
PHYSICAL REVIEW B 15 SEPTEMBER 1999-IVOLUME 60, NUMBER 11
Metallic surface of a Mott insulator –Mott insulating surface of a metal

M. Potthoff and W. Nolting
Institut für Physik, Humboldt-Universita¨t zu Berlin, D-10115 Berlin, Germany

~Received 30 April 1999!

The dynamical mean-field theory~DMFT! is employed to study the correlation-driven metal-insulator tran-
sition in the semi-infinite Hubbard model at half-filling and zero temperature. We consider the low-index
surfaces of the three-dimensional simple-cubic lattice, and systematically vary the model parameters at the very
surface, the intralayer and interlayer surface hopping, and the surface Coulomb interaction. Within the DMFT
the self-energy functional is assumed to be local. Therewith, the problem is self-consistently mapped onto a set
of coupled effective impurity models corresponding to the inequivalent layers parallel to the surface. Assuming
that the influence of the high-energy Hubbard bands on the low-energy quasiparticle resonance can be ne-
glected at the critical point, a simplified ‘‘linearized DMFT’’ becomes possible. The linearized theory, how-
ever, is formally equivalent to the Weiss molecular-field theory for the semi-infinite Ising model. This implies
that qualitatively the rich phenomenology of the Landau description of second-order phase transitions at
surfaces has a direct analog for the surface Mott transition. Motivated by this formal analogy, we work out the
predictions of the linearized DMFT in detail. It is found that under certain circumstances the surface of a Mott
insulator can be metallic, while a Mott-insulating surface of a normal metal is not possible. We derive the
corresponding phase diagrams, the~mean-field! critical exponents and the critical profiles of the quasiparticle
weight. The results are confirmed by a fully numerical evaluation of the DMFT equations using the exact-
diagonalization~ED! method. By means of the ED approach, we especially investigate the noncritical parts of
the phase diagrams and discuss theU and layer dependence of the quasi-particle weight. For strong modifi-
cations of the surface model parameters, the surface low-energy electronic structure dynamically decouples
from the bulk.@S0163-1829~99!10135-8#
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I. INTRODUCTION

The correlation-driven transition from a paramagne
metal to a paramagnetic Mott-Hubbard insulator1,2 consti-
tutes one of the fundamental problems in solid-state the
The Mott transition is interesting since strong electron c
relations lead to low-energy electronic properties that
qualitatively different from those predicted by band theor

Since it has been recognized that the limit of infinite sp
tial dimensions (D5`) is a well-defined and meaningfu
limit also for itinerant-electron models,3 and since the inven
tion of dynamical mean-field theory~DMFT!,4,5 there has
been a renewed interest in the Mott transition.6 The DMFT
provides an~in principle! exact description of the transitio
in infinite dimensions. While this is a somewhat artifici
limit, the DMFT, as a mean-field concept, represents a p
erful approach also for the study of finite-dimensional s
tems. Analogous to the Weiss molecular-field theory for
calized spin models, the DMFT can be expected to giv
valuable mean-field picture of the physics of thre
dimensional itinerant-electron models.7

Presumably, the simplest model that includes the es
tials of the Mott transition is the Hubbard model.8–10 From
the application of the iterative perturbation theory~IPT!11 to
the D5` Hubbard model at half-filling and zero temper
ture, the following scenario for the Mott transition ha
emerged:5 For small Coulomb interactionU, the system is a
metallic Fermi liquid with a quasiparticle peak at the Fer
energy in the one-electron spectrum. AsU approaches a criti-
cal valueUc2 from below, the quasiparticle weight vanish
continuously, similar as in the Brinkman-Rice approach12
PRB 600163-1829/99/60~11!/7834~16!/$15.00
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For strongU the system is a Mott-Hubbard insulator with a
insulating gap in the one-electron spectrum, similar to
Hubbard-III approach.13 The insulating solution ceases to e
ist when U approaches another critical valueUc1 from
above. In the entire coexistence regionUc1,U,Uc2 the
metallic solution is stable, and thus the transition is of seco
order. The preformed gap opens discontinuously atUc
5Uc2.

It has been questioned14–17 whether the picture given by
the IPT is correct. Recent numerical renormalization-gro
calculations~NRG!,18,19however, corroborate the IPT resul
qualitatively, althoughUc is found to be significantly smalle
than in the perturbational approach.20 On the other hand,
there is a remarkable agreement of the NRG with the re
for Uc in the projective self-consistent method~PSCM!.21

The NRG calculations show that, forU°Uc , the quasi-
particle resonance becomes more or less isolated from
high-energy Hubbard bands.19 The resonance basically re
produces itself in the self-consistent evaluation of the me
field equations. This fact can be used for a simplified tre
ment of the DMFT where the influence of the Hubbard ban
on the low-energy peak is neglected.22 This ‘‘linearized
DMFT’’ yields a simple algebraic equation for the quasipa
ticle weight at the critical interaction, and thereby allows f
an analytical estimate ofUc . The results are in good agree
ment with the numerical values forUc obtained from NRG
and PSCM on different lattices.22 For inhomogeneous sys
tems, the linearized DMFT also determines the critical p
file of the quasiparticle weight and the dependence ofUc on
the system geometry. Comparing with the numerical res
obtained from the exact diagonalization~ED! method, a con-
7834 ©1999 The American Physical Society
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vincing qualitative agreement with respect to the thickn
and geometry dependence ofUc has been found for thin
Hubbard films.23

It has been noticed23 that the equation of the linearize
DMFT is of the same form as the linearized mean-field eq
tion of the Weiss molecular-field theory for the Ising mod
~at the critical temperature!. There is a one-to-one correspo
dence if one identifies the quasiparticle weightz with the
magnetizationm, the squared interactionU2 with the tem-
peratureT, and the squared hopping integralt2 with the ex-
change couplingJ:

z⇔m, U2⇔kBT, 36t2⇔J/2. ~1!

The Weiss theory, on the other hand, can be considere
being a coarse-grained realization of the classical Lan
theory of second-order phase transitions.24 Consequently, the
results of Landau theory~for T5Tc) can be translated bac
into predictions concerning the Mott transition in the Hu
bard model~for U5Uc).

While the Landau theory of phase transitions is rat
simple for homogeneous systems, the mean-field theor
critical behavior atsurfacesis much more involved, and nu
merous nontrivial results can be derived.25 The idea of the
present paper is thus to take the Landau theory as sta
point and motivation to work out the predictions of the li
earized DMFT for Hubbard surfaces and finally to test
predictions, as far as possible, by comparing with a fu
numerical solution of the DMFT equations.

Within the classical Landau theory, the free energy is
panded in terms of the local order parameterm(r ). For a
semi-infinite system~surface geometry!, one additionally
considers a surface contribution to the free energy.25 Later-
ally, the order parameter is assumed to be homogeneous
take thex axis be parallel to the surface normal and pointi
into the volume (x.0), thenm5m(x), andm(x50) is the
surface value of the order parameter. Let us list those me
field predictions derived from the Ginzburg-Landau fr
energy25 which—by means of the above-mentioned form
analogy—have a direct counterpart for the Mott transition

~1! The transition in the bulk of the semi-infinite syste
occurs exactly at the same critical temperatureTc,bulk as for
the infinitely extended system:Tc,bulk5Tc .

~2! Near the surface, the order-parameter profilem(x)
vanishes at a distanceL beyond the surface if linearly ex
trapolated from the boundary. The so-called ‘‘extrapolat
length’’ L as well as the~bulk! correlation lengthj are the
two length scales that characterize the order-parameter
file in the continuum model. Microscopically, the extrapo
tion length is related to the model parameters at the surf
In the molecular-field approximation of the Ising model w
haveL21}(Dc2D), whereD is the modification of the ex-
change coupling within the surface layer,J115J(11D), and
D5Dc corresponds toL5`.

~3! For uniform parameters (D50) the mean field is
smaller at the surface due to missing neighbors. This imp
a weaker tendency to order.m(x50) is smaller than
m(x°`)5mbulk , and m(x) monotonously increases wit
increasingx ~this impliesL.0). There is a finite order pa
rameterm(x50).0 at the surface only forT,Tc , i.e., only
s
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when there is spontaneous order also in the bulk. The t
sition atTc is termed the ‘‘ordinary transition.’’

~4! For L,0 (D.Dc) the surface layer orders at a tem
peratureTc,surf.Tc,bulk ~‘‘surface transition’’!. In the regime
Tc,bulk,T,Tc,surf, the bulk correlation lengthj is finite, and
the order parameter decays exponentially fast from its m
mum valuem(x50) at the surface toward zero in the bul
At T5Tc,bulk ~‘‘extraordinary transition’’!, the divergence of
j and the onset of order in the bulk induce singularities in
behavior of surface response functions. For the order par
eter at the surfacem(x50), there is a discontinuity of its
second derivative only. At5Tc,bulk the order-parameter pro
file decays algebraically,m(x)}1/x.

