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Coherent potential approximation for d-wave superconductivity in disordered systems
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A coherent-potential approximation CPA is developed fors-wave andd-wave superconductivity in disor-
dered systems. We show that the CPA formalism reproduces the standard pair breaking formula, the self-
consistent Born approximation and the self-consistentT-matrix approximation in the appropriate limits. We
implement the theory and computeTc for s-wave andd-wave pairing using an attractive nearest-neighbor
Hubbard model featuring both binary-alloy disorder and a uniform distribution of scattering site potentials. We
determine the density of states and examine its consequences for low-temperature heat capacity.
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I. INTRODUCTION

A treatment of disorder is an essential part of the the
of superconductivity. After all, one must explain why imp
rity scattering does not cause resistance. Thus it is nat
that as evidence for novel superconducting states multip
the foundations of the subject, due mainly to Anderson1 and
Abrikosov and Gorkov,2,3 are being reexamined. The expe
ments which stimulate most strongly the current revival
interest in the problem are those on the high-tempera
superconductors,4 which are now universally regarded a
‘‘ d-wave superconductors,’’5 and those involving some o
the heavy fermion systems which display signs of ‘‘p-wave’’
pairing.6 In what follows, we wish to contribute to the theo
retical discussion7–14 of the issues raised by these very inte
esting developments.

The case of classic, ‘‘s-wave,’’ superconductors is by
now well understood. If the perturbation does not bre
time-reversal symmetry and the coherence length is s
ciently long, so that the pairing potentialD does not fluctu-
ate, the Anderson theorem1 guarantees that there is an abs
lute gap in the quasiparticle spectrum and the main effec
disorder is that the density of normal states in the gap eq
tion is replaced by its average over configurations.15 On the
other hand, if the perturbation breaks time-reversal inv
ance, as is the case with paramagnetic impurities, the e
is more dramatic. For instance, the transition temperatureTc
is reduced from its clean limit valueTc0, according to the
well-known pair breaking formula

lnS Tc

Tc0
D5cS 1

2D2cS 1

2
1rcD , ~1!
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wherec(x) is the digamma function andrc5(2ptTc)
21 is

a measure of the strength of the scattering andt21 is the
scattering rate.2,7

By contrast in the case of superconductors whose Coo
pairs are of exoticp-wave ord-wave character even simpl
potential scattering, which does not break time-reversal s
metry, causes pair breaking.7 This fact was noted already in
the early contributions to the field,16 but has become a sub
ject of intense scrutiny only recently.7–14 Of particular inter-
est are two-dimensional models featuringd-wave pairing as
these may be relevant to experiments on high-Tc supercon-
ductors. Notably, for cuprates many experiments have
plored the variation ofTc , the density of states and othe
properties as a function of Ni and Zn substitutions on
copper sites17–24or irradiation damage.25–27Although a wide
variety of theoretical ideas28–32 and methods33–38 have been
applied to interpret the experiments, a comprehensive pic
of the role of disorder is far from complete. On a more fo
mal level, an intriguing problem arises from the observat
of Gorkov and Kalugin10 that the scattering in models wher
the order parameter has a line of zeros on the Fermi sur
is highly singular and this may be a manifestation of int
esting new physics. Indeed in two dimensions, Nerses
and co-workers14 predict that the quasiparticle density o
statesN(E) approaches zero, even in the disordered state
power law;uEua, with positive exponenta, instead of go-
ing to a finite value as was found by Gorkov and Kalugin10

Another interesting and controversial issue is the relative
portance of the self-consistent Born approximation~SCBA!
and resonant scattering in the unitarity limit.11,12 Our aim
here is to explore the subject systematically on the basi
explicit calculations, albeit for a simple, extended Hubba
model with attractive interactions and site diagonal rando
ness only.
7523 ©1999 The American Physical Society
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In short, we will examine the problem of disordered u
conventional superconductors making use of the coher
potential approximation~CPA!. The CPA is the most reliable
approximation developed for the theory of electronic str
ture of random metallic alloys in the normal state.39,40 Nota-
bly, it has been shown to be exact in both the weak and
strong scattering limits, and applicable to systems with l
as well as high concentration of impurities. Significantly, t
CPA reduces to the self-consistent Born approximat
~SCBA! for weak scattering impurities, and agrees with t
self-consistentT-matrix approximation~SCTA! results for
strongly scattering impurities of low concentrations. Inde
it remains a good approximation in the unitarity limit o
resonant scattering.11,12 Finally, on account of the fact that i
becomes exact as the number of nearest neighbors go
infinity, the CPA is often referred to as a mean-field theo
of disorder.41

Given these desirable features, it is clearly worthwhile
explore the consequences of the CPA for disordered su
conductors. For the case of conventionals-wave pairing this
has already been done, generating many useful results42,43

The case of superconductors with Cooper pairs ofd symme-
try will be treated here within CPA, developing in detail th
method introduced in our earlier paper44 and the limited dis-
cussion in Ref. 45.

