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We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters,
long-range interactions, and global constrais., a fixed value of a total “charge’'to address the physics
of stripe phases in underdoped highand related materials. For a local free energy limited to quadratic terms
of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable.
“Stripe” or other nonuniform phases can be stabilized by long-range forces, but can only have nontopological
(in-phasg¢ domain walls where the components of the antiferromagnetic order parameter never change sign,
and the periods of charge and spin-density waves coincideaiitighasedomain walls observed experimen-
tally require physics on an intermediate length scale, and they are absent from a model that involves only
long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain
walls always attract at large distances; i.e., there is a ubiquitous tendency to phase separation at small doping.
The implications for the phase diagram of underdoped cuprates are disd&363-1829)03734-(

[. INTRODUCTION Landau free energy with competing order parameters, long-
range interactions, and global constraireg., a fixed value
One of the fundamental issues in the theory of highlyof a total “charge,” as defined in Eq2)] to address the
correlated solids is the nature of the ground-state phases prphysics of inhomogeneousstripe” ) phases. Specifically, a
duced when a small concentrationof “doped holes” is  stripe phase is a unidirectional density wave which, in the
introduced into a Mott insulator, particularly an antiferro- case of a doped antiferromagnet, consists of a coupled spin-
magnet. It is now establish&d that, at small enougk and ~ density wave(SDW) and charge-density wavé€CDW). At
in the absence of long-range Coulomb interactions, a dopedery dilute doping, a stripe phase consists of an ordered array
antiferromagnet generally phase separates into a hole-richf far-separated self-localized structures or individual stripes.
and a hole-free phase; i.e., the antiferromagnetic state is dé&t moderate doping levels, where the spacing between
stroyed via a first-order phase transition. In the presence ditripes is comparable to their width, the structures are best
weak, long-range Coulomb interactions that frustrate this lodescribed as nearly harmonic density waves.
cal tendency to phase separation, the two-phase region is Zachar and two of ¢ have considered the density-wave
replaced by states which are inhomogeneous on intermedialtigit of a Landau theory of coupled CDW and SDW order,
length scale$;® and especially “stripe phases,” which have each with a fixed wave vector, gear a transition to a disor-
now been observed in a wide variety of oxide materiald. dered state, which occurs as the temperature or doping is
In various quasi-two-dimensional cuprate high-temperatur@aried. The existence of a cubic term in the Landau free
superconductors and the isostructural nickelates the stripenergy coupling these two order parameters drives the period
are observeld to be “topological,” in the sense that the of the SDW to be twice that of the CDW, and the absence of
charge is concentrated along one-dimensional ‘“rivers”’any net AF ordering is equivalent to the statement that the
which are at the same time antiphase domain walls in thetripes are topological. By contrast, as shown in Appendix A,
antiferromagneti¢AF) order. In the nearly cubic manganate the same sort of term in the Landau theory of the transition
colossal magnetoresistance mateffdlgshe “stripes” are  between a homogeneous ordered antiferromagnetic phase
two-dimensional sheets of charge which are nontopologicaland a stripe ordered phase produces a state in which teke Ne
(In some sense, each sheet can be thought of as a dimer wiagnetizatiordoes nothange its sign between the domains;
topological stripes:'3 i.e., the stripes are nontopological.
Here we study the properties of a general Ginzburg- To elucidate the circumstances in which arrays of stripes
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can be thermodynamically stable, and what determines thetions between domain walls or other defects.
character(i.e., topological vs nontopological, collinear vs In Sec. IV we analyze the local and global stability of
spira) we shall concentrate on the dilute limit, where the nonuniform ground-state configurations. For systems with a
spacing between stripes is large, and the stripes are highglobal rotational symmetry of the order parameter, we show
anharmonic structures. Specifically, we study the extremalhat the antiphase domain walls are locally unstable to “un-
states of a general Ginzburg-Landau free energy functiondwisting,” even in the presence of long-range forces. If the
for coupled order parameters as a function of the averagetational symmetry is broken, these domain walls can be
charge density. locally stable, but they are not necessarily allowed in any
Whenever the order parameter profiles sievly varying ground-state configuration. We establish a corresponding

everywhereso that only the lowest-orddguadrati¢ terms sufﬁci_ency criterion_ for global instabilityor such a_ntiphase
in the gradient expansion of the free energy are necessa main wallf,rz]and |(é|jen|tnfy thle qorrespondmg point symme-
[Egs. (1) and(4)], we show the following. tfy groups of the u?] eryr|]ng att!ccra]. .

(1) In the absence of long-range interactions, only spa- !N S€c. V, we show that antiphase domain walls can be

tially uniform and phase-separatétivo-phase coexistenge §table even in the groqnd state, if the free-energy functional
states are globally stable. includes higher-derivative terms or is defined on the lattice.

(2) “Stripe” or other nonuniform phases can be stabilized We discuss a sufficiency criterion for local stability of the

by long-range forces, but they are nontopological in thesolutions, and illustrate the effect of stabilization of an-

sense that any componeunt of the order parameter has a tiphase domain Wa_"S n part|cular.examplles. We aI;o show
uniform sign as long as the free-energy density is an eveHwat, for systems with short-range interactions and mixed AF
function of u,. [We indicate all point symmetry groups and charged order parameters, the domain walls always at-

which satisfy this condition for a magnetipseudovector tract at _Iarge dlstances,_whlch indicates a tendency _to phase
order parametef separation at small doping. If long-range Coulomb interac-

(3) Whenever there is a global rotational symmetry of thet.ions are inclu.ded as well, inhomqgeneogs pha_ses are stabi-
lized. Depending on the details, either wide stripes are pro-

order parameter, any localized configuration which interpo- ) ; .
lates between two distinct asymptotic ground stdéeg., an duced via Coulomb-frustrated phase separatioor certain

antiphase domain walls locally unstable to untwisting. dense stripe phases are stabilized, in agreement with the ar-

The possibilities become richer in cases in which higher-gur\?ventS of IHgIIbErg a?ﬂ Manous(;iﬁ?s“. h L
order derivative terms in the Ginzburg-Landau free energy or e conclude that althougtavoided phase separation is

lattice effects determine an additional length scale—the Corgmqunous, espgmally at small_doping, an'upha_se domain
size of a localized defedf. When there is no frustration, walls are not universal in the ground state, even in the pres-

topological stripes are still forbidden in the ground state.eﬂce. of Iong-range dfo:cesi E_T,jrtam t%{pﬁs of jhort-_dlstar;lce
However, frustration, such as competing first- and secon physu?s are ffreq{glrel 0 ds'? iz€ an dlpl ase otm_aln wa SII
neighbor interactions in a lattice model or opposite-sign erefore, efiective long-distanceé models are not, in general,