~5! It holds that (Tc,surf2Tc,bulk)/Tc,bulk}L22. The tran-
sition at T5Tc,surf5Tc,bulk in the caseL5` is called the
‘‘special transition.’’ ForL5` the order-parameter profile
is flat in the ordered phase; the trivial solutionm(x)5mbulk
5const minimizes the Ginzburg-Landau free energy. In t
situation the effect of missing neighbors at the surface
compensated for exactly. The topology of the phase diag
~ordinary, extraordinary, surface, and special transitio!
should be correctwheneverthe surface can support indepe
dent order.26 For example, there is no surface transition
the semi-infinite two-dimensional Ising model since t
‘‘surface’’ is one dimensional.27

~6! There are two critical exponents that are merely
lated to the critical temperatures~instead of describing the
critical behavior of order parameter and response functio!,
the ‘‘shift exponent’’ls , and the ‘‘crossover exponent’’f.
They are defined as@Tc(d)2Tc(d5`)#/Tc(d5`)}d2ls

for d°`, whereTc(d) is the critical temperature of a film o
finite thicknessd, and @Tc,surf(D)2Tc,bulk#/Tc,bulk}(D/Dc
21)1/f for D°Dc ~special transition!. Within Landau mean-
field theory one hasls52 andf51/2.

~7! Spontaneous order in the bulk always induces a fin
order parameter at the surface,m(x50).0.

The Landau theory also makes additional statements c
cerning, e.g., the bulk and surface critical exponents of
order parameter as well as the exponents of response f
tions with respect to an external applied field. We do n
mention such results in the present context, since either
have no obvious analog for the Mott transition~applied field!
or they refer to temperaturesT°Tc but TÞTc where the
mean-field equation cannot be linearized and where the
mal analogy@Eq. ~1!# breaks down. We will, however, dis
cuss a simple extension of the linearized DMFT forU°Uc
but UÞUc which recovers the resultz}(Uc2U) of the
PSCM.21

To a certain extent, the phase diagram predicted by
Landau theory or, respectively, by the linearized DMFT c
be tested by comparing with a fully numerical evaluation
the DMFT equations. We need an approach that is su
ciently simple for a systematic study of a large number
geometries and model parameters. For this purpose
exact-diagonalization method of Caffarel and Krauth28 is
well suited. We mainly focus on the noncritical parts in t
phase diagram where the ED is able to give reliable resu
Critical exponents, for example, cannot be calculated r
ably. The ED has successfully been employed beforehand
the discussion of the Mott transition in thin Hubbard films23

and at Hubbard surfaces,29 where the film and surface elec
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7836 PRB 60M. POTTHOFF AND W. NOLTING
tronic structure has been discussed in detail. Conversely
present paper focuses on the surface modification of
model parameters and on surface phases, and thereby
stantially extends the previous studies.

The Mott transition at a surface of the semi-infinite Hu
bard model has recently been investigated in a paper
Hasegawa30 on the basis of the Kotliar-Ruckenstein slav
boson theory.31 With the present study we methodically im
prove upon Hasegawa’s work. We will also show that
U°Uc the perturbation of the system that is introduced
the presence of the surface deeply extends into the bulk.
thus insufficient to assume~local! physical quantities to be
different from their value in the bulk only in the first few
surface layers. Such a restriction gives rise to unphys
singularities, e.g., in theU dependence of the quasipartic
weight, as they are seen in Ref. 30. Within the slave-bo
theory it is found that under certain circumstances a meta
surface can coexist with an insulating bulk.30 Crucial for the
existence of this surface phase is a considerable decrea
U at the surface. This is an interesting and also plaus
result, although the required strong decrease ofU at the sur-
face appears to be quite unrealistic for real systems.

A physically more relevant modification of the model p
rameters is, in the first place, the enhancement or decrea
the hopping integrals at the surface. This may be caused
relaxation of the interlayer distance, for example. Accord
to the scaling lawt;r 25 for d electrons~cf., e.g., Ref. 32!, a
top-layer relaxationDr /r of a few percent results in a stron
change of the hopping integral. A surface modification ot
up to about 10–20 % appears to be realistic. Besides
hopping we will also discuss a modification ofU at the sur-
face. In 3d transition metals, however, this effect seems to
less important.33,34In any case,U is expected to be enhance
at the surface.34 On the contrary, it will be shown that th
interesting surface phase occurs forloweredsurfaceU. An-
other important aspect is the surface geometry which is
pected to affect the surface phase diagram considera
Open surfaces with a strong reduction of the surface coo
nation number will show the most pronounced surface
fects in the electronic structure. We thus consider differ
low-index surfaces of aD53 simple-cubic~sc! lattice.

The basic assumption of DMFT is the strict locality of th
self-energy functional. ForD53 dimensions this represen
a strong simplification of the problem. The local approxim
tion is well justified for the weak-coupling regime, and al
for the case of surface geometries~see the discussion in Refs
29, 35, and 36!. For the intermediate- to strong-coupling r
gime, however, the assumption may be questioned.
could alternatively investigate a surface of aD5` lattice
where the DMFT becomes exact. While this will be d
cussed briefly, we otherwise consider surfaces inD53 di-
mensions. As in Refs. 23 and 29, we expect the mean-fi
concept to be a good starting point forD53.

The plan of this paper is the following: Section II intro
duces the model. The application of DMFT for surface g
ometries is briefly discussed in Sec. III. We use two differ
methods to solve the DMFT equations: The first one is
approximative linearization of the equations forU5Uc .22

This is presented in Sec. IV. Section V then gives a disc
sion of the analytical results. For the full solution of th
DMFT equations, we employ the exact-diagonalizati
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method28 which is introduced in Sec. VI. The correspondin
results are discussed in Sec. VII. Finally, Sec. VIII conclud
the paper.

II. SEMI-INFINITE HUBBARD MODEL

We investigate the Hubbard model on a thre
dimensional, simple-cubic, and semiinfinite lattice. The s
tem is considered to be built up by two-dimensional lay
parallel to the surface. Accordingly, the position vector to
particular site in the semi-infinite lattice is written asRsite
5r i1Ra . Here Ra stands for the coordinate origin in th
layer a, and the layer index runs froma51 ~topmost sur-
face layer! to infinity ~bulk!. r i is the position vector with
respect to a layer-dependent origin, and runs over the s
within the layer. In this notation, the Hamiltonian reads

H5 (
i j abs

t ia, j bcias
† cj bs1(

ias

Ua

2
niasnia2s . ~2!

s5↑,↓ is the spin index.Ua is the ~layer-dependent! Hub-
bard interaction strength. The hopping integrals are restric
to be nonzero between nearest neighbors. The energy ze
defined by settingt ia,ia[t050 for sites in the bulk (a°`).
The energy scale is given by taking the~bulk! nearest-
neighbor hopping to bet ^ ia, j b&52t with t51.

The presence of the surface implies a breakdown of tra
lational symmetry with respect to the surface normal dir
tion. Lateral translational symmetry, however, may be e
ploited by performing a two-dimensional Fourie
transformation

eab~k!5
1

Ni
(
i j

e2 ik(r i2r j )t ia, j b . ~3!

Herek is a two-dimensional wave vector of the first surfa
Brillouin zone, andNi denotes the number of sites withi
each layer (Ni°`). Let us briefly discuss the Fourier
transformed hopping matrix, which reads

e~k!5S t11e i~k!1Dt0 t12e'~k!

t21e'~k! te i~k! te'~k!

te'~k! te i~k! . . .

. . . . . .

D .

~4!

For a>2, the intralayer~parallel! hopping and the interlaye
~perpendicular! hopping are written aseaa(k)5te i(k) and
eaa11(k)5te'(k), respectively. We consider three differe
low-index surfaces of the sc lattice. The hopping matrix
the sc~100! surface is obtained from

e i~k!522@cos~kx!1cos~ky!#, ue'~k!u251. ~5!

The perpendicular hopping isk independent in this case. Fo
the ~110! surface, we have

e i~k!522 cos~kx!, ue'~k!u25212 cos~A2ky!, ~6!

and, for the sc~111! surface,
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e i~k!50,
~7!

ue'~k!u25312 cos~A2ky!14 cos~A3/2kx!cos~A1/2ky!.

Since two nearest neighbors are always located in two
ferent~adjacent! layer, the intralayer hopping vanishes in th
last case. Note that only the absolute square ofe'(k) enters
the physical quantities we are interested in.

At the very surface of the semi-infinite system, we co
sider three different possible modifications of the model
rameters. First, the intralayer hopping within the topm
surface layert11 may differ from its bulk value@see Eq.~4!#.
Second, we allow for an altered hoppingt125t21Þt between
the topmost and the first subsurface layer. Finally, the on-
Coulomb interaction strength is assumed to be layer indep
dent, Ua5U5const, except for the topmost layerUa51
ÞU.

We restrict ourselves to the case of manifest particle-h
symmetry, namely, a bipartite~sc! lattice, nearest-neighbo
hopping and half-filling (n52^nias&51). In this case the
Fermi energy is given bym5t01U/2. It is fixed by the bulk
values for the on-site hopping and for the Hubbard inter
tion. Consider the atomic limitt50 for a moment: The po-
sitions of the two Hubbard ‘‘bands’’ in the bulk spectrum a
given by Elow5t02m and Ehigh5t02m1U, i.e., they lie
symmetricwith respect tom. In thermal equilibrium,m is
also the Fermi energy for the top layer. The Hubbard pe
in the surface density of states lie atElow5t02m1Dt0 and
Ehigh5t01Dt02m1U1, where we have taken into accou
the top-layer modification of the interaction strength a
where we have introduced an additional modificationDt0 of
the atomic level for top-layer sites@see Eq.~4!#. To maintain
manifest particle-hole symmetry and to ensure^nias&50.5
for a51, the Hubbard peaks must again lie symmetric w
respect tom. Thus we need

Dt05~U2U1!/2. ~8!

