
PHYSICAL REVIEW B 1 SEPTEMBER 1999-IIVOLUME 60, NUMBER 10
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We analyze the properties of a general Ginzburg-Landau free energy with competing order parameters,
long-range interactions, and global constraints~e.g., a fixed value of a total ‘‘charge’’! to address the physics
of stripe phases in underdoped high-Tc and related materials. For a local free energy limited to quadratic terms
of the gradient expansion, only uniform or phase-separated configurations are thermodynamically stable.
‘‘Stripe’’ or other nonuniform phases can be stabilized by long-range forces, but can only have nontopological
~in-phase! domain walls where the components of the antiferromagnetic order parameter never change sign,
and the periods of charge and spin-density waves coincide. Theantiphasedomain walls observed experimen-
tally require physics on an intermediate length scale, and they are absent from a model that involves only
long-distance physics. Dense stripe phases can be stable even in the absence of long-range forces, but domain
walls always attract at large distances; i.e., there is a ubiquitous tendency to phase separation at small doping.
The implications for the phase diagram of underdoped cuprates are discussed.@S0163-1829~99!03734-0#
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I. INTRODUCTION

One of the fundamental issues in the theory of hig
correlated solids is the nature of the ground-state phases
duced when a small concentrationx of ‘‘doped holes’’ is
introduced into a Mott insulator, particularly an antiferr
magnet. It is now established1–4 that, at small enoughx and
in the absence of long-range Coulomb interactions, a do
antiferromagnet generally phase separates into a hole
and a hole-free phase; i.e., the antiferromagnetic state is
stroyed via a first-order phase transition. In the presenc
weak, long-range Coulomb interactions that frustrate this
cal tendency to phase separation, the two-phase regio
replaced by states which are inhomogeneous on interme
length scales,4–6 and especially ‘‘stripe phases,’’ which hav
now been observed in a wide variety of oxide materials.7–11

In various quasi-two-dimensional cuprate high-temperat
superconductors and the isostructural nickelates the str
are observed12 to be ‘‘topological,’’ in the sense that th
charge is concentrated along one-dimensional ‘‘river
which are at the same time antiphase domain walls in
antiferromagnetic~AF! order. In the nearly cubic mangana
colossal magnetoresistance materials,8,9 the ‘‘stripes’’ are
two-dimensional sheets of charge which are nontopologi
~In some sense, each sheet can be thought of as a dim
topological stripes.9,13!

Here we study the properties of a general Ginzbu
PRB 600163-1829/99/60~10!/7541~17!/$15.00
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Landau free energy with competing order parameters, lo
range interactions, and global constraints@e.g., a fixed value
of a total ‘‘charge,’’ as defined in Eq.~2!# to address the
physics of inhomogeneous~‘‘stripe’’ ! phases. Specifically, a
stripe phase is a unidirectional density wave which, in
case of a doped antiferromagnet, consists of a coupled s
density wave~SDW! and charge-density wave~CDW!. At
very dilute doping, a stripe phase consists of an ordered a
of far-separated self-localized structures or individual strip
At moderate doping levels, where the spacing betwe
stripes is comparable to their width, the structures are b
described as nearly harmonic density waves.

Zachar and two of us14 have considered the density-wav
limit of a Landau theory of coupled CDW and SDW orde
each with a fixed wave vector qW , near a transition to a disor
dered state, which occurs as the temperature or dopin
varied. The existence of a cubic term in the Landau f
energy coupling these two order parameters drives the pe
of the SDW to be twice that of the CDW, and the absence
any net AF ordering is equivalent to the statement that
stripes are topological. By contrast, as shown in Appendix
the same sort of term in the Landau theory of the transit
between a homogeneous ordered antiferromagnetic p
and a stripe ordered phase produces a state in which the´el
magnetizationdoes notchange its sign between the domain
i.e., the stripes are nontopological.

To elucidate the circumstances in which arrays of strip
7541 ©1999 The American Physical Society
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can be thermodynamically stable, and what determines t
character~i.e., topological vs nontopological, collinear v
spiral! we shall concentrate on the dilute limit, where t
spacing between stripes is large, and the stripes are hi
anharmonic structures. Specifically, we study the extre
states of a general Ginzburg-Landau free energy functio
for coupled order parameters as a function of the aver
charge density.

Whenever the order parameter profiles areslowly varying
everywhere, so that only the lowest-order~quadratic! terms
in the gradient expansion of the free energy are neces
@Eqs.~1! and ~4!#, we show the following.

~1! In the absence of long-range interactions, only s
tially uniform and phase-separated~two-phase coexistence!
states are globally stable.

~2! ‘‘Stripe’’ or other nonuniform phases can be stabiliz
by long-range forces, but they are nontopological in
sense that any componentui of the order parameter has
uniform sign as long as the free-energy density is an e
function of ui . @We indicate all point symmetry group
which satisfy this condition for a magnetic~pseudovector!
order parameter.#

~3! Whenever there is a global rotational symmetry of t
order parameter, any localized configuration which inter
lates between two distinct asymptotic ground states~e.g., an
antiphase domain wall! is locally unstable to untwisting.

The possibilities become richer in cases in which high
order derivative terms in the Ginzburg-Landau free energy
lattice effects determine an additional length scale—the c
size of a localized defect.14 When there is no frustration
topological stripes are still forbidden in the ground sta
However, frustration, such as competing first- and seco
neighbor interactions in a lattice model or opposite-s
terms in the gradient expansion of the Ginzburg-Land
model~i.e., below a Lifshitz point!, can stabilize topologica
collinear domain walls. In the context of doped antiferr
magnets, this kind of frustration can arise as a result of
competition between the tendency of the Coulomb inter
tion to localize the charges and the tendency of electron
quantum delocalize. However, even in this case,
asymptotic interaction between defects is still attractive
large distances, so long-range forces are necessary to
press phase separation in the dilute limit.

In other words, topological stripes are a consequence
physics on an intermediate length scale, and they do
appear in a theory that considers only long-distance or l
energy physics.

The plan of this paper is as follows. In Sec. II we revie
some of the theoretical and experimental background. S
cifically, we discuss some of the early theoretical work p
dicting stripe phases, the theoretical controversies conc
ing the range of phase separation in microscopic mod
such as thet-J model, and some of the experimental fac
concerning stripe phases in doped antiferromagnetic ins
tors.

In Sec. III we perform a scaling analysis of possible no
uniform configurations which minimize a generalize
Ginzburg-Landau functional, establish the analog of
virial theorem which relates the long-distance Coulomb
teraction to the gradient energies of the system, and de
the universal asymptotic form of the large-distance inter
ir
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tions between domain walls or other defects.
In Sec. IV we analyze the local and global stability

nonuniform ground-state configurations. For systems wit
global rotational symmetry of the order parameter, we sh
that the antiphase domain walls are locally unstable to ‘‘u
twisting,’’ even in the presence of long-range forces. If t
rotational symmetry is broken, these domain walls can
locally stable, but they are not necessarily allowed in a
ground-state configuration. We establish a correspond
sufficiency criterion for global instabilityfor such antiphase
domain walls, and identify the corresponding point symm
try groups of the underlying lattice.

In Sec. V, we show that antiphase domain walls can
stable even in the ground state, if the free-energy functio
includes higher-derivative terms or is defined on the latti
We discuss a sufficiency criterion for local stability of th
solutions, and illustrate the effect of stabilization of a
tiphase domain walls in particular examples. We also sh
that, for systems with short-range interactions and mixed
and charged order parameters, the domain walls always
tract at large distances, which indicates a tendency to ph
separation at small doping. If long-range Coulomb inter
tions are included as well, inhomogeneous phases are s
lized. Depending on the details, either wide stripes are p
duced via Coulomb-frustrated phase separation15,5 or certain
dense stripe phases are stabilized, in agreement with th
guments of Hellberg and Manousakis.16,4

We conclude that although~avoided! phase separation i
ubiquitous, especially at small doping, antiphase dom
walls are not universal in the ground state, even in the p
ence of long-range forces. Certain types of short-dista
physics are required to stabilize antiphase domain wa
Therefore, effective long-distance models are not, in gene
sufficient for a successful description of the stripe morph
ogy in the cuprates and nickelates.

