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Hydrogen diffusion and mobile hydrogen in amorphous silicon
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Diffusion phenomena in hydrogenated amorphous silicaS(:H) are modeled assuming that mobile H
excited from Si-H bonds normally annihilates at dangling-bond defects, as in the “H collision” model of
light-induced metastability. This diffusion model explains the long-standing puzzle of the doping dependence
of the hydrogen diffusion coefficier®. It also yields the magnitudes of tH2, Arrhenius prefactors in
doped and undopeat Si:H. Mobile H diffuses over an energy barrier of about 0.3 eV; at room temperature, its
diffusion rate is slightly greater than that of H in crystalline [§0163-182609)02536-9

_Hy_drogenat_ed amorphous silicoa-Si:H) _semicondu_ctor_ Hp+ Hp— M (Si-H),, (2)
thin films require 2—15 at. % of H to passivate coordination ) o ) ] )
this H is implicated in light- and carrier-induced metastableciate {0 formM(Si-H),, a metastable two-H compléx.
degradation ofa-Si:H electronic properties. H diffusion is  1he Hy thermal emission ratem °s ™) for reaction(1)
also a crucial step in film formation by chemical vapor depo-iS given by
sition. Improved understanding of H i Si:H is therefore
central to solving the scientific and technological problems

presented by-Si:H. g3 ) where Ny is the immobile Si-H densityp, is a thermal
Recent publication's™ demonstrate that the “hydrogen gnission prefactor, anf,, is the energy of mobile H emis-

collision” model can explain qualitatively and quantitatively ¢ion from a Si-H bondN,, is constant because the mobile H

the main experimental observations of carrier-induced degé\ndM(Si—H)z densities are negligible at all times compared
radation (the Staebler-Wronski effebtin a-Si:H. For ex-

; . oo to the density of Si-H bonds. This simplified model neglects
ample, the model explains the creation kinetics for the proyhe gpserved difference between clustered and isolated H en-
duction of metastable threefold-coordinated Si danglingy;;onments. The trapping rate of mobile H to DB's by the
bond defects(DB’s) by continuous illuminatior;” pulsed  ayerse of reactiol) is

lasers? and electron beans.
In light-induced metastability, excitation of mobile H Rp= KN N (4)

from deep Si-H bonds is likely the first step of defect

formation?® Thermal or carrier-induced mobile H diffuses HereNg, is the dangling-bond densityy,, is the mobile H

extremely rapidly by hopping between sites which are analodensity, andcky, is a rate constartin cm®s ™).

gous to the Si-Si bond-center site ¢ASi. The H collision Becauser,,=Rg,/Ny, is the decay time of the mobile H

kinetic model$~2 require that mobile H normally annihilates population, Eq. (4) implies kgp=(7nNgy) ' For the

at DB’s to reform Si-H bonds. In this paper previously un- diffusion-limited capture processes applicable to mobife’H,

explained diffusion phenomena & Si:H are understood as Kg,=4maDy,, wherea=2.3X 10 8cm is the jump distance

consequences of this picture of H dynamics. | first describdoetween transport sites. Equating these expressiorigdor

the model of H diffusion implicit in the H collision model of

metastability, then estimate the mobile H diffusion coeffi- D= (4marmNg) . )

cient and density. | also derive an expression for the H dif-

fusion coefficient, solve the long-standing puzzle of the dop- Recent measurements at room temperature showrthat

ing dependence of the hydrogen diffusion coefficiedty, i roughly 4 ms foNg,~10'° cm°. Heck and Brarfz’ ob-

and compute the magnitude of tBe, prefactor in undoped tained this estimate from metastable degradatiola-&i:H

Rth: N H V?h67 EBn /kT, (3)

and dopeda-Si:H. by pulsed illumination with varying dark time between
The first step of the light-induced or thermal diffusion of PulSes. Substitution ofr, into Eg. (5) yields Dy(25°C)
H is the emission of mobile H () from Si-H bonds, leav- ~10 "cn?s %, as indicated in Table I. This estimate is two
ing behind an isolated DB, orders of magnitude greater than the H diffusion coefficient
Si-HDB+H (1) TABLE I. Estimates of the H diffusion coefficient, the mobile H
m-

diffusion coefficient, and the mobile H density at two temperatures.