We will demonstrate that in various limits our formalis
reproduces many of the well-known results for disorde
superconductors, and examine in detail the phase diagra
the local and nonlocal attractive two-dimensional Hubb
models. In particular, we study the variations ofTc with
impurity scattering strength and with impurity concentrati
for the case of locals-wave pairing as well as nonlocal~ex-
tended! s-wave andd-wave pairing. We also contrast th
cases for a binary alloy,A-B type, disorder with the case o
uniformly distributed scattering potentials on each site.
nally, we investigate the density of states~DOS!, N(E), at
low energies and its consequences for measurements o
specific heat.

II. INCORPORATING CPA
INTO BOGOLIUBOV-DE GENNES EQUATION

Our starting point is the single band Hubbard model w
an attractive extended interaction which is described by
following Hamiltonian:

H5(
i j s

t i j cis
† cj s1

1

2 (
i j

Ui j n̂i n̂ j2(
i

~m2« i !n̂i , ~2!

wherecis
† and cis are, respectively, the usual creation a

annihilation operators for electrons on sitei with spins, and
the local charge operator isn̂i5n̂i↑1n̂i↓ with n̂is5cis

† cis .
The chemical potential ism,t i j are the hopping integrals~for
iÞ j ) ande i is the local site energy. The interaction termUi j
can be either a local attractive interaction (Uii ,0) giving
rise to s-wave pairing, or a nonlocal attractive interactio
(Ui j ,0 for iÞ j ) giving rise tod-wave or extendeds-wave
pairing. Disorder is introduced into the problem by allowin
the site energies« i to vary randomly from site to site.
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Starting from Eq. ~2! we apply the
Hartree-Fock-Gorkov46,47 approximation, which results in
the following Bogoliubov-de Gennes equation:

(
l

S ~ ıvn2« i1m!d i l 1t i l D i j

D i j* ~ ıvn1« i2m!d i l 2t i l
D

3S G11~ l , j ;ıvn! G12~ l , j ;ıvn!

G21~ l , j ;ıvn! G22~ l , j ;ıvn!
D 5d i j S 1 0

0 1D , ~3!

for the Green’s-function matrixG( i , j ;ıvn) at the Mastus-
bara frequencyvn5(2n11)pkBT, in units where\51. For
computational convenience we shall take the hopping in
gral t i j to be nonzero only when the sitesi and j are nearest
neighbors. The mean-field pairing potentialD i j can either be
local (i 5 j ) or nearest-neighbor nonlocal. Of course, t
above equations are completed by the self-consistency
dition that

D i j 5uUi j u
1

b (
n

eıvnhG12~ i , j ;ıvn!, ~4!

whereh is a positive infinitesimal. To simplify matters w
have assumed that the normal Hartree and exchange t
can be absorbed into the definitions of the chemical poten
m or the hopping integralst i j . As usual, Eqs.~3! and~4! are
to be solved subject to the requirement on the chemical
tential that

ni5
2

b (
n

eıvnhG11~ i ,i ;ıvn!, ~5!

where ni is the number of electrons at sitei. Clearly, the
Green’s-function matrixG( i , j ;ıvn) determined by the above
equations depends on the set of site energies$« i%. Our task is
to find the configurationally averaged Green’s-function m
trix ^G( i , j ;ıvn)&. Evidently, this is made much easier if w
assume that the pairing potential does not fluctuate from c
figuration to configuration. As was argued by Gyo¨rffy, Litak,
and Wysokin´ski15 for s-wave superconductors this is a goo
approximation when theT50 coherence lengthj0 is large.
Thus our specific results will have to be treated with app
priate care when applied to superconductors withd-wave
symmetry or short coherence length such as supercondu
cuprates.

Let us now proceed to deploy the CPA strategy for c
culating the averaged Green’s function matrix^G( i , j ;ıvn)&
subject to the self-consistency conditions:

D̄ i j 5uUi j u
1

b (
n

eıvnh^G12~ i , j ;ıvn!&, ~6!

n̄5
2

b (
n

eıvnh^G11~ i ,i ;ıvn!&. ~7!