II. BACKGROUND

The undoped parent compounds of the high-Tc materials
have one electron per unit lattice cell, and, if it were not
the electron-electron interactions, one would expect them
be metallic. Instead, strong Coulomb repulsion renders
system a Mott insulator and results in an AF ground st
with a doubled unit cell. Unlike usual band insulators, su
correlated insulatorsdo not conduct even when weakl
doped. The short-distance physics of the doped syst
dominated by strong electron-electron repulsion, is belie
to be captured in the large-U Hubbard model, thet-J
model,17 or related models.18

Unfortunately, to this time, none of these models has b
solved in anything resembling a physical regime of para
eters. One well-established aspect is the tendency of th
models to phase separation19–21,1–4in a substantial range o
parameters. In the presence of the long-range Coulomb
pulsion phase separation is, of course, impossible, unless
dopants are mobile. Instead, the system forms a cha
inhomogeneous state, in which hole-rich regions exist in
antiferromagnetic background.4,5 Within this picture, it is
natural to interpret the stripe phases observed in vari
doped antiferromagnets as being a consequence of Coulo
frustrated electronic phase separation~sometimes called mi-
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crophase separation9!. Such stripe phases can be either m
tallic or insulating, depending on the character of the ho
rich phase.4,22–26 However, the precise range of paramete
in which phase separation occurs in systems with short-ra
interactions and even the physical reasons for the stabilit
antiphase domain walls in systems with Heisenberg sym
try have not been fully elucidated. Moreover, phase sep
tion, especially at small doping, is notoriously hard to s
numerically; even for the most studiedt-J model, some nu-
merical studies have been interpreted as indicative of20,2,3,27

the universality of phase separation in the limit of small do
ing, while others purport to indicate the existence of a criti
ratio of J/t below which phase separation does n
occur.28,24,25

For the case of doped AFs with unbroken spin-rotatio
invariance this controversy was resolved by Pryadko, Kiv
son, and Hone.1 It was shown that spin-wave exchange
ways causes an attraction between localized holes or
clusters, similar to the well-known Casimir effect.29 At large
distances this attraction falls off as a power law, and the
fore it is always stronger then the exponentially decreas
forces present in the system with short-range interactio
This proves that any phase with static charge order is t
modynamically unstable at small enough doping. Howev
the absolute magnitude of this attractive force is very sm
and even a relatively weak easy-axis anisotropy~allowed by
the symmetry in planar materials! can provide a spin-wave
gap sufficient to suppress this effect.

Static incommensurate magnetic and charge order in
cuprate high-temperature superconductors was
discovered30 in La1.62xNd0.4SrxCu O41d . Recently,
x-ray31–33 diffraction measurements have confirmed the
istence of charge order. Moreover, in this material, sta
stripe order coexists34,35 with superconductivity, albeit with
suppressedTc . Additional indirect information about the fre
quency range of magnetic correlations was provided by lo
probes, such as muon spin resonance (mSR!.36–38 In this
material a structural phase transition to a low-tempera
tetragonal~LTT! phase substantially stabilizes the stripe
der, making it particularly easy to detect, but, at the sa
time, suppresses the superconducting transition temperat
Indeed, in closely related materials ~e.g.,
La1.42xNd0.6SrxCu O4), static stripe order is observed, but n
evidence of superconductivity has been found.39,40However,
more recently, static stripe order has been detected11 in the
more widely studied high-temperature superconduc
La22xSrxCu O4 with 0.05,x,0.13 and10 ‘‘stage-IV’’
La2Cu O41d , in which the transition temperatureTc
542 K is not suppressed.

Moreover, evidence has mounted that in a still broa
class of high-temperature superconductors~perhaps even al
high-temperature superconductors! stripe order is nearly con
densed in the sense that there are substantial stripelike
relations which persist at low temperatures over long in
vals of space and time. Slow dynamically fluctuati
incommensurate magnetic correlations were observed s
time ago41 by inelastic neutron scattering in La22xSrxCu O4.
That these incommensurate structures are simply fluctua
stripes is now clear from a comparison30,7 of the fluctuations
in this material and its ordered cousin La1.62xNd0.4SrxCu O4.
Evidence supporting the universality of incommensur
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fluctuations in high-Tc materials has also been recently pr
vided by neutron scattering studies42 of spin fluctuations in
YBa2Cu3O72x and Bi2Sr2CaCu2O8, and indirect evidence o
the same structures in Bi2Sr2CaCu2O8 has been obtained
from angle-resolved photoemission spectrosco
~ARPES!.43 Indirect evidence that static stripe structures m
also be more common than previously appreciated can
deduced frommSR measurements44 and nuclear quadrupole
resonance~NQR! measurements.45

The existence of stripe phases was first established in
nickelates (La22xSrxNi O41d) by direct electron46 and
neutron47–49 scattering. But the ubiquity of stripe phases
doped antiferromagnets has become clear only in the
couple of years of intensive experimental inquiry. Stripe
der in the insulating, nearly cubic manganates has been
idly visualized by electron diffraction studies.9 Here the
charge order is strongly coupled to a lattice~Jahn-Teller!
distortion, which makes the stripes more classical and m
strongly ordered; the stripes here are nontopological in
sense that the CDW period is equal to the SDW period. T
real-space images constructed from the electron diffrac
results make it clear that each nontopological stripe can
viewed as a pair of close-by topological stripes or, equi
lently, that the topological stripe array has been dimerize

In all cases in the cuprates and nickelates, where the
formation is available, the measured positions of the inco
mensurate peaks indicate that the period of spin modula
is twice that of the charge modulation. This and other da7

support the model50,51 of charged holes concentrated on t
antiphase walls between neighboring antiferromagnetic
mains. The effect of stabilization of such antiphase dom
walls, or stripes, by the addition of charged holes to a co
lated insulator, was named22topological doping.

But while the existence of stripe phases in doped anti
romagnets is clearly established, and there is growing
dence that it is a general phenomenon, there is less ag
ment on the origins of the stripes and their implications. T
existence of stripe phases consisting of arrays of antiph
domain walls in doped antiferromagnets was, in fact, p
dicted still earlier than the work15 on Coulomb frustrated
phase separation on the basis of Hartree-Fock mean-
theory.50,52The Hartree-Fock stripes always have a comm
surate density of holes corresponding to one hole per
along the length of the stripes, and are always insulating
gap equal to a substantial fraction of the insulating gap op
at the transition to the Hartree-Fock stripe phase. These
generalizations of similar calculations in one dimension53 to
the higher-dimensional case, and are closely related
calculations54 which sought to explain the existence of stro
incommensurate peaks in the magnetic susceptibility
terms of Fermi surface nesting; the stripe phase in Hart
Fock theory is directly a consequence of that nesting.52 In
detail, these approaches do not account for the behavio
the cuprates, in which the density of holes along a str
varies55 continuously as a function ofx, and the stripe phase
are conducting or superconducting, not insulating. Moreov
the evidence from ARPES is that there are no sharply
fined quasiparticles in the normal state of the cuprates.56 In
the La-Sr-Cu-O family of materials, in which the evidence
stripe order and stripe fluctuations is strongest, there is s
ply no vestige of a quasiparticle in the region of momentu
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space where the nested Fermi surface is supposed to oc43

However, these mean-field~MF! Hartree-Fock calculations
already reflected the tendency57 of the holes to be collec
tively self-trapped in regions of suppressed antiferrom
netism, a close relative of phase separation. Moreover,
correctly identify the microscopic physics, the transverse
netic energy of the holes, which gives rise to the antiph
character of the stripes.

The unreliability of the Hartree-Fock approximation f
determining the properties of domain walls in strong
coupled systems was also pointed out by Nayak
Wilczek.23 They analyzed the energy per electron on a p
tially filled stripe, which, ignoring the effect of antiferromag
netic surrounding, was approximated as the sum of the
ergy of broken AF bonds and the kinetic energy of on
dimensional electrons in the limitU→`. Even in the
absence of long-range interactions, the model does not
velop a gap, and the value of the optimal filling of the strip
was shown to vary continuously with parameters. Therefo
the stripes in this approximation are conducting and not
sulating as follows from the Hartree-Fock analysis.

An alternative phenomenology of high-Tc materials was
suggested by Zhang,58 who emphasized the competition b
tween the superconducting and AF order parameters. In
vicinity of a ~hypothetical! SO~5!-symmetric point, where
these two order parameters form a five-dimensional vecto
‘‘superspin,’’ the effective free energy can be written in ge
eral Ginzburg-Landau form, with relatively small symmet
breaking terms. An analysis59 of nonuniform MF solutions in
such a model~assuming that the magnitude of the fiv
dimensional ‘‘superspin’’ remains constant! was recently
performed by Veilletteet al. In the absence of the long-rang
Coulomb interaction, and at small enough doping, a Maxw
construction was used to show that the system phase s
rates into antiferromagnetic and superconducting regio
Turning on the long-distance Coulomb interaction stabiliz
a variety of nonuniform droplet and stripe phases. Surp
ingly ~at the time!, the expected antiphase domain walls we
not discovered among the numerical solutions. The signs
both AF and SC order parameters werealwaysuniform, al-
though their magnitude changed substantially. It is appa
that the absence of antiphase domain walls is an artifac
the model, but the specific reason for this feature was
elucidated.

III. MIXED PHASE OR PHASE SEPARATION

A. General scaling arguments

The mean-field approach typically works well if the im
portant degrees of freedom vary slowly in time and space
such cases one can write an effective free energy in gen
ized Ginzburg-Landau form

Fl5E dDxH(
i

@x i~u!~¹ui !
2#1V~u!J , ~1!

which retains only the leading~quadratic! terms in the ex-
pansion over the gradients of the order parametersui . Usu-
ally, such a form of the free energy@with x5const and poly-
nomial V(u)# is used in the vicinity of a second-order pha
transition, where the selection of the important terms is d
r.

-
ey
i-
e

d
r-

n-
-

e-
s
e,
-

he

of
-

ll
pa-
s.
s
-

e
of

nt
of
ot

In
al-

-

tated by their ‘‘relevance’’ in the sense of an appropria
renormalization group flow. Similarly, in high-energ
applications,60–62 only renormalizable potentials are usual
considered. Here, we shall try to make as general an ana
as possible, and only assume that the positive susceptibil
x i(u) and the potential energyV(u), which is bounded from
below, are smooth enough functions of their arguments
that a lowest-energy configuration always exists. Such a g
eralization of the Ginzburg-Landau free-energy functiona
necessary because, as we shall show, form~1! is not suffi-
cient for describing the stripe phases of interest, indep
dently of the specific form of the local potentialV.

