more, we define G,(\)=defA1-K(n+1)]/defrx1l face, vanish. On the other hand, for a sufficiently strong
—K(n)]. Ga(\) is the (1,1) or “surface” element of the modification ofty, t;,, or Uy, i.e., fora’ andb’ satisfying
Green matrix[A1—K(n)] 1. Expanding the determinant EQ.(25), there areéwo critical interaction strengths: The first
defA1—K(n+1)] with respect to the upper left element, one is U, again. AtU=U_ , the bulk quasiparticle
one easily verifies the recurrence relatiGp(\) *=\—a weight z,_., vanishes. The second critical interaction
—b2%G,.1(\) for n=1. However, all theG,(\) for n=1 strengthU . ¢, can be determined froms. 1 where\ is the
must be equal since théoff-)diagonal elements oK(n  solution of Eq.(23). Let us assume thal. ¢, U¢ puk- FOr
=1) are constant. This results in a quadratic equatiorffor U>U, ¢, the entire system is in the Mott insulating phase.
the solution of which is given by For U¢ pu<U<U, s, however, the bulk is a Mott insula-
tor while the surface is still metallic. We call the transition at
U=U,puk the “extraordinary” and the transition au
=U, qurf the “surface transition” in analogy with the termi-
nology for magnetic phase transitions at surfaces.
for *(A—a)>0. The eigenvalue spectrum of the semi- The remaining question is whether or At ¢,< U puk
infinite matrix K consists of a continuous bulk part which can be possible. In such a situation we would have a quasi-
can be read off from Eq17) for d—c to be given by two-dimensional Mott insulator on top of a metallic bulk for

interactionsU q/<U<U, k. However, this possibility is
A—al<2b. (22 (uled out: Eq.(24) can be rewritten as > UZ U2, Fur-
This is just the region where IG{(\)#0. The largest eigen- thermore, at the critical point=U_ o, the valuer =1
value in the bulk continuum is given by=a+2b, corre- fulfills Eq. (23). But this implies >UZ ,,,/UZ ¢ We can
sponding to the bulk critical interaction given in E§0). At  state that the linearized theory predicts that a metallic surface

1
Q(?\)=Qn>1(>\)=ﬁ[(7\—ai Vix—a)?-4b%] (21)
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coexisting with a Mott insulating bulk is possible while the T
opposite scenario cannot be realized.
Arguing physically, if(at the Fermi edgethere is a finite 18 |
(local) density of states in the second and all subsequent
layers, this must always induce a nonzero, though possibly
low density of states in the top layer, and thus an insulating
surface phase is excluded: Consider the free-standing two-
dimensional layer at an interaction strength being suffi-
ciently strong to force the system to the insulating phase. Let
the monolayer be coupled to the second and all subsequent
layers by switching on the hopping between the top layer and
the second layet,,#0. If ty, is finite but too small, the 14
low-energy bulk excitations cannot propagate into the top
layer and are reflected at the Hubbard gap. However, virtual ‘ ‘ . ‘ .
hopping processes are possible which ca(ae exponen- 10 12 14 16 18 20
tially damped weight of bulk excitations in the top layer.
The exponential damping becomes unimportant in this case,
since it is effective in one layer only. FIG. 1. t;;-U phase diagram as obtained from the linearized
For the opposite case of a metallic surface on top of @DMFT. For U<U ., the system is metallic. Fdy> Uy the
Mott insulator, however, it does become essential: Low-bulk is a Mott insulator, and the surface can be either insulating
energy excitations can propagate within the surface regiofieft to the phase boundargr metallic(right). Phase boundaries for
since U<U, . BecauseU>U_,, they cannot propa- the (100 and(110 surfaces of the sc lattice. Energy units: nearest-
gate into the bulk but are reflected at {bellk) Hubbard gap.  neighbor hopping=1. Free bandwidtiw=12.
While virtual processes always generate some nonzero spec-
tral weight at the Fermi edge in each layer, the weight isAccording to Eq.(16) and (23), the critical interaction
infinitesimally small asymptotically, foar—oo. strength at which the surface transition takes place, is given
Since critical fluctuations spread out all over the system aby
a second-order critical point, different parts of a system

U insulator

16

metallic
surface 1

¢,bulk |

should undergo the transition at a common and unique criti- 2, p?
cal value of the external control parameter. The exponential Ue sur= 6t izl — 5 (28
damping of low-energy excitations over large distances ex- t 9 t1,—t

plains why there can béwo critical interactions. This is . ] ) o
analogous to the case of magnetic phase transitions at suFhe corresponding phase diagram is shown in Fig. 1.
faces: In a system where a magnetic surface coexists with a For the(111) surface there is no intralayer hopping at all
paramagnetic bulk, the layer magnetization must decay exd=0). A rather moderate enhancementt of (about 12%
ponentially when passing from the surface to the crystal volis sufficient to obtain a metallic surface phase for thd80
ume. Conversely, a magnetic bulk always induces a finitSurface. In the case of the(4d0 surface a stronger modi-
magnetization in the top layer. The exception is the somefication is necessary. These trends are plausible: Obviously,
how artificial case where the top layer is completely decoufor both surfaces a largég; means that electrons in the top
pled from the rest systerte.g.,t,,=0). layer are more itinerant, and thus tend to delay the transition
to the insulating state dg is increased. A smaller intralayer
coordination numbeq counteracts this mechanism. Conse-
guently, one needs a stronger enhancement; pfor the
Some more aspects of the metallic surface phase shall 4810 surface. Th&J range where a metallic surface coexists
addressed in the following. In particular, to discuss the efwith an insulating bulk quickly increases &g is increased.
fects of the surface geometry, we refer to the different low-Fort,—% one would expect that the energy scales relevant
index surfaces of the sc lattice mentioned above. Furtherfor the bulk become meaningless, and that the electronic
more, it is helpful to consider the different types of surfacestructure of the top layer decouples from the rest system.

