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Hydrogen diffusion and mobile hydrogen in amorphous silicon
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~Received 28 May 1999!

Diffusion phenomena in hydrogenated amorphous silicon (a-Si:H) are modeled assuming that mobile H
excited from Si-H bonds normally annihilates at dangling-bond defects, as in the ‘‘H collision’’ model of
light-induced metastability. This diffusion model explains the long-standing puzzle of the doping dependence
of the hydrogen diffusion coefficientDH . It also yields the magnitudes of theDH Arrhenius prefactors in
doped and undopeda-Si:H. Mobile H diffuses over an energy barrier of about 0.3 eV; at room temperature, its
diffusion rate is slightly greater than that of H in crystalline Si.@S0163-1829~99!02536-9#
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Hydrogenated amorphous silicon (a-Si:H) semiconductor
thin films require 2–15 at. % of H to passivate coordinati
defects and reduce strain. However, long-range motion
this H is implicated in light- and carrier-induced metasta
degradation ofa-Si:H electronic properties. H diffusion i
also a crucial step in film formation by chemical vapor dep
sition. Improved understanding of H ina-Si:H is therefore
central to solving the scientific and technological proble
presented bya-Si:H.

Recent publications1–3 demonstrate that the ‘‘hydroge
collision’’ model can explain qualitatively and quantitative
the main experimental observations of carrier-induced d
radation ~the Staebler-Wronski effect4! in a-Si:H. For ex-
ample, the model explains the creation kinetics for the p
duction of metastable threefold-coordinated Si dangli
bond defects~DB’s! by continuous illumination,1,2 pulsed
lasers,2 and electron beams.3

In light-induced metastability, excitation of mobile H
from deep Si-H bonds is likely the first step of defe
formation.2,5 Thermal or carrier-induced mobile H diffuse
extremely rapidly by hopping between sites which are ana
gous to the Si-Si bond-center site inc-Si. The H collision
kinetic models1–3 require that mobile H normally annihilate
at DB’s to reform Si-H bonds. In this paper previously u
explained diffusion phenomena ina-Si:H are understood a
consequences of this picture of H dynamics. I first descr
the model of H diffusion implicit in the H collision model o
metastability, then estimate the mobile H diffusion coe
cient and density. I also derive an expression for the H
fusion coefficient, solve the long-standing puzzle of the d
ing dependence of the hydrogen diffusion coefficient (DH),
and compute the magnitude of theDH prefactor in undoped
and dopeda-Si:H.

The first step of the light-induced or thermal diffusion
H is the emission of mobile H (Hm) from Si-H bonds, leav-
ing behind an isolated DB,

Si-H→DB1Hm . ~1!

This mobile H diffuses rapidly througha-Si:H once it is
formed.6 Normally, Hm retraps to a DB by the reverse o
reaction ~1!, though not necessarily to the same DB fro
which the Hm was excited. Isolated DB’s created by reacti
~1! become metastable only when
PRB 600163-1829/99/60~11!/7725~3!/$15.00
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Hm1Hm→M ~Si-H!2 , ~2!

a rare side reaction in which two mobile H collide and as
ciate to formM ~Si-H!2, a metastable two-H complex.2

The Hm thermal emission rate~cm23 s21! for reaction~1!
is given by

Rth5NHn th
0 e2EH /kT, ~3!

where NH is the immobile Si-H density,n th
0 is a thermal

emission prefactor, andEH is the energy of mobile H emis
sion from a Si-H bond.NH is constant because the mobile
andM ~Si-H!2 densities are negligible at all times compar
to the density of Si-H bonds. This simplified model negle
the observed difference between clustered and isolated H
vironments. The trapping rate of mobile H to DB’s by th
reverse of reaction~1! is

Rdb5kdbNmNdb. ~4!

Here Ndb is the dangling-bond density,Nm is the mobile H
density, andkdb is a rate constant~in cm3 s21!.

Becausetm5Rdb/Nm is the decay time of the mobile H
population, Eq. ~4! implies kdb5(tmNdb)

21. For the
diffusion-limited capture processes applicable to mobile H2,7

kdb54paDm , wherea52.331028 cm is the jump distance
between transport sites. Equating these expressions forkdb,

Dm5~4patmNdb!
21. ~5!