The first statement is that the ground state of the mo
~1!, possibly with one or more constraints of the form

Q5E dDx r~u!, ~2!

is either uniform or phase separated in the thermodyna
limit; the energy of any mixed (nonuniform) phase can
ways be lowered in an infinite system. To prove this, let us
imagine that it were not the case and that some nonunif
configurationu5u(1)(x) ~which, generally, we can assum
to be periodic! minimizes the free-energy densityf 5F/V,
and also, if necessary, satisfies the constraint for the ch
densityr̄5Q/V. Then the dilated fields,u(l)[u(1)(l x) sat-
isfy the same constraints, while the corresponding ene
density

f l5l2K (1)1P (1), ~3!

written here in terms of the original ‘‘kinetic’’ and ‘‘poten
tial’’ energy densities

K (1)[E (
i

x i~¹ui !
2

dDx

V
, P (1)[E V~u!

dDx

V
,

evaluated at the configurationu5u(1)(x), can be reduced by
decreasing the scale parameterl, which is equivalent to a
uniform dilation of the original field configuration. This con
tradicts the original assumption, and we conclude that
such coordinate-dependent configuration can minimize
energy of the system.

It is important to emphasize that the statement prov
above is only correct in the thermodynamic limit. For a p
riodic solution in afinite system the scaling parameterl can
take only discrete values, so that at least one period woul
the system size. Further energy-density reduction is poss
by doubling both the system size and the total charge,
then performing an additional rescaling. Such scaling a
has a direct implication for possible numerical studies of t
and related models: becausel2K (1);1/L2, the finite-size
correction to the free energy and other parameters will
likely to fall off as a power of the system size.

At first sight it appears that the existence of stable kin
for any symmetric double-well potential contradicts th
statement. We must point out, however, that only a sing
kink solution is topologically stable; in any configuratio
with periodic boundary conditions one has an equal num
of kinks and antikinks, and the energy can be lowered
annihilating the pairs. For periodic potentials, multikink co
figurations may be topologically stable, as long as the to
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number of kinks is fixed by the boundary conditions. W
free or periodic boundary conditions, however, such
tremal solutions never represent the ground state of the
tem.

Similarly, one can create stablenontopological
solitons62–67by minimizing the energy of the system with a
imposedfinite-charge, as opposed to afinite-charge-density,
constraint. In this case the amount of charge itself is use
introduce an additional length scale which fixes the size
the soliton, and the question about phase separation doe
arise. The solution of this apparent paradox is that, if
thermodynamic limit is defined correctly, both the energy~1!
and the conserved charge~2! will turn out to be infinite~or
zero!, and they cannot be used to define a length scale. O
in this case the correct procedure is to minimize the fin
densityof the system’s free energy, at a given charge dens

Let us now consider how the scaling in Eq.~3! is modified
in the presence of a long-range interaction

FC5E dDx dDx8
@r„u~x!…2 r̄ #@r„u~x8!…2 r̄ #

ux2x8ug
, ~4!

where g,D for convergence. Obviously, in this case t
total charge constraint~2! can be dropped, because the in
gration in Eq.~4! will diverge in large systems if the screen
ing is not perfect, no matter how weak the interaction
Evaluating the free-energy density along the dilated fi
configurationu(l) ~which, of course, must have the corre
value of the average charge density, so that the long-ra
part of the energy is finite! we obtain, instead of Eq.~3!,

f l5l2K (1)1P (1)1l2D1gV(1), ~5!

where V(1) is the long-range energy~4! per unit volume,
evaluated for the field configurationu(1). The integral~4!
converges ifD2g.0, and the free-energy densityf l has a
minimum atl51 if

2K5~D2g!V. ~6!

This expression is analogous to the virial theorem68 for the
considered class of models. It is the manifestation of
equilibrium between competing gradient terms, which te
to dilate the system, and the long-range forces, which ten
decrease the scale of charge variations. As a result of
competition, an additional length scale is introduced into
problem, and periodic field configurations can
stabilized.69

B. Interaction of defects

Despite its generality, the scaling technique, conside
above, is limited to continuous models. Furthermore, it is
sensitive enough for analyzing the stability of more gene
models, where the existence of mixed phases may depen
actual parameters. Indeed, if the shape of individual solit
like or instantonlike defects for a given model is fixed
some short scale, the mixed phase can often be understo
a lattice of such relatively weakly coupled defects. The s
bility of such a phase will be defined by soundlike displac
ment modes, which are likely to be much softer than
-
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uniform dilations we considered so far. The relevant elas
ity modulus will obviously be defined by the interaction b
tween the constituent defects.

In this section we discuss how the asymptotic form of t
interaction between widely separated solitons can be fo
by a simple linear analysis, even though the core structur
the solitons themselves is governed by a complicated se
nonlinear differential equations. Qualitatively, this is so b
cause away from their cores solitons asymptotically
proach one of the uniform ‘‘vacuum’’ configurations, and th
interaction between two solitons, placed sufficiently f
apart, can depend only on the form of this asymptotic fallo
Indeed, the mutual interaction can be interpreted as a fo
exerted on the core of either soliton in the presence of
infinitesimal field created by the other; therefore, this int
action cannot depend on the internal structure of either s
ton as long as the large-distance asymptotic form remains
same.

This implies that the interaction between individual so
tons must be totally determined by the region of overlapp
tails. In this region the amplitude of the perturbation of t
vacuum is small, and the effective free energy can be line
ized. After this step, the linearized problem reduces to
static Schro¨dinger equation in an external potential, and t
interaction energy can be found by standard methods.70

As an illustration,71 consider a one-dimensional (D51)
free energy of the form~1!, with constant susceptibilities
x i51/2, and the potentialV(u)>0 reaching global minima
only atu656m, V(6m)50. In the absence of any speci
symmetries, there exists only one~up to translations!
minimal-energy trajectoryu0(x) interpolating between thes
minima, u0(6`)56m. With this trajectory, we can also
construct approximate double-kink trajectories of the form

u~x!5u0~x2x1!1u0~x22x!2m, ~7!

and write the corresponding interaction energy as

dF[F@u11u22m#2F@u1#2F@u2#

5E
2`

`

dx@u18u281V~u11u22m!2V~u1!2V~u2!#,

whereu1,25u0(6x7x1,2), and the prime denotes the spati
derivative. Let us choose a pointx0 somewhere between th
positions of the kinks,x1!x0!x2. Then, in the left domain
x,x0 the fielddu1[u22m is small and can be considere
as a small perturbation, while in the regionx.x0 the field
du2[u12m is small. Keeping only the terms of linear orde
in each domain, we obtain

dF5E
2`

x0
dxH ~u18du1!81du1F2u191

]

]u
V~u1!G J

1E
x0

`

dx$1↔2%, ~8!

or just

dF5u18~u22m!2u28~u12m!ux5x0
, ~9!

where the bulk terms disappear to this order because e
field u1 and u2 obeys the Euler-Lagrange extremum equ
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tions exactly. Despite appearances, the interaction energ~9!
is actually independent of the choice of the pointx0, as long
as it is located far enough from the cores of the kinks, so
the linearized Euler-Lagrange equations apply.

Equation~9! relates the long-distance interaction betwe
the kink and the antikink with their asymptotic form at larg
distances. For multicomponent order parameters
asymptotic properties may vary. However, in the particu
case of antisymmetric kinks,u0(x)52u0(2x), we can
choose the separation pointx05(x21x1)/2 exactly midway
between the kinks, and the interaction energy can be rew
ten as

dF52u08~u02m!ux5L/2

5
d

dx
~u02m!2ux5L/2,0,

whereL5x22x1 is the distance between the kinks, and t
negative sign of the derivative corresponds to a posi
quantity asymptotically vanishing far to the right of the kin
The obtained sign corresponds to an attraction at large
tances. The attraction is also expected for a pair of symm
ric nontopological solitons~in this case the same formul
with an appropriatem applies!. Of course, for the case of
single-component order parameter,u[u, this result is well
known. Even in a more general case, we could expect to
the attraction between such defects, as we already know
inhomogeneous configurations are always thermodyna
cally unstable in the system~1!, ~2!, unless there are topo
logical reasons for the stability. The effect of topologic
stability is also easy to understand here: equally char
kinks @which are allowed, for example, if the potentialV(u)
is periodic# always repel. In accordance with Sec. III A, su
kinks would be pushed infinitely far apart unless stabiliz
by the boundary conditions.

A similar calculation can be repeated for any combinat
of spatially separated defects, in arbitrary dimension. In
ery case the interaction in the lowest order can be split in
sum of pairwise terms which are defined by the gradi
terms in the original free energy.

IV. SYMMETRY AND THE STRUCTURE
OF DOMAIN WALLS

So far we mostly considered global properties of the c
figurations minimizing the free energy of the general fo
~1!. For this local functional we saw that nonuniform state
are unstable to phase separation, and thus indicated the
lomb repulsion as an important component of any continu
mean-field model designed to describe the observed inc
mensurate structures in high-Tc materials. Now let us con
centrate on thelocal structure of nonuniform configuration
minimizing the free energy~1!, ~4!. Specifically, we shall
attempt to answer the question whether a component of
order parameter can change its sign in a thermodynamic
stable state~ground-state configuration!.