terms in the gradient expansion of the Ginzburg-Landaf“ﬁiqem for a successfulldescription of the stripe morphol-
model(i.e., below a Lifshitz point can stabilize topological ogy in the cuprates and nickelates.
collinear domain walls. In the context of doped antiferro-
magnets, this kind of frustration can arise as a resu!t of the Il. BACKGROUND
competition between the tendency of the Coulomb interac-
tion to localize the charges and the tendency of electrons to The undoped parent compounds of the highmaterials
guantum delocalize. However, even in this case, thénave one electron per unit lattice cell, and, if it were not for
asymptotic interaction between defects is still attractive athe electron-electron interactions, one would expect them to
large distances, so long-range forces are necessary to supe metallic. Instead, strong Coulomb repulsion renders the
press phase separation in the dilute limit. system a Mott insulator and results in an AF ground state
In other words, topological stripes are a consequence ofiith a doubled unit cell. Unlike usual band insulators, such
physics on an intermediate length scale, and they do natorrelated insulatorsdo not conduct even when weakly
appear in a theory that considers only long-distance or lowedoped. The short-distance physics of the doped system,
energy physics. dominated by strong electron-electron repulsion, is believed
The plan of this paper is as follows. In Sec. Il we reviewto be captured in the largd- Hubbard model, thet-J
some of the theoretical and experimental background. Spenodell’ or related model&®
cifically, we discuss some of the early theoretical work pre- Unfortunately, to this time, none of these models has been
dicting stripe phases, the theoretical controversies concersolved in anything resembling a physical regime of param-
ing the range of phase separation in microscopic modelsters. One well-established aspect is the tendency of these
such as thé-J model, and some of the experimental factsmodels to phase separatidr?>'~%in a substantial range of
concerning stripe phases in doped antiferromagnetic insulggarameters. In the presence of the long-range Coulomb re-
tors. pulsion phase separation is, of course, impossible, unless the
In Sec. lll we perform a scaling analysis of possible non-dopants are mobile. Instead, the system forms a charge-
uniform configurations which minimize a generalized inhomogeneous state, in which hole-rich regions exist in an
Ginzburg-Landau functional, establish the analog of theantiferromagnetic backgroudd. Within this picture, it is
virial theorem which relates the long-distance Coulomb in-natural to interpret the stripe phases observed in various
teraction to the gradient energies of the system, and derivdoped antiferromagnets as being a consequence of Coulomb-
the universal asymptotic form of the large-distance interacfrustrated electronic phase separatisometimes called mi-
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crophase separation Such stripe phases can be either me-fluctuations in high¥, materials has also been recently pro-
tallic or insulating, depending on the character of the holevided by neutron scattering studt®®f spin fluctuations in
rich phasé:??~%° However, the precise range of parametersYBa,Cu;O;_, and B,S,LCaCy0Og, and indirect evidence of
in which phase separation occurs in systems with short-rangde same structures in Br,CaCyOg has been obtained
interactions and even the physical reasons for the stability ofrom angle-resolved photoemission spectroscopy
antiphase domain walls in systems with Heisenberg symmeARPES.*? Indirect evidence that static stripe structures may
try have not been fully elucidated. Moreover, phase separaalso be more common than previously appreciated can be
tion, especially at small doping, is notoriously hard to seededuced fromuSR measuremerftsand nuclear quadrupole
numerically; even for the most studi¢el model, some nu- resonancéNQR) measurements.
merical studies have been interpreted as indicativ&cf*’ The existence of stripe phases was first established in the
the universality of phase separation in the limit of small dop-nickelates (La_,SiNiO,, ;) by direct electroff and
ing, while others purport to indicate the existence of a criticalneutrort’~*° scattering. But the ubiquity of stripe phases in
ratio of J/t below which phase separation does notdoped antiferromagnets has become clear only in the last
occur?®242° couple of years of intensive experimental inquiry. Stripe or-
For the case of doped AFs with unbroken spin-rotationaer in the insulating, nearly cubic manganates has been viv-
invariance this controversy was resolved by Pryadko, Kivelidly visualized by electron diffraction studi@sHere the
son, and Honé.It was shown that spin-wave exchange al- charge order is strongly coupled to a lattiGahn-Tellex
ways causes an attraction between localized holes or holgistortion, which makes the stripes more classical and more
clusters, similar to the well-known Casimir efféCtAt large  strongly ordered; the stripes here are nontopological in the
distances this attraction falls off as a power law, and theresense that the CDW period is equal to the SDW period. The
fore it is always stronger then the exponentially decreasingeal-space images constructed from the electron diffraction
forces present in the system with short-range interactiongesults make it clear that each nontopological stripe can be
This proves that any phase with static charge order is thewiewed as a pair of close-by topological stripes or, equiva-
modynamically unstable at small enough doping. Howeverlently, that the topological stripe array has been dimerized.
the absolute magnitude of this attractive force is very small, |n all cases in the cuprates and nickelates, where the in-
and even a relatively weak easy-axis anisotrgfowed by  formation is available, the measured positions of the incom-
the symmetry in planar materiglsan provide a spin-wave mensurate peaks indicate that the period of spin modulation
gap sufficient to suppress this effect. is twice that of the charge modulation. This and other data
Static incommensurate magnetic and charge order in theupport the mod&?>! of charged holes concentrated on the
cuprate high-temperature  superconductors was firséntiphase walls between neighboring antiferromagnetic do-
discovere® in  Lays ,Ndy,SLCuO,. 5. Recently, mains. The effect of stabilization of such antiphase domain
x-ray*'~% diffraction measurements have confirmed the exwalls, or stripes, by the addition of charged holes to a corre-
istence of charge order. Moreover, in this material, statidated insulator, was nam&tbpological doping
stripe order coexist§* with superconductivity, albeit with But while the existence of stripe phases in doped antifer-
suppressed, . Additional indirect information about the fre- romagnets is clearly established, and there is growing evi-
quency range of magnetic correlations was provided by locafience that it is a general phenomenon, there is less agree-
probes, such as muon spin resonangeSR).**~ In this  ment on the origins of the stripes and their implications. The
material a structural phase transition to a low-temperaturexistence of stripe phases consisting of arrays of antiphase
tetragonal(LTT) phase substantially stabilizes the stripe or-domain walls in doped antiferromagnets was, in fact, pre-
der, making it particularly easy to detect, but, at the samelicted still earlier than the wofR on Coulomb frustrated
time, suppresses the superconducting transition temperaturgshase separation on the basis of Hartree-Fock mean-field
Indeed, in closely related materials (e.g., theory®®*The Hartree-Fock stripes always have a commen-
Lay 4 xNdy ¢S, Cu Oy), static stripe order is observed, but no surate density of holes corresponding to one hole per site
evidence of superconductivity has been fodht? However,  along the length of the stripes, and are always insulating; a
more recently, static stripe order has been detétiedthe  gap equal to a substantial fraction of the insulating gap opens
more widely studied high-temperature superconductorst the transition to the Hartree-Fock stripe phase. These are

La,_,SrCuO, with 0.05<x<0.13 and® “stage-IV” generalizations of similar calculations in one dimen3idn
La,CuQ,, s, in which the transition temperaturd, the higher-dimensional case, and are closely related to
=42 K is not suppressed. calculations® which sought to explain the existence of strong

Moreover, evidence has mounted that in a still broadeincommensurate peaks in the magnetic susceptibility in
class of high-temperature superconduct@erhaps even all terms of Fermi surface nesting; the stripe phase in Hartree-
high-temperature superconductostripe order is nearly con- Fock theory is directly a consequence of that nestinn
densed in the sense that there are substantial stripelike cadetail, these approaches do not account for the behavior of
relations which persist at low temperatures over long interthe cuprates, in which the density of holes along a stripe
vals of space and time. Slow dynamically fluctuatingvaries® continuously as a function of and the stripe phases
incommensurate magnetic correlations were observed sonae conducting or superconducting, not insulating. Moreover,
time agd! by inelastic neutron scattering in ,aSr,CuQ,.  the evidence from ARPES is that there are no sharply de-
That these incommensurate structures are simply fluctuatinined quasiparticles in the normal state of the cupraftés.
stripes is now clear from a compariséri of the fluctuations  the La-Sr-Cu-O family of materials, in which the evidence of
in this material and its ordered cousin,lg,Nd; sSr,Cu O. stripe order and stripe fluctuations is strongest, there is sim-
Evidence supporting the universality of incommensurateply no vestige of a quasiparticle in the region of momentum



7544 PRYADKO, KIVELSON, EMERY, BAZALIY, AND DEMLER PRB 60

space where the nested Fermi surface is supposed to Bccurtated by their “relevance” in the sense of an appropriate

However, these mean-fieldMF) Hartree-Fock calculations renormalization group flow. Similarly, in high-energy

already reflected the tenderiéyof the holes to be collec- application£®-®2 only renormalizable potentials are usually

tively self-trapped in regions of suppressed antiferromageonsidered. Here, we shall try to make as general an analysis

netism, a close relative of phase separation. Moreover, thegs possible, and only assume that the positive susceptibilities

correctly identify the microscopic physics, the transverse ki-y;(u) and the potential energy(u), which is bounded from

netic energy of the holes, which gives rise to the antiphaséelow, are smooth enough functions of their arguments, so

character of the stripes. that a lowest-energy configuration always exists. Such a gen-
The unreliability of the Hartree-Fock approximation for eralization of the Ginzburg-Landau free-energy functional is

determining the properties of domain walls in strongly necessary because, as we shall show, f@ris not suffi-

coupled systems was also pointed out by Nayak andient for describing the stripe phases of interest, indepen-

Wilczek?® They analyzed the energy per electron on a pardently of the specific form of the local potentil

tially filled stripe, which, ignoring the effect of antiferromag-  The first statement is that the ground state of the model

netic surrounding, was approximated as the sum of the end), possibly with one or more constraints of the form

ergy of broken AF bonds and the kinetic energy of one-

dimensional electrons in the limiU—«. Even in the _ D

absence of long-range interactions, the model does not de- Q_f d"x p(u), 2

velop a gap, and the value of the optimal filling of the stripes, . ) . .
was shown to vary continuously with parameters. Therefore!S €ither uniform or phase separated in the thermodynamic
the stripes in this approximation are conducting and not inlIMit; the energy of any mixed (nonuniform) phase can al-

sulating as follows from the Hartree-Fock analysis. ways be lowered in an infinite systeffo prove this, let us

An alternative phenomenology of highs materials was imagine that it We(rlt)e not the_ case and that some nonuniform
suggested by Zharf§,who emphasized the competition be- configurationu=u*=(x) (which, generally, we can assume
tween the superconducting and AF order parameters. In th@ P€ periodi¢ minimizes the free-energy densify= 7/},
vicinity of a (hypothetical SO(5)-symmetric point, where and also, if necessary, satisfies the constraint for the charge
these two order parameters form a five-dimensional vector oflensityp= Q/Q. Then the dilated fieldsi™=u®)(\ x) sat-
“superspin,” the effective free energy can be written in gen-isfy the same constraints, while the corresponding energy
eral Ginzburg-Landau form, with relatively small symmetry density
breaking terms. An analysisof nonuniform MF solutions in
such a model(assuming that the magnitude of the five- fA=NKO+11), €)
dimensional ‘“superspin” remains constanivas recently
performed by Veilletteet al. In the absence of the long-range
Coulomb interaction, and at small enough doping, a Maxwel
construction was used to show that the system phase sepa- dPx dPx
rates into antiferromagnetic and superconducting regions. K(l)sf > Xi(VUi)ZF, H(l)sf V(u) 5
Turning on the long-distance Coulomb interaction stabilizes :
a variety of nonuniform droplet ar_1d stripe pha_ses. Surprisgyaluated at the configuratian=u®(x), can be reduced by
ingly (at the time, the expected antiphase domain walls Wer€jecreasing the scale paramekerwhich is equivalent to a

not discovered among the numerical solutions. The signs of yiform dilation of the original field configuration. This con-
both AF and SC order parameters wairraysuniform, al-  yaicts the original assumption, and we conclude that no

though their magnitude changed substantially. It is apparent,,cp coordinate-dependent configuration can minimize the
that the absence of antiphase domain walls is an artifact qinergy of the system.