A. Modified intralayer surface hopping

modifications separately. This is predicted correctly by Ed28) which yieldsU_ g
We start by considering a modified intralayer hopping in=6t,,/q in this limit, i.e., the critical interaction strength of
the top layert,;#t. We have a free-standing two-dimensional layer.
t2 B. Modified interlayer surface hopping
a'=—a, b'=h. (26) L .
t2 For a modified interlayer hopping between the top layer

and the subsurface layey,#t, we have
From Eq.(25) we can deduce that there are two critical in-

teractions, provided that tiz
a'=a, b’=—2b. (29
t
p
> . . . . . .
=ty 1+ q @7 A metallic surface of a Mott insulating bulk is possible for
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FIG. 2. t;»-U phase diagram. u

t12>4{/§t, (30) FIG. 3. U-U, phase diagram.

irrespective of the type of the surface. The critical interaction ForU above the bulk critical interactiod . i the bulk is
strength for the surface transition is given by a Mott insulator. The system may then become critical with
respect toJ,, provided that

[t 1
Ussu= 6t \/ 0+ p— —. (31 g+p
t? Vit U<\ gapYesuk: (39

Figure 2 showdJ as a function oft,, for the different . .
9 ¢,surf 12 The surface transition takes placelag=U; . ¢ With

surfaces.

An enhancement of;, again means an enhancement of
the itinerancy of electrons at the surface. Hopping processes U?+36qt? U2-36qt?)\ 2 ) s
between the topmost and subsurface layers become moreU1c,surf™ IR 5 —36°p°t
likely. A modification of about 19% is sufficient to suppress (34)

the transition to the Mott insulating phase at the surface for
U>U, ,uk- The surface critical interaction strendth. o, for U>U_ p k. Figure 3 shows the corresponding phase dia-
up to which the metallic surface phase persists for a givegram. ForU—« we obtainU, ¢ 5, 6t/q. This is the criti-

t15, is the largest for the $t11) surface, since here the cal interaction strength of the free-standing monolayer.
perpendicular hopping is favored by the comparatively high The results for modified surface Coulomb interaction can
interlayer coordination numbgr=3. In the limitt,y>« the  be compared with Hasegawa's slave-boson apprdach.
first two layers of the surface will decouple from the bulk. Qualitatively, the respectivéJ-U, phase diagrams for the
The surface critical interaction strength in this limit should sq100 surface look similar. The critical interactions pre-
be the same as for a bilayer system with strongly anisotropidicted by the slave-boson method are somewhat larger com-
hopping. Consider, for simplicity, the @d 1) surface where pared with the DMFT results. This is typical for the slave-
g=0. In this case all sites in the bilayer system have theboson method. An important difference is found with
same coordination numberand the bulk formulg20) may  respect to the “special transition” at the tricritical poilk

be applied accordingly. This yields, ¢+~ 6t;\/p, Whichis = Uc buik: U1=U1.=(q+p)/(q+2p) Uc puk- The linear-

consistent with the,»—o0 limit of Eq. (31). ized DMFT predicts
C. Modified surface Coulomb interaction Usesurf™ Uc,bule{( Uy _ 1) v (35)
Finally, we consider a modified Coulomb interaction in Uebuik Use
the top layerU,#U. In this case, for Up—U,. with a “crossover exponent'¢=1/2. The
) same crossover exponent is found for modified surface hop-
a':U_a, b'zib_ (32) ping ty; or tyy,
u? U,

As in the two other cases, we could fix the surface model (36)
parameters, vanlJ, and ask for the critical interaction
strengthU, . For the present case, however, it appears tavheret,;, andt;,. are defined by the right-hand sides of
be more intuitive to consider the bullk to be a fixed quan- Egs.(27) and (30), respectively. This follows from a direct

tity and to varyU,. calculation and can also be seen in Figs. 1, 2, and 3. Con-

U surf™ Uc,bulkoc( t11(2) _1) M’

Uc bulk t112)c
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ing extensiof? of the mean-field equatioffor simplicity, we
discuss the case of uniform model parameters, the generali-
zation for modified surface hopping b, # U is straightfor-
ward):

36t°
Za:F(an+pza+l+pza*l)_czi' (37)

A quadratic term inz,, with a constant coefficiert>0 has
B— been added. The constantan be fixed by the value fag,
UU=0.99 | or for z; (Ref. 22 yields the explicit value=11/9, but we do
115 not need the result hereThis extension of the linearized
| b DMFT is in the spirit of Landau theory, we simply consider
B4 3 4 the next term in an expansion with respect to the “order
| ] parameter’z,. As in the Landau theory, higher-order terms
102 105 in z, or quadratic terms that couple the different layers are
i . 1 still neglected. The additional term in E€37) ensures a
AP linear U dependence of the quasiparticle weight in each
123456789 123456789 layer: z,o(U.—U) for U—U,. This is consistent with the
layer layer (bulk) critical behavior found within the PSCK#.