The first move in deriving the fundamental equations
the coherent potential approximation is to define a cohe
medium Green’s-function matrixGc( i , j ;ıvn) by

(
l

S @ ıvn1m2S11~ ıvn!#d i l 1t i l D̄ i l

D̄ i l* @ ıvn2m2S22~ ıvn!#d i l 2t i l
D Gc~ l , j ;ıvn!

5d i j S 1 0

0 1D . ~8!
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As will be clear later,Gc( i , j ;ıvn)5^G( i , j ;ıvn)& and
henceS11(ıvn) andS22(ıvn) are the diagonal componen
of the usual self-energy. Note that we did not introduce a
off-diagonal self-energies such asS12(ıvn) and S21(ıvn),
because for the single site perturbations of our model t
are zero. The next step is to consider the scattering of
quasiparticles, propagating according toGc( i , j ;ıvn) by the
defects described by the potentials:

Vl~ ıvn!5S « l 0

0 2« l
D 2S S11~ ıvn! 0

0 S22~ ıvn!
D , ~9!

wherel labels one of them different site energies we wish t
consider.

In a straightforward application of the CPA principles40

S(ıvn) and thereforeGc( i , j ;ıvn) is determined by the con
dition that these defects do not scatter on the average, i

(
l 51

m

clT
l~ ıvn!50, ~10!

where

Tl~ ıvn!5Vl~ ıvn!@12Gc~ i ,i ;ıvn!Vl#21 ~11!

and the concentration of sites of energy« l is cl , obeying

(
l 51

m

cl51. ~12!

From Eqs.~10! and ~11! it is now possible, in conjunction
with Eqs.~6!–~8!, to calculateS(ıvn) andGc( i , j ;ıvn). The
numerical methodology for calculatingGc( i , j ;ıvn) and
S(ıvn) closely follows that in Ref. 48.

A number of recent studies of superconductors with
conventional pairing suggest that the consequences of d
der depend sensitively on the models used to describe
randomness.49,50Thus we are going to investigate two diffe
ent models. The first corresponds to binary-alloy disord
wherem52. Namely, we consider twotypesof sites with
site energies«1 and «2 and concentrations ofc and 12c,
respectively. The second model is described by a unifo
distribution of site energies. Here we shall have in mind
limit where m→` with « lP@2d/2, d/2#. Consequently,
in Eq. ~10! the sum( l becomes the integral (1/d)*d« l .

In the bimodal case, wherem52, we can simplify Eq.
~10! to find

S11~ ıvn!5~2c21!
d

2
2S d

2
2S11~ ıvn! D

3G11
c ~ ıvn!S 2

d

2
2S11~ ıvn! D , ~13!

whereu«12«2u5d, while for uniform distribution one gets

S11~ ıvn!52
1

G11
c ~ ıvn!

1
d

2

1

tanhS dG11
c ~ ıvn!

2 D . ~14!

Thus our CPA calculations will consist of solving nume
cally either Eq.~13! for the bimodal distribution of the site
y

y
e

.,

-
or-
he

r,

m
e

energies, or Eq.~14! for the case of uniform distribution, to
determine the self-energiesS11(ıvn) andS22(ıvn).

III. PAIR BREAKING FORMULA IN CPA

We now relate the CPA formulas derived above to t
usual results of disordered superconductors, correspondin
the well-known pair breaking formula Eq.~1!. As is well
known,7 the pair breaking formula was first derived for ma
netic impurities ins-wave superconductors2 but it also ap-
plies in many other interesting circumstances such as
present concern, namely, the case of nonmagnetic impur
in d-wave superconductors.16

To derive it within the CPA let us start with the ga
equation

DkW5
1

N (
qW

UkW2qW
1

b (
vn

G12
c ~qW ;ıvn!eıvnd. ~15!

As a motivation for our argument we recall the method
Abrikosov and Gorkov2 for solving the gap equation atTc
for a clean superconductor. In that case, to findTc we lin-
earize the analog of Eq.~15! by approximating the off-
diagonal Green’s functionG12

c as follows:

G12
c ~qW ;ıvn!>

2DqW

~ ıvn2jqW !~ ıvn1jqW !
, ~16!

where jqW5«qW2m, and for our tight-binding model with a
square lattice«qW522t@cos(qx)1cos(qy)#. Then, we note that
the kernel of the linear integral equation forDkW is a four-term
degenerate kernel:

U~kW2qW !5uUuS hkWhqW1gkWgqW

4
12 sinkx sinqx

12 sinky sinqyD , ~17!

wherehkW52@cos(kx)2cos(ky)# and gkW52@cos(kx)1cos(ky)#.
Consequently, the generalDkW will be a linear superposition
of hkW , gkW , sinkx , and sinky . However, when the interna
symmetry of the singlet Cooper pair is pured wave we may
takeDkW to be of the form

DkW5DhkW . ~18!