the model, but the specific reason for this feature was not ;g important to emphasize that the statement proved

elucidated. above is only correct in the thermodynamic limit. For a pe-
riodic solution in afinite system the scaling parametercan
ll. MIXED PHASE OR PHASE SEPARATION take only discrete values, so that at least one period would fit
the system size. Further energy-density reduction is possible
by doubling both the system size and the total charge, and

The mean-field approach typically works well if the im- then performing an additional rescaling. Such scaling also
portant degrees of freedom vary slowly in time and space. Imas a direct implication for possible numerical studies of this
such cases one can write an effective free energy in generadnd related models: becauzéK P~ 1/L2, the finite-size
ized Ginzburg-Landau form correction to the free energy and other parameters will be
likely to fall off as a power of the system size.

At first sight it appears that the existence of stable kinks
for any symmetric double-well potential contradicts this
statement. We must point out, however, that only a single-
which retains only the leadingquadrati¢ terms in the ex- kink solution is topologically stable; in any configuration
pansion over the gradients of the order paramaierdJsu-  with periodic boundary conditions one has an equal number
ally, such a form of the free enerfwith y=const and poly- of kinks and antikinks, and the energy can be lowered by
nomial V(u)] is used in the vicinity of a second-order phaseannihilating the pairs. For periodic potentials, multikink con-
transition, where the selection of the important terms is dicfigurations may be topologically stable, as long as the total

written here in terms of the original “kinetic” and “poten-
fial” energy densities

A. General scaling arguments

fFf dDX(Z Dxi(w)(Vup)?]+V(u) D
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number of kinks is fixed by the boundary conditions. With uniform dilations we considered so far. The relevant elastic-
free or periodic boundary conditions, however, such exity modulus will obviously be defined by the interaction be-
tremal solutions never represent the ground state of the sysaeen the constituent defects.
tem. In this section we discuss how the asymptotic form of the
Similarly, one can create stablenontopological interaction between widely separated solitons can be found
soliton$?~%"by minimizing the energy of the system with an by a simple linear analysis, even though the core structure of
imposedfinite-charge as opposed to finite-charge-density  the solitons themselves is governed by a complicated set of
constraint. In this case the amount of charge itself is used taonlinear differential equations. Qualitatively, this is so be-
introduce an additional length scale which fixes the size otause away from their cores solitons asymptotically ap-
the soliton, and the question about phase separation does mbach one of the uniform “vacuum” configurations, and the
arise. The solution of this apparent paradox is that, if thanteraction between two solitons, placed sufficiently far
thermodynamic limit is defined correctly, both the eneftly  apart, can depend only on the form of this asymptotic falloff.
and the conserved chard@®) will turn out to be infinite(or  Indeed, the mutual interaction can be interpreted as a force
zerg, and they cannot be used to define a length scale. Onlgxerted on the core of either soliton in the presence of the
in this case the correct procedure is to minimize the finiteinfinitesimal field created by the other; therefore, this inter-
densityof the system’s free energy, at a given charge densityaction cannot depend on the internal structure of either soli-
Let us now consider how the scaling in E8) is modified  ton as long as the large-distance asymptotic form remains the

in the presence of a long-range interaction same.
This implies that the interaction between individual soli-
T VY tons must be totally determined by the region of overlapping
u(x u(x
]—'C:f dPx de’[p( ) p][p,( ) p], (4)  tails. In this region the amplitude of the perturbation of the
[x—=x"|7 vacuum is small, and the effective free energy can be linear-

ized. After this step, the linearized problem reduces to a
static Schrdinger equation in an external potential, and the
interaction energy can be found by standard metH8ds.

As an illustration’* consider a one-dimensionaD& 1)
ee energy of the forn{1), with constant susceptibilities
xi=1/2, and the potentiaV(u)=0 reaching global minima
only atu.==*m, V(xm)=0. In the absence of any special
gseilmmetries, there exists only on@p to translations
minimal-energy trajectory®(x) interpolating between these
minima, u’(+%)=*+m. With this trajectory, we can also
construct approximate double-kink trajectories of the form

where y<D for convergence. Obviously, in this case the
total charge constrair(®) can be dropped, because the inte-
gration in Eq.(4) will diverge in large systems if the screen-
ing is not perfect, no matter how weak the interaction is.r
Evaluating the free-energy density along the dilated ﬁeldf
configurationu®™ (which, of course, must have the correct
value of the average charge density, so that the long-ran
part of the energy is finijewe obtain, instead of Eq3),

fr=N2KO+ IO 4\ ~Prry) (5)

where V(1) is the long-range energf4) per unit volume, U(X) = WO(X—X;) + U%(Xp— X) —m, )
evaluated for the field configuration™. The integral(4) _ o _
converges iD — >0, and the free-energy density has a  and write the corresponding interaction energy as

minimum at\ =1 if SF=Flu;+u,—m]—Fu]— Fu,]
2K=(D—y)V. ©) f

dx{ujus+V(u;+u,—m)—V(uy) —V(uy)],
This expression is analogous to the virial theot&for the o

considered class of models. It is the manifestation of thQ/vhereuLz: uo(ixixl,z), and the prime denotes the spatial
equilibrium between competing gradient terms, which tencyerivative. Let us choose a poikg somewhere between the
to dilate the system, and the long-range forces, which tend tBositions of the kinksx; <xo<x,. Then, in the left domain
decrease the scale of charge variations. As a result of thig<y  the field Su;=u,—m is small and can be considered
competition, an additional length scale is introduced into theys a small perturbation, while in the regiamx, the field

problem, and periodic field configurations can be sy,=u,—m is small. Keeping only the terms of linear order
Despite its generality, the scaling technique, considered

stabilized?? in each domain, we obtain

above, is limited to continuous models. Furthermore, it is not w0

sensitive enough for analyzing the stability of more general +j dx{1<2}, (8
models, where the existence of mixed phases may depend on %o

actual parameters. Indeed, if the shape of individual solitong, just

like or instantonlike defects for a given model is fixed at

some short scale, the mixed phase can often be understood as SF=u}(Up—m)—u(Uy—mM)|y—y (9)

a lattice of such relatively weakly coupled defects. The sta- 0

bility of such a phase will be defined by soundlike displace-where the bulk terms disappear to this order because each
ment modes, which are likely to be much softer than thefield u; and u, obeys the Euler-Lagrange extremum equa-

. Xo
B. Interaction of defects 5]_-:J' dxl(u15u1)1+ Suy

J
—uj+ %V(Ul)
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tions exactly. Despite appearances, the interaction erygy tion s. Even if the full spin-rotational symmetry is broken,

is actually independent of the choice of the poiptas long  the susceptibilitiey; , the potentiaV, and the charge density

as it is located far enough from the cores of the kinks, so tha can only depend on the bilinear combinaticgs; of the

the linearized Euler-Lagrange equations apply. magnetization components. The free energy will depend only
Equation(9) relates the long-distance interaction betweengn the squares? as long as the mixed combinations with

the kink and the antikink with their asymptotic form at large +j are prohibited by the symmetry, as discussed in Sec.
distances. For multicomponent order parameters the, c.

asymptotic properties may vary. However, in the particular
case of antisymmetric Kkinksig(x)=—ug(—Xx), we can
choose the separation poixg= (X,+ X1)/2 exactly midway
between the kinks, and the interaction energy can be rewrit- Let us first consider a system with a free energy of the
ten as form (1), (4), with an additional rotational symmetry be-
tween m=2 components of the order parameter

SF=2u{(Ug—M)|x=y =(S1, .. ,Sm, b1, - - . ). Forclarity, and having in mind a
particular application to magnets, we shall call these the
components of &generalizedl spin magnetizatiors, and as-
sume that both local and nonlocal parts of the free energy
can only depenchnalytically on the squares’=s’ of this

whereL =x, ~x, Is the distance between the kinks, and thevector while the dependence on the remaining components
negative sign of the derivative corresponds to a positive ' P 9 P

guantity asymptotically vanishing far to the right of the kink. ¢i remains generic,
The obtained sign corresponds to an attraction at large dis- _ _
tances. The attraction is also expected for a pair of symmet- pW=p(S i1, ..), VW=V(S i),

ric nontopological solitonin this case the same formula |n the presence of suaontinuousspin-rotational symmetry,
with an appropriaten applies. Of course, for the case of a the gradient terms in the free ener@) tend to align the

single-component order parameter:u, this result is well — direction of the magnetizatios. Indeed, the rotationally
known. Even in a more general case, we could expect to findymmetric gradient term can be written as

the attraction between such defects, as we already know that

inhomogeneous configurations are always thermodynami- 2 2_ 2 2. Q2/v a2

cally unstable in the systeifi), (2), unless there are topo- Xs(S7 ¢) (V"= xs(S", h)[(VE+S(Ve)T], (10
logical reasons for the stability. The effect of topological
stability is also easy to understand here: equally charge
kinks [which are allowed, for example, if the potenti&{u) . LA -
is periodid always repel. In accordance with Sec. Ill A, such figuration (e const) can be lowered by aligning the magne-