FIG. 4. Profiles of the quasiparticle weight for the1€a0) sur- . Us!ng Eq.(37) we have Calculat-ed the prafile of Fhe qua-
face. Upper left: profiles for different;;. U=U, pu for ty; siparticle weight fort;;=1 and differentU<Ug pui; see
=<1.25 andU=U_ g, for t;;=1.25. Upper right:tli=t=1 and F'g_' 4 (u_pper r!gh}._ For U/U¢,puy=0.9 the qua!3|part|c_le
different U close to U, . Lower left: t;;=1.5 and different Weight differs significantly from the bulk value in the first
U/U¢ puk- Lower right:U/U, p=0.99 and different?,. The pro-  few layers from the surface only. A3— U i, however,

files are normalized to the top-layer valight-hand sidgor the ~ the linear trend o, clearly develops.
bulk value(left-hand sidg respectively. A linear trend of the critical profile is also observed for

slightly enhanced surface hopping;=1.1 andt3,=1.2

versely, within the slave-boson theory of Ref. 30,4, (Fig9. 4, upper left For a surface hopping,;=v1+p/q

seems to be constant as a functionlfand a crossover = v5/4 we obtain the so-called special transitjch Eq.(27)
exponent cannot be defined. and Fig. 1. At the critical interaction the profile is a constant

(Fig. 4, upper left In this case the effect of missing neigh-
bors at the surface is exactly compensated for by the en-
hancement of ;.

The mean-field equation of the linearized DMFE(N‘Ql For t11>\/% there are two critical interactionsl pyi
=3 KA, has a nontrivial solution only at a critical andUg . FOrU=Ug g, Z,/2; is at its maximum in the
point for the Mott transition, e.g., al=Ugp, or U top layer and exponentially decays as>~ (Fig. 4, upper
=U¢ quf- This solution is a fixed point of the matrik, left). For U<U_ g [according to Eq(37)] the decay be-
AlW=lim A, and can be calculated as the eigenvectocomes slower until the profile converges to a finite bulk

; ; _ ; lue foru<u (lower left).
of K belonging to the eigenvalue=1 [Eq. (16)]. Sincez, valu ¢, bulk 1 ) i
x A the eigenvector has the meaning of the critical profile, Nally, the lower right part of Fig. 4 shows the profile of

of the quasiparticle weight, i.e., the dependence of,, in t:]/eu quaii[())agrgcledweig.r}t do_bttairlled fron; Eck(]37) trf10r
the limit z,—0. It is uniquely determined up to a normaliza- Gbulk™ = and moditied interiayer surface oppag.
tion constant. For t12<\/§ the profile is a monotonously increasing func-

The upper left part of Fig. 4 shows the critical profile at ion when passing from the surface to the bul,=2
the s¢100 surface for different values ofy; and U marks the special transitigsee Eq.(30)]. Here the profile
= U, pui OF U=U, o, respectivelyz, has been normalized Would be constant forr=2 andU=U¢ . as can be seen
to its top-layer valuez;. For unmodified surface hopping from the mean-field equation of the linearized DMFT. For
t,;=t, the profile is linear. In fact, the ansatz=a solves ti2> 2 the quasiparticle weight is enhanced at the surface,
the mean-field equation z,=(36t2/U%)(qz,+pz,.,; and decreases monotonously ter 2.
+pz,-,) for U=U_ p,,=6tyq+2p. Physically, this means
that at the critical interaction the surface effects extend into E. Infinite dimensions
the bulk up toarbitrarily large distances. Note that this im-
plies that actually an infinite number of inequivalent surface
layers has to be considered in a fully numerical evaluation o
the DMFT.

For U close toU, p, but U<<U, ,,k, one would expect
that the profile converges to a finite bulk value: ,l@wza

08

- 12=1.6
06
04

0.2

D. Profiles of the quasiparticle weight

Dynamical mean-field theory rests on the local approxi-

ation for the self-energy functional. Since it is known that
n the limit of high spatial dimensionB+> 2 the local ap-
proximation becomes exattjt may be interesting to discuss
the (somewhat artificial case of a surface of the infinite-
dimensional hypercubic lattice.
=z,u>>0. In its present form, however, the linearized A D-dimensional hypercubic lattice may be thought to be
DMFT is not applicable here. One may consider the follow-built up from (D —1)-dimensional “layers” perpendicular
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critical interactionU . = 6t* [Eq. (20)]. With increasing’,
U surr decreases untll; g,= U py for r=D.

The other cases may be discussed accordingly. Upon tak-
ing the limit D—, we always obtain nontrivial and plau-
sible results. The discussion is analogous tohe3 case.