Then the condition for nonzero order parameter become

15
uUu
N (

qW

hqW
2

4
Tc0(

vn

1

vn
21jqW

2 . ~19!

Let us now define ad-wave weighted density of states:

Nd~E!5
1

N (
qW

hqW
2

4
d~E2jqW ! ~20!

and write the above condition, which determines the tran
tion temperatureTc0, as

15uUu E
2`

`

dENd~E!Tc0 (
vn.0

2

vn
21E2

, ~21!
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wherevn5pTc0(2n11). In the above equation the integr
and the sum are divergent, so we need to introduce a cu
vn

c . In the usual way we assume the density of statesNd(E)
is slowly varying up to the cut-off energy, so we will mak
the approximationNd(E)5Nd(0). Then, considering that

Nd~0!E
2`

`

dE
1

vn
21E2

5pNd~0!
1

vn
, ~22!

we can write

15uUuNd~0!2pTc0 (
vn.0

vn
c

1

vn
~23!

and hence rewrite Eq.~21! as

1

uUuNd~0!
5cS 1

2
1

vn
c

2pTc0
D 2cS 1

2D' lnS g
vn

c

2pTc0
D .

~24!

This is the BCS result for the superconducting transit
temperature in the case ofd-wave pairing.46 It differs from
the conventional result only in that thed-projected density of
statesNd(0) has replaced the usual full density of sta
N(0).

Let us now return to disordered superconductors and
amine how the above well-known argument is modifi
when the randomness is dealt with within the CPA. Us
Eq. ~8! it can be easily seen that instead of Eq.~16! we
should use

G12
c ~qW ;ıvn!5

2D̄qW

~ ıvn2jqW2S11~ ıvn!!@ ıvn1jqW2S22~ ıvn!#

~25!

to linearize Eq.~15! at Tc . Thus noting that

S22~ ıvn!52S11~2ıvn!, ~26!

the condition which determinesTc can be written as

152uUu E
2`

`

dENd~E!Tc

3 (
vn.0

2

@ ıvn2E2S11~ ıvn!#@ ıvn1E1S11~2ıvn!#
.

~27!

Now, at this point we need to know the form ofS11(ıvn) to
progress any further. As a first approximation we assu
that the most important component to the self-energy is
component at the Fermi energyE5EF5m. Later on we will
test the accuracy of this approximation by examining o
numerical results forS11(ıvn). For now, however, let us
proceed by taking

S11~ ıvn!5ıuS0usgn~vn!. ~28!

Evidently this leads to
ff,

n

s

x-

g

e
e

r

152uUu E
2`

`

dENd~E!Tc

3 (
vn.0

2

~ ıvn2E1ıuS0u!~ ıvn1E1ıuS0u!
. ~29!

Again takingNd(E) outside of the integration asNd(0) and
performing the integration overE, we find

15uUuNd~0!2pTc (
vn.0

vn
c

1

vn1uS0u
, ~30!

where again the sum is cut off, as in the clean limit, byvn
c .

If we now add and subtract the terms corresponding toS0
50 ~the clean case! we find

1

uUuNd~0!
52pTc (

vn.0

vn
c

1

vn
12pTc (

vn.0

vn
c

S 1

vn1uS0u
2

1

vn
D .

~31!

Clearly the term 1/uUuNd(0) on the left-hand side of Eq.~31!
can be replaced by ln@g(vn

c/2pTc0)# on account of Eq.~24!.
With the same accuracy, the first sum on the RHS of Eq.~31!
equals ln@g(vn

c/2pTc)# and the second sum is convergen
Hence the cutoffvn

c can be extended to infinity. As has bee
noted frequently before, this infinite sum can be read
performed2 and we find

lnS Tc

Tc0
D5cS 1

2D2cS 1

2
1rcD , ~32!

where

rc5
uS0u
2pTc

. ~33!