For this question to make sense, the zero value must h
an unambiguous meaning. This is guaranteed if the free
ergy depends only on the square of the order parameter
example, in antiferromagnets time-reversal symmetry
sures that this is the case for the pseudovector of magne
at
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tion s. Even if the full spin-rotational symmetry is broken
the susceptibilitiesx i , the potentialV, and the charge densit
r can only depend on the bilinear combinationssisj of the
magnetization components. The free energy will depend o
on the squaressi

2 as long as the mixed combinations withi
Þ j are prohibited by the symmetry, as discussed in S
IV C.

A. Continuous symmetry and the untwisting instability

Let us first consider a system with a free energy of
form ~1!, ~4!, with an additional rotational symmetry be
tween m>2 components of the order parameteru
5(s1 , . . . ,sm ,f1 , . . . ). For clarity, and having in mind a
particular application to magnets, we shall call these
components of a~generalized! spin magnetizations, and as-
sume that both local and nonlocal parts of the free ene
can only dependanalytically on the squareS2[s2 of this
vector, while the dependence on the remaining compon
f i remains generic,

r~u![r~s2,f1 , . . . !, V~u![V~s2,f1 , . . . !, . . . .

In the presence of suchcontinuousspin-rotational symmetry,
the gradient terms in the free energy~1! tend to align the
direction of the magnetizations. Indeed, the rotationally
symmetric gradient term can be written as

xs~S2,f i !~¹s!25xs~S2,f i !@~¹S!21S2~¹ê!2#, ~10!

whereê[s/S is a unit vector in the direction ofs. Obviously,
in any region whereSÞ0, the energy of a ‘‘twisted’’ con-
figuration (êÞconst) can be lowered by aligning the magn
tization along a common direction, which eliminates the s
ond term on the right-hand side~RHS! of Eq. ~10!. The
rotational stiffness vanishes ifS50 ~nodal points in one-
dimensional case or nodal hypersurfaces forD.1), and the
energy does not depend on the relative orientation of
vectorss in the regions separated by such nodes. In any c
one can selects156S, sl50 for l .1; i.e., the minimal
configuration can be always chosen to have only one c
ponent, although the sign of this component is not fixed
this point. We shall show below, however, that the energy
any such configuration with a node~closed nodal surface fo
D.1) can be continuously lowered by introducing an a
propriately chosen perturbation in the orthogonal directi
Such instability to local ‘‘untwisting’’ is well known for one-
dimensional systems; it implies that only uniformly orient
spin configurations can minimize the free energy in the pr
ence of a rotational symmetry.

To analyze the ‘‘untwisting’’ instability in general, con
sider a spin configurations5(s0,0) with a single nonzero
components0(x) which is presumed to have a node~nodal
surface forD.1). The local instability of such configura
tions can be demonstrated by introducing an orthogonal
turbations15(0,s1). The relevant part of the perturbed fre
energy functional~1! can be written as

F5E dDx$x~S2,x!@~¹s0!21~¹s1!2#1V~S2,x!%,

~11!
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whereS25s0
21s1

2, and the additional coordinate dependen
is introduced to account for a possible presence of the
maining nonuniform components of the order parame
Here we only consider a simpler case in which the cha
densityr ~and, consequently, the long-range Coulomb int
action! is independent of the spin configuration; this is ge
eralized in Appendix C.

To quadratic order in the perturbations1 the increment of
the free energy~11! is

dF5E $x0~x!~¹s1!21G0~x! s1
2%dDx,

where the effective susceptibilityx0(x)[x(s0
2 ,x).0 is

positive everywhere, the effective potentialG0(x)
[x8(s0

2 ,x)(¹s0)21V8(s0
2 ,x) is continuous and limited

from below, and primes denote derivatives with respec
S2. The local stability of the configurations0(x) requires that
the functionaldF be non-negative; equivalently, the se
adjoint eigenvalue problem

2¹„x0~x!¹w…1G0~x!w5Lw ~12!

should have no negative eigenvalues. Using the s
rotational symmetry~or directly, by comparing with the
Euler-Lagrange equation fors0), it is easy to see that th
function w0(x)[const3s0(x) satisfies Eq.~12! with zero
eigenvalueL050. It is a well-known fact about the self
conjugate eigenvalue problem~12! that its ground state is
nondegenerate and does not change sign.72 Since the func-
tion w0(x) does change its sign by assumption, it cannot
the ground-state eigenfunction, and, therefore, there mus
at least one unstable directionw21(x) which corresponds to
a lower eigenvalueL21,L050. Therefore, the energy o
the original spin configuration„s0(x),0… can be continuously
lowered by the orthogonal perturbations15const
3„0,w21(x)…, and we conclude thatonly a uniformly ori-
ented spin configuration without nodes (nodal hypersurfa
for D.1) can realize the global minimumof the functional
~1! in the presence of a continuous spin-rotation symmetr73

B. Instability in the Ising limit

Let us now imagine that the continuous spin-rotatio
symmetry is broken by the lattice. We begin with the case
a relatively strong easy-axis~Ising! anisotropy, so that effec
tively only one components of the spin remains. In the ab
sence of any other magnetic ordering, the residual symm
of the free energy is the discreteZ2 group associated with th
time-reversal symmetrys→2s. Ordinarily, such broken
symmetry indicates the possibility oftopologically stable
kinks, or domain walls inD.1, separating regions of oppo
site magnetization. It turns out, however, that despite th
local stability, such configurations do not occur in t
lowest-energy state of the system; they can only occu
excitations. Formally, this can be proved in general, utilizi
the residual symmetryZ2 of the free-energy functional.

Indeed, we saw that in the presence of a continuous s
rotational symmetry the ground-state configuration is u
formly aligned; it can always be chosen to have only o
component of the spin. Therefore, the ground state of
functional
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F5E dDx$x~s2,x!~¹s!21V~s2,x!%,

is in a one-to-one correspondence~modulo the overall rota-
tion! with the ground state of the U~1!-symmetric extended
functional

Fz5E dDx$x~s2,x!~¹s!21V~s2,x!%,

where the fields5(s1 ,s2) has two components. Because
the untwisting instability, the second functional has a no
less ground-state configuration; our mapping indicates
so does the first.

We have proved a version of the no-node theorem,
the statement that any components of the order paramete
preserves its sign in the globally minimal configuration, pro-
vided that the potential energy~including the long-distance
part; see Appendix C! depends only on the square of th
component.74

C. Group-theoretical analysis: Effects of ‘‘spin-orbit
coupling’’

The situation of perfect Ising anisotropy considered in
previous section is, of course, an idealized case. In real
tems the anisotropy can be quite small, so that all three c
ponents (sx ,sy ,sz) of the magnetization pseudovector mu
be considered. Nevertheless, it is possible to show that
same conclusion about the absence of topological dom
walls holds as long as the symmetry of the underlying latt
is high enough.

Generally, because of the global time-reversal symme
the local potential energy can be an arbitrary function of
bilinear combinationssisj , i , j 5x,y,z. Expanding in powers
of such products, we can also write any such function as

V~sisj !5V01V1sysz1V2szsx1V3sxsy , ~13!

where the coefficients in the expansion are, generally, so
functions of the squares of the magnetization compone
Vk[Vk(sx

2 ,sy
2 ,sz

2), k50, . . . ,3. The statement about the
sign of the magnetization components proved in the previ
section applies only if the cross terms are absent. In part
lar, this happens independently of the specific details of
function V(sisj ), if such terms are not allowed by the sym
metry of the lattice. Conversely, if at least one of such ter
is present, no general statement about the sign of any c
ponent of the spin magnetization can be made, unless
additional components of magnetization are suppressed
sufficiently strong easy-axis anisotropy.

The effective free-energy functional should remain inva
ant under any transformation which preserves the lat
structure; for the local potentialV only the transformations
from the corresponding crystallographic point group are r
evant. Because the pseudovector of magnetization rem
invariant under inversion, its components transform un
reflection,

sh : ~x,y,z!→~x,y,2z!,

as (sx ,sy ,sz)→(2sx ,2sy ,sz), in exactly the same fashion
as under thep rotation with respect to the axisz,
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C2 : ~x,y,z!→~2x,2y,z!.

The invariance of the potential~13! with respect to either of
these transformations requiresV15V250. The existence of
another symmetry transformation of one of these kinds, w
respect to an orthogonal plane or an orthogonal axis, is
ficient to suppress the only remaining coefficient,V350.

Such symmetries are present in all crystallographic po
groups of cubic~groupsO, Oh , T, Th , Td! and orthorhombic
(C2v ,D2 ,D2h) systems, and in sufficiently symmetr
groups of tetragonal (C4v ,D4 ,D4h ,D2d) and hexagona
(C6v ,D6 ,D6h ,D3h) systems. For all other crystallograph
groups we constructed invariant expressions, mixing sev
components of the magnetization. For example, the quan
sxsy(sx

22sy
2) is symmetric with respect to all transformation

of the groupsC4 , C4h , andS4, the quantityszsy(sy
223sx

2) is
symmetric with respect to all trigonal groups, etc.