We conclude that the semi-infinite Hubbard model remains
nontrivial for D=« and provides a useful framework for
investigating the surface phase. In principle, this can be done
without approximations by employing the DMFT. Recall,
however, that the linearized DMFT is still approximégec.
energy IV and Ref. 22.

layer density of states

FIG. 5. U=0 layer-dependent density of Statﬁg)(E) at the VI. EXACT-DIAGONALIZATION METHOD
(1111...)surface of theD == hypercubic lattice. Scaled hopping

t=t*/\/2D with t*=1. “1” stands for the topmost surface layer, For a complete numerical solution of the mean-field equa-

“2" denotes the subsurface layer, etc. tions at finite temperatures one may employ the quantum
. . o _ Monte Carlo method’*®*’For T=0 the ED approacfi*!4?

to al?-dlmer]5|onal spatial direction characterlzed py the sefo pe applied and is chosen here. The main idea is to map

of Miller indices [x,Xy, ... Xp]. Cutting the hopping be-  on44 5 51AM with a finite number of sites,. The Lanczs

tween two adjacent layers, one obtains &;{x,, . "_’XD) techniqué® is used to calculate the ground state as well as
s_urfaice. ConS|dSr th(i Iov&—lndex d|rec_;t|ons _Wml_ U the T=0 impurity Green function and self-energy. The
=X =1 andx,;,;=---=xp=0. For a given site there aré p\ET equations are solved on the discrete mesh of Matsub-

g=2D —2r nearest neighbors within the same layer gnd
=r nearest neighbors in each of the adjacent lay2rs ¢
+2p=2D).

ara energies where théctitious) inverse temperatur@ in-
troduces a low-energy cutoff. Details of the method can be
S o found in Ref. 5. The surface geometry can be simulated by a
la E?rhra;zl ’:"e'J‘r az(lzcg)_”i)nseu;zte’niisgﬁc;?stﬁg E)é)rgg;t_ slab consisting of a finite but sufficiently large number of

y ) 5_q P 9 ! X layersd (for U#U.). The numerical effort then increases
pared withz=2D in the_ bu||_<. ForDH.OO the local environ- linearly withd at least. In Refs. 23 and 29 we have discussed
ment of the surface sites is essentially the same as in th[ e application of ED to film and surface geometries.

bUIk.' surface effect_s bec:)me mgeamngless. With the usua ED is able to yield the essentially exact solution of the
scahng of the hopping=t"/ _2D' the free _top-la(%/)er local mean-field equations in a parameter range where the errors
density ffz states (EOS) is a Gaussian p™(E)= " jnroduced by the finite system size are unimportant. For the
exy —(E/t )/2]/(\/ﬂt.)—as in the bulk. Mott problem the relevant low-energy scale is set by the

Forr=D one obtains the opefl111..) surface. The \igih of the quasiparticle peak in the metallic solution. It has
surface coordination number is reducedZig=p=D. This {5 pe expected that there are non-negligible finite-size effects
implies a ratio As/A=Zs/Z=(q+p)/(q+2p)=0.5 be-  \yhen this energy scale becomes comparatively small. We are
tween the variances of the top-layer and bulk DOS. The reg s |imited to interaction strengths that are not too close to
sults of_a simple numerlca_ll_ calculation are shown in Fig. 5'Uc bui OF Uc <> @nd cannot access the very critical regimes.
We notice a strongly modnjed and strongly layer-dependenihis also irﬁplies that a precise determinationlf, and
DOS near the surface which slowly converges to the bulky _ and thereby a direct comparison with the linearized
Gaussian DOS for—. In many respects the results re- pMET is not possible. The discussion in Ref. 23, however,
semble the DOS at thB =3 sdq111) surface, in particular  ghows that the main trends can be derived safely.
the oscillation ofp”’(E=0) as a function ofx.** _ In the following we mainly focus on the low-energy elec-

In infinite dimensions dynamical mean-field theory is ex-tronic structure which the ED method is able to predict reli-
act also for the semi-infinite model. The Scaling of the hop'ab|y in the noncritical regimes_ The so-called |ayer_
ping implies G~ 1/\/D for the free propagator between dependent quasiparticle weight,
arbitrary nearest-neighbor siteandj, and the proof that the
self-energy is local, is essentially unchandgsee Refs. 3, 4, - d3 (E=0)| !
and 44. The simple linearized DMFT can be developed as in Za= |47 dE '
Sec. IV. We only have to insert the general expressions for ) ) ) _ )
the coordination numbeig=2D —2r andp=D, and to per- IS the prlmary.qua.ntlty of mt_ereszasl is weight of the
form the limit D—c in the Eqs.(27)—(34), paying attention coherent qua5|part|c_le peak in the I_ocal DPJE) of the
to the scaling of the hopping. ath layer or, alternatively, the reduction factor of the discon-

Varying r we can then pass continuously from the mosttinuous drops ieth momentum-distribution function (k)
closed (=1) to the most openr(=D) surface geometry. Whenk crosses the one-dimensional Fermi “surfacés.”
Consider, for example, a modified intralayer surface hop- Routinely, the calculations have been performed wigh
>t*\1+r/(2D—2r) [cf. Eq. (27)]; i.e., for all t};>t* in  temperature we have chosgn=0.0016W (W=12 is the
the case of the closed=1 surface and not at all for the  free bandwidth ng and 8 determine the “energy resolu-
=D surface. For =1 the surface critical interaction is given tion” which is found to be abouAE=0.12=W/100. This
by U su=6t7; [EQ. (28)] to be compared with the bulk implies that reliable results can be expected in a parameter

(38)
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FIG. 6. U dependence of the quasiparticle weight in the bulk
and in the top layer for the €600 surface(uniform model param-
eterg as obtained from the ED method fog=8. U p,~16.0.
t=1 sets the energy scale.