. Lo 1io o dtization along a common direction, which eliminates the sec-
kinks would be pushed infinitely far apart unless stabilized ’
by the boundarypconditions. Y P ond term on the right-hand sidé&RHS) of Eq. (10). The

A similar calculation can be repeated for any combinationot@tional stiffness vanishes 8=0 (nodal points in one-

of spatially separated defects, in arbitrary dimension. In eydimensional case or nodal hypersurfacesbor 1), and the

ery case the interaction in the lowest order can be split into §1€r9y does not depend on the relative orientation of the
sum of pairwise terms which are defined by the gradienyectorssm the regions separated by such nodes. In any case,
terms in the original free energy. one can selecs;==*S, 5=0 for I>1; i.e., the minimal

configuration can be always chosen to have only one com-
ponent, although the sign of this component is not fixed at
this point. We shall show below, however, that the energy of
any such configuration with a nodelosed nodal surface for
So far we mostly considered global properties of the conD>1) can be continuously lowered by introducing an ap-
figurations minimizing the free energy of the general formpropriately chosen perturbation in the orthogonal direction.
(1). For thislocal functional we saw that nonuniform states Such instability to local “untwisting™ is well known for one-
are unstable to phase separation, and thus indicated the Calimensional systems; it implies that only uniformly oriented
lomb repulsion as an important component of any continuou§pin configurations can minimize the free energy in the pres-
mean-field model designed to describe the observed incon®&nce of a rotational symmetry.
mensurate structures in high- materials. Now let us con- ~ To analyze the “untwisting” instability in general, con-
centrate on thdocal structure of nonuniform configurations Sider a spin configuratios=(s,,0) with a single nonzero
minimizing the free energyl), (4). Specifically, we shall componentsy(x) which is presumed to have a nogeodal
attempt to answer the question whether a component of theurface forD>1). The local instability of such configura-
order parameter can change its sign in a thermodynamicalljons can be demonstrated by introducing an orthogonal per-
stable statéground-state configuration turbations;=(0,s;). The relevant part of the perturbed free
For this question to make sense, the zero value must hawnergy functionall) can be written as
an unambiguous meaning. This is guaranteed if the free en-
ergy depends only on the square of the order parameter. For
example, in antiferromagnets time-reversal symmetry as- f:f d®x{ x(S?X)[(Vsg)*+ (Vs1)?]+ V(S %)},
sures that this is the case for the pseudovector of magnetiza- (11

A. Continuous symmetry and the untwisting instability

d 2
:&(Uo_m) lx=1/2<0,

heree=9/Sis a unit vector in the direction af Obviously,
any region where&s#0, the energy of a “twisted” con-

IV. SYMMETRY AND THE STRUCTURE
OF DOMAIN WALLS
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whereS?=s3+s?, and the additional coordinate dependence o ) ) )
is introduced to account for a possible presence of the re- ]‘—:f d=x{x(s%x)(Vs)+V(s%,x)},
maining nonuniform components of the order parameter.
Here we only consider a simpler case in which the chargdS in a one-to-one correspondengodulo the overall rota-
densityp (and, consequently, the long-range Coulomb inter-tion) with the ground state of the (W)-symmetric extended
action is independent of the spin configuration; this is gen-functional
eralized in Appendix C.
To quadratic ord_er in the perturbatisp the increment of }-Z:f dPx{x(2,X)(V9)2+ V(2,%)},
the free energyll) is

where the fields=(s;,s,) has two components. Because of
5}":J {x0(X)(Vs1)?+ Gy(x) s2}dPx, the untwisting instability, the second functional has a node-
less ground-state configuration; our mapping indicates that

where the effective susceptibilityo(x)=yx(s2,x)>0 is SO does the first. _ .
positive everywhere, the effective potentiaGy(x) We have proved a version of the no-node theorem, i.e.,
EX’(S(Z),X)(VSO)2+V’(S(2,,X) is continuous and limited the statement _that_ any componesncpf_the orde_r parameter
from below, and primes denote derivatives with respect tgPreserves its sign in the global!y mlnllmal conflgurapqmo-

S2. The local stability of the configuraticsy(x) requires that V'de_d that the pot_en'ual enerdjncluding the Iong-d|stancg
the functional 5 be non-negative; equivalently, the self- part; see Appendix Cdepends only on the square of this

A
adjoint eigenvalue problem component.

—V(xo(X)Ve)+Go(X)o=A¢ (12) C. Group-theoretical analysis: Effects of “spin-orbit
) ) _ ] coupling”
should have no negative eigenvalues. Using the spin- L . . . .
rotational symmetry(or directly, by comparing with the The situation of perfect Ising anisotropy considered in the

Euler-Lagrange equation fas,), it is easy to see that the previous section is, of course, an idealized case. In real sys-
function o(X)=consiksy(x) satisfies Eq.(12) with zero tems the anisotropy can be qwte_sm.all, so that all three com-
eigenvalueA,=0. It is a well-known fact about the self- ponentslsx,sy,sz) of the magnetization _pseudovector must
conjugate eigenvalue problefd?) that its ground state is be conS|dered_. Nevertheless, it is possible to shpw that the
nondegenerate and does not change Gdgince the func- same conclusion about the absence of topologlc'al domaln
tion @o(X) does change its sign by assumption, it cannot beyvall_s holds as long as the symmetry of the underlying lattice
the ground-state eigenfunction, and, therefore, there must B& high enough. :

at least one unstable directign_ ;(x) which corresponds to Generally, bgcause of the global time- reversal symmetry,
a lower eigenvalue\ ,<A,=0. Therefore, the energy of the local potential energy can be an arbitrary function of all

the original spin configuratiosy(x),0) can be continuously bilinear combinations;s; , i, ] —XY,.Z. Expanding in powers
lowered by the orthogonal perturbations, = const of such products, we can also write any such function as
X (0,p_1(x)), and we conclude thatnly a uniformly ori-
ented spin configuration without nodes (nodal hypersurfaces
for D>1) can realize the global minimuiwf the functional  where the coefficients in the expansion are, generally, some
(1) in the presence of a continuous spin-rotation symmetry. functions of the squares of the magnetization components,
Vi=Vi(s5,s5,s2), k=0,...,3. Thestatement about the
B. Instability in the Ising limit sign of the magnetization components proved in the previous

. . . . . section applies only if the cross terms are absent. In particu-
Let us now imagine that the continuous spln—rotauonal#r bp Y b

V(sisj) =Vo+ V18,8, + V8,81 V3s,sy, (13

. . N ar, this happens independently of the specific details of the
zyrrglr;]t?\fre{ |ssttigonke2;5y fgi(ggc)e ésto?r t(a)gln \;vg[fghtgf e(]ifaesce_ %% unction V(s;sj), if such terms are not allowed by the sym-
tively onl yone cgm o)rqerﬂ; of t%e <pin rerrr?;ins In the ab- metry of the lattice. Conversely, if at least one of such terms

y only P . P gy is present, no general statement about the sign of any com-
sence of any other magnetic ordering, the residual symmet

I’B . . .

. ; ) . onent of the spin magnetization can be made, unless the
qf the free energy is the discrelg group a_ssomated with the additional components of magnetization are suppressed by a
time-reversal symmetrys— —s. Ordinarily, such broken

- - ; sufficiently strong easy-axis anisotropy.
symmetry indicates the possibility abpologically stable The eff)éctive f%ee-e>r/1ergy functionaplyshould remain invari-

k!{wks, or dot'?“a'tf‘ Wa:![ster>1, :t;erp])aratmg r?ﬁ'?”{? of 3ppt<k)]- .ant under any transformation which preserves the lattice
Site magnetization. 1t turns out, however, that despite e'gtructure; for the local potentidl only the transformations

local stability, such configurations do not occur in thefrom the corresponding crystallographic point group are rel-

Iowgstfenergy state of ;he system; they. can only OCCUr a8\ ant. Because the pseudovector of magnetization remains
excitations. Formally, this can be proved in general, lJtIIIZInginvariant under inversion, its components transform under

the residual symmetr¥, of the free-energy functional. :
. . . reflection,
Indeed, we saw that in the presence of a continuous spin-
rotational symmetry the ground-state configuration is uni-
formly aligned; it can always be chosen to have only one
component of the spin. Therefore, the ground state of thas (s,,s,,s,)—(—sx,—Sy,S,), in exactly the same fashion
functional as under ther rotation with respect to the axs