With this choice for the top-layer on-site hopping, the loc
density of statesra(E)5(21/p)Im^^cias ;cias

† &&E is a sym-
metric function of energy for eacha.

We finally introduce the intralayer and interlayer coord
nation numbersq andp which denote the number of neare
neighbors within the same layer and in one of the two ad
cent layers, respectively. We have

q54, p51 for sc~100!,

q52, p52 for sc~110!,

q50, p53 for sc~111!.

~9!

The bulk coordination number isZ5q12p. The surface co-
ordination number isZS5q1p.

III. DYNAMICAL MEAN-FIELD THEORY
FOR SURFACE GEOMETRIES

The one-particle Green function̂̂ cias ;cj bs
† && contains

any important information we are interested in. Its diago
elementsGa(E)[Gia,ia(E)[^^cias ;cias

† &&E can be written
in terms of the hopping matrix~4! and the self-energy
f-

-
-
t

te
n-

le

-

s

l

-

l

Ga~E!5
1

Ni
(

k
S 1

~E1m!12e~k!2S~E! D
aa

. ~10!

The self-energy matrix is taken to bek independent and di-
agonal, Sab(E)5dabSa(E), with layer-dependent ele
ments: We assume that the self-energy is a strictlylocal
quantity.

In the case of an infinitely extended lattice with full tran
lational symmetry, this basic assumption leads to the w
known equations of dynamical mean-field theory4,5 which
self-consistently map the bulk lattice problem onto a sing
impurity problem.11,37 The present case of reduced trans
tional symmetry can be treated analogously: A local se
energy implies that the Luttinger-Ward functional38 depends
on the local ~but layer-dependent! propagators only:F
5F@ . . . ,Ga(E), . . . #. This in turn means that the self
energy of theath layer is solely a functional of the loca
propagator: Sa(E)5dF/dGa(E)5S@Ga(E)#. The func-
tional S is the same as in the case of an impurity proble
e.g., the single-impurity Anderson model~SIAM!, S imp(E)
5S@Gimp(E)#, because the same type of skeleton diagra
occur in the expansion of the impurity self-energyS imp(E).
With each layera51,2, . . . wetherefore associate a SIAM

H imp
(a)5(

s
ed

(a)cs
†cs1Uan↑n↓1(

ks
ek

(a)aks
† aks

1(
ks

~Vk
(a)aks

† cs1H.c.!, ~11!

with ed
(a)5t ia,ia and where the conduction-band energ

ek
(a) and hybridization strengthsVk

(a) chosen such that we
have

D (a)~E!5E1m2ed
(a)2S imp

(a)~E!2Ga~E!21 ~12!

for the hybridization functionD (a)(E2m)[(k(Vk
(a))2/(E

2ek
(a)). @Eq. ~12! only provides an implicit definition of the

hybridization function sinceS imp
(a) depends onD (a)#. This im-

plies at once the equality between the impurity Green fu
tion of theath SIAM, Gimp

(a)(E), and the on-site lattice Gree
function in theath layer Ga(E) and thus the equality be
tween the respective self-energies,S imp

(a)(E)5S@Gimp
(a)(E)#

andSa(E)5S@Ga(E)#.
The following iterative procedure then allows to solve t

semi-infinite Hubbard model within the dynamical mea
field approximation: Starting from a guess for the laye
dependent self-energiesSa(E), we calculate the on-site
Green function of theath layer using Eq.~10!. Via Eq. ~12!,
Ga(E) and Sa(E)5S imp

(a)(E) determine the hybridization
functionD (a)(E) of theath SIAM. The crucial step consist
of solving the impurity models fora51,2, . . . toobtain the
impurity self-energiesS imp

(a)(E) which are required for the
next cycle. The cycles have to be repeated until s
consistency is achieved.

Applying the DMFT to the semi-infinite Hubbard mode
means mapping the original lattice problem onto an infin
set of impurity problems. The mapping is mediated by t
self-consistency equation~12! for a51,2, . . . ,̀ . For a
given set of hybridization functions, each impurity mod
can be treated separately. There is, however, an indirect
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7838 PRB 60M. POTTHOFF AND W. NOLTING
pling via Eq. ~10! in the self-consistency cycle since th
on-site Green function of a given layer depends on all lay
dependent self-energies. The essential difference with
spect to the case of an infinitely extended lattice with f
translational symmetry where only one single-impur
model and only one self-consistency condition is need
consists of the fact that, for a semi-infinite system, the s
within different layers have to be considered as nonequ
lent.

IV. LINEARIZED DMFT AT THE CRITICAL
INTERACTION

The zero-temperature Mott transition from a paramagn
metal to a paramagnetic insulator is actually hidden due
antiferromagnetic order which is realized in the true grou
state. To study the Mott transition, the solutions of the me
field equations have to be enforced to be spin symme
There have been numerous DMFT studies of theT50 Mott
transition in the recent past using different methods to so
the impurity problem: the iterative perturbation theo
~IPT!,11,39,40 the ED approach,28,41,42 the projective self-
consistent method,21 and numerical renormalization-grou
calculations.18,19

The IPT and, in first place, the NRG results show that
U°Uc the quasiparticle resonance atE50 is more or less
isolated from the high-energy Hubbard peaks atE'6U/2.
The resonance basically reproduces itself in the s
consistent procedure to solve the DMFT equations. A r
sonable assumption is therefore that forU5Uc the low-
energy part of the SIAM hybridization functionD (a)(E)
consists of a single pole atE50 only,

D (a)~E!°
DN

(a)

E
, ~13!

and that the effect of the Hubbard bands can be disrega
completely. With this assumption a simplified, ‘‘linearized
DMFT becomes possible.22,23 There is an attractive featur
of this method which outweighs the necessity for a furth
approximation: It allows for a fully analytic treatment of th
mean-field equations, and an analytical expression forUc is
obtained. Studying the dependencies ofUc on the model
parameters can provide a valuable first insight into the pr
lem. The predictions of the linearized theory have been co
pared beforehand with fully numerical DMFT results for t
Bethe and the hypercubic lattice inD5`,22 and for the case
of thin Hubbard films.23 A satisfactory quantitative agree
ment has been noticed. This makes us confident that at
the correct trends can also be predicted for the case
semi-infinite lattice.

The details of the method can be found in Ref. 22; h
we simply repeat the main idea and the final result: In
ansatz for the hybridization function~13!, DN

(a) denotes the
layer-dependent coefficient in theNth step of the self-
consistency cycle. The aim is to calculateDN11

(a) . The one-
pole structure of the hybridization function corresponds t
well-defined SIAM withns52 sites which can analytically
be solved for eacha. In the one-particle excitation spectru
of the ath SIAM, there are twod peaks atE'6Ua/2 as
well as twod peaks nearE50 corresponding to the~infi-
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nitely sharp! Kondo resonance forU5Uc in the infinite
(ns5`) system. The layer-dependent weight of the re
nanceza can be read off from the solution.za determines the
self-energySa(E)5Ua/21(12za

21)E1•••, and via Eq.
~10! the on-site Green function of theath layer at low ener-
gies. Using these results in the self-consistency equation~12!
and insisting on the one-pole structure of the hybridizat
function, yields a new coefficientDN11

(a) . At this point the
possible influence of the Hubbard bands is ignored. The fi
equation that relatesDN11

(a) to DN
(a) reads

DN11
(a) 5(

b
KabDN

(b) , ~14!

where we have defined the following semi-infinite tridiag
nal matrix:

K536S qt11
2 /U1

2 pt12t/U1U

pt12t/U1U qt2/U2 p t2/U2

pt2/U2 qt2/U2 . . .

. . . . . .

D .

~15!

A self-consistent solution of the linearized mean-fie
equation~14! is given by a nontrivial fixed point ofK . Let l r
denote the eigenvalues ofK . We can distinguish betwee
two cases: Iful r u,1 for all r, there is the trivial solution
lim

N°`
DN

(a)50 only. This situation corresponds to the ins

lating solution beyond the critical point. Conversely, if the
is at least onel r.1, DN

(a) diverges exponentially asN°`.
This indicates the breakdown of the one-pole model for
hybridization function in the metallic solution below th
critical point. The maximum eigenvalue thus determines,

lmax5lmax~q,p,U,t11,t12,U1!51, ~16!

the critical model parameters.
At the critical point the mean-field equation~14! can be

written asza5(bKabzb since the layer-dependent quasipa
ticle weight za}D (a). Formally, this equation can be com
pared with the Weiss mean-field equation for the layer m
netizationsma in the semi-infinite Ising model with coupling
constantJ. The linearized mean-field equation forT5TC
reads ma5(J/2kBT)(qma1pma111pma21) ~we assume
the model parameters at the surface to be unmodified for
moment!. The formal analogy with Eqs.~14! and ~15! is
obvious and justifies the identification made in Eq.~1! and
the corresponding discussion in Sec. I.