FIG. 7. Quasiparticle weight of the top layex€1) and the
subsurface layersa(=2 and 3 for U=10<U, ,,x as a function of
the modified intralayer surface hoppibg . t=1.

the ED approach since this is made plausible by the linear-
ized DMFT.
At the critical interaction the metallic solution continu-

usly coalesces with the insulating solution that is found for
>U¢ puk- The insulating solution persists down to another
ommon critical interaction strength) . ;<U py (we find
c1~11.5). In the coexistence region, however, it is ther-
modynamically irrelevant. For details, we refer to Refs.
g, 42,19, and 23.

region wherez,>0.01 (cf. Ref. 29. A moderate numbed
<25 of layers in the slab is sufficient to simulate the semi-
infinite system—except for the very critical regime. This has
been checked by comparing the results from calculations fo
different d. We made use of the mirror symmetry at the
center of the slab and of electron-hole symmetry to reduc%:
the number of parameters, the conduction-band eneggies
and the hybridization strengthg, (k=2,...n), which
have to be determined self-consistently. We always found

unique and fully stabilized solution.
A. Modified intralayer surface hopping

A modification of the model parameters at the very sur-
face may strongly affect the quasiparticle weight. As in Sec.

To keep the calculations manageable, we restrict the disy we first consider a modified hopping within the top layer:
cussion to theD =3 sq100 surface in the following. We t ,+#t.
start with the case of uniform model parameters. Figure 6 Figure 7 gives an overview for fixed Coulomb interaction
shows the bulk quasiparticle weightdashed lingas a func- U =10. The above-mentioned tendency toward an insulating
tion of U. It starts from its noninteracting value=1. A surface is enhanced whenp, is decreased. The top-layer
quadraticU dependence is noticed for sméllin agreement  quasiparticle weight quickly decreases, but evert for 0 it
with perturbation theor§9 z vanishes asU approaches does not vanish Comp|ete|y_ be1>t one can see the op-
Uc buk- The overall dependence this very similar to what  posite trendz,_, increases with increasirtg; . In the limit
is known from DMFT studies of th® = Bethe lattice’ t,;—> it approaches its noninteracting valag_,=1. For

In the top layer of the $¢00) surface the quasiparticle t,,=10t the low-energy electronic structure is almost per-

weight is significantly reducetsolid line). The lowered co-  fectly decoupled. In the top surface layer there is a quasiun-
ordination number at the surface implies a reduced variancgprrelated motion of the electrons,(;=0.98 at U/t;;

AS of the free surface DOS, and thereby an increased effec= 1) The rest System, however, remains a Strong'y corre-
tive interactionU//As compared with the bulk. Thus at the |ated Fermi liquid.

surface correlation effects are enhanced, apd, is low- For the subsurface layers, the dependence of the quasipar-
ered. Despite thisendencytoward an insulating surface, we ticle weight ont,; is comparatively weak. Figure 8 shows

find a common critical interactiod ¢ g = U pu Which, for  for «=2. On the enlarged scale in Fig. 8 there is still a
uniform parameters, is in agreement with the analytical re-

sults. U, pyk also represents the critical interaction for all z —
subsurface layers. For the rather clo$&@0 surfacez,(U) I
is almost identical with the bulk function fag=2.

From Fig. 6 we can read off; ,,,~=16.0, while Eq.(20)
predictsU, p,x=14.7. We have to bear in mind, however,
the underlying assumptions that lead to E2Q). Moreover,
as concerns the ED, finite-size effects prevent a precise esti-
mate:U. p,xk=15.1 is found fom¢= 10 sites in the impurity
models?®® On the other hand, comparing the results figr
=8 andn =10, there are no significant changes as long as
z,>0.012° This meangsee Fig. 6that the overall layer and

U dependence is predicted reliably. We also believe that the
finding of a common critical interaction is not an artifact of

VIl. NUMERICAL RESULTS FOR THE sc (1000 SURFACE

0.21

0.205 |

FIG. 8. The same as Fig. 7 but on an enlarged scale.
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| Lo FIG. 11. U dependence of, when the intralayer surface hop-
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layer o

of the low-energy part of the self-energy. Finally, the oscil-
FIG. 9. Layer dependence of the quasiparticle weight for uni-lating behavior ofz, for U=10 shows that we are well be-
form model parameters as well as strongly enhanced intralayer sulow the critical point: ForU close toU ,,x we expect a

face hoppingU = 10. monotonous behavior from the linearized DMFBee
Fig. 4).
considerablet;; dependence of,_, (second layer For Let us now tackle the question of surface phases. The