The lattice symmetry also determines the structure of
derivative terms in the free-energy functional. In addition
components of the pseudovector of the magnetization,s, we
now have the components of the axial vector of the gra
ents, and so the number of possible symmetric terms
creases. The conclusions about the phase separation an
local structure of the domain walls will be absolutely mod
fied if the termslinear in derivatives are present in the fre
energy. Such terms are known to stabilize topological
main walls in the ground state. Among the groups we lis
above, only the groupsOh , Th , D6h , D4h , andD2h abso-
lutely prohibit the existence of invariant quantities linear
derivatives. All these groups include the inversion, wh
guarantees the absence of such invariants. The groups w
include only proper rotations were eliminated by the ex
tence of the pseudoscalar invariants•@¹3s#. All other
groups required special consideration.75

The highly symmetric point groups listed in the previo
paragraph prohibit both terms linear in derivatives, and
mixing between different components of the magnetizat
in the potential energy. Nevertheless, in the presence
spin-orbit interactionanypoint symmetry group allows mix
ing between different components of the magnetization
the gradient terms due to the existence of a rotationally
variant scalar

~¹•s!25~]xsx!
212]xsx]ysy1•••.

For specific groups, dangerous terms can also include l
symmetric invariant quantities containing terms of the fo
]xsx]ysy . Formally, because these terms cannot be eli
nated by symmetry, antiphase domain walls are possibl
the ground state of any non-Heisenberg system. For the
of magnetic ordering one may argue, however, that the s
metry breaking in the gradient terms can only result from
combination of the hopping, already small because it is
termined by the tunneling matrix elements, and the spin-o
interaction, typically small because it is a relativistic effe
Therefore, such terms are expected to be very small, and
clear that they cannot be responsible for very robust
tiphase domain wall ordering observed in the cuprates
nickelates.
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V. ANTIPHASE DOMAIN WALLS

The crystallographic point groups of the relevant pha
of high-Tc materials76–80and related compounds81,82areD4h
in tetragonal phases andD2h in orthorhombic phases. Ac
cording to our arguments in the previous section, th
highly symmetric groups absolutely rule out antiphase
main walls in the lowest-energy state, and yet such dom
walls have been observed in many such materials. Moreo
this constraint is not limited to the continuous model~1! with
gradient terms quadratic in derivatives: many lattice mod
with arbitrary long-distance interactions can be cast in
generic form considered in Appendix D, and by the theor
proved there they must have ground states with uniform s
of the order parameter. Clearly, this situation is by no me
an exception.

For example, a tendency for forming in-phase dom
walls was seen83 in a model of two Heisenberg antiferromag
nets coupled across a stripe represented by a Luttinger liq
as a result of their interaction with the staggered magn
moments induced on the stripe. This is not surprising in vi
of our general MF treatment; the model83 ignores completely
the transverse mobility of the stripe~the processes of elec
trons’ hopping from AF to the stripe! which counteracts the
usual exchange coupling.84,85

In the remaining part of the paper we show that antiph
domain walls in the ground state can be stabilized in
presence offrustration involving competing interactions. We
consider two specific models with short-range interaction
lattice model of a doped antiferromagnet and a continu
model with higher-order derivative terms. In both syste
periodic antiphase domain wall structures can be thermo
namically stable at large enough charge densities, but
main walls attract at asymptotically large distances, so t
the phase separation necessarily happens at sufficiently s
values of doping.

A. Antiphase domain walls on the lattice

Let us consider a lattice model of the form

F5J(̂
i j &

SiSj1J8(
^ i l j &

SinlSj1(
i

V~Si
2 ,ni !, ~14!

where the first term represents the usual exchange of lo
ized spins, the second term84,85 is due to higher-order ex
change processes with virtual hops through a partially oc
pied site, the hole density, 0<nl<1 is defined to be a
bounded continuous variable, and the local potentialV must
be chosen to ensure the stability of the model, as well a
provide an adequate repulsion between the holes and
spins on the same site. As usual, we presume that the ave
hole density is fixed,

x[n̄5N 21(
i

ni , ~15!

where N is the total number of lattice sites. Clearly, th
positive values of the second exchange constant,J8.0, tend
to frustrate antiferromagnetic ordering in a doped system;
argue below that a competition of this sort is necessary
form antiphase domain walls and suppress the global
order in the system.



is

s

ge
s

ly
gy

t
e-

ca

so
be-

par-

th a
nu-

een
al
o-

wn
est
m-

sen
f the
nd 2
tion,
ig-

rac-

suf-
ale

t is
, in
ses

ge

n,
nd

val-
lin-

ow

th
in
n

ger
e
the

ped

con-

PRB 60 7549TOPOLOGICAL DOPING AND THE STABILITY OF . . .
For the purpose of this example, we will limit our analys
to the quartic form of the potential

V~S2,n!5
g1

2
~S221!21S g̃2n1

zJ

2 DS21
g3

2
n2, ~16!

where g̃25g22z(z21)J8/2, z is the lattice coordination
number, and the coefficients are chosen so that in term
the antiferromagnetic Ne´el order parametersi5(21)iSi the
free energy could be rewritten in a form

F5
J

2 (̂
i j &

~si2sj !
21J8(

^ i l j &
nl~sisj2sl

2!

1(
i

Fg1

2
~si

221!21g2nisi
21

g3

2
ni

2G . ~17!

The term with the coefficientg1 favors unit values of the
on-site magnetization, and the coefficientg2 is a measure of
the strength of the repulsion between spins and char
while the coefficientg3 measures the local tendency again
doping.

At zero doping all charges necessarily vanish,nl50, and
Eq. ~17! is minimized by a uniform AF states251 with the
value FAF(0)50. Uniform AF states can be also formal
found at sufficiently small nonzero dopings, with ener
given by the second line of Eq.~17!, minimized ats251
2g2x/g1>0 with the energy-density value

f AF~x!5g2x1
x2

2 S g32
g2

2

g1
D .

The magnitude of the AF ordering reduces to zero ax
5g1 /g2, and at larger filling fractions the AF phase is r
placed by a uniform nonmagnetic state with the energyf 0
5(g11g3x2)/2.

The energies of these phases for the strong repulsion
g2

2.g1g3 are illustrated in Fig. 1. The functionf AF(x) ~solid

FIG. 1. Locating the minimum of the free energy~17! per unit
site for the strong repulsion case,J50.9, J850.6, g150.6, g2

51.9, andg350.8. Bold solid and dashed lines respectively sh
the energies of uniform AF and nonmagnetic (S50) phases. The
dotted line gives the free energy per site of an infinite system in
phase-separated regime. Solid and open squares respectively
cate periodic and phase-separated configurations minimized
merically with system sizes up toN540.
of

s,
t

se

line! has a negative curvature at small values of doping,
the system is necessarily unstable to phase separation
tween an undoped antiferromagnet and a completely or
tially doped uniform nonmagnetic phase~dashed line!. The
energy of phase-separated system is shown in Fig. 1 wi
dotted line. The absence of other phases was checked
merically by minimizing Eq.~17! for systems with periodic
boundary conditions of all even sizes in the range betw
N54 and N540. To reduce the possibility of accident
trapping in a local minimum, we used the Metropolis alg
rithm with variable temperature~simulated annealing!. For
each system size we did a set of up to eight trial cooldo
runs starting with a random configuration, selected the b
resulting configuration, and then repeatedly cycled the te
perature up to 20 times. The minimal energy density cho
among the systems of all sizes was used as an estimate o
ground state energy; these values are shown in Figs. 1 a
with squares. As expected, in the regime of phase separa
typically the lowest energy density was achieved for the b
gest system.

Phase separation is impossible if a long-distance inte
tion is also included in the model~14!. However, the above
calculation remains relevant as long as this interaction is
ficiently weak. In this case, there exists a large length sc
D, at which the long-distance forces become relevant. I
this scale that determines the period of a stripe phase
which the regions of undoped AF and nonmagnetic pha
are separated by the domain walls of the model~14!. As long
as the sized of these domain walls is relatively small,d
!D, the long-range interaction does not significantly chan
their form.

In the considered regime of the strong local repulsio
g2

2@g1g3, the domain wall between the undoped AF a
non-magnetic phases with densityx5min@1,(g1 /g3)1/2# is
very sharp. The order parameters approach their vacuum
ues as determined by the solution of the corresponding

e
di-
u-

FIG. 2. Locating the minimum of the free energy~17! per unit
site for the case of weak repulsion,J50.9, J850.6, g150.6, g2

50.3, andg350.8. The line AF2 corresponds to a uniform AF with
the period of four lattice sites, which becomes preferable at lar
values of J8. The linesS3 and S4 correspond to commensurat
stripe phases with the charge periods 3 and 4, as illustrated in
insets. Belowx'0.75 the system phase separates into an undo
~or very weakly doped! AF phase and the phaseS3. Solid and open
squares respectively indicate the phase-separated and uniform
figurations as seen numerically with system sizes up toN540.



y

n

n
a

e
a

th
o

ly

e
a

th
ra
th

ct
e
s

o

ve

s
he
ic
rg
ee
fa
g
r
o

-
rt

a

b
a
ra
f

e

d,
at

te-

.

or
ect

e
e
xi-
and
int

the
be
de-

ing
n be
d’’

-

left
to
not
de-

nce
e-
an-

mall
tion

fect,

es to
be
of
a

les;
the

7550 PRB 60PRYADKO, KIVELSON, EMERY, BAZALIY, AND DEMLER
earized equations. On the AF side, the charge densit
locked atn50, and the perturbationdsj;exp(2k0j) falls off
with the same exponent as in the ideal undoped AF,

sinh2~k0/2!5g1 /J. ~18!