Oh- (X!yiz)*)(x!y!_z)y
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Coi (X,¥,2)—(—X,—V,2). V. ANTIPHASE DOMAIN WALLS

The crystallographic point groups of the relevant phases

The invariance of the potentiél3) with respect to either of Of high-T material$®~*°and related compountis®areD 4,
these transformations requirés=V,=0. The existence of in tetragonal phases ardy, in orthorhombic phases. Ac-
another symmetry transformation of one of these kinds, witfeording to our arguments in the previous section, these
respect to an orthogonal plane or an orthogonal axis, is sufighly symmetric groups absolutely rule out antiphase do-
ficient to suppress the only remaining coefficievi{=0. main walls in the lowest-energy state, and yet such domain

Such Symmetries are present in all Crysta”ographic poinwa”S have been observed in many such materials. Moreover,
groups of Cubic{groupsoi Oh , T, Th , Td) and orthorhombic this constraint is not limited to the continuous mOdBlWlth
(C,y,D,,D,) systems, and in sufficiently symmetric gr_adient_terms quadfatic in dgrivatiyes: many lattice models
groups of tetragonal G4, ,D4,D4n,D0q) and hexagonal With qrbltrary Iong'—dlstan'ce interactions can be cast in the
(Cey:Dg.Den.D3n) systems. For all other crystallographic 9eneric form considered in Appendix D, and by the theorem
groups we constructed invariant expressions, mixing severdiroved there they must have ground states with uniform sign
components of the magnetization. For example, the quantityf the order parameter. Clearly, this situation is by no means
S,Sy(Se— ;) is symmetric with respect to all transformations @n exception. o ,
of the group<C,, Cy, andS,, the quantityszsy(si—Ssi) is For example', a tendency for formlng |n-phgse domain
symmetric with respect to all trigonal groups, etc. walls was se€fi in a model of two Heisenberg antiferromag-

The lattice symmetry also determines the structure of thé€ts coupled across a stripe_ repre_sented by a Luttinger quui_d,
derivative terms in the free-energy functional. In addition oS @ result of their interaction with the staggered magnetic

components of the pseudovector of the magnetizasowge rr]loments 'ndﬁ(jg ;)n t?e strtl-pt(;. Th'sé% not surpnsmglj '{] IV'eW
now have the components of the axial vector of the gradi—O our genera reatment; the modsignores completely

ents, and so the number of possible symmetric terms int_he transverse mobility of the strig¢éhe processes of elec-

creases. The conclusions about the phase separation and {H%ns’ hopping from AF to the stripevhich counteracts the

.84 85
local structure of the domain walls will be absolutely modi- usTaltﬁxchange.coupllrt?d.f th how that antioh
fied if the termglinear in derivatives are present in the free n the remaining part of the paper we snow that antiphase

energy. Such terms are known to stabilize topological do_domaln walls in t_he 'groun.d state can b? stab|l!zed in the

main walls in the ground state. Among the groups we listed’resence ofrustratpmnvolvmg gompetmg mterchons..We

above, only the group®,,, Tr, Dgn» Dan» and Dy, abso consider two specific models with short-range interactions: a
y y f f 4h -

lutely prohibit the existence of invariant quantities linear in lattice model of a doped antiferromagnet and a continuous
derivatives. All these groups include the inversion, whichmm.je'.Wlth _hlgher-order_denvatwe terms. In both systems
guarantees the absence of such invariants. The groups Whi@ﬁ”o.d'c antiphase domain wall structures can bg thermody-
include only proper rotations were eliminated by the exis—n"’m"caIIy stable at large enough charge densities, but do-

e o . phesdovta argat Vs Al s 4D vl i ot asyplotealy Lge dtaces, 5o
groups required special consideration. P P y happ y

The highly symmetric point groups listed in the previousValues of doping.
paragraph prohibit both terms linear in derivatives, and the ) . i
mixing between different components of the magnetization A. Antiphase domain walls on the lattice
in the potential energy. Nevertheless, in the presence of a et us consider a lattice model of the form
spin-orbit interactiorany point symmetry group allows mix-
ing between different components of the magnetization in - ,
the gradient terms due to the existence of a rotationally in- ]:_‘J% SS+J <i§|j:> Sn,SﬁZ V(ST m),
variant scalar

(14

where the first term represents the usual exchange of local-
ized spins, the second te¥f¥° is due to higher-order ex-
(V-9)2=(d,5,)%+ 20,SxdySyt . change processes with virtual hops through a partially occu-
pied site, the hole density,<On;<1 is defined to be a
. i bounded continuous variable, and the local poterttiatust
For specific groups, dangerous terms can also include 1eSgg chosen to ensure the stability of the model, as well as to
symmetric invariant quantities containing terms of the for”_‘provide an adequate repulsion between the holes and the

dxSxdySy . Formally, because these terms cannot be elimigning on the same site. As usual, we presume that the average
nated by symmetry, antiphase domain walls are possible ifgje density is fixed

the ground state of any non-Heisenberg system. For the case

of magnetic ordering one may argue, however, that the sym- —

metry breaking in the gradient terms can only result from the x=n=N Z N, (15
combination of the hopping, already small because it is de-

termined by the tunneling matrix elements, and the spin-orbitvhere A/ is the total number of lattice sites. Clearly, the
interaction, typically small because it is a relativistic effect. positive values of the second exchange constHnt,0, tend
Therefore, such terms are expected to be very small, and it t® frustrate antiferromagnetic ordering in a doped system; we
clear that they cannot be responsible for very robust anargue below that a competition of this sort is necessary to
tiphase domain wall ordering observed in the cuprates antbrm antiphase domain walls and suppress the global AF
nickelates. order in the system.
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FIG. 1. Locating the minimum of the free eneréy7) per unit FIG. 2. Locating the minimum of the free ener@l7) per unit

site for the strong repulsion casé=0.9, J'=0.6, g;=0.6, g,  Site for the case of weak repulsiod=0.9, J'=0.6, 9;=06, g,

=1.9, andg,=0.8. Bold solid and dashed lines respectively show =0-3, @ndgz=0.8. The line AR corresponds to a uniform AF with

the energies of uniform AF and nonmagnet®=(0) phases. The the period of four lattice sites, which becomes preferable at larger

dotted line gives the free energy per site of an infinite system in th&/@lues ofJ’. The linesS; and S, correspond to commensurate

phase-separated regime. Solid and open squares respectively in&F—“pe phases with the charge periods 3 and 4, asllllustrated in the

cate periodic and phase-separated configurations minimized niPSets. Belowx~0.75 the system phase separates into an undoped

merically with system sizes up /= 40. (or very weakly dopedAF phase and the pha&s. Solid and open
squares respectively indicate the phase-separated and uniform con-

For the purpose of this example, we will limit our analysis figurations as seen numerically with system sizes up/t40.

to the quartic form of the potential . . .
line) has a negative curvature at small values of doping, so

g3 the system is necessarily unstable to phase separation be-
S+ 7n2, (16)  tween an undoped antiferromagnet and a completely or par-
tially doped uniform nonmagnetic phagsgashed ling The
where g,=g,—2z(z—1)J'/2, z is the lattice coordination €nergy of phase-separated system is shown in Fig. 1 with a
number, and the coefficients are chosen so that in terms giotted line. The absence of other phases was checked nu-
the antiferromagnetic Ng order parametes =(—1)'S the merically by minimizing Eq.(17) for systems with periodic
free energy could be rewritten in a form boundary conditions of all even sizes in the range between
N=4 and N=40. To reduce the possibility of accidental
J trapping in a local minimum, we used the Metropolis algo-
F=3 > (5—5)%+3' > ni(ss—<) rithm with variable temperaturésimulated annealing For
i ) each system size we did a set of up to eight trial cooldown
g1 ) 93 , runs starting with a random configuration, selected the best
+> E(SZ—l) + g + SNl (17)  resulting configuration, and then repeatedly cycled the tem-
' perature up to 20 times. The minimal energy density chosen
The term with the coefficieng, favors unit values of the among the systems of all sizes was used as an estimate of the
on-site magnetization, and the coefficigntis a measure of ground state energy; these values are shown in Figs. 1 and 2
the strength of the repulsion between spins and chargeWith squares. As expected, in the regime of phase separation,
while the coefficieng; measures the local tendency againsttypically the lowest energy density was achieved for the big-
doping_ gest system.