This mobile H diffuses rapidly through-Si:H once it is
formed® Normally, H,, retraps to a DB by the reverse of
reaction (1), though not necessarily to the same DB from 25°cC 10728+1 1077 0.5x10t*1
which the H, was excited. Isolated DB’s created by reaction 210°c 2x10°18 6x10°6 1010
(1) become metastable only when

Dy (cnPs™h D, (cm?s™h N, (cm3)
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I T I T ] Dyx(210°C) and an extrapolated estimate Of(25°C),
10° = mobile Hin a-Si:H (0.3 eV) _ both taken from tracer diffusion dafa’ By substituting the
b T | values ofDy and D, and Ny,=5%x10?*cm 2 into Eq. (7),
e 0 R 1 we obtain the thermal mobile H densiti€Eable ). Even at
S10r c-Si (048 eV) ] 210 °C,N,, is only about 18°cm™3, far below spectroscopic
g L 1 limits.
g 1050 e N | next derive a useful expression fbry. At steady state,
3 - a-Si:H (1.4 eV) i Riw=Rgy,, because capture to DB’s dominates over capture
é C / ] by H collisions. From Eqs(3) and(4),
£ 102 . 0 —Ep /KT
a r 1 Nm= (Npvi/KapNgp e =H™ " (8
o L | | Tl SubstitutingN,,, from Eq. (8) andkq,=4maD,, into Eq.(7),
1.5 2.0 25 3.0
10007 Dy=(vY/4maNg,)e En/kT, 9

FIG. 1. Arrhenius plot of H diffusion coefficients in Si. Mobile Equation(9) can also be obtained directly from the well-
H is estimated as described in tegtSi is taken from Refs. 10 and  known kinetic formula for diffusiort!

11, anda-Si:H is taken from Ref. 6. Activation energies are indi-
cated. Dy=ruh2=R\Z/Ny. (10

(Dy) measured by Seager and AnderSdor crystalline Si  Here,vy=R/Nyy is the emission rate per Si-H of mobile H,

(c-Si). Either H diffusion inc-Si is slowed by H trapping or andA is the mean distance thiit;, travels before retrapping.

mobile H ina-Si:H diffuses rapidly along disorder-induced, Because a mobile H annihilates only when it meets a DB, it

low-barrier percolation paths. takes roughlyNg;/Ng, random steps before retrappitig=or
Mobile H diffusion can be assumed to follow the Arrhen- the random walk in three dimensions, it can be shwinat

ius form

A=~ (6aNg,) Y2 (11)
_ —Epy /KT
Dm(T)=Doe =, 63 gy pstituting, [Eq. (11)] and Ry, [Eq. (3)] into Eq. (10
with yields D= (v?/6aNg) exp(—Ey/kT), identical to Eq.(9)
) apart from a factor of roughly 2.
Do=2vea’l3. (6b) Street etal?® observed thatD(240°C) increases

Here E,, is a characteristic energy barrier to the mobile Hroughly linearly withNy, as the dopant density is variednn
diffusion between near-equivalent sites in Si-Si bongsis ~ and p-type a-Si:H. This observation appeared to exclude
the jump-attempt frequency, arfdis a factor applicable to  Dn*1/Ngy [Eq. (9)] and remained unexplained for a decade.
the four-coordinated Si latticE. Substituting vo~10'3s ™! However, their result is obtained by combining the present
anda into Eq. (6b), Do~5x 10 3cn?s %, roughly equal to model of H diffusion with the observed thermal equilibrium
the diffusion prefactor for H diffusion i-Si.*>**With the = DB densities.
estimate of D,,(25°C) (Table ), Eq. (68 yields E The formation energyF) of charged DB’s ina-Si:H de-
~0.3eV andD,,(210°C)=5x10"° cn?s ™. E,, is less pends on the electronic Fermi enerdy;) because of charge
than the measured H diffusion activation energy of 0.48 evexchange with the Fermi séaPierz, Fuhs, and Méf ob-
in crystalline Si*?> but is comparable to theoretical served that
estimateg?~1¢ o E kT

Figure 1 compares th& dependence of three diffusion Np €m0 = e (12
coefficients for H in silicon: the mobile H diffusion coeffi-
cient ina-Si:H, Dy, in undopeda-Si:H,®” and the highest
measuredc-Si H diffusion coefficient$?!? The extremely

low diffusion coefficient ina-Si:H is caused by trap- 5pout 350°C im-type and 200 °C imp-type sampleg? and
controlled diffusion® H spends only a tiny fraction of its E, is a near-midgap reference energy. Equatip®) sug-

time in mobile co_nfigurations. Onc_e emi.ttc.ad. from the Si'ngsts thaf (E;) has the expected forfisF ,— E; (n type
trap, however, H is extremely mobile until it is retrapped by ;g Fo+E; (p type), whereF, andF, are reference ener-