Equations~32! and~33! are the central results of this se
tion. Reassuringly, while Eq.~32! is the standard pair break
ing formula,7 Eq. ~33! is a very natural CPA expression fo
the pair breaking parameterrc . Recall that our derivation of
the above result from CPA involved the approximati
S11(ıvn)>ıS0. To test the validity of this approximation w
wish to compare exact CPA numerical results with the p
dictions of the analytical expression: Eqs.~32! and~33!. Us-
ing numerical solutions of the CPA equation, to be discus
latter, Fig. 1 plots the pair breaking strengthrc vs d/t, the
disorder strength for the binary alloy-type disorder. To fi
pair breaking parameterrc we calculatedTc for each disor-
der strengthd/t and inverted Eq.~32! to obtain an effective
rc . The exact CPArc can then be compared to the solid lin
in Fig. 1 where we have taken our numerically calculat
values forS0 and directly calculatedrc , via Eq. ~33!. Fi-
nally, the dashed line in Fig. 1 corresponds torc obtained
using the self-consistent Born approximation~SCBA!. Evi-
dently, the self-energy at the Fermi energy,E2m50, S0,
gives a good description of the pair breaking parameterrc
via Eq. ~32!. Also it is clear that, as expected, the se
consistent Born approximationS0[\/t5pd2N(0) only
works well in the weak scattering limit.
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IV. ANALYTICAL FEATURES AND PREDICTIONS
OF CPA EQUATIONS

In this section we examine various analytically access
limits of the CPA formalism described above. First, we de
onstrate that Anderson’s theorem is obeyed fors-wave su-
perconductors and the CPA equations are consistent with
results of Abrikosov and Gorkov.2 Second, we show that fo
d-wave superconductors the quasiparticle density of state
the Fermi energyN(0) is nonzero in the presence of no
magnetic disorder scattering and is consistent with the res
of Gorkov and Kalugin.10

A. Anderson’s theorem in coherent-potential approximation

Formally, the CPA Eqs.~10! and ~11! can be written in
terms of renormalized Matsubara frequenciesṽn , pairing
parameterD̃kW , and particle energiesj̃kW . These quantities are
defined as follows:

ṽn5vnS 12
Im S11~ ıvn!

vn
D , ~34!

D̃kW5D̄kW , ~35!

j̃kW5jkW2m1ReS11~ ıvn!, ~36!

consequently

G11~ ıvn!5
1

N (
kW

ıṽn1 j̃kW

~ ıṽn!22 j̃kW
22D̃kW

2
~37!

and for the alloy-type disorder withc50.5 and« l56d/2,
the self-energyS11(ıvn) which renormalizesvn ,DkW , and
jkW , and is defined by Eq.~13!, can be written as

S11~ ıvn!5
~d2/4!G11

c ~ ıvn!

11G11
c ~ ıvn!S11~ ıvn!

. ~38!

The alternative expression forS11(ıvn) in the case of a uni-
form distribution of local potentials,2d/2,« l,d/2, is
given in Eq.~14!.

FIG. 1. The effective pair breakerrc as calculated~i! by nu-
merically findingTc /Tc0 and inverting Eq.~32! ~squares!, ~ii ! nu-
merically finding uS0u and using this in Eq.~33! ~solid line!, and
~iii ! using the self-consistent Born approximation to finduS0u and
then evaluating Eq.~33! ~dashed line!.
e
-

he

at

lts

Note that in the case of a nonisotropic,d-wave gap,DkW is
not renormalized if the disorder is diagonal both in site a
Nambu space. This is different from the case of locals-wave
pairing where, as can be readily shown,DkW is renormalized
by the same factor asṽn in Eq. ~34!. Thus for conventional
superconductors, in contradiction to Eqs.~34!–~37!, we find
that the CPA yields

ṽn

vn
5

D̃

D
, ~39!

in agreement with Born approximation or Abrikosov-Gorko
theory.2 As is widely appreciated,2,15 the above equation im
plies the Anderson’s theorem ins-wave superconductors. B
contrast in thed-wave case represented by Eqs.~34!, Eq.
~39! does not hold and hence there is no Anderson theor

Finally, in concluding this section, we would like to stre
that Eqs.~34!–~38! represent strictly a pured-wave result.
Even if we stick to the singlet case, a more general solut
of the CPA equation will imply a renormalization ofD̄kW to
D̃kW . A good example of such a situation is a case where
symmetry of D̄kW is of extended s-wave symmetry s*
}@cos(kx)1cos(ky)# type. We shall encounter this interestin
circumstance later on in this paper.