At zero doping all charges necessarily vanisf0, and Phase separation is impossible if a long-distance interac-
Eq. (17) is minimized by a uniform AF Statezz 1 with the tion is also included in the mOdé14) However, the above
value Fxr(0)=0. Uniform AF states can be also formally calculation remains relevant as long as this interaction is suf-
found at sufficiently small nonzero dopings, with energyficiently weak. In this case, there exists a large length scale
given by the second line of Eq17), minimized at?=1 D, at which the long-distance forces become relevant. It is
—g,x/g;=0 with the energy-density value this scale that determines the period of a stripe phase, in

which the regions of undoped AF and nonmagnetic phases

gg are separated by the domain walls of the mddd). As long
- as the sized of these domain walls is relatively smat,
91 <D, the long-range interaction does not significantly change
The magnitude of the AF ordering reduces to zeroxat their form.
=0,/9,, and at larger filling fractions the AF phase is re- In the considered regime of the strong local repulsion,
placed by a uniform nonmagnetic state with the enefrgy g§>glgg, the domain wall between the undoped AF and
=(g,+93x3)/2. non-magnetic phases with densiy=min[1,(g;/g3)?] is

The energies of these phases for the strong repulsion cagery sharp. The order parameters approach their vacuum val-
g5>0:0; are illustrated in Fig. 1. The functioin(x) (solid  ues as determined by the solution of the corresponding lin-

zJ
V(Sz,n)=%(82—1)2+ -

gon+ >

2

X
fAr(X)=0gox+ 5|93
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earized equations. On the AF side, the charge density ithe pointx~0.5 this line goes only slightly below the line
locked atn=0, and the perturbatiods;~exp(— ) falls off  denoting the energy of the stripe phaSg,

with the same exponent as in the ideal undoped AF, Numerically, for all combinations of parameters we tried,
the nonuniform “stripe” phases seemed to be stable only at
sSintP(ko/2) =g, /J. (18)  sufficiently large values of doping. It turns out that this state-

ment can be proved for any form of the potentigE,n) in
Similarly, expanding the free energ%7) to quadratic order Eq. (14) by using a variant of the argument in Sec. Il B.
in the vicinity of the zero-magnetization state with the den-Any nonuniform charge configuration in the limit of low

sity n;=(g;/g3)?<1, we obtain doping must consist of some defects, charged solitons or
domain walls, separated by wide regions of almost perfect
AF. In this limit every defect, described by the sgnand
4 sintf(k,/2)=| 2— ) chargen; distributions, must realize a local minimum of the
2n,J’ free energy(14), and satisfy appropriate Euler-Lagrange

> equations. A two-defect configuration can be well approxi-
n \/ ) N 2(92”1—91). mated by a linear superposition of corresponding spin- and
2n,J’ n,J’ charge-density distributions, with the value of the constraint
(15) independent of the mutual position of the defects. In the
The second term under the square root, and, consequentlyjicinity of each defect the effect of the other one can be
the RHS of the entire expression, are guaranteed to remaitpnsidered as a perturbation. By rearranging the sums inde-
positive everywhere in the strong repulsion regime, indepenpendently in each region, with the help of the corresponding
dent of the values of the exchange constants. The domainauler-Lagrange equations, the linear order cross terms can be
walls are relatively narrow wherD<1; in this case the made to disappear in the bulk, so that only the “integrated”
solution has a form of an array of domain walls between thepart
AF and nonmagnetic regions. This is the canonical picture of

2—

Coulomb-frustrated phase separattdfiwhere wide stripes SE=+1655853+J'[s? ;n3sst — 5sdn?s3]— I 55368
are directly analogous to the classical stripe phéses. e b b ab.b
The ground-state phase diagram changes substantially in —J'[s21ngds] — 85pN;S; ] (19

the opposite case of very weak repulsmgi,«glgg. The remains. Heres=s—s,, is the deviation of the AF magne-

m.ain difference of this regime is that nonuniform Phasestization from its vacuum value, and the superscrgptndb
?’I\I"thtart't'ghaslf. dozmam wall:tﬁre much t():losterbtlo Stab"'FV’ tE‘?abel the fields caused by the defect situated far to the left
flustrated In F1g. 2, Some of them may be stable even In e, ¢4 1o the right from the origin, respectively. Similarly to

a_\bsence .Of any Iong-_range forces. A.S _the Io_ng-range mtera%-q_ (9), the precise location of the separation boundary is not
tions are introduced, instead of stabilizing wide stripes by th(?mportant as long as it is chosen far enough from each de-

usual Coulomp—frustratgd phase s_eparéﬁérmechamsmz fect. For a symmetric defect configuratie,‘hzskl’,I , Eq.(19
they may stabilize certain dense stripe phases. Such a picture d
o . ; . - can be rewritten as
of Coulomb-stabilized microscopic stripe phases is in agree-
ment with the arguments of Hellberg and Manous#kis
based on their results of exact numerical diagonalization of
smallt-J clusters. . +2J'n3[ 852, 5s5— 55751, (20)
In the considered limit of weak repulsiog;<g,9s, non-
zero magnetization can coexist with substantial doping evewhere énj=n,—n.,. Only the first term exists for the
in the limit of a fully doped systemx=1. Because of the asymptotic form(18), where the hole density, is pinned to
constraint Gsn;<1, only a uniform charge configuration is zero at finite distances from defects. This term give®ga-
possible aik=1, and the spin ordering is determined by thetive interaction energy, corresponding to asymptatitrac-
competition between two exchange couplings. For a particuion between far-separated defects. This is in accordance
lar set of parameters chosen in Fig. 2, the lowest-energwith our simulation in Fig. 2, where the most stable charge-
phase in this limit has a spin modulation period of threemodulated configuration was a dense condensate of an-
lattice sites. As the doping is reduced, it is energetically fatiphase stripes. Of course, the repulsion of the stripes at small
vorable to put all electrons at the points of maximum mag-distances and the stability of the dense stripe configuration
netization, so that the charge density has a period of threeannot be inferred from this asymptotic analysis.
lattice sites, as illustrated in the right caption. The energy of Generally, for models of the forif14), the hole density,
such aferrimagneticphaseS; is denoted with a bold dash- does not necessarily vanish at a finite distance from a defect,
dotted line in Fig. 2; as the doping is lowered, this line startsor it may even have a nonzero valog in the intermediate
to increase again below the poixt=0.67 where single un- AF phase. Then the second exchange term also contributes to
doped sites are separated by fully doped antiphase domaithe interaction energy. In principle, this contribution may be
walls of width two sites. In a similar phas®g, (with the attractive or repulsive, depending on the relative sign of
charge period of four and the spin period of eight gitesch s, 8s and én. However, we are interested in systems with a
domain walls are separated by two weakly doped sites, bugtrong repulsion between AF ordering and the doped holes;
this phase is avoided in large systems which prefer to phadeere the effect of the second exchange is negative, and the
separate instead. The energy density of a phase-separatsetond term in the first line of Eq20) gives attraction as
system(P9 is shown with the dotted line; in the vicinity of well.

SE=J[(853)?—(85)]+ 2" S2[ 8n58s5— onosi]
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Contrarily, thelast term in Eq.(20), which exists only if  of a superposition of two domain walls separated by a wide
the doping saturates to a nonzero vafyefar from the soli-  stretch of undoped antiferromagnet. As before, only surface
tons, is positive; it contributes to a repulsion between theéerms survive in the linear order,
domain walls. This is not surprising, because the second ex-
change term counteracts the usual exchange if a finite hole SE=2885,65,—2(B88S,)' 6%+ 2x58%:6%+ 2x yPathp
density is present. Nevertheless, one can show that the net

result is an attraction between the defects, as long as the ~(a=b),
uniformly doped AF state is locally stable. where the scalar fieldh; and the deviation of the AF order
paramete®s must satisfy the corresponding Euler-Lagrange
B. Antiphase domain walls in a continuum model equations exactlyi;=a,b respectively denotes the defect lo-

Although we now have an example of a model which cated far to the left and far to the right of the point where this

admits antiphase domain walls in the ground state, thi€XPression is evaluated. For two symmetric domain walls
model is not a continuum model, and one might infer that itSa(X) = $(2Xo—X) this expression is simplified if the point
is the lattice commensuration effects that enable the exiso IS chosen exactly in the middle,

tence of antiphase domain walls in the ground state. To stress _ , , , 24,

our statement that it is not the lattice, but the frustration 9~ —4(89%95) +2x5(8%) +2x (B3) |x=x,
between different interactions that stabilizes such domanc'-he parameters, xs, and y, in this expression must be

walls, we give a brief analysis of a continuum model with o\ 5 ated in the vacuum configuration; they are all positive.

similar properties. . . The perturbation of the vacuum state gets smaller as we
Consider a one-dimensional system with the free energyove to the right, and the two last terms are negative: as
of the form before, this corresponds to an attractive interaction. How-
ever, it is easy to see that the first term is positive; it con-
]—'=f dX[ B(8) 2+ xs(S) 2+ x o' )2+ V(S, ) ]. tributes to the repulsion between the domain walls. Only by
21) analyzing the linearized Euler-Lagrange equations in the
nearly perfect AF region can we conclude that the overall
As usual, the primes denote spatial derivatives, the &eld sign of the interaction energy is negative, as long as the AF
represents an antiferromagnetic order parameter,daigla  state is a locally stable minimum of the function@d).
scalar field with some conserved charge denpityp(¢). Therefore, as previously, domain walls attract at large
Unlike Eq. (1), we no longer assume that the spin susceptienough distances, and the system cannot form a stable non-
bility xs=xs(¢) is a positively defined function of the scalar uniform solution at asymptotically small doping as long as
order parametekp, and the higher-order derivative term, AF ground state is stable at zero doping and as long as there
with 8>0, is required for stability. In analogy with the sec- are no long-range forces.
ond hopping term of the lattice model4), we shall assume
that the spin susceptibility 3. Twist stability