annihilation with a DB. The activation energy By and a  gies. Earlier publicatio?2* showed that the reduction of
measuremeftof the H emission time in D tracer diffusion the H diffusion activation energy in dopedSi:H emerges
give an estimate oEy~1.4 el\/. from assuming H emissiofreaction(1)] is a step in H dif-
For trap-limited diffusior, fusion and noting th&; dependence of.
N.D.=Nu.D @) Mobile H is either an analog of bond-centered HcirSi

m=me THEH or a complex of a Si-H bond and an accompanying ‘BB.
because the tiny minority of H that is mobile makes the onlyEmission of a mobile H into transpofEq. (1)] therefore
contribution toDy. Equation(7) is analogous to treating requires the formation of two midgap levels, one at the origi-
trap-controlled transport by equating total current to free-nal Si-H site and one that moves with,Heither a bond-
carrier current® Table | lists the measured value of centered H or a DB levil These defect levels are charged in

in both n- and p-type material, showing that the defect den-
sity does, in fact, equilibrate with the electronic Fermi en-
ergy. Here, T, is an effective equilibration temperature of



PRB 60 BRIEF REPORTS 7727

dopeda-Si:H. The formation energy of His roughly the doped than in undopeat Si:H.?2 The experimental estimates
formation energy of two charged defects, each of which deef D in dopeda-Si:H vary widely, butD, is clearly much
pends upork; . smaller than in undoped-Si:H. In manyn-type samgle%?
Assuming that the H emission is controlled by the forma-Do=10"°*'cn?s™%, and in somep-type sample$} D,
tion energy, rather than by any energy barrier, the emissiorF 3X 10 “cnf's %, from 1 to 3 orders of magnitude below
rate is undoped samplést’?8 Thus, the decrease @, in doped
samples is qualitatively consistent with HS).
vy oc 2 B0~ Efl/KT, (13 Mobile H annihilation at DB defects is a key element of

. . he “H collision” model of metastability. This assumption
The factor of 2 arises because two charged midgap defec : ; :
are formed. Combining Eq€12) and (13) iéads to an expression f@, and ties together previously

unexplained H diffusion phenomena. The linear dependence

N2 (14) of Dy on Ny, is understood by cons_idering the effectsEq_f
H* Ndp and Ng, on vy and A;. The magnitude of the Arrhenius
for T=T,, as during H diffusion measurementsanSi:H. prefactor ofDy depends inversely oMy, and is therefore
Substituting Eqs(11) and (14) into Eq. (10), several orders of magnitude smaller in doped than in un-
dopeda-Si:H. Remarkably, the mobile H diffusion coeffi-
Dy Nap. (19 cient ina-Si:H is comparable to the H diffusion coefficient

Equation(15) describes the results of Stresital?° for films N ¢-Si. HoweverDy, in a-Si:H is reduced by 1020 orders

with varying E;. However, if the DB density changes at ©f magnitude, because nearly all H &-Si:H is bound

constantg;, Eq.(9) (Dyx1/Ng) may apply. deeply as Si-H. Even at 210°C, there are only about
Equation(9) supplies an expression for the diffusion pre- 10'%cm™* mobile H ina-Si:H, well below spectroscopic de-

factor, DO=12/4raNy,. D tracer emission rates meastfted t€ction limits. This paper, together with papers on
by early-time diffusion between 180°C and 300°C givelight-induced"2 and electron-beam-inducédefect creation,

V?h:lOBtlsfl_ H-for-D exchange emission of D is about creates a consistent framework for understanding both H dif-

100 times more likely than direct thermal emission ofD; fusion and metastability phenomenaarSi:H.

therefore,vf,=10°"'s " is a better estimate. Given the equi- | thank Panos Tzanetakis for helpful discussions and for
librium value ofNg,~10"°cm™ at these temperaturé5Eq.  providing an excellent scientific environment at the Univer-
(9) yields D~3x 10 ***cn?s . This crude estimate is sity of Crete. Eric Schiff and Richard Crandall provided use-
consistent with measured values @f, in undopeda-Si:H, ful readings of the manuscript. The research was largely sup-
which range from about 210 3cn’s' to ported by the U.S. DOE under Contract No. DE-AC36-
1072 cnPs 161728 83CH10093. The Fulbright Foundation and the Foundation
Equation(9) suggests that the prefactor bfy varies in-  of Research and Technology Hell@ORTH) in Greece sup-

versely withNgy,. There are about 100 times more DB’s in plied additional financial support.
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