a—>o, however, i.e., with increasing distance to the Surfacescenario of an insulating surface_coexisting with a metall_ic
this dependence diminishes: The bulk quasiparticle weighF””‘ was excluded by the linearized DMFT. The same is
obviously cannot be affected by the surface modification ofoUNd by the numerical evaluation of the DMFT: Fig. 11
the hopping parameter. We also notice that there is a near§’OWs the layer-dependent quasiparticle weighttigr-0,
constant quasiparticle weight for,~0.& and alla=3. where the strongest suppresspnzgil is expected. In fact,
For fixedt,, one finds an oscillating layer dependence oft€ top-layer quasiparticle weight quickly decreases as a
z,. This is demonstrated in Figs. 9 and 10 fgi=t and function of U and, compared with the_ bulk value, becqmes
t,;=10t. For the strongly perturbed system with= 10, the very small abovdJ~6. However, we flnd a nonzero weight
layer dependence is somehow irregular in the near-surfadd the top layer up toU=Ue py, which implies U s
region, oscillations do not build up un@=5. In both cases ~ Uc,buk- BetweenU~6 andU=U . we may speak of
the oscillation is strongly damped. Far=13 we have an induced metallic surface according to the discussion in
Az/z~2x10"%. Thus, for a film with thickness= 25, the Sec. V'_ . : .
quasiparticle weight is nearly constant at the film center. Fur- 1€ linearized DMFT predicted a metallic surface on top
thermore, the differences between the uniform and perturbell @ Mott-insulating bulk to be possible fcb;gt@. We
systems become smaller and smaller with increasing distan&00Sety;=1.8 for the numerical calculation to be well
to the surface. The observed oscillations can be traced ba@Pove this threshold. Figure 12 proves that two different
to oscillations of the free layer DOS at the Fermi energy. It ischitical interactions are found. Over the whalerange con-
well knowrf that the presence of the surface gives rise to &idered, the top-layer quasiparticle weight is strongly en-
layer-by-layer oscillation ofp(E=0) for U=0. For the hanced compared with th_e bulk_and is finite also lat
present casélocal self-energy, manifest particle-hole sym- = Yc bui Where the bulk weight vanishes. Note tizat.; (U)
metry, metallic phasethe density of states at the Fermi edgelS continuous atU=Uc k. The top-layer quasiparticle
is unrenormalized by the interactijsee Eq.(10) and Ref. Weight approaches zero &t=U g, 20.0, which marks
23]. The same oscillation is thus found fog,(E=0) at any the surface transition point while the extraordinary transition
U<Ug puk. and will also lead to oscillations of the low- t@kes place atl=U¢ pu=16.0.
energy part of the Green function and thereby to oscillations

0.15 T T
021 [ Z :
z, I 1
0.1 4
0.209 ] b [ extraordinary
L 7 ] 2 transition
0.208 - |{f 1N 0.05 L surface
| T 3 transition |
: ———
0.207 | | ._‘:ﬁ_t‘” A bulk
| | 11~ I 0 1 L 1
0.206 1 . . . L 12 14 16 18 20
' 5 10 15 20 25 u

layer o
FIG. 12. U dependence ot, for enhanced intralayer surface
FIG. 10. The same as Fig. 9 but on an enlarged scale. Slahopping. Surface transition &t=U, o, Extraordinary transition
thickness:d=25. atU=Ug¢ py-
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0.03 01l —— 77—
z, I
Zu
0.02 .
0.075
0.01
0.05
. : ‘ ‘ I
1.3 1.4 1.5 1.6 1.7
t,, I
0.025
FIG. 13. z, as a function oty; for U>U_ pyi. F
. . . U=12
Evaluating the analytical formula for the surface critical ol l

interaction[Eq. (28)] for the present case, we obtdih, ¢, 0 o2 014 ' 016 ' 018 I
=18.2, which agrees well with the numerical result if one
takes into account that for the bulk critical interaction the
linearized theory also yields a somewhat smaller value. We F|G. 14. Layer-dependent quasiparticle weightfor U p,k as
also expect tha, g, (s U py) is overestimated by the a function of the interlayer surface hoppihg=<t=1.
ED due to finite-size effect*® While finite-size effects _ _ _ _ _
prevent a precise determination of the critical interactionsf€Sonance in the metallic surface phase is spatially confined
they are irrelevant concerning the very existence of the mel© the first few layers, and energetically isolated from the
tallic surface phase. Even fat well aboveU, , the top- surface Hubbard bands.
layer quasiparticle weight is still larger thap_,=0.01, and
thus the ED fomg=28 is still able to resolve the energy scale
set by the width of the Kondo-type resonance at the surface. A complete decoupling between the top layer and the rest
Since the low-energy surface excitations cannot propagatgystem is obtained for vanishing interlayer surface hopping
into the bulk forU>U, ,, but are reflected at the bulk t,,=0. Figure 14 shows the layer-dependent quasiparticle
Hubbard gap, the Kondo resonance represents a true surfaseight as a function of;,. While for U=10 we noticed an
state. Therefore, its amplitude must decay exponentially witloscillating layer dependence for uniform hoppiffigs. 9
increasing distance to the surface. Figure 12 shows that sona;d 10, there is a monotonous layer dependence Wor
weight is induced in the subsurface layers which rapidly de= 12 (Fig. 14, fort;,=1). This is the typical behavior when
creases. the system is close to criticality as has been noted bétdre
The surface transition is also found as a functiom@for ~ Ref. 29, and the discussion of the analytiegl profiles in
fixed interactiond >U, . Figure 13 shows the numerical Sec. \j. The layer dependence remains monotonous for
results foru=18. Whent,;>t;; ~1.33, the surface be- t,»—~0. Fort;,=0 we have essentially two independent sys-
comes metallic. The critical value may be compared withtems. The isolated top layer is still metallic. In the rest sys-
t11 = 1.48& which is obtained by solving Eq$16) and(23)  tem thea=2 layer represents the new top layer, the 3
for tq;. layer becomes the first subsurface layer, and so on. This
For thet,; range considered in Fig. 13, the number ofimplies that the value ot, for t;,=0 must be equal to the
layers in the slald that is necessary to simulate the actualvalue ofz,_; for t;,=1. These relations are indicated by the
surface can be lowered down de=5: We performed calcu- dashed lines in Fig. 14. They represent a nontrivial check of
lations for different thicknessed; there are hardly any dif- the numerics.
ferences between the results fgr at the surface as long as  An effective separation into subsystems is also observed
d=5. This is interpreted as follows: Since the coherent partn the opposite limit of a strongly enhanced interlayer surface
of the bulk spectrum has disappeared U, ,,, the  hopping. Figure 15 shows that_; andz,—, approach their
surface electronic structure is essentially decoupled from thaoninteracting values, while fow=3 the quasiparticle
bulk in the low-energy regime. The decoupling at the low-weight changes only slightly as,—>c. In the low-energy
energy scale is indicated by the rapid decrease oWith  regime the electronic structure of the first two layers de-
increasinga (see Fig. 18 Conversely, on the high-energy couples from the rest system. The valuezgffor all «=3
scale set by the charge excitations, bulk and surface modegpproaches the value af,_, for t;,=1 (see the inset
cannot decouple. There is always a finite energetic overlap of A somewhat artificial realization of an insulating surface
the bulk and the surface DOS sintg mainly changes the phase on top of a metallic bulk can be obtainedtfgr>0 by
effective widths but not the positions of the Hubbard peakshoosingU. p_,<U<U¢ puk, WhereU. p_, is the critical
in the surface DOS. The effect of the Hubbard bands on thinteraction of the two-dimensional layer. Fde>U, p, the
low-energy features, however, seems to be rather weak sintep layer must become insulating when it is decoupled from
otherwise a change afwould lead to significant changes in the rest systemt{,=0). This is demonstrated in Fig. 16. The
the surface low-energy electronic structure by indirect coufigure also shows that the top layer becomes metadlith a
pling between low- and high-energy surface excitations andery small quasiparticle weightas soon as an arbitrarily
high-energy surface and bulk excitations. The surface Kondemall interlayer hopping is switched on.