—1_ The twist instability, which was discussed in Sec. IV for

Xs($)=1-ap(4) 22 positive ys and =0, can be also avoided for the model

depends linearly on the charge density, so that its sign can k@1); a magnetization vectcs can reverse its direction and
reversed in the presence of large enough hole density.  yet remain locally stable with respect to twists. A sufficient
_ _ condition for this stability can be obtained by analyzing the

1. Scaling analysis derivative terms in the free energ¢®1). By decomposing the

It is obvious that the general conclusion of instability of vectors=Se into a product of its magnitud& and the unit
periodic states made in Sec. Il A does not apply for thevector e, after several integrations by parts, the gradient

model(21). Indeed, instead of Ed3), we obtain terms in the free energy can be rendered into a form
fA=N*Qq+\?K+11y, (23) (8")?—S(€)?+(€)7[2(S)*~4S'S|+(S)?,

whereQ;>0 is the contribution of the ter(g) quartic in the (5)2=(S')2+SX(e')?

derivatives. Because the second-derivative terms are no |

longer positively defined, this expression may have a miniThe system(21) will remain stable to developing spontane-

mum atA =1 and ous twists as long as the coefficient in front ef)? remains
positive; this gives the sufficiency criterion of stability,

Ki=-2Q;<0. namely, the condition that the expression

Although this condition does ngiuaranteethe global stabil- o , )
ity of a periodic solution, it is clear that periodic structures 2B(S')"=4BS'St xsS>0 (24)

mayin principle be stabilized for the free ener¢3g). must remain positive everywhere. This condition is easy to

check directly for any given single-component solution of

Euler-Lagrange equations; there is no need to look for mul-
The asymptotic form of the interaction between the do-ticomponent solutions if Eq24) is satisfied.

main walls for the mode(21) can be easily found by a linear Formally, this expression can remain positive near a node

analysis similar to that in Sec. Ill B, by evaluating the energyof the magnetization because of the presence of the higher-

2. Asymptotic interaction of domain walls
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derivative term in Eq(21). However, such solutions can be
allowed in the ground state only if; can become negative, Ko=|1— 5%
which indicates the presence of a competition between dif-

ferent interactions. Therefore, the role of the higher-is giways negative. This implies that the periodic phase

) . 2 16B8k?
vy
0 5S¢y

competition. agreement with our numerical simulations of this model.
_ o _ Therefore, the local stability of topological domain walls
4. Approximate variational solution may lead to the stabilization ofdensestripe phase made out
To illustrate the considered general properties, let u®f such walls, in agreement with detailed simulatfdris of
choose the potential the t-J model. However, such a phase can only be stable at

large enough charge densities: within the MF approximation
g1 ) 9 , we have shown that the asymptotic large-distance interaction
V:J 7(32—1) +QopS+ > p°|dx, (25  between such domain walls is always attractive, and in the
limit of small values of doping the system necessarily phase
of the same quartic form as used in E(7), with p  Separates. In addition, more subtle fluctuation effeatizays
=p($)=¢°. Numerically, the solutions at small enough contribute to power-law Casimir attraction between charged
densities look very much like the usual domain walls in mag-defects, and the statement about the phase separation in
nets, withs changing its sign where> has a maximum. Al- Weakly doped antiferromagnets persists.
though the simplest set of trial functions= ¢,/coshkx),

s=tanhkx) doesnot work, we can use it as a variational VI. CONCLUSIONS
solution to estimate the ground-state energy and the areas of i o o
stability of different phases. Phase separation at small doping is a ubiquitous property

Performing the integration, we obtain the expression forof doped insulators with short-distance interactions. Gener-
the total charge ally, in the absence of a frustration caused by competing

interactions, the staggered magnetization of the ground state
never changes its sign. These two statements can be formu-

Qozf dx ¢2=2¢§/k, lated as theorems in the vicinity of a second-order phase
transition involving AF ordering, where the correlation
and the free energy, length is large and the derivative terms are small.

In application to hight, materials, the competition be-
8 tween the tendency of the holes to move around and the
2+ ¢(2)—§a¢(2)) tendency of repulsive interactions to localize the charges
must be accounted for in any model for describing high-
superconductors or related materials. Only at relatively short
. distanceqwhere, strictly speaking, we go outside the limits
of applicability of the MF theory may the domain walls
In the limit of small charge density the stripe solution mustrepel, which could lead to the stabilization of dense static
minimize the energy per unit doped charéig= 7,/ Q,. This  stripe phases.
is achieved by selecting the amplitude of the charge soliton

8
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fo=go+ 2195(91 +k5) _ APPENDIX A: LANDAU THEORY
Vg1 +2k3+8Bkg/5 o . .
The phase transition between a stripe phase and a high-
The resulting configuration will be stable with respect totemperature disordered state considered by Zaehai.'*
twists if the criterion(24) is satisfied. The analysis shows involves only one spin-order parameter, the incommensurate
that this is indeed the case for large enough valugs ahd ~ Spin-density waves, . The transition from a well-developed
Os. antiferromagnet with a modulation vectar=(,7) to an
The stability of a stripe phase made out of these domaiincommensurate modulated phase must account for both the
walls is determined by Eq23). With the derived expres- original AF-order paramete: (which, generally, cannot be
sions we find that assumed smallnd the spin-density wa&: , ,, with modu-
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lation period 27/k. Coupling these two spin-order param- scenario for such a continuous transition, minimally extend-
eters together, it is easy to write nontrivial and yet spin-ing the charge-driven part of the phase diagram of Zachar
rotation-invariant terms of the Landau expansion of theet al!* A more complete symmetry analysis of possible

effective free energy, dimerized phases will be published elsewh&re.
. To describe the dimerization transition, the Landau effec-
F=rdS; k2 +rdpul?+ 7[37;5{7+k9§ +e.cl+- -, tive free energy must include at least two harmonics of the

(Al)  density wave,p,, po, coupled to the SDW harmonics
S: k. 1=0, 1, 2. While the quadratic part of the free energy

where is the complex-valued amplitude of the charge-
P P P 98" has the usual form,

density wave with the wave vectdt, py=p_,, and the

quartic (and higher-orderterms required for stability are 2 2
omitted. This expression suggests that an instability in either Fp= E Fol oyl 2+ E MEPE
the spin[rs=r{q)<0] or the chargdr=r(k)<0] sector = =’

generates both spin- and charge-density waves at the wave ) . .

- . . . there ardfive possible cubic terms
vectorsq=m+k andk, respectively, with modulation am-
plitudes linearly proportional to each other. More precisely,
the modulation appearsif(q) and/orr (k) are negative, or
if

Fz= ng(xosf;JrkJr N1pg+ N2S; S5 oK)

+ Pk (¥0S7+kS5+ 1155+ kS, ) FC.C. (A2)
2

rdm+krdk)<|»?s; The invariant with the coefficienk, has been considered

Near the transition the magnitude of the incommensurat@reviously in Ref. 14, and the terms with coefficiersand
peak is necessarily much smaller than the commensurate A2 Were considered above |r114Ed-\1). _ -
modulation, |S;. |<|S;]; it is easy to see that this corre- Let us'follow Zacharet al. _and conS|de_r the transition
sponds toin-phasedomain walls. The derived relationship ffom a disordered phase, driven by the instability in the
betweeng andk implies that the periods of spin and charge CDW sectory ,,<0. In this scenario, as the amplitude of the
modulation must be equal for such domain walls. CDW poy gets suffl_czlently _Iarge, the term with the coefficient

Experimentally, novel incommensurate elastic peaks, codo generates an instability in the SDW sector. From our
existing with the commensurate peaks at £), have been extendedtree energy(A_Z_) it is clear that the same densny
observeff recently at the border of the antiferromagnetic Wave may also destabilize the double-periodic CpMvia
region of La_,Sr,Cu O, at x=0.05. The incommensurate f[he term w_|th cqeff|0|eth): If this is the case, the remain-
peaks are rotated by 45° compared to the antiphase peaks'a9 cubic invariants W|I_I _S|multaneously generate nonzero
larger doping, which could be caused by the fact that thes@F modulationS; (coefficient o) and an additional SDW
peaks appear at a temperature that is lower than the energy BrmonicS;., 5 (coefficientsk, and y,). Obviously, in a
the low-temperature-orthorhombic—low-temperature-tetraCertain range of parameters, the transition to the phase with
gonal phase mod¥.If the data represent a bulk effect, and Pk# 0 is continuous. The resultingimerizedphase, with
assuming that the commensurate AF correlation length in thequal periods of SDW and CDW, and a nonzero AF order-
cluster spin-glass pha¥eat smaller values of dopingx( N9 would be mterpreteq as a nontopqloglcal strlpe phase. If
<5%) is sufficiently large for the Landau expansi@i) to ~ observed, such a transition will provide a precisecro-
apply. we interpret the simultaneous presence of both comScopicmeaning to the notichof dimerized stripes.
mensurate and incommensurate peaks as the signature of
phasedomain walls, expected in this region, and not merely APPENDIX B: INTERACTION OF CHARGED SOLITONS
coexisting antiferromagnetic and stripe phases. The above . . :
analysis indicates that the corresponding charge modulation Heré we demonstrate that the expression for interaction
must have thesameperiod and direction as that of the SDW €N€rgy betwee.n the defects, derived in Sec. Il B, allso works
order. Because the observed ordering differs substantially fdP"_Systems with global charge constraif®. The single-
these two phases, the transition from a weakly modulateg®liton field configurationue(Q;x) minimizes the energy
diagonal AF phase to the fully developed stripe state witfunctional at a fixed value of chardg, but the total charge
antiphase domain walls is expected to be first order in a cleafio'résponding to their linear superpositiah does not nec-
system. essa_rlly equal Q. Therefore, ms_tead of Eq7), we need to