V. ANALYTICAL RESULTS

From the basic equation~16! we can calculate the critica
parameters for different cases. First, we consider a sys
that is built up by a finite number ofd layers~film geometry!.
The model parameters are taken to beuniform, i.e., t115t12
5t and U15U ~at both surfaces!. The eigenvalues of the
d-dimensional matrix~15! can be calculated analytically fo
this case,43
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l r5
36t2

U2 Fq12p cosS rp

d11D G , ~17!

with r 51, . . . ,d. Taking the maximum eigenvalue and sol
ing for U yields the thickness dependence of the criti
interaction23

Uc~d!56tAq12p cosS p

d11D . ~18!

Expanding the result forUc in the limit of d°` yields

Uc~d!2Uc~`!

Uc~`!
}d2ls, ~19!

with a ‘‘shift exponent’’ ls52.
In the limit d5` any of the two film surfaces represen

a semi-infinite system. From Eq.~18! we obtain, for the criti-
cal interaction,

Uc,bulk56tAq12p56tAZ, ~20!

which is the same result as is found when applying
method to the infinitely extended bulk system directly.22 We
notice that for the case of uniform model parameters
linearized DMFT yields a unique critical interaction for th
semi-infinite system which is the same as the bulk value.
surface phase is found. This observation is fully consist
with what has been obtained in previous numerical DM
studies of the Mott transition at Hubbard surfaces29 for uni-
form parameters. Despite the fact that at the surface the e
tronic structure has turned out to be modified considerabl
surface critical interaction different from the bulk value h
not been found.

In the following we thus concentrate on a semi-infin
system withmodifiedparameters at the very surface. Also
this case, condition~16! can be treated analytically: To sim
plify the notation let us writeK115a8, K125K215b8 and
Kaa5a, Kaa615b for a>2 (a,b,a8,b8>0). Let K (n) be
the matrix that is obtained from the semi-infinite matrixK
5K (0) by deleting its firstn rows and columns. Further
more, we define Gn(l)[det@l12K (n11)#/det@l1
2K (n)#. Gn(l) is the (1,1) or ‘‘surface’’ element of the
Green matrix @l12K (n)#21. Expanding the determinan
det@l12K (n11)# with respect to the upper left elemen
one easily verifies the recurrence relationGn(l)215l2a
2b2Gn11(l) for n>1. However, all theGn(l) for n>1
must be equal since the~off-!diagonal elements ofK (n
>1) are constant. This results in a quadratic equation foG,
the solution of which is given by

G~l!5Gn>1~l!5
1

2b2
@~l2a7A~l2a!224b2# ~21!

for 6(l2a).0. The eigenvalue spectrum of the sem
infinite matrix K consists of a continuous bulk part whic
can be read off from Eq.~17! for d°` to be given by

ul2au<2b. ~22!

This is just the region where ImG(l)Þ0. The largest eigen
value in the bulk continuum is given byl5a12b, corre-
sponding to the bulk critical interaction given in Eq.~20!. At
l

e

e

o
nt

c-
a

U5Uc,bulk the bulk undergoes the metal-insulator transiti
irrespective of the state of the surface.

Under certain circumstances an additional discrete~‘‘sur-
face’’! eigenvaluels may split off the bulk continuum. If a
discrete eigenvalue exists, we must haveG0(ls)

2150. Us-
ing the result~21! to determineG0(l) from the recurrence
relation G0(l)215l2a82b82G(l), we obtain the follow-
ing equation for the eigenvalue:

ls2a82b82F 1

2b2
~ls2a7A~ls2a!224b2!G50

~23!

@6(ls2a).0#. Solving the equation forls yields the po-
sition of the eigenvalue in the spectrum ofK . SinceK is real
and symmetric, only a solutionls with Im ls50 is mean-
ingful; a discretels must lie outside the bulk continuum
~22!. Only the maximum eigenvalue in the spectrum
physically relevant@Eq. ~16!#. Thus we are interested in
solution that is split off the upper edge of the continuum:

Rels.a12b. ~24!

Sinceb>0 only the2 sign must be considered in Eq.~23!.
Whether or not condition~24! can be met depends on th

~surface! parametersa8 andb8. Solving Eq.~23! for ls and
inserting the solution into Eq.~24!, yields the following re-
lation for a8 andb8:

2b21b~a2a8!2b82,0, ~25!

which must be fulfilled to obtain a~physically relevant! sur-
face mode. Note that the relation cannot be satisfied w
uniform parameters, i.e.,a85a andb85b.

The interpretation is the following: In a semi-infinite sy
tem with surface parameterst11, t12, and U1 that do not
obey condition~25!, there is only the ‘‘ordinary’’ transition
from a metallic to a Mott insulating state atU5Uc,bulk when
increasing the interaction strength. The critical interact
Uc,bulk is given by Eq.~20!. At this point all layer-dependen
quasiparticle weightsza , in the bulk as well as at the sur
face, vanish. On the other hand, for a sufficiently stro
modification oft11, t12, or U1, i.e., fora8 andb8 satisfying
Eq. ~25!, there aretwo critical interaction strengths: The firs
one is Uc,bulk again. At U5Uc,bulk the bulk quasiparticle
weight za5` vanishes. The second critical interactio
strengthUc,surf can be determined fromls5

! 1 wherels is the
solution of Eq.~23!. Let us assume thatUc,surf.Uc,bulk . For
U.Uc,surf the entire system is in the Mott insulating phas
For Uc,bulk,U,Uc,surf, however, the bulk is a Mott insula
tor while the surface is still metallic. We call the transition
U5Uc,bulk the ‘‘extraordinary’’ and the transition atU
5Uc,surf the ‘‘surface transition’’ in analogy with the termi
nology for magnetic phase transitions at surfaces.25

The remaining question is whether or notUc,surf,Uc,bulk
can be possible. In such a situation we would have a qu
two-dimensional Mott insulator on top of a metallic bulk fo
interactionsUc,surf,U,Uc,bulk . However, this possibility is
ruled out: Eq.~24! can be rewritten asls.Uc,bulk

2 /U2. Fur-
thermore, at the critical pointU5Uc,surf the valuels51
fulfills Eq. ~23!. But this implies 1.Uc,bulk

2 /Uc,surf
2 . We can

state that the linearized theory predicts that a metallic surf
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coexisting with a Mott insulating bulk is possible while th
opposite scenario cannot be realized.

Arguing physically, if~at the Fermi edge! there is a finite
~local! density of states in the second and all subsequ
layers, this must always induce a nonzero, though poss
low density of states in the top layer, and thus an insulat
surface phase is excluded: Consider the free-standing
dimensional layer at an interaction strengthU1 being suffi-
ciently strong to force the system to the insulating phase.
the monolayer be coupled to the second and all subseq
layers by switching on the hopping between the top layer
the second layert12Þ0. If t12 is finite but too small, the
low-energy bulk excitations cannot propagate into the
layer and are reflected at the Hubbard gap. However, vir
hopping processes are possible which cause~an exponen-
tially damped! weight of bulk excitations in the top layer
The exponential damping becomes unimportant in this c
since it is effective in one layer only.

For the opposite case of a metallic surface on top o
Mott insulator, however, it does become essential: Lo
energy excitations can propagate within the surface reg
since U,Uc,surf. BecauseU.Uc,bulk , they cannot propa-
gate into the bulk but are reflected at the~bulk! Hubbard gap.
While virtual processes always generate some nonzero s
tral weight at the Fermi edge in each layer, the weight
infinitesimally small asymptotically, fora°`.

Since critical fluctuations spread out all over the system
a second-order critical point, different parts of a syst
should undergo the transition at a common and unique c
cal value of the external control parameter. The exponen
damping of low-energy excitations over large distances
plains why there can betwo critical interactions. This is
analogous to the case of magnetic phase transitions at
faces: In a system where a magnetic surface coexists w
paramagnetic bulk, the layer magnetization must decay
ponentially when passing from the surface to the crystal v
ume. Conversely, a magnetic bulk always induces a fi
magnetization in the top layer. The exception is the som
how artificial case where the top layer is completely dec
pled from the rest system~e.g.,t1250).

A. Modified intralayer surface hopping

Some more aspects of the metallic surface phase sha
addressed in the following. In particular, to discuss the
fects of the surface geometry, we refer to the different lo
index surfaces of the sc lattice mentioned above. Furth
more, it is helpful to consider the different types of surfa
modifications separately.

We start by considering a modified intralayer hopping
the top layer:t11Þt. We have

a85
t11
2

t2
a, b85b. ~26!

From Eq.~25! we can deduce that there are two critical i
teractions, provided that

t11.tA11
p

q
. ~27!
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According to Eq. ~16! and ~23!, the critical interaction
strength at which the surface transition takes place, is gi
by

Uc,surf56tAq
t11
2

t2
1

p2

q

t2

t11
2 2t2

. ~28!