Similarly, expanding the free energy~17! to quadratic order
in the vicinity of the zero-magnetization state with the de
sity n15(g1 /g3)1/2,1, we obtain

4 sinh2~k1/2!5S 22
J

2n1J8
D

1AS 22
J

2n1J8
D 2

1
2~g2n12g1!

n1J8
.

The second term under the square root, and, conseque
the RHS of the entire expression, are guaranteed to rem
positive everywhere in the strong repulsion regime, indep
dent of the values of the exchange constants. The dom
walls are relatively narrow whenkD!1; in this case the
solution has a form of an array of domain walls between
AF and nonmagnetic regions. This is the canonical picture
Coulomb-frustrated phase separation,15,5 where wide stripes
are directly analogous to the classical stripe phases.6

The ground-state phase diagram changes substantial
the opposite case of very weak repulsion,g2

2!g1g3. The
main difference of this regime is that nonuniform phas
with antiphase domain walls are much closer to stability;
illustrated in Fig. 2, some of them may be stable even in
absence of any long-range forces. As the long-range inte
tions are introduced, instead of stabilizing wide stripes by
usual Coulomb-frustrated phase separation15,5 mechanism,
they may stabilize certain dense stripe phases. Such a pi
of Coulomb-stabilized microscopic stripe phases is in agr
ment with the arguments of Hellberg and Manousaki16

based on their results of exact numerical diagonalization
small t-J clusters.

In the considered limit of weak repulsion,g2
2!g1g3, non-

zero magnetization can coexist with substantial doping e
in the limit of a fully doped system,x51. Because of the
constraint 0<ni<1, only a uniform charge configuration i
possible atx51, and the spin ordering is determined by t
competition between two exchange couplings. For a part
lar set of parameters chosen in Fig. 2, the lowest-ene
phase in this limit has a spin modulation period of thr
lattice sites. As the doping is reduced, it is energetically
vorable to put all electrons at the points of maximum ma
netization, so that the charge density has a period of th
lattice sites, as illustrated in the right caption. The energy
such aferrimagneticphaseS3 is denoted with a bold dash
dotted line in Fig. 2; as the doping is lowered, this line sta
to increase again below the pointx'0.67 where single un-
doped sites are separated by fully doped antiphase dom
walls of width two sites. In a similar phaseS4 ~with the
charge period of four and the spin period of eight sites!, such
domain walls are separated by two weakly doped sites,
this phase is avoided in large systems which prefer to ph
separate instead. The energy density of a phase-sepa
system~PS! is shown with the dotted line; in the vicinity o
is
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the pointx;0.5 this line goes only slightly below the lin
denoting the energy of the stripe phase,S4.

Numerically, for all combinations of parameters we trie
the nonuniform ‘‘stripe’’ phases seemed to be stable only
sufficiently large values of doping. It turns out that this sta
ment can be proved for any form of the potentialV(s2,n) in
Eq. ~14! by using a variant of the argument in Sec. III B
Any nonuniform charge configuration in the limit of low
doping must consist of some defects, charged solitons
domain walls, separated by wide regions of almost perf
AF. In this limit every defect, described by the spinsi and
chargeni distributions, must realize a local minimum of th
free energy~14!, and satisfy appropriate Euler-Lagrang
equations. A two-defect configuration can be well appro
mated by a linear superposition of corresponding spin-
charge-density distributions, with the value of the constra
~15! independent of the mutual position of the defects. In
vicinity of each defect the effect of the other one can
considered as a perturbation. By rearranging the sums in
pendently in each region, with the help of the correspond
Euler-Lagrange equations, the linear order cross terms ca
made to disappear in the bulk, so that only the ‘‘integrate
part

dE51Jds0
bds1

a1J8@s21
a n0

ads1
b2ds0

bn1
as2

a#2Jds0
ads1

b

2J8@s21
b n0

bds1
a2ds0

an1
bs2

b# ~19!

remains. Hereds[s2s` is the deviation of the AF magne
tization from its vacuum value, and the superscriptsa andb
label the fields caused by the defect situated far to the
and far to the right from the origin, respectively. Similarly
Eq. ~9!, the precise location of the separation boundary is
important, as long as it is chosen far enough from each
fect. For a symmetric defect configurationsl

a5s12 l
b , Eq.~19!

can be rewritten as

dE5J@~ds1
a!22~ds0

a!2#12J8s`
a @dn0

ads0
a2dn1

ads1
a#

12J8n`
a @ds21

a ds0
a2ds1

ads2
a#, ~20!

where dnl[nl2n` . Only the first term exists for the
asymptotic form~18!, where the hole densitynl is pinned to
zero at finite distances from defects. This term gives anega-
tive interaction energy, corresponding to asymptoticattrac-
tion between far-separated defects. This is in accorda
with our simulation in Fig. 2, where the most stable charg
modulated configuration was a dense condensate of
tiphase stripes. Of course, the repulsion of the stripes at s
distances and the stability of the dense stripe configura
cannot be inferred from this asymptotic analysis.

Generally, for models of the form~14!, the hole densitynl
does not necessarily vanish at a finite distance from a de
or it may even have a nonzero valuen` in the intermediate
AF phase. Then the second exchange term also contribut
the interaction energy. In principle, this contribution may
attractive or repulsive, depending on the relative sign
s`ds anddn. However, we are interested in systems with
strong repulsion between AF ordering and the doped ho
here the effect of the second exchange is negative, and
second term in the first line of Eq.~20! gives attraction as
well.
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Contrarily, thelast term in Eq.~20!, which exists only if
the doping saturates to a nonzero valuen` far from the soli-
tons, is positive; it contributes to a repulsion between
domain walls. This is not surprising, because the second
change term counteracts the usual exchange if a finite
density is present. Nevertheless, one can show that the
result is an attraction between the defects, as long as
uniformly doped AF state is locally stable.

B. Antiphase domain walls in a continuum model

Although we now have an example of a model whi
admits antiphase domain walls in the ground state,
model is not a continuum model, and one might infer tha
is the lattice commensuration effects that enable the e
tence of antiphase domain walls in the ground state. To st
our statement that it is not the lattice, but the frustrat
between different interactions that stabilizes such dom
walls, we give a brief analysis of a continuum model w
similar properties.

Consider a one-dimensional system with the free ene
of the form

F5E dx@b~s9!21xs~s8!21xf~f8!21V~s2,f!#.

~21!

As usual, the primes denote spatial derivatives, the fies
represents an antiferromagnetic order parameter, andf is a
scalar field with some conserved charge densityr5r(f).
Unlike Eq. ~1!, we no longer assume that the spin susce
bility xs5xs(f) is a positively defined function of the scala
order parameterf, and the higher-order derivative term
with b.0, is required for stability. In analogy with the se
ond hopping term of the lattice model~14!, we shall assume
that the spin susceptibility

xs~f!512ar~f! ~22!

depends linearly on the charge density, so that its sign ca
reversed in the presence of large enough hole density.

1. Scaling analysis

It is obvious that the general conclusion of instability
periodic states made in Sec. III A does not apply for t
model ~21!. Indeed, instead of Eq.~3!, we obtain

f l5l4Q11l2K11P1 , ~23!

whereQ1.0 is the contribution of the term~s! quartic in the
derivatives. Because the second-derivative terms are
longer positively defined, this expression may have a m
mum atl51 and

K1522Q1,0.

Although this condition does notguaranteethe global stabil-
ity of a periodic solution, it is clear that periodic structur
may in principle be stabilized for the free energy~23!.

2. Asymptotic interaction of domain walls

The asymptotic form of the interaction between the d
main walls for the model~21! can be easily found by a linea
analysis similar to that in Sec. III B, by evaluating the ener
e
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of a superposition of two domain walls separated by a w
stretch of undoped antiferromagnet. As before, only surf
terms survive in the linear order,

dE52bdsa9dsb822~bdsa9!8dsb12xsdsa8dsb12xffa8fb

2~a↔b!,

where the scalar fieldf i and the deviation of the AF orde
parameterdsi must satisfy the corresponding Euler-Lagran
equations exactly;i 5a,b respectively denotes the defect lo
cated far to the left and far to the right of the point where t
expression is evaluated. For two symmetric domain wa
sa(x)5sb(2x02x) this expression is simplified if the poin
x0 is chosen exactly in the middle,

dE524~bdsa9dsa!812xs~dsa
2!812xf~fa

2!8ux5x0
.

The parametersb, xs , and xf in this expression must be
evaluated in the vacuum configuration; they are all positi
The perturbation of the vacuum state gets smaller as
move to the right, and the two last terms are negative;
before, this corresponds to an attractive interaction. Ho
ever, it is easy to see that the first term is positive; it co
tributes to the repulsion between the domain walls. Only
analyzing the linearized Euler-Lagrange equations in
nearly perfect AF region can we conclude that the ove
sign of the interaction energy is negative, as long as the
state is a locally stable minimum of the functional~21!.
Therefore, as previously, domain walls attract at lar
enough distances, and the system cannot form a stable
uniform solution at asymptotically small doping as long
AF ground state is stable at zero doping and as long as t
are no long-range forces.