Recent measurements at room temperature show thatm
is roughly 4 ms forNdb'1016 cm23. Heck and Branz8,9 ob-
tained this estimate from metastable degradation ofa-Si:H
by pulsed illumination with varying dark time betwee
pulses. Substitution oftm into Eq. ~5! yields Dm(25 °C)
'1027 cm2 s21, as indicated in Table I. This estimate is tw
orders of magnitude greater than the H diffusion coeffici

TABLE I. Estimates of the H diffusion coefficient, the mobile
diffusion coefficient, and the mobile H density at two temperatur

DH (cm2 s21) Dm (cm2 s21) Nm (cm23)

25 °C 1022861 1027 0.5310161

210 °C 2310218 631026 1010
7725 ©1999 The American Physical Society
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(DH) measured by Seager and Anderson10 for crystalline Si
(c-Si). Either H diffusion inc-Si is slowed by H trapping or
mobile H in a-Si:H diffuses rapidly along disorder-induce
low-barrier percolation paths.

Mobile H diffusion can be assumed to follow the Arrhe
ius form

Dm~T!5D0e2Em /kT, ~6a!

with

D052n0a2/3. ~6b!

Here Em is a characteristic energy barrier to the mobile
diffusion between near-equivalent sites in Si-Si bonds,n0 is
the jump-attempt frequency, and23 is a factor applicable to
the four-coordinated Si lattice.11 Substitutingn0'1013s21

anda into Eq. ~6b!, D0'531023 cm2 s21, roughly equal to
the diffusion prefactor for H diffusion inc-Si.12,13 With the
estimate of Dm(25 °C) ~Table I!, Eq. ~6a! yields Em
'0.3 eV and Dm(210 °C)'531026 cm2 s21. Em is less
than the measured H diffusion activation energy of 0.48
in crystalline Si,12 but is comparable to theoretica
estimates.14–16

Figure 1 compares theT dependence of three diffusio
coefficients for H in silicon: the mobile H diffusion coeffi
cient in a-Si:H, DH in undopeda-Si:H,6,17 and the highest
measuredc-Si H diffusion coefficients.10,12 The extremely
low diffusion coefficient in a-Si:H is caused by trap
controlled diffusion;6 H spends only a tiny fraction of its
time in mobile configurations. Once emitted from the Si
trap, however, H is extremely mobile until it is retrapped
annihilation with a DB. The activation energy ofDH and a
measurement6 of the H emission time in D tracer diffusio
give an estimate ofEH'1.4 eV.

For trap-limited diffusion,11

NmDm5NHDH , ~7!

because the tiny minority of H that is mobile makes the o
contribution to DH . Equation ~7! is analogous to treating
trap-controlled transport by equating total current to fre
carrier current.18 Table I lists the measured value o

FIG. 1. Arrhenius plot of H diffusion coefficients in Si. Mobil
H is estimated as described in text,c-Si is taken from Refs. 10 and
11, anda-Si:H is taken from Ref. 6. Activation energies are ind
cated.
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DH(210 °C) and an extrapolated estimate ofDH(25 °C),
both taken from tracer diffusion data.6,17 By substituting the
values ofDH and Dm and NH5531021cm23 into Eq. ~7!,
we obtain the thermal mobile H densities~Table I!. Even at
210 °C,Nm is only about 1010cm23, far below spectroscopic
limits.

I next derive a useful expression forDH . At steady state,
Rth5Rdb, because capture to DB’s dominates over capt
by H collisions. From Eqs.~3! and ~4!,

Nm5~NHn th
0 /kdbNdb!e

2EH /kT. ~8!

SubstitutingNm from Eq. ~8! andkdb54paDm into Eq. ~7!,

DH5~n th
0 /4paNdb!e

2EH /kT. ~9!

Equation~9! can also be obtained directly from the we
known kinetic formula for diffusion,11

DH5nHl t
25Rthl t

2/NH . ~10!

Here,nH5Rth /NH is the emission rate per Si-H of mobile H
andl t is the mean distance thatHm travels before retrapping
Because a mobile H annihilates only when it meets a DB
takes roughlyNSi /Ndb random steps before retrapping.19 For
the random walk in three dimensions, it can be shown11 that

l t'~6aNdb!
21/2. ~11!

Substitutingl t @Eq. ~11!# and Rth @Eq. ~3!# into Eq. ~10!
yields DH5(nH

0 /6aNdb)exp(2EH /kT), identical to Eq.~9!
apart from a factor of roughly 2.

Street et al.20 observed that DH(240 °C) increases
roughly linearly withNdb as the dopant density is varied inn-
and p-type a-Si:H. This observation appeared to exclu
DH}1/Ndb @Eq. ~9!# and remained unexplained for a decad
However, their result is obtained by combining the pres
model of H diffusion with the observed thermal equilibriu
DB densities.