The corresponding phase diagram is shown in Fig. 1.
For the~111! surface there is no intralayer hopping at a

(q50). A rather moderate enhancement oft11 ~about 12%!
is sufficient to obtain a metallic surface phase for the sc~100!
surface. In the case of the sc~110! surface a stronger modi
fication is necessary. These trends are plausible: Obviou
for both surfaces a largert11 means that electrons in the to
layer are more itinerant, and thus tend to delay the transi
to the insulating state asU is increased. A smaller intralaye
coordination numberq counteracts this mechanism. Cons
quently, one needs a stronger enhancement oft11 for the
~110! surface. TheU range where a metallic surface coexis
with an insulating bulk quickly increases ast11 is increased.
For t11°` one would expect that the energy scales relev
for the bulk become meaningless, and that the electro
structure of the top layer decouples from the rest syst
This is predicted correctly by Eq.~28! which yieldsUc,surf

56t11Aq in this limit, i.e., the critical interaction strength o
a free-standing two-dimensional layer.

B. Modified interlayer surface hopping

For a modified interlayer hopping between the top lay
and the subsurface layert12Þt, we have

a85a, b85
t12
2

t2
b. ~29!

A metallic surface of a Mott insulating bulk is possible fo

FIG. 1. t11-U phase diagram as obtained from the lineariz
DMFT. For U,Uc,bulk , the system is metallic. ForU.Uc,bulk the
bulk is a Mott insulator, and the surface can be either insulat
~left to the phase boundary! or metallic~right!. Phase boundaries fo
the ~100! and~110! surfaces of the sc lattice. Energy units: neare
neighbor hoppingt51. Free bandwidthW512.
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t12.A4 2t, ~30!

irrespective of the type of the surface. The critical interact
strength for the surface transition is given by

Uc,surf56tAq1p
t12
4

t2

1

At12
4 2t4

. ~31!

Figure 2 showsUc,surf as a function oft12 for the different
surfaces.

An enhancement oft12 again means an enhancement
the itinerancy of electrons at the surface. Hopping proces
between the topmost and subsurface layers become m
likely. A modification of about 19% is sufficient to suppre
the transition to the Mott insulating phase at the surface
U.Uc,bulk . The surface critical interaction strengthUc,surf,
up to which the metallic surface phase persists for a gi
t12, is the largest for the sc~111! surface, since here th
perpendicular hopping is favored by the comparatively h
interlayer coordination numberp53. In the limit t12°` the
first two layers of the surface will decouple from the bu
The surface critical interaction strength in this limit shou
be the same as for a bilayer system with strongly anisotro
hopping. Consider, for simplicity, the sc~111! surface where
q50. In this case all sites in the bilayer system have
same coordination numberp and the bulk formula~20! may
be applied accordingly. This yieldsUc,surf56t12Ap, which is
consistent with thet12°` limit of Eq. ~31!.

C. Modified surface Coulomb interaction

Finally, we consider a modified Coulomb interaction
the top layer,U1ÞU. In this case,

a85
U2

U1
2

a, b85
U

U1
b. ~32!

As in the two other cases, we could fix the surface mo
parameters, varyU, and ask for the critical interaction
strengthUc,surf. For the present case, however, it appears
be more intuitive to consider the bulkU to be a fixed quan-
tity and to varyU1.

FIG. 2. t12-U phase diagram.
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For U above the bulk critical interactionUc,bulk the bulk is
a Mott insulator. The system may then become critical w
respect toU1, provided that

U1,A q1p

q12p
Uc,bulk . ~33!

The surface transition takes place atU15U1,c,surf with

U1,c,surf5AU2136qt2

2
2AS U2236qt2

2
D 2

2362p2t4

~34!

for U.Uc,bulk . Figure 3 shows the corresponding phase d
gram. ForU°` we obtainU1,c,surf56tAq. This is the criti-
cal interaction strength of the free-standing monolayer.

The results for modified surface Coulomb interaction c
be compared with Hasegawa’s slave-boson approac30

Qualitatively, the respectiveU-U1 phase diagrams for the
sc~100! surface look similar. The critical interactions pre
dicted by the slave-boson method are somewhat larger c
pared with the DMFT results. This is typical for the slav
boson method.5 An important difference is found with
respect to the ‘‘special transition’’ at the tricritical pointU
5Uc,bulk , U15U1,c[A(q1p)/(q12p) Uc,bulk . The linear-
ized DMFT predicts

U1,c,surf2Uc,bulk

Uc,bulk
}S U1

U1,c
21D 1/f

~35!

for U1°U1,c with a ‘‘crossover exponent’’f51/2. The
same crossover exponent is found for modified surface h
ping t11 or t12,

Uc,surf2Uc,bulk

Uc,bulk
}S t11(2)

t11(2),c
21D 1/f

, ~36!

where t11,c and t12,c are defined by the right-hand sides
Eqs. ~27! and ~30!, respectively. This follows from a direc
calculation and can also be seen in Figs. 1, 2, and 3. C

FIG. 3. U-U1 phase diagram.
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versely, within the slave-boson theory of Ref. 30,U1,c,surf
seems to be constant as a function ofU, and a crossove
exponent cannot be defined.

D. Profiles of the quasiparticle weight

The mean-field equation of the linearized DMFT,DN11
(a)

5(bKabDN
(b) , has a nontrivial solution only at a critica

point for the Mott transition, e.g., atU5Uc,bulk or U
5Uc,surf. This solution is a fixed point of the matrixK ,
D`

(a)5 lim
N°`

DN
(a) , and can be calculated as the eigenvec

of K belonging to the eigenvaluel51 @Eq. ~16!#. Sinceza
}D (a), the eigenvector has the meaning of the critical pro
of the quasiparticle weight, i.e., thea dependence ofza in
the limit za°0. It is uniquely determined up to a normaliz
tion constant.

The upper left part of Fig. 4 shows the critical profile
the sc~100! surface for different values oft11 and U
5Uc,bulk or U5Uc,surf, respectively.za has been normalized
to its top-layer valuez1. For unmodified surface hoppin
t115t, the profile is linear. In fact, the ansatzza}a solves
the mean-field equation za5(36t2/U2)(qza1pza11

1pza21) for U5Uc,bulk56tAq12p. Physically, this means
that at the critical interaction the surface effects extend i
the bulk up toarbitrarily large distances. Note that this im
plies that actually an infinite number of inequivalent surfa
layers has to be considered in a fully numerical evaluation
the DMFT.

For U close toUc,bulk but U,Uc,bulk , one would expect
that the profile converges to a finite bulk value: lim

a°`
za

5zbulk.0. In its present form, however, the linearize
DMFT is not applicable here. One may consider the follo

FIG. 4. Profiles of the quasiparticle weight for the sc~100! sur-
face. Upper left: profiles for differentt11. U5Uc,bulk for t11

<1.25 andU5Uc,surf for t11>1.25. Upper right:t115t51 and
different U close to Uc,bulk . Lower left: t1151.5 and different
U/Uc,bulk . Lower right:U/Uc,bulk50.99 and differentt12

2 . The pro-
files are normalized to the top-layer value~right-hand side! or the
bulk value~left-hand side!, respectively.
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ing extension22 of the mean-field equation~for simplicity, we
discuss the case of uniform model parameters, the gene
zation for modified surface hopping orU1ÞU is straightfor-
ward!:

za5
36t2

U2
~qza1pza111pza21!2cza

2 . ~37!

A quadratic term inza with a constant coefficientc.0 has
been added. The constantc can be fixed by the value forzbulk
or for z1 ~Ref. 22 yields the explicit valuec511/9, but we do
not need the result here!. This extension of the linearized
DMFT is in the spirit of Landau theory, we simply consid
the next term in an expansion with respect to the ‘‘ord
parameter’’za . As in the Landau theory, higher-order term
in za or quadratic terms that couple the different layers
still neglected. The additional term in Eq.~37! ensures a
linear U dependence of the quasiparticle weight in ea
layer: za}(Uc2U) for U°Uc . This is consistent with the
~bulk! critical behavior found within the PSCM.21

Using Eq.~37! we have calculated the profile of the qu
siparticle weight fort1151 and differentU,Uc,bulk ; see
Fig. 4 ~upper right!. For U/Uc,bulk50.9 the quasiparticle
weight differs significantly from the bulk value in the firs
few layers from the surface only. AsU°Uc,bulk , however,
the linear trend ofza clearly develops.

A linear trend of the critical profile is also observed f
slightly enhanced surface hopping,t11

2 51.1 and t11
2 51.2

~Fig. 4, upper left!. For a surface hoppingt115A11p/q
5A5/4 we obtain the so-called special transition@cf. Eq.~27!
and Fig. 1#. At the critical interaction the profile is a consta
~Fig. 4, upper left!. In this case the effect of missing neigh
bors at the surface is exactly compensated for by the
hancement oft11.

For t11.A5/4 there are two critical interactions,Uc,bulk
andUc,surf. For U5Uc,surf, za /z1 is at its maximum in the
top layer and exponentially decays asa°` ~Fig. 4, upper
left!. For U,Uc,surf @according to Eq.~37!# the decay be-
comes slower until the profile converges to a finite bu
value forU,Uc,bulk ~lower left!.