3. Twist stability

The twist instability, which was discussed in Sec. IV f
positive xs and b50, can be also avoided for the mod
~21!; a magnetization vectors can reverse its direction an
yet remain locally stable with respect to twists. A sufficie
condition for this stability can be obtained by analyzing t
derivative terms in the free energy~21!. By decomposing the
vector s5Se into a product of its magnitudeS and the unit
vector e, after several integrations by parts, the gradie
terms in the free energy can be rendered into a form

~s9!2→S2~e9!21~e8!2@2~S8!224S9S#1~S9!2,

~s8!25~S8!21S2~e8!2.

The system~21! will remain stable to developing spontan
ous twists as long as the coefficient in front of (e8)2 remains
positive; this gives the sufficiency criterion of stability
namely, the condition that the expression

2b~S8!224bS9S1xsS
2.0 ~24!

must remain positive everywhere. This condition is easy
check directly for any given single-component solution
Euler-Lagrange equations; there is no need to look for m
ticomponent solutions if Eq.~24! is satisfied.

Formally, this expression can remain positive near a n
of the magnetization because of the presence of the hig
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derivative term in Eq.~21!. However, such solutions can b
allowed in the ground state only ifxs can become negative
which indicates the presence of a competition between
ferent interactions. Therefore, the role of the high
derivative term is only to limit the instability caused by th
competition.

4. Approximate variational solution

To illustrate the considered general properties, let
choose the potential

V5E Fg1

2
~s221!21g2rs21

g3

2
r2Gdx, ~25!

of the same quartic form as used in Eq.~17!, with r
[r(f)5f2. Numerically, the solutions at small enoug
densities look very much like the usual domain walls in ma
nets, withs changing its sign wheref has a maximum. Al-
though the simplest set of trial functionsf5f0 /cosh(kx),
s5tanh(kx) doesnot work, we can use it as a variationa
solution to estimate the ground-state energy and the area
stability of different phases.

Performing the integration, we obtain the expression
the total charge,

Q05E dx f252f0
2/k,

and the free energy,

F05
2

3kFg11
8

5
bk41k2S 21f0

22
8

5
af0

2D
1f0

2~g21g3f0
2!G .

In the limit of small charge density the stripe solution mu
minimize the energy per unit doped charge,f 0[F0 /Q0. This
is achieved by selecting the amplitude of the charge soli

f0
45~g112k218bk4/5!/g3 .

The resulting expression has a minimum at a nonzero s
k5k0 if the constanta in Eq. ~22! is

a5
5

8 F11
2Ag3~118bk0

2/5!

Ag112k0
218bk0

4/5
G ;

the corresponding value of the energy per unit charge is

f 05g21
2Ag3~g11k0

2!

Ag112k0
218bk0

4/5
.

The resulting configuration will be stable with respect
twists if the criterion~24! is satisfied. The analysis show
that this is indeed the case for large enough values ofb and
g3.

The stability of a stripe phase made out of these dom
walls is determined by Eq.~23!. With the derived expres
sions we find that
f-
-

s

-

of

r

t

n

le

in

K05S 12
8

5
a D1

2

f0
252

16bk2

5f0
2

is always negative. This implies that the periodic pha
might indeed be stabilized at some intermediate scale
agreement with our numerical simulations of this mod
Therefore, the local stability of topological domain wal
may lead to the stabilization of adensestripe phase made ou
of such walls, in agreement with detailed simulations24,25 of
the t-J model. However, such a phase can only be stabl
large enough charge densities: within the MF approximat
we have shown that the asymptotic large-distance interac
between such domain walls is always attractive, and in
limit of small values of doping the system necessarily ph
separates. In addition, more subtle fluctuation effects1 always
contribute to power-law Casimir attraction between charg
defects, and the statement about the phase separatio
weakly doped antiferromagnets persists.

VI. CONCLUSIONS

Phase separation at small doping is a ubiquitous prop
of doped insulators with short-distance interactions. Gen
ally, in the absence of a frustration caused by compet
interactions, the staggered magnetization of the ground s
never changes its sign. These two statements can be fo
lated as theorems in the vicinity of a second-order ph
transition involving AF ordering, where the correlatio
length is large and the derivative terms are small.

In application to high-Tc materials, the competition be
tween the tendency of the holes to move around and
tendency of repulsive interactions to localize the char
must be accounted for in any model for describing high-Tc
superconductors or related materials. Only at relatively sh
distances~where, strictly speaking, we go outside the lim
of applicability of the MF theory! may the domain walls
repel, which could lead to the stabilization of dense sta
stripe phases.
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APPENDIX A: LANDAU THEORY

The phase transition between a stripe phase and a h
temperature disordered state considered by Zacharet al.14

involves only one spin-order parameter, the incommensu
spin-density waveSq . The transition from a well-develope
antiferromagnet with a modulation vectorpW 5(p,p) to an
incommensurate modulated phase must account for both
original AF-order parameterSpW ~which, generally, cannot be
assumed small! and the spin-density waveSpW 1k , with modu-
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lation period 2p/k. Coupling these two spin-order param
eters together, it is easy to write nontrivial and yet sp
rotation-invariant terms of the Landau expansion of
effective free energy,

F5r suSpW 1ku21r curku21g@SpW
* SpW 1krk* 1c.c.#1•••,

~A1!

where rk is the complex-valued amplitude of the charg
density wave with the wave vectork, rk* [r2k , and the
quartic ~and higher-order! terms required for stability are
omitted. This expression suggests that an instability in eit
the spin@r s[r s(q),0# or the charge@r c[r c(k),0# sector
generates both spin- and charge-density waves at the w
vectorsq5pW 1k and k, respectively, with modulation am
plitudes linearly proportional to each other. More precise
the modulation appears ifr s(q) and/orr c(k) are negative, or
if

r s~pW 1k!r c~k!,ugu2uSpW u2.

Near the transition the magnitude of the incommensu
peak is necessarily much smaller than the commensurate
modulation,uSpW 1ku!uSpW u; it is easy to see that this corre
sponds toin-phasedomain walls. The derived relationshi
betweenq andk implies that the periods of spin and char
modulation must be equal for such domain walls.

Experimentally, novel incommensurate elastic peaks,
existing with the commensurate peaks at (p,p), have been
observed86 recently at the border of the antiferromagne
region of La22xSrxCu O4 at x50.05. The incommensurat
peaks are rotated by 45° compared to the antiphase pea
larger doping, which could be caused by the fact that th
peaks appear at a temperature that is lower than the ener
the low-temperature-orthorhombic–low-temperature-te
gonal phase mode.87 If the data represent a bulk effect, an
assuming that the commensurate AF correlation length in
cluster spin-glass phase44 at smaller values of doping (x
,5%) is sufficiently large for the Landau expansion~A1! to
apply, we interpret the simultaneous presence of both c
mensurate and incommensurate peaks as the signaturein-
phasedomain walls, expected in this region, and not mer
coexisting antiferromagnetic and stripe phases. The ab
analysis indicates that the corresponding charge modula
must have thesameperiod and direction as that of the SDW
order. Because the observed ordering differs substantially
these two phases, the transition from a weakly modula
diagonal AF phase to the fully developed stripe state w
antiphase domain walls is expected to be first order in a c
system.

In general, however, a discontinuous transition betwee
topological and nontopological stripe phases is not the o
possibility. A particularly simple scenario of a continuo
transition between these phases corresponds to adimeriza-
tion transition, where pairs of antiphase domain walls sp
taneously merge to form wider dimerized domain wa
similar to those observed in manganates.9 As a result, the
period of charge modulation doubles, and a CDW with
periodicity of the original spin ordering must develop.
addition, the perfect symmetry between the regions with t
opposite signs of AF order is broken, and a net antiferrom
netic ordering appears. Here we present only the simp
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scenario for such a continuous transition, minimally exten
ing the charge-driven part of the phase diagram of Zac
et al.14 A more complete symmetry analysis of possib
dimerized phases will be published elsewhere.88

To describe the dimerization transition, the Landau eff
tive free energy must include at least two harmonics of
density wave,rk , r2k , coupled to the SDW harmonic
SpW 1 lk , l 50, 1, 2. While the quadratic part of the free ener
has the usual form,

F25(
l 50

2

r sluSpW 1 lku21(
l 51

2

r r l ur lku2,

there arefive possible cubic terms

F35r2k* ~l0SpW 1k
2

1l1rk
21l2SpW SpW 12k!

1rk* ~g0SpW 1kSpW 1g1SpW 12kSpW 1k
* !1c.c. ~A2!

The invariant with the coefficientl0 has been considere
previously in Ref. 14, and the terms with coefficientsg0 and
l2 were considered above in Eq.~A1!.