t12

B. Modified interlayer surface hopping



METALLIC SURFACE OF A MOTT INSULATOR-MOTT . .. 7847

PRB 60
1 T T
0.8 - 0.15 : )
I
L2
0.6 - 8
04 | .
_2
0.2 0 . e o
1 5 10 15
4
3
O 1 n 1 1
1 5 10 15 20

FIG. 15. The same as Fig. 14 but fai,=t=1. Inset:
asymptotic behavior of,, .

Finally, Fig. 17 shows the extraordinary and the surfac
transition for fixedt,,=3.0. The surface critical interaction
can be read off to bdJ, ,,~23.8, while the linearized de
DMFT with U s,v=21.7[Eq. (31)] again predicts a slightly Mi

smaller critical value.

C. Modified surface Coulomb interaction

E=3 |

0.8

L extraordinary
transition

04 |

surface

transition

l

0 PRI S S S S RS 1 | IR
0 5 10 15 20 25 30

u

0.2 r

FIG. 17. U dependence of, for enhanced interlayer surface
hoppingt,,.

tical with theU,=U surface ¢=1) DOS. ForU ;> we
thus expectz,(U;—x)=2z,(U;=U), and consequently
z2,(U;—x)=2z, (U;=U) for all «. In fact, this “shift” of

the surface by one layer can be seen in Fig. 18 and in the
inset: ForU,/U=5 only small differences still remain be-

etweenza andz, (U;=U).

The shifta—a—1 also implies that the oscillating layer
pendence af, for U;=U must be reversed fdd ;+—o:
nima are replaced by maxima, and vice versa. This partly
explains that betweernat U;/U~1.2) the quasiparticle
weight is nearly layer independent.

According to the linearized DMFT, a metallic surface on

We finally discuss the modification of the surface Cou-top of an insulating bulk can be found #,<6t\5 [Eq.
lomb interactionU,. Figure 18 shows the quasiparticle (33)] andU>U_ p = 6t\/6. If we fix the ratioU,/U=0.5
weight z, for «=1, 2, and 3 andz,,, as a function of
U, /U, whereU is fixed atU=10. On decreasinty, (U,
<U), z; quickly increases, and fdy,— 0 it approaches the The result of the numerical solution of the DMFT equations
noninteracting valueg,;=1.

For enhanced) ;>U the top-layer quasiparticle weight is U; ¢ qu=0.5X26.3=13.15, is somewhat larger than the ana-
decreased but remains finite even for large valuasgfi.e.,

we again find arinducedmetallic surface. Asymptotically,

however, the top-layer weight approaches zere=>0 for _ e exi '=U _ _
U,—>c. In this limit the low-energy resonance in the top- ticle weight in the top{not shown in Fig. 19and in the first

layer DOS essentially disappears and a large Hubbard gap
~U, opens. This implies that—in the low-energy regime—
the subsurfaceq=2) DOS forU;—~ must become iden-

0.015

0.01

0.005

L 1 " 1 L 1 L
0 02 04 06 08 1

T T T T T T T

B

t12

FIG. 16. The same as Fig. 14 but for, p—,<U<U; pyk-

and varyU, the surface transition should occur @y . o
=12.1[setU=2U . g, in Eq. (34) and solve forJ ¢ gyl

is shown in Fig. 19. Again, the numerically obtained value,
Iytical prediction—the discussion is the same as for the

modified surface hopping.
At the extraordinary transitiot) =U p,, the quasipar-

L LA B R R
0212 :
Za
0.21
0.8
0.208
06 - 1 20
0.204
0'4 B L L L L
0 1 2 3 4 5 6
bulk
0.2 -
3 “
o\ 2 z,(U,=U)
0 1 1 1 " 1 L