Finally, the lower right part of Fig. 4 shows the profile o
the quasiparticle weight obtained from Eq.~37! for
U/Uc,bulk50.99 and modified interlayer surface hoppingt12.
For t12

2 ,A2 the profile is a monotonously increasing fun
tion when passing from the surface to the bulk.t12

2 5A2
marks the special transition@see Eq.~30!#. Here the profile
would be constant fora>2 andU5Uc,bulk as can be seen
from the mean-field equation of the linearized DMFT. F
t12
2 .A2 the quasiparticle weight is enhanced at the surfa

and decreases monotonously fora>2.

E. Infinite dimensions

Dynamical mean-field theory rests on the local appro
mation for the self-energy functional. Since it is known th
in the limit of high spatial dimensionsD°`,3 the local ap-
proximation becomes exact,44 it may be interesting to discus
the ~somewhat artificial! case of a surface of the infinite
dimensional hypercubic lattice.

A D-dimensional hypercubic lattice may be thought to
built up from (D21)-dimensional ‘‘layers’’ perpendicula
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to a D-dimensional spatial direction characterized by the
of Miller indices @x1 ,x2 , . . . ,xD#. Cutting the hopping be-
tween two adjacent layers, one obtains a ‘‘(x1 ,x2 , . . . ,xD)
surface.’’ Consider the low-index directions withx15•••

5xr51 andxr 115•••5xD50. For a given site there ar
q52D22r nearest neighbors within the same layer andp
5r nearest neighbors in each of the adjacent layers (Z5q
12p52D).

For r 51, i.e., a (1000 . . . ) surface, a site in the topmos
layer hasZS5q1p52D21 nearest neighbors, to be com
pared withZ52D in the bulk. ForD°` the local environ-
ment of the surface sites is essentially the same as in
bulk, surface effects become meaningless. With the u
scaling of the hoppingt5t* /A2D,3 the free top-layer loca
density of states ~DOS! is a Gaussian r (0)(E)5
exp@2(E/t* )2/2#/(A2pt* )—as in the bulk.

For r 5D one obtains the open~1111 . . .! surface. The
surface coordination number is reduced toZS5p5D. This
implies a ratio DS/D5ZS/Z5(q1p)/(q12p)50.5 be-
tween the variances of the top-layer and bulk DOS. The
sults of a simple numerical calculation are shown in Fig.
We notice a strongly modified and strongly layer-depend
DOS near the surface which slowly converges to the b
Gaussian DOS fora°`. In many respects the results r
semble the DOS at theD53 sc~111! surface, in particular
the oscillation ofra

(0)(E50) as a function ofa.45

In infinite dimensions dynamical mean-field theory is e
act also for the semi-infinite model. The scaling of the ho
ping implies Gi j

(0);1/AD for the free propagator betwee
arbitrary nearest-neighbor sitesi andj, and the proof that the
self-energy is local, is essentially unchanged~see Refs. 3, 4,
and 44!. The simple linearized DMFT can be developed as
Sec. IV. We only have to insert the general expressions
the coordination numbersq52D22r andp5D, and to per-
form the limit D°` in the Eqs.~27!–~34!, paying attention
to the scaling of the hopping.

Varying r we can then pass continuously from the mo
closed (r 51) to the most open (r 5D) surface geometry
Consider, for example, a modified intralayer surface h
ping. A surface phase is predicted to be existing fort11*
.t* A11r /(2D22r ) @cf. Eq. ~27!#; i.e., for all t11* .t* in
the case of the closedr 51 surface and not at all for ther
5D surface. Forr 51 the surface critical interaction is give
by Uc,surf56t11* @Eq. ~28!# to be compared with the bulk

FIG. 5. U50 layer-dependent density of statesra
(0)(E) at the

(1111 . . . )surface of theD5` hypercubic lattice. Scaled hoppin
t5t* /A2D with t* 51. ‘‘1’’ stands for the topmost surface laye
‘‘2’’ denotes the subsurface layer, etc.
t

he
al

-
.
t

k

-
-

n
r

t

-

critical interactionUc,bulk56t* @Eq. ~20!#. With increasingr,
Uc,surf decreases untilUc,surf5Uc,bulk for r 5D.

The other cases may be discussed accordingly. Upon
ing the limit D°`, we always obtain nontrivial and plau
sible results. The discussion is analogous to theD53 case.
We conclude that the semi-infinite Hubbard model rema
nontrivial for D5` and provides a useful framework fo
investigating the surface phase. In principle, this can be d
without approximations by employing the DMFT. Reca
however, that the linearized DMFT is still approximate~Sec.
IV and Ref. 22!.

VI. EXACT-DIAGONALIZATION METHOD

For a complete numerical solution of the mean-field eq
tions at finite temperatures one may employ the quan
Monte Carlo method.37,46,47For T50 the ED approach28,41,42

can be applied and is chosen here. The main idea is to
onto a SIAM with a finite number of sitesns . The Lanczo`s
technique48 is used to calculate the ground state as well
the T50 impurity Green function and self-energy. Th
DMFT equations are solved on the discrete mesh of Mats
ara energies where the~fictitious! inverse temperatureb̃ in-
troduces a low-energy cutoff. Details of the method can
found in Ref. 5. The surface geometry can be simulated b
slab consisting of a finite but sufficiently large number
layers d ~for UÞUc). The numerical effort then increase
linearly with d at least. In Refs. 23 and 29 we have discuss
the application of ED to film and surface geometries.

ED is able to yield the essentially exact solution of t
mean-field equations in a parameter range where the e
introduced by the finite system size are unimportant. For
Mott problem the relevant low-energy scale is set by
width of the quasiparticle peak in the metallic solution. It h
to be expected that there are non-negligible finite-size effe
when this energy scale becomes comparatively small. We
thus limited to interaction strengths that are not too close
Uc,bulk or Uc,surf, and cannot access the very critical regim
This also implies that a precise determination ofUc,bulk and
Uc,surf and thereby a direct comparison with the lineariz
DMFT is not possible. The discussion in Ref. 23, howev
shows that the main trends can be derived safely.

In the following we mainly focus on the low-energy ele
tronic structure which the ED method is able to predict re
ably in the noncritical regimes. The so-called laye
dependent quasiparticle weight,

za5S 12
dSa~E50!

dE D 21

, ~38!

is the primary quantity of interest.za<1 is weight of the
coherent quasiparticle peak in the local DOSra(E) of the
ath layer or, alternatively, the reduction factor of the disco
tinuous drops inath momentum-distribution functionna(k)
whenk crosses the one-dimensional Fermi ‘‘surfaces.’’23

Routinely, the calculations have been performed withns
58 sites in the effective impurity problems. For the fictitiou
temperature we have chosenb̃2150.0016W (W512 is the
free bandwidth!. ns and b̃ determine the ‘‘energy resolu
tion’’ which is found to be aboutDE50.125W/100. This
implies that reliable results can be expected in a param
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region whereza.0.01 ~cf. Ref. 29!. A moderate numberd
<25 of layers in the slab is sufficient to simulate the sem
infinite system—except for the very critical regime. This h
been checked by comparing the results from calculations
different d. We made use of the mirror symmetry at th
center of the slab and of electron-hole symmetry to red
the number of parameters, the conduction-band energiesek ,
and the hybridization strengthsVk (k52, . . . ,ns), which
have to be determined self-consistently. We always foun
unique and fully stabilized solution.

VII. NUMERICAL RESULTS FOR THE sc „100… SURFACE

To keep the calculations manageable, we restrict the
cussion to theD53 sc~100! surface in the following. We
start with the case of uniform model parameters. Figur
shows the bulk quasiparticle weightz ~dashed line! as a func-
tion of U. It starts from its noninteracting valuez51. A
quadraticU dependence is noticed for smallU in agreement
with perturbation theory.29 z vanishes asU approaches
Uc,bulk . The overall dependence onU is very similar to what
is known from DMFT studies of theD5` Bethe lattice.5

In the top layer of the sc~100! surface the quasiparticl
weight is significantly reduced~solid line!. The lowered co-
ordination number at the surface implies a reduced varia
DS of the free surface DOS, and thereby an increased ef
tive interactionU/ADS compared with the bulk. Thus at th
surface correlation effects are enhanced, andza51 is low-
ered. Despite thistendencytoward an insulating surface, w
find a common critical interactionUc,surf5Uc,bulk which, for
uniform parameters, is in agreement with the analytical
sults. Uc,bulk also represents the critical interaction for a
subsurface layers. For the rather closed~100! surface,za(U)
is almost identical with the bulk function fora>2.

From Fig. 6 we can read offUc,bulk'16.0, while Eq.~20!
predictsUc,bulk514.7. We have to bear in mind, howeve
the underlying assumptions that lead to Eq.~20!. Moreover,
as concerns the ED, finite-size effects prevent a precise
mate:Uc,bulk'15.1 is found forns510 sites in the impurity
models.29 On the other hand, comparing the results forns
58 andns510, there are no significant changes as long
za.0.01.29 This means~see Fig. 6! that the overall layer and
U dependence is predicted reliably. We also believe that
finding of a common critical interaction is not an artifact

FIG. 6. U dependence of the quasiparticle weight in the b
and in the top layer for the sc~100! surface~uniform model param-
eters! as obtained from the ED method forns58. Uc,bulk'16.0.
t51 sets the energy scale.
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the ED approach since this is made plausible by the line
ized DMFT.