Let us follow Zacharet al.14 and consider the transition
from a disordered phase, driven by the instability in t
CDW sector,r r2,0. In this scenario, as the amplitude of th
CDW r2k gets sufficiently large, the term with the coefficie
l0 generates an instability in the SDW sector. From o
extendedfree energy~A2! it is clear that the same densit
wave may also destabilize the double-periodic CDWrk ~via
the term with coefficientl1). If this is the case, the remain
ing cubic invariants will simultaneously generate nonze
AF modulationSpW ~coefficientg0) and an additional SDW
harmonicSpW 12k ~coefficientsl2 and g1). Obviously, in a
certain range of parameters, the transition to the phase
rkÞ0 is continuous. The resultingdimerizedphase, with
equal periods of SDW and CDW, and a nonzero AF ord
ing, would be interpreted as a nontopological stripe phase
observed, such a transition will provide a precisemacro-
scopicmeaning to the notion9 of dimerized stripes.

APPENDIX B: INTERACTION OF CHARGED SOLITONS

Here we demonstrate that the expression for interac
energy between the defects, derived in Sec. III B, also wo
for systems with global charge constraint~2!. The single-
soliton field configurationu0(Q;x) minimizes the energy
functional at a fixed value of chargeQ, but the total charge
corresponding to their linear superposition~7! does not nec-
essarily equal 2Q. Therefore, instead of Eq.~7!, we need to
consider a corrected configuration

u~x!5u0~Q2dQ;x2x1!1u0~Q2dQ;x22x!2m

5u0~x2x1!1u0~x22x!2m1du~x!, ~B1!

where the additional exponentially small~of the order of the
tail overlapdQ) deformation

du52dQF]u0~Q;x2x1!

]Q
1

]u0~Q;x22x!

]Q G
serves to adjust the value of charge constraint, so that, e
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dQL5E
2`

x0
~u22m1du!

]r~u1!

]u1
dx50,

and a similar condition for the regionx.x0 where the field
u2 is far from equilibrium value~all notations as in Sec
III B !. In the presence of the charge constraint the Eu
Lagrange equations for a single kink must be written with
chemical potentialm,

2u091
]

]u
@V~u!1mr~u!#uu5u0

50,

and the combination in the square brackets in the integr
of Eq. ~8! no longer disappears. Instead, it changes the
ergy by an amount proportional to the total charge increm
dQL in the regionx,x0 and a similar term forx.x0. These
charge increments vanish for the corrected configura
~B1!, and in the linear order we are again left with the sa
universal expression~9!. As before, it was important that th
correct configuration deviate very little from the simp
minded superposition~7!, including the tail regions, where
the correctiondu can be safely ignored as an exponentia
small quantity of higher order.

Such linear analysis is equivalent to finding theinstanta-
neousacceleration89,90of a defect surrounded by a surface
calculating the total flux of the energy-momentum ten
into the enclosed volume due to all other defects loca
outside the surface. The corrections to Eq.~9! are easy to
find in equilibrium, and they indeed turn out to be expone
tially smaller, if the locally stable configuration of sever
defects exists~in some cases such configurations can be
bilized by the boundary conditions!. Often, however, be-
cause of the attraction between individual solitons, there
no locally stable equilibrium configurations minimizing th
free energy. In such cases, instead of analyzing the force
static configurations, the interaction can be found more
curately by studying the full dynamics of the system.91 In the
present work, however, we are mostly interested in thesign
of the interaction between defects, and the accuracy of
~9! is sufficient.

APPENDIX C: UNTWISTING INSTABILITY
OF CHARGED DEFECTS

Here we extend the local stability analysis of Sec. IV A
systems with conserved charge and long-range interacti
Now, instead of Eq.~11!, the relevant part of the free energ
and the corresponding constraint can be written as

F5E x~S2,x!~¹s!21V~S2,x!dDx

1
1

2E dr~S2,x!K~x,x8!dr~S82,x8!dDx dDx8,

~C1!

E @r~S2,x!2 r̄ #dDx50, ~C2!

where the explicit coordinate dependence of the local par
the potential energyV and the charge density increme
dr(S2,x)[r(S2,x)2 r̄ account for the presence of all oth
r-
a

d
n-
nt

n
e

r
d

-

a-

re

in
c-

q.
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of

componentsui
(0)(x), 2< i<N of the order parameter. Th

expansion~10! remains valid even in the present case, a
we can always select the ground-state configuration of
functional ~C1! to have only one component,s5„s0(x),0….
As before, our task is to prove that this configuration is
cally unstable to ‘‘untwisting,’’ as long as the functions0(x)
has a node. The problem with the charge constraint~C2! is
slightly more difficult, since the naively perturbed config
ration s5(s0 ,s1) generally has a different value of charg
To correct this, we consider a perturbed solution of the fo

s5$s0A12e1,e2w%, S25s0
21e2

2w22e1s0
2 ,

where e1 must be chosen to preserve the average cha
density, i.e.,

e152e2
2F E r8w2dDxGF E r8s0

2dxG21

, ~C3!

where we assume that the denominator does not vanish i
tically, and the derivativer8[]r(S2,x)/](S2).

To quadratic order ine2, the increment of the energ
functional ~C1! is just

dF5E dx$x0~x!@e2
2~¹w!22e1~¹s0!2#1@e2

2w22e1s0
2#

3@r08w0~x!1V081~¹s0!2x08#%, ~C4!

where all functions with subscript 0 are evaluated with t
nonperturbed configurationss0, the prime denotes the deriva
tives overS2 as in Eq.~C3!, and the scalar potential

w0~x![w~@s0
2#,x![E K~x,x8!dr„s0

2~x8!,x8…dDx8.

Equation~C4! can be simplified with the help of the relatio
~C3! and the Euler-Lagrange equation for the nonperturb
solutions0,

2¹~x0¹s0!1G~@s0
2#,x!s050, ~C5!

where the self-consistent potential function

G~@v0
2#,x![@w0~x!1m#r081V081~¹s0!2x08

contains the Lagrange multiplierm. We obtain, with the
same accuracy,

dF5e2
2E dDx$x0~¹w!21G~@s0

2#,x!w2%. ~C6!

Let us return to the Euler-Lagrange equation~C5!. As it
stands, it is a nonlinear integro-differential equation fors0.
However, one can formally look at this expression as
action of the linear self-adjoint operatorL̂52¹(x0¹)
1G0(x) „with fixed functions x0(x) and G0(x)
[G(@s0

2#,x)… on the functions0. From this point of views0

is an eigenfunction of this operator,L̂s05L0s0 with zero
eigenvalueL050. The same operator serves as the kerne
the energy increment~C6!, and so, expandingw5(Alsl(x)
over the orthogonal eigenfunctions of this operator, we
tain
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dF5e2
2( L lAl

2E sl
2dDx.

By assumption,s0 has a node, and so there must72 exist an
eigenfunctions21 corresponding to a negative eigenval
L21,0. Therefore, takingw5s21, we can decrease the fre
energy,

DF5L21e2
2E v21

2 dDx,0,

which violates the original assumption. Therefore, the s
configurations with nodes are locally unstable to untwist
even in systems with charge constraint and/or long-ra
interactions.

APPENDIX D: NO-NODE THEOREM
FOR DISCRETE SYSTEMS

It is also possible to prove a version of the no-node th
rem for many lattice models. Consider the problem of fin
ing a minimum of the expression

H5(
i j

x i j ~ui2uj !
21V~u1

2 , . . . ,uN
2 !, ~D1!

where the variablesui , i 51, . . . ,N are scalars,92 the nonlo-
cal potentialV(u1

2, . . . ,uN
2 ) is a limited, continuously differ-

entiable function of all its arguments, and the connectio
x i j >0 can be positive or zero, with the only limitation th
all points can be linked. We are going to prove that in t
minimum of Eq.~D1! all variablesui are nonzero and hav
the same sign, or all of them vanish identically.

Let us suppose that the opposite statement is true, nam
that the global minimumH (0) is achieved on the setui

(0) ,
some of which could be positive, negative, or zeros, bu
-
r,

v

S
e

H

n
g
e

-
-

s

e

ly,

t

least one nonzero value exists. Without limiting general
we can suppose that this value is positive. Let us now rep
the original set by the non-negative setui

(1)5uui
(0)u. Clearly,

because of the obvious inequality~Cauchy!

~a2b!2>~ uau2ubu!2,

this substitution cannot increase the energy. This inequa
becomes strict ifa andb have opposite signs, which implie
that the points with positive and negative values in the or
nal configuration must be separated by zeros, or our assu
tion was wrong. Therefore, some of the values in the mo
fied setui

(1) are expected to be zeros. By assumption, th
are no disconnected points, and at least one pointj with zero
value uj

(1)5uj
(0)50 must be connected to a pointi with

ui
(1).0. If we replace the zero by a sufficiently small valu

uj
(2)5e.0, the increment of the energy~D1! will be nega-

tive,

dHj5(
i

$x i j ~e222eui
(1)!%1e2

]V~u1
2 , . . . !

]uj
2 U

ul5u
l
(1)

522e(
i

x i j ui
(1)1O~e2!,0. ~D2!

The procedure can be repeated for all points with zero va
Therefore, the original assumption was wrong, and in
global minimum all valuesui must have the same sign~al-
though they can beexponentiallysmall!.

Because the increment~D2! of the energy islinear in e,
the proven statement can be easily extended to accommo
an arbitrary dependence of the connectionsx i j (u1

2 , . . . ,uN
2 )

on the variables, as well as an arbitrary number of nonlo
constraints of the formA(u1

2 , . . . ,uN
2 )50.
R.
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