In general, however, a discontinuous transition between §0nsider a corrected configuration
topological and nontopological stripe phases is not the only 0 ) o _
possibility. A particularly simple scenario of a continuous ~ U(X)=U(Q=8Q;X=Xy) +u™(Q— 6Q;x;—X)—m
transition between these phases corresponds dimariza- = UO(X— %) + UO(Xp— X) — M+ SU(X), (B1)
tion transition, where pairs of antiphase domain walls spon-
taneously merge to form wider dimerized domain walls,where the additional exponentially smédif the order of the
similar to those observed in manganatess a result, the tail overlap Q) deformation
period of charge modulation doubles, and a CDW with the
periodicity of the original spin ordering must develop. In A(Q;x—xq)  du%(Q;x,—X)
addition, the perfect symmetry between the regions with two ou=-46Q 20 + 90
opposite signs of AF order is broken, and a net antiferromag-
netic ordering appears. Here we present only the simplesterves to adjust the value of charge constraint, so that, e.g.,
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dp(uy) componentsui(o)(x), 2<i=<N of the order parameter. The
U dx=0, expansion(10) remains valid even in the present case, and
we can always select the ground-state configuration of the
and a similar condition for the regiox>x, where the field functional (C1) to have only one componens= (Sy(x),0).
u, is far from equilibrium value(all notations as in Sec. As before, our task is to prove that this configuration is lo-
[l1B). In the presence of the charge constraint the Eulereally unstable to “untwisting,” as long as the functisg(x)
Lagrange equations for a single kink must be written with ahas a node. The problem with the charge constr@® is
chemical potential, slightly more difficult, since the naively perturbed configu-
ration s=(sg,S;1) generally has a different value of charge.
To correct this, we consider a perturbed solution of the form

X,
5Q,_=f ® (Upy—m+ 8u)
» )

J
—Ugt E[V(U)‘F/.L[)(U):”u:uozo,

_ [ 2_ 2 25,2 2
and the combination in the square brackets in the integrand s={SoVl-eneW},  S'=spt W sy,
of Eq. (8) no longer disappears. Instead, it changes the enyhere ¢; must be chosen to preserve the average charge
ergy by an amount proportional to the total charge incremengensity, i.e.,
6Q_ in the regionx<<xq and a similar term fok>Xx,. These
charge increments vanish for the corrected configuration ) P L
(B1), and in the linear order we are again left with the same €1= 7€ f p'wod"x f p'spdx
universal expressiof®). As before, it was important that the
correct Configuration deviate very little from the Simp|e where we assume that the denominator does not vanish iden-
minded superpositioii7), including the tail regions, where tically, and the derivative' =dp(S?x)/d(S?).
the correctionsu can be safely ignored as an exponentially ~TO quadratic order ine;, the increment of the energy
small quantity of higher order. functional (C1) is just
Such linear analysis is equivalent to finding thetanta-
neousaqceleratio??*goof a defect surrounded by a surface by 57_-;[ dx xo(X)[ €2(VW)2— €1(V's)?] + [ 2W2— e;52]
calculating the total flux of the energy-momentum tensor
into the enclosed volume due to all other defects located , , ,
outside the surface. The corrections to E@). are easy to X[po@o(x)+Vo+ (Vo) xolh, (C4

find in equilibrium, and they indeed turn out to be exponen-yhere all functions with subscript O are evaluated with the

tially smaller, if the locally stable configuration of several honperturbed configuratiorss, the prime denotes the deriva-
defects exist$in some cases such configurations can be stagyes overS? as in Eq.(C3), and the scalar potential
bilized by the boundary conditionsOften, however, be-

cause of the attraction between individual solitons, there are

no locally stable equilibrium configurations minimizing the sDo(X)Efp([SS],X)Ef K(x,x") 3p(s§(x'),x")dx’.

free energy. In such cases, instead of analyzing the forces in

static configurations, the interaction can be found more acEquation(C4) can be simplified with the help of the relation
curately by studying the full dynamics of the systéhin the ~ (C3) and the Euler-Lagrange equation for the nonperturbed
present work, however, we are mostly interested indigp  solution s,

of the interaction between defects, and the accuracy of Eq.

(9) is sufficient. —V(x0Vso)+G([s5],X)s=0, (CH

where the self-consistent potential function

-1
, (C3

APPENDIX C: UNTWISTING INSTABILITY
OF CHARGED DEFECTS G([vg].X)=[¢o(x) + ulpo+ Vo+ (VS0) X6
contains the Lagrange multiplier. We obtain, with the

Same accuracy,

Here we extend the local stability analysis of Sec. IV A to
systems with conserved charge and long-range interaction
Now, instead of Eq(11), the relevant part of the free energy
and the corresponding constraint can be written as
SF= egf dPx{xo(VW)?+ G([S5],x)W?}.  (C6)

f:fX(sz,x)(Vs)2+v<sz,x)de
Let us return to the Euler-Lagrange equati@®b). As it
1 stands, it is a nonlinear integro-differential equation $gr
+§f Sp(S*X)K(x,x") 8p(S'?,x")dPx d°x’, However, one can formally look at this expression as an
action of the linear self-adjoint operatdr=—V(x,V)
(CY) +Go(x) (with fixed functions xo(x) and Gg(x)
o =G([s3],x)) on the functions,. From this point of views,
f [p(S?x)—pld°x=0, (C2  is an eigenfunction of this operator,s,=A oS, With zero
eigenvalue\ ,=0. The same operator serves as the kernel of
where the explicit coordinate dependence of the local part ofhe energy incremen(C6), and so, expanding/=SA;s;(X)
the potential energy and the charge density increment gyer the orthogonal eigenfunctions of this operator, we ob-
8p(S?,x)=p(S?,x) — p account for the presence of all other tain
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least one nonzero value exists. Without limiting generality,
6F= E%Z A|A|2J SldeX- we can suppose that this value is positive. Let us now replace
_ _ the original set by the non-negative s&t)=|u(%)|. Clearly,
By assumptions, has a node, and so there nféstxist an  pecause of the obvious inequalitgauchy
eigenfunctions_; corresponding to a negative eigenvalue
A_1<0. Therefore, takingv=s_;, we can decrease the free (a—b)?=(|al—|b|)?,

energy, . . . o .
this substitution cannot increase the energy. This inequality

3 o 2 o becomes strict i andb have opposite signs, which implies
A7'-—/\—162f vZ,d-x<0, that the points with positive and negative values in the origi-
] ] o ) _nal configuration must be separated by zeros, or our assump-

which violates the original assumption. Therefore, the spinion was wrong. Therefore, some of the values in the modi-
config_urations with r_lodes are locally u_nstable to untwistingsia g setu® are expected to be zeros. By assumption, there
even in systems with charge constraint and/or long-rangg,q no dilsconnected points, and at least one fjoiith zero
Interactions. value u{=u(®=0 must be connected to a pointwith
ui(l)>0. If we replace the zero by a sufficiently small value
u}2)=e>0, the increment of the enerdp1) will be nega-
tive,
It is also possible to prove a version of the no-node theo-

APPENDIX D: NO-NODE THEOREM
FOR DISCRETE SYSTEMS

rem for many lattice models. Consider the problem of find- ) () 2aV(ui, o))
ing a minimum of the expression 57"1:2 {xij(e"°—2eu;)j +e T o2
j u=uf®
H=2 xij(ui—u)2+V(ui, ... ud), (DD .
] =—2e>, x;uM+0(?)<o0. (D2)
where the variables;, i=1, ... N are scalar$? the nonlo- '
cal potentiaV(u?, . . . ,u2) is a limited, continuously differ- The procedure can be repeated for all points with zero value.

entiable function of all its arguments, and the connectiong herefore, the original assumption was wrong, and in the
xij=0 can be positive or zero, with the only limitation that global minimum all valuess; must have the same sigal-

all points can be linked. We are going to prove that in thethough they can bexponentiallysmal).

minimum of Eq.(D1) all variablesu; are nonzero and have Because the increme(D?2) of the energy idinear in e,

the same sign, or all of them vanish identically. the proven statement can be easily extended to accommodate
Let us suppose that the opposite statement is true, namelgn arbitrary dependence of the connecti;mssui, cen ,uﬁ,)
that the global minimunt () is achieved on the set{”’,  on the variables, as well as an arbitrary number of nonlocal
some of which could be positive, negative, or zeros, but atonstraints of the form\(uf, o ,uﬁ,)zo.
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