At the critical interaction the metallic solution continu
ously coalesces with the insulating solution that is found
U.Uc,bulk . The insulating solution persists down to anoth
~common! critical interaction strengthUc,1,Uc,bulk ~we find
Uc,1'11.5). In the coexistence region, however, it is th
modynamically irrelevant. For details, we refer to Re
5, 42, 19, and 23.

A. Modified intralayer surface hopping

A modification of the model parameters at the very s
face may strongly affect the quasiparticle weight. As in S
V we first consider a modified hopping within the top laye
t11Þt.

Figure 7 gives an overview for fixed Coulomb interactio
U510. The above-mentioned tendency toward an insula
surface is enhanced whent11 is decreased. The top-laye
quasiparticle weight quickly decreases, but even fort1150 it
does not vanish completely. Fort11.t one can see the op
posite trend.za51 increases with increasingt11. In the limit
t11°` it approaches its noninteracting valueza5151. For
t11510t the low-energy electronic structure is almost pe
fectly decoupled. In the top surface layer there is a quas
correlated motion of the electrons (za5150.98 at U/t11
51). The rest system, however, remains a strongly co
lated Fermi liquid.

For the subsurface layers, the dependence of the quas
ticle weight ont11 is comparatively weak. Figure 8 showsza
for a>2. On the enlarged scale in Fig. 8 there is still

FIG. 7. Quasiparticle weight of the top layer (a51) and the
subsurface layers (a52 and 3! for U510,Uc,bulk as a function of
the modified intralayer surface hoppingt11. t51.

FIG. 8. The same as Fig. 7 but on an enlarged scale.



ce
ig

o
a

o

fa

u
b
n
a

t i
o

-
ge

-
on

il-
-

he
llic
is
1

s a
es
t

in

op

ll
nt

n-

ion

n
s

Sl

-

e

PRB 60 7845METALLIC SURFACE OF A MOTT INSULATOR–MOTT . . .
considerablet11 dependence ofza52 ~second layer!. For
a°`, however, i.e., with increasing distance to the surfa
this dependence diminishes: The bulk quasiparticle we
obviously cannot be affected by the surface modification
the hopping parameter. We also notice that there is a ne
constant quasiparticle weight fort11'0.8t and alla>3.

For fixed t11 one finds an oscillating layer dependence
za . This is demonstrated in Figs. 9 and 10 fort115t and
t11510t. For the strongly perturbed system witht11510, the
layer dependence is somehow irregular in the near-sur
region, oscillations do not build up untila>5. In both cases
the oscillation is strongly damped. Fora513 we have
Dz/z'231024. Thus, for a film with thicknessd525, the
quasiparticle weight is nearly constant at the film center. F
thermore, the differences between the uniform and pertur
systems become smaller and smaller with increasing dista
to the surface. The observed oscillations can be traced b
to oscillations of the free layer DOS at the Fermi energy. I
well known49 that the presence of the surface gives rise t
layer-by-layer oscillation ofra(E50) for U50. For the
present case~local self-energy, manifest particle-hole sym
metry, metallic phase!, the density of states at the Fermi ed
is unrenormalized by the interaction@see Eq.~10! and Ref.
23#. The same oscillation is thus found forra(E50) at any
U,Uc,bulk , and will also lead to oscillations of the low
energy part of the Green function and thereby to oscillati

FIG. 9. Layer dependence of the quasiparticle weight for u
form model parameters as well as strongly enhanced intralayer
face hopping.U510.

FIG. 10. The same as Fig. 9 but on an enlarged scale.
thickness:d525.
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of the low-energy part of the self-energy. Finally, the osc
lating behavior ofza for U510 shows that we are well be
low the critical point: ForU close toUc,bulk we expect a
monotonous behavior from the linearized DMFT~see
Fig. 4!.

Let us now tackle the question of surface phases. T
scenario of an insulating surface coexisting with a meta
bulk was excluded by the linearized DMFT. The same
found by the numerical evaluation of the DMFT: Fig. 1
shows the layer-dependent quasiparticle weight fort1150,
where the strongest suppression ofza51 is expected. In fact,
the top-layer quasiparticle weight quickly decreases a
function of U and, compared with the bulk value, becom
very small aboveU'6. However, we find a nonzero weigh
in the top layer up toU5Uc,bulk , which implies Uc,surf
5Uc,bulk . BetweenU'6 andU5Uc,bulk we may speak of
an inducedmetallic surface according to the discussion
Sec. V.

The linearized DMFT predicted a metallic surface on t
of a Mott-insulating bulk to be possible fort11.tA5/4. We
chooset1151.5t for the numerical calculation to be we
above this threshold. Figure 12 proves that two differe
critical interactions are found. Over the wholeU range con-
sidered, the top-layer quasiparticle weight is strongly e
hanced compared with the bulk and is finite also atU
5Uc,bulk where the bulk weight vanishes. Note thatza51(U)
is continuous atU5Uc,bulk . The top-layer quasiparticle
weight approaches zero atU5Uc,surf520.0, which marks
the surface transition point while the extraordinary transit
takes place atU5Uc,bulk516.0.

i-
ur-

ab

FIG. 11. U dependence ofza when the intralayer surface hop
ping is switched off.

FIG. 12. U dependence ofza for enhanced intralayer surfac
hopping. Surface transition atU5Uc,surf. Extraordinary transition
at U5Uc,bulk .
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Evaluating the analytical formula for the surface critic
interaction@Eq. ~28!# for the present case, we obtainUc,surf
518.2, which agrees well with the numerical result if o
takes into account that for the bulk critical interaction t
linearized theory also yields a somewhat smaller value.
also expect thatUc,surf ~as Uc,bulk) is overestimated by the
ED due to finite-size effects.23,29 While finite-size effects
prevent a precise determination of the critical interactio
they are irrelevant concerning the very existence of the
tallic surface phase. Even forU well aboveUc,bulk , the top-
layer quasiparticle weight is still larger thanza5150.01, and
thus the ED forns58 is still able to resolve the energy sca
set by the width of the Kondo-type resonance at the surfa

Since the low-energy surface excitations cannot propa
into the bulk for U.Uc,bulk but are reflected at the bul
Hubbard gap, the Kondo resonance represents a true su
state. Therefore, its amplitude must decay exponentially w
increasing distance to the surface. Figure 12 shows that s
weight is induced in the subsurface layers which rapidly
creases.

The surface transition is also found as a function oft11 for
fixed interactionU.Uc,bulk . Figure 13 shows the numerica
results forU518. When t11.t11,c51.33t, the surface be-
comes metallic. The critical value may be compared w
t11,c51.48t which is obtained by solving Eqs.~16! and ~23!
for t11.

For the t11 range considered in Fig. 13, the number
layers in the slabd that is necessary to simulate the actu
surface can be lowered down tod'5: We performed calcu-
lations for different thicknessesd; there are hardly any dif-
ferences between the results forza at the surface as long a
d>5. This is interpreted as follows: Since the coherent p
of the bulk spectrum has disappeared forU.Uc,bulk , the
surface electronic structure is essentially decoupled from
bulk in the low-energy regime. The decoupling at the lo
energy scale is indicated by the rapid decrease ofza with
increasinga ~see Fig. 13!. Conversely, on the high-energ
scale set by the charge excitations, bulk and surface mo
cannot decouple. There is always a finite energetic overla
the bulk and the surface DOS sincet11 mainly changes the
effective widths but not the positions of the Hubbard pea
in the surface DOS. The effect of the Hubbard bands on
low-energy features, however, seems to be rather weak s
otherwise a change ofd would lead to significant changes i
the surface low-energy electronic structure by indirect c
pling between low- and high-energy surface excitations
high-energy surface and bulk excitations. The surface Ko

FIG. 13. za as a function oft11 for U.Uc,bulk .
l

e

,
e-

e.
te

ace
h
me
-

h

f
l

rt

e
-

es
of

s
e
ce

-
d
o

resonance in the metallic surface phase is spatially confi
to the first few layers, and energetically isolated from t
surface Hubbard bands.

B. Modified interlayer surface hopping

A complete decoupling between the top layer and the
system is obtained for vanishing interlayer surface hopp
t1250. Figure 14 shows the layer-dependent quasipart
weight as a function oft12. While for U510 we noticed an
oscillating layer dependence for uniform hopping~Figs. 9
and 10!, there is a monotonous layer dependence forU
512 ~Fig. 14, for t1251). This is the typical behavior when
the system is close to criticality as has been noted before~cf.
Ref. 29, and the discussion of the analyticalza profiles in
Sec. V!. The layer dependence remains monotonous
t12°0. For t1250 we have essentially two independent sy
tems. The isolated top layer is still metallic. In the rest s
tem thea52 layer represents the new top layer, thea53
layer becomes the first subsurface layer, and so on. T
implies that the value ofza for t1250 must be equal to the
value ofza21 for t1251. These relations are indicated by th
dashed lines in Fig. 14. They represent a nontrivial check
the numerics.