The formation energy~F! of charged DB’s ina-Si:H de-
pends on the electronic Fermi energy (Ef) because of charge
exchange with the Fermi sea.21 Pierz, Fuhs, and Mell22 ob-
served that

Ndb}euE02Ef u/kTe ~12!

in both n- andp-type material, showing that the defect de
sity does, in fact, equilibrate with the electronic Fermi e
ergy. Here,Te is an effective equilibration temperature o
about 350 °C inn-type and 200 °C inp-type samples,23 and
E0 is a near-midgap reference energy. Equation~12! sug-
gests thatF(Ef) has the expected forms21 Fn2Ef ~n type!
and Fp1Ef ~p type!, whereFn and Fp are reference ener
gies. Earlier publications20,24 showed that the reduction o
the H diffusion activation energy in dopeda-Si:H emerges
from assuming H emission@reaction~1!# is a step in H dif-
fusion and noting theEf dependence ofF.

Mobile H is either an analog of bond-centered H inc-Si
or a complex of a Si-H bond and an accompanying DB.1,25

Emission of a mobile H into transport@Eq. ~1!# therefore
requires the formation of two midgap levels, one at the ori
nal Si-H site and one that moves with Hm ~either a bond-
centered H or a DB level!. These defect levels are charged
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dopeda-Si:H. The formation energy of Hm is roughly the
formation energy of two charged defects, each of which
pends uponEf .

Assuming that the H emission is controlled by the form
tion energy, rather than by any energy barrier, the emiss
rate is

nH}e2uE02Ef u/kT. ~13!

The factor of 2 arises because two charged midgap def
are formed. Combining Eqs.~12! and ~13!,

nH}Ndb
2 ~14!

for T'Te , as during H diffusion measurements ina-Si:H.
Substituting Eqs.~11! and ~14! into Eq. ~10!,

DH}Ndb. ~15!

Equation~15! describes the results of Streetet al.20 for films
with varying Ef . However, if the DB density changes
constantEf , Eq. ~9! (DH}1/Nd) may apply.

Equation~9! supplies an expression for the diffusion pr
factor, DH

0 5n th
0 /4paNdb. D tracer emission rates measure6

by early-time diffusion between 180 °C and 300 °C gi
n th

0 510861 s21. H-for-D exchange emission of D is abou
100 times more likely than direct thermal emission of D26

therefore,n th
0 510661 s21 is a better estimate. Given the equ

librium value ofNdb'1016cm23 at these temperatures,27 Eq.
~9! yields DH

0'33102461 cm2 s21. This crude estimate is
consistent with measured values ofD0 in undopeda-Si:H,
which range from about 231023 cm2 s21 to
1022 cm2 s21.6,17,28

Equation~9! suggests that the prefactor ofDH varies in-
versely withNdb. There are about 100 times more DB’s
e
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doped than in undopeda-Si:H.22 The experimental estimate
of D0 in dopeda-Si:H vary widely, butD0 is clearly much
smaller than in undopeda-Si:H. In manyn-type samples,20

D05102561 cm2 s21, and in somep-type samples,28 D0
5331024 cm2 s21, from 1 to 3 orders of magnitude below
undoped samples.6,17,28 Thus, the decrease ofD0 in doped
samples is qualitatively consistent with Eq.~9!.

Mobile H annihilation at DB defects is a key element
the ‘‘H collision’’ model of metastability. This assumptio
leads to an expression forDH and ties together previousl
unexplained H diffusion phenomena. The linear depende
of DH on Ndb is understood by considering the effects ofEf
and Ndb on nH and l t . The magnitude of the Arrheniu
prefactor ofDH depends inversely onNdb and is therefore
several orders of magnitude smaller in doped than in
dopeda-Si:H. Remarkably, the mobile H diffusion coeffi
cient in a-Si:H is comparable to the H diffusion coefficien
in c-Si. However,DH in a-Si:H is reduced by 10–20 order
of magnitude, because nearly all H ina-Si:H is bound
deeply as Si-H. Even at 210 °C, there are only ab
1010cm23 mobile H ina-Si:H, well below spectroscopic de
tection limits. This paper, together with papers
light-induced1,2 and electron-beam-induced3 defect creation,
creates a consistent framework for understanding both H
fusion and metastability phenomena ina-Si:H.
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