B. Density of statesN„0… in d-wave superconductors

Moving on and returning to thed-wave case, we observ
that the form of Eqs.~34!–~38! are the same as were foun
by Larkin.16 Thus again the CPA reproduces the expec
general form of the gap and frequency renormalizations,
with an improved description of the disorder. The mo
prominent feature of a conventional superconductor is v
ishing of the quasiparticle density of statesN(E) for energies
E measured from the Fermi energyEF , less thanD. In the
case of clean,d-wave superconductors, the line of zeros
DkW on the Fermi surface leads to finiteN(E) for all E except
E50. In fact, as is well known,7 N(E) approaches zero lin
early in E. In the present section we shall investigate wh
happens toN(E) in the presence of disorder.

As it turns out for a given gap parameterD̄kW5DhkW and in
the limit of small disorderd→0 the CPA equations can b
solved analytically. To affect the solution note that in E

FIG. 2. A comparison of the density of states at the chem
potential vs different strengths of alloyed disordere i56d/2. The
solid line is the analytical form derived in Eq.~43! and the dashed
one represents our self-consistent numerical calculations.
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~37! the major part of the summation is coming from the fo
singular points in the Brillouin zone where the denomina
vanishes. Linearizing around these points and performing
summation overk analytically, we find that

G11
c ~0!5

ı Im S11~0!

2a
lnU~4D!21@ Im S11~0!#2

@ Im S11~0!#2 U , ~40!

wherea52tDp. Clearly in the limituIm S11(0)u!4D this
leads to

G11
c ~0!'

ı Im S11~0!

a
lnU 4D

Im S11~0!
U. ~41!

Moreover, whenS11(ıvn) is small compared to the band
width, we can rewrite Eq.~38! as

S11~ ıvn!5
d2

4
G11

c ~ ıvn!, ~42!

which is the result one gets in self-consistent Born appro
mation. On substituting this result into Eq.~41! the latter
becomes an equation forG11

c (0) which determines the den
sity of quasiparticles statesN(0) via the formulaN(0)
5(1/p)G11

c (ıvn50). Indeed, we find

N~0!'
4Dt

pd2
e28pDt/d2

~43!

FIG. 3. Density of statesN(E) for a normal state with various
alloyed disorder strengthsd/t andn51.

FIG. 4. Density of statesN(E) for a normal state with various
uniform disorder strengthsd/t andn51.
r
r
e

i-

and

2Im S11~0!'4Dte28pDt/d2
. ~44!

These formulas agree with the results of Kalugin a
Gorkov10 and Haaset al.28 and have been verified numer
cally. For example, Fig. 2 comparesN(0) as calculated from
Eq. ~43! and calculated using completely self-consiste
CPA. As one can see, ford/t!1 there is good agreemen
between the two results and thus we conclude that atE50
the density of states, in CPA, becomes finite when an a
trary small amount of disorder is introduced. For a mo
detailed description of what is happening toN(0) and
2Im S11(0), in the presence of disorder, see Sec. VII
this paper, where we have analyzed their properties m
closely and report, extensively, further numerical results.

V. LOCAL QUASIPARTICLE DENSITY-OF-STATES
CALCULATIONS

In this section we present results for the single site lo
quasiparticle density-of-states calculations. As mention
before, we consider two types of disorder:~i! binary alloys
where we have two on-site potentials randomly distribu
throughout the lattice and~ii ! a uniform distribution of ran-
dom on-site potentials. For both types of disorder we ha
solved, numerically, Eq.~8! in conjunction with its appropri-
ate self-consistency conditions, for the order parameterD the
average number densityn, and the self-energyS11(ıvn).

FIG. 5. ~a! Density of statesN(E) and ~b! self-energies
Im S(E) for a superconducting state with various alloyed disord
strengthsd/t, calculated for a local interactionuUu53.5t and n
51.
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The first situation we consider is a binary alloy of rando
on-site energies«1 and «2 with equal concentrationc51
2c50.5. The parameter we have chosen to use to desc
the strength of the disorder isd5«12«2. Figure 3 shows the
density of states in the normal state. The Van Hove sin
larity characteristic of a tight-binding model with neare
neighbor hopping on a square lattice is clearly visible
small disorder (d50.6t) in the middle of the band. As Fig. 3
shows, for more strongly disordered alloys this Van Ho
peak is split into two peaks with some additional smeari
In the limit of d being very large we get, as one wou
expect, band splitting of states associated with«1 and «2,
respectively. On the other hand the disorder with unifo
distribution of site energies, Fig. 4, gives only the smear
and flattening of density of states with, eventually, a co
plete flattening of the Van Hove peak.