FIG. 18. Layer-dependent quasiparticle weight for=10
<Uq puik @nd modified Coulomb interaction in the top layey. The
arrow indicates the value of,_; for U;=U. In the inset, the ar-
rows indicate théJ,=U values ofz, .
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0.15 SR Uc pui @s for the infinitely extended systedy, p,= U .
z, - (2) There is a nontrivial layer dependence of the quasipar-
I ] ticle weight, even(asymptotically at the critical point. The
0.1 + . z,, profile strongly depends on the model parameters at the
[ extraordinary ] surface, e.g., the hopping within the top layey, the hop-
i frangiion 1 ping between the top layer and the subsurface layerand
0.05 F surface | the top-layer Coulomb interactidd,. There is a qualitative
[ transition 1 change of the profile if certain critical valuég ¢, ti,¢, and
U, . are exceeded. These critical values are found to be of a
N . . realistic order of magnitude.
10 15 20 25 (3) For uniform model parameters the top-layer quasipar-

U ticle weightz, is smaller than the bulk valug,,,, since a
reduced surface coordination number implies correlation ef-
~ FIG. 19. U dependence o, for enhanced surface Coulomb fects to be effectively stronger at the surface. For interactions
interactionU, /U = const. well below U, there is always an oscillating layer depen-
dence of the the quasiparticle weight. With increasing dis-
subsurface layers are smooth functiondJofThis is contrary  tance to the surfaceaf—>=), this oscillation is strongly
to the results found within the slave-boson the%?ry\/here damped_ In the critical regime, on the Contralx'monoto_
the band-narrowing factor in the top layer shows up a disnously increases with increasing and finally, forU=U,
continuous derivative a) =U hyx. We believe, however, the critical profile is linearz,=«. For uniform model pa-
that th|S iS an artifaCt due to inCOffECt boundary ConditionSrameters there is a finite We|ght in the top |ayEIjéO) for

That is, only the first two surface layers are treated as “free”U<Uc only, i.e., only when the bulk is metallic. The transi-
in the self-consistent calculation, while the=3 layer was  tjon atU, is termed the “ordinary transition.”

already assumed to be bulklike in Ref. 30. As is known from  (4) For a sufficiently strong modification of the surface
the mean-field theory of localized spin m_od@ss_u_ch model parameterst{;>t;;,t;;>t15.,U;<U;.), the sur-

the extraordinary transition. >U ¢ pui (“surface transition”). For U pu<U<Ug guri, the
quasiparticle weight exponentially decays from its maximum
VIIl. CONCLUSION value z; at the surface toward zero in the bulk. At

=Ug¢ puk the bulk undergoes the transition to the metallic
We have investigated thi#lott) metal-insulator transition  state (“extraordinary transition’). The top-layer quasiparti-
at surfaces within the framework of the semi-infinite Hub- ¢le weight is a smooth function & even atU=U, p .
bard model at half-filling and = 0. Basically, two approxi- (5) The transition atU=U ¢, = U pux is called the
mations have been used: “special transition.” Here the critical profile of the quasipar-
First, the self-energy functional has been assumed to bgcle weight is flatz,=z,,,=const(at least fora=2). In
reasonably local. This approximation sets the basis for thenis sjtuation the effect of missing neighbors at the surface is
dynamical mean-field theory: The semi-infinite Hubbardcompensated for by the change of the surface model param-
model is self-consistently mapped onto a set of indirectlyeters.
coupled impurity models corresponding to the inequivalent () There are two critical exponents that are merely re-
layers parallel to the surface. With the usual scaling of thgated to the critical interactions; the “shift exponent’; and

(intralayer and interlaygrhopping, the approach becomes the “crossover exponenté. They describe the trend of the
exact in the limit of infinite spatial dimensions. It has beeny_ for a film of finite thicknesdd in the limit d—c and the

shown that there are nontrivial surface effects evendor trend of the surface critical interaction for the semi-infinite
=co. Mainly, however, the DMFT has been used dsw@an-  system near the special transition, respectively. Within the
field) approach to study thB =3 low-index surfaces of the |inearized DMFT, one finda =2 and¢=1/2.
simple-cubic lattice. (7) For any realistic choice of the model parameters, a
Second, for the approximate solution of the impurity metallic bulk induces a metallic surface with>0. Thus a
models, we have used the exact diagonalization of finite sySyiott-insulating surface of a correlated metal is impossible.
tems. The ED method allows us to deal systematically with arhere are essentially two more or less trivial exceptions: The
large number of geometries and model parameters. Howeveiyst is the static decoupling of the top layer fgp=0 at an
the method cannot access the very critical regime for thenteraction strength that is smaller thei p,, but larger than
Mott transition because of errors due to finite-size effectsihe critical interaction of the two-dimensional system. The
Directly at the critical point, we have alternatively consid- second is a dynamical decoupling which occurs for infinite

DMFT). This analytical approach is also approximate. How-yeight vanishes asymptotically.

ever, a convincing qualitative arfds far as can be judged
also quantitative agreement with the numerical ED results
has been found. Referring to the points mentioned in the
introduction, our results can be summarized as follows.

(1) The metal-insulator transition in the bulk of the semi-  This work was supported by the Deutsche Forschungsge-
infinite system occurs exactly at the same critical interactiormeinschaft within the SFB 290.
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