An effective separation into subsystems is also obser
in the opposite limit of a strongly enhanced interlayer surfa
hopping. Figure 15 shows thatza51 andza52 approach their
noninteracting values, while fora>3 the quasiparticle
weight changes only slightly ast12°`. In the low-energy
regime the electronic structure of the first two layers d
couples from the rest system. The value ofza for all a>3
approaches the value ofza22 for t1251 ~see the inset!.

A somewhat artificial realization of an insulating surfa
phase on top of a metallic bulk can be obtained fort12°0 by
choosingUc,D52,U,Uc,bulk , whereUc,D52 is the critical
interaction of the two-dimensional layer. ForU.Uc,D52 the
top layer must become insulating when it is decoupled fr
the rest system (t1250). This is demonstrated in Fig. 16. Th
figure also shows that the top layer becomes metallic~with a
very small quasiparticle weight! as soon as an arbitrarily
small interlayer hopping is switched on.

FIG. 14. Layer-dependent quasiparticle weight forU,Uc,bulk as
a function of the interlayer surface hoppingt12<t51.



c
n

u
le

s

,

p-
g
—
-

the
-

r

rtly

n

ns
e,
a-

the

e

PRB 60 7847METALLIC SURFACE OF A MOTT INSULATOR–MOTT . . .
Finally, Fig. 17 shows the extraordinary and the surfa
transition for fixedt1253.0. The surface critical interactio
can be read off to beUc,surf523.8, while the linearized
DMFT with Uc,surf521.7 @Eq. ~31!# again predicts a slightly
smaller critical value.

C. Modified surface Coulomb interaction

We finally discuss the modification of the surface Co
lomb interaction U1. Figure 18 shows the quasipartic
weight za for a51, 2, and 3 andzbulk as a function of
U1 /U, whereU is fixed atU510. On decreasingU1 (U1
,U), z1 quickly increases, and forU1°0 it approaches the
noninteracting valuez151.

For enhancedU1.U the top-layer quasiparticle weight i
decreased but remains finite even for large values ofU1, i.e.,
we again find aninducedmetallic surface. Asymptotically
however, the top-layer weight approaches zero:z1°0 for
U1°`. In this limit the low-energy resonance in the to
layer DOS essentially disappears and a large Hubbard
;U1 opens. This implies that—in the low-energy regime
the subsurface (a52) DOS forU1°` must become iden

FIG. 15. The same as Fig. 14 but fort12>t51. Inset:
asymptotic behavior ofza .

FIG. 16. The same as Fig. 14 but forUc,D52,U,Uc,bulk .
e
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tical with theU15U surface (a51) DOS. ForU1°` we
thus expect z2(U1°`)5z1(U15U), and consequently
za(U1°`)5za21(U15U) for all a. In fact, this ‘‘shift’’ of
the surface by one layer can be seen in Fig. 18 and in
inset: ForU1 /U55 only small differences still remain be
tweenza andza21(U15U).

The shifta°a21 also implies that the oscillating laye
dependence ofza for U15U must be reversed forU1°`:
Minima are replaced by maxima, and vice versa. This pa
explains that between~at U1 /U'1.2) the quasiparticle
weight is nearly layer independent.

According to the linearized DMFT, a metallic surface o
top of an insulating bulk can be found ifU1,6tA5 @Eq.
~33!# andU.Uc,bulk56tA6. If we fix the ratioU1 /U50.5
and varyU, the surface transition should occur atU1,c,surf
512.1 @setU52U1,c,surf in Eq. ~34! and solve forU1,c,surf#.
The result of the numerical solution of the DMFT equatio
is shown in Fig. 19. Again, the numerically obtained valu
U1,c,surf50.5326.3513.15, is somewhat larger than the an
lytical prediction—the discussion is the same as for
modified surface hopping.

At the extraordinary transitionU5Uc,bulk , the quasipar-
ticle weight in the top-~not shown in Fig. 19! and in the first

FIG. 17. U dependence ofza for enhanced interlayer surfac
hoppingt12.

FIG. 18. Layer-dependent quasiparticle weight forU510
,Uc,bulk and modified Coulomb interaction in the top layerU1. The
arrow indicates the value ofza51 for U15U. In the inset, the ar-
rows indicate theU15U values ofza .
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7848 PRB 60M. POTTHOFF AND W. NOLTING
subsurface layers are smooth functions ofU. This is contrary
to the results found within the slave-boson theory,30 where
the band-narrowing factor in the top layer shows up a d
continuous derivative atU5Uc,bulk . We believe, however
that this is an artifact due to incorrect boundary conditio
That is, only the first two surface layers are treated as ‘‘fre
in the self-consistent calculation, while thea53 layer was
already assumed to be bulklike in Ref. 30. As is known fro
the mean-field theory of localized spin models,50 such
boundary conditions may result in artificial singularities
the extraordinary transition.

VIII. CONCLUSION

We have investigated the~Mott! metal-insulator transition
at surfaces within the framework of the semi-infinite Hu
bard model at half-filling andT50. Basically, two approxi-
mations have been used:

First, the self-energy functional has been assumed to
reasonably local. This approximation sets the basis for
dynamical mean-field theory: The semi-infinite Hubba
model is self-consistently mapped onto a set of indirec
coupled impurity models corresponding to the inequival
layers parallel to the surface. With the usual scaling of
~intralayer and interlayer! hopping, the approach become
exact in the limit of infinite spatial dimensions. It has be
shown that there are nontrivial surface effects even forD
5`. Mainly, however, the DMFT has been used as a~mean-
field! approach to study theD53 low-index surfaces of the
simple-cubic lattice.

Second, for the approximate solution of the impur
models, we have used the exact diagonalization of finite s
tems. The ED method allows us to deal systematically wit
large number of geometries and model parameters. Howe
the method cannot access the very critical regime for
Mott transition because of errors due to finite-size effec
Directly at the critical point, we have alternatively consi
ered a simplification of the mean-field equations~linearized
DMFT!. This analytical approach is also approximate. Ho
ever, a convincing qualitative and~as far as can be judged!
also quantitative agreement with the numerical ED res
has been found. Referring to the points mentioned in
introduction, our results can be summarized as follows.

~1! The metal-insulator transition in the bulk of the sem
infinite system occurs exactly at the same critical interact

FIG. 19. U dependence ofza for enhanced surface Coulom
interactionU1 /U5const.
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Uc,bulk as for the infinitely extended system:Uc,bulk5Uc .
~2! There is a nontrivial layer dependence of the quasip

ticle weight, even~asymptotically! at the critical point. The
za profile strongly depends on the model parameters at
surface, e.g., the hopping within the top layert11, the hop-
ping between the top layer and the subsurface layert12, and
the top-layer Coulomb interactionU1. There is a qualitative
change of the profile if certain critical valuest11,c , t12,c, and
U1,c are exceeded. These critical values are found to be
realistic order of magnitude.

~3! For uniform model parameters the top-layer quasip
ticle weight z1 is smaller than the bulk valuezbulk , since a
reduced surface coordination number implies correlation
fects to be effectively stronger at the surface. For interacti
well below Uc , there is always an oscillating layer depe
dence of the the quasiparticle weight. With increasing d
tance to the surface (a°`), this oscillation is strongly
damped. In the critical regime, on the contrary,za monoto-
nously increases with increasinga, and finally, forU5Uc
the critical profile is linear:za}a. For uniform model pa-
rameters there is a finite weight in the top layer (z1.0) for
U,Uc only, i.e., only when the bulk is metallic. The trans
tion at Uc is termed the ‘‘ordinary transition.’’

~4! For a sufficiently strong modification of the surfac
model parameters (t11.t11,c ,t12.t12,c ,U1,U1,c), the sur-
face becomes metallic below a critical interactionUc,surf
.Uc,bulk ~‘‘surface transition’’!. ForUc,bulk,U,Uc,surf, the
quasiparticle weight exponentially decays from its maximu
value z1 at the surface toward zero in the bulk. AtU
5Uc,bulk the bulk undergoes the transition to the metal
state~‘‘extraordinary transition’’!. The top-layer quasiparti-
cle weight is a smooth function ofU even atU5Uc,bulk .

~5! The transition atU5Uc,surf5Uc,bulk is called the
‘‘special transition.’’ Here the critical profile of the quasipa
ticle weight is flatza5zbulk5const ~at least fora>2). In
this situation the effect of missing neighbors at the surfac
compensated for by the change of the surface model par
eters.

~6! There are two critical exponents that are merely
lated to the critical interactions; the ‘‘shift exponent’’ls and
the ‘‘crossover exponent’’f. They describe the trend of th
Uc for a film of finite thicknessd in the limit d°` and the
trend of the surface critical interaction for the semi-infin
system near the special transition, respectively. Within
linearized DMFT, one findsls52 andf51/2.

~7! For any realistic choice of the model parameters
metallic bulk induces a metallic surface withz1.0. Thus a
Mott-insulating surface of a correlated metal is impossib
There are essentially two more or less trivial exceptions: T
first is the static decoupling of the top layer fort1250 at an
interaction strength that is smaller thanUc,bulk but larger than
the critical interaction of the two-dimensional system. T
second is a dynamical decoupling which occurs for infin
surface interactionU1°`. Here the top-layer quasiparticl
weight vanishes asymptotically.
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