Before turning to the problem of disorderedd-wave su-
perconductors for reference we have studied, briefly,
s-wave case. In short, we have introduced a site-diago
local, attractive interaction with strengthU into the above
model. As expected, such interaction leads to conventio
s-wave pairing. When implementing the CPA we have
sumed that in this case the pairing order parameterD, which
is now site diagonal, does not vary from site to site. This
consistent with the Anderson theorem which was shown
be adequate for systems with a long coherence length.15 Fig-
ure 5~a! shows thes-wave quasiparticle density of states
calculated for various values of the binary-alloy disord

FIG. 6. ~a! Density of statesN(E) and ~b! self-energies
Im S(E) for a superconducting state with various uniform disord
strengthsd/t, calculated for a nonlocal interactionuUu53.5t and
n51.
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strengthd. The results confirm that, fors-wave pairing, the
gap is absolute and, while the edges may move, they rem
well defined as required by Anderson’s theorem.1 In Fig.
5~b! we have also plotted the self-consistent self-energy a
function of the quasiparticle energy, for the same disor
strengths used to obtain Fig. 5~a!. From this graph we can
see that2Im S11(E) is zero inside the gap and hence t
normal disorder does not act as a pair breaker, fors-wave
superconductivity.

The quasiparticle density of states ford-wave supercon-
ductors is dramatically different from the above BCS sp
trum in thes-wave case even in the clean limit. As is we
known, it has the characteristic v-like dip shown in Fig. 6~a!,

r

FIG. 7. Critical temperatureTc vs band fillingn. ~a! An s-wave
superconductor with alloyed disorder, and a local interactionuUu
53.5t. ~b! d-wave and extendeds-wave critical temperatureTc

with alloyed disorder, calculated for a nonlocal interactionuUu
53.5t and d/t5 0,1.2,2.0,2.5,2.6,2.7,2.8,3.0 from top to botto
curve. ~c! As for ~b! but for the case of uniform disorde
(d/t50,1.0,2.0,3.0, 4.0,5.0,6.0 from top to bottom curve!.
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for E near the chemical potential (m50). Upon introducing
disorder into thed-wave system one would naturally expe
similarly different behavior from that described above and
Fig. 5~a!. As is clear from the results reported in Fig. 6 this
indeed the case. Strikingly, as the analytic results of the
vious section suggested,N(0) becomes nonzero for th
slightest disorder. This implies gapless superconductivity
contrast to the gapped one in thes-wave case. These obse
vations apply to both the uniform disorder case of Fig. 6~a!
and the case of alloy disorder presented earlier.44

In Fig. 6~b! we have plotted the self-energies, correspo
ing to the quasiparticle density-of-states results presente
Fig. 6~a!. This shows a complex evolution with disorder, f
small d the imaginary part of the self-energyS(E) reflects
the pured-wave density of states~as expected in the SCBA
limit ! and hence Im@S(0)#;0. However, increasingd leads
to a finite S(0), with a cusplike minimum in Im@S(E)# at
E50. Increasing the disorder even further, tod52.8t, the
d-wave pairing is completely destroyed, and ImS(E) reverts
to the normal system self-energy. In this case2Im S(E) is a
maximum atE50, since the Fermi energyEF5m was set
exactly to 0.

VI. CRITICAL TEMPERATURE CALCULATIONS

To analyze the effect of the disorder uponTc we have
solved the gap equation together with the CPA equatio
Again for the sake of comparison we have developed
analogous theory for the conventionals-wave superconduct
ors based on the site-diagonal particle-particle interaction
strengthU0, mentioned briefly in a previous section. In th
case neglecting the spatial fluctuations ofD i , and linearizing
the gap equation for the configurationally averaged sing
site pairing potentialD̄ we find the condition for the tem
peratureTc , below whichD̄Þ0, to be

15uU0u E
2`

`

dE
N̄~E!

2E
tanhS bcE

2 D , ~45!

FIG. 8. Critical temperature ofd-wave ~solid line! and local
s-wave~dashed line! superconducting pairing states as a function
alloyed disorder foruUu53.5t, n50.6, andc50.5.
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whereN̄(E) is the averaged density of states in the norm
state at energyE, as calculated within the CPA, andbc
51/kBTc .

The solution of Eq.~45! for Tc as a function of band
filling and strengths of alloyed disorderd is shown in Fig.
7~a!. From this figure we can see that the superconduc
state exists for all band filling and the strength of disord
does little to suppressTc . Again this is consistent with
Anderson’s theorem.

Now let us turn to the case where the interaction is n
local and the pairing potentialD i j connects nearest-neighbo
sites. NearTc , where the gap equation is linear, the solutio
can be labeled by their symmetries. Indeed, we find t
separate conditions on the temperatureTc for the instability

f

FIG. 9. Critical temperature vs concentration, at different
loyed disorder strengths, for a nonlocal interactionuUu53.5t. ~a!
The casen51.0, ~b! n50.7, ~c! n50.1.
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FIG. 10. The coefficientsa ~a!, b ~b!, andc ~c!
which represent the local particle density of stat
in the region of the chemical potential as a fun
tion of temperature, for different alloyed disorde
strengthsd @d50.6t ~diamonds!, d51.0t ~1!,
d52.0t ~squares!, and d52.6t(3)#. In ~d! we
have also plotted the magnitude of thed-wave
gap vs temperature, for the same alloyed disor
strengths as in figures~a!, ~b!, and~c!. In all four
figures the interaction is nonlocal withuUu
53.5t, n51, andc50.5.
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of the normal state tod and extendeds symmetry breaking.
In the first caseTc

d is determined by

152
uUu
4p

1

N (
kW
E

2`

`

dE

3ImS hkW
2
G11

c ~kW ;E!

2E2S11~E!2S22~E!
D tanhS bc

dE

2 D ~46!

and in the second extendeds-wave case,Tc
s is given by

152
uUu
4p

1

N (
kW
E

2`

`

dE

3ImS gkW
2
G11

c ~kW ;E!

2E2S11~E!2S22~E!
D tanhS bc

sE

2 D , ~47!

wherehkW andgkW refer tos-wave- andd-wave-like ‘‘harmon-
ics’’ defined previously following Eq.~17!.

In Fig. 7~b! the critical temperature for bothd-wave and
extendeds-wave pairing is shown as a function of band fi
ing n for various strengths of alloyed disorderd. Full lines
correspond tod-wave Tc while dashed ones to extende
s-wave solutions. In the clean limit (d50) we can see tha
the extendeds-wave solution exists mainly at the band edg
and thed-wave solution is largely confined to the centr
portion of the band. For the interaction strength we ha
chosen, the two solutions cross atn'0.38. Evidently
for n<0.38 the superconducting instability is
Tc

s while n>0.38 the transition temperature isTc
d . As

we increase the strength of the alloyed disorder (d/t
s

e

50,1.2,2.0,2.5,2.6,2.7,2.8,3.0 from top to bottom curves! we
see that both theTc for the extendeds-wave andd-wave
solutions is reduced and for particularly strong disorderd
52.7t and d53.0t) the maximum in thed-wave Tc is no
longer atn51. This is connected with the splitting of Va
Hove singularities visible in Fig. 5~a!, i.e., the maximum in
the normal-state density of states corresponds to the m
mum in thed-waveTc

d .
On the other hand, for a uniform distribution of rando

site energies there is no splitting of Van Hove singularit
and hence we see a different tendency@Fig. 7~c!, d/t
50,1.0,2.0,3.0,4.0,5.0,6.0 from top to bottom curve#. The
maximum value ofTc

d is located atn51 no matter what the
strength of disorder. For extendeds-wave solutions and for
relatively small disorder in the ofd-wave case the decreasin
tendency inTc

s,d with growing disorder are very similar fo
the two types of disorder. However, above a certain stren
in either case we note that there is no crossing between
extendeds-wave andd-wave solutions. This fact may b
interpreted as the sign that thes andd states cannot coexis
or mix in this case. The close look at the dependence ofTc
on disorder, whether alloyed or uniform prompts the conc
sion, which may, however, be premature,50 that Tc is not
very sensitive to the details of the fluctuation in the s
energy.

Another interesting point to investigate concerns the re
tive robustness ofTc against degradation by disorder in th
cases of conventionals- and d-wave pairing.37 Figure 8
shows the results forTc for intersite d-wave and on site
s-wave superconductors versus alloyed disorder strengtd,
wheren50.6. Here one can easily recognize a typical d
ference between these two superconducting states. Clear
the case of ad-wave superconducting state disorder acts
an effective pair breaker while fors-wave superconductors i
decreasesTc only slowly or not at all. An interesting physi
cal consequence of this effect is that if bothUii andUi j ( i
Þ j ) are attractive increasing disorder could lead to a tran
tion from d-wave to s-wave pairing, as suggested b
Abrikosov.37
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To complete the discussion, Fig. 9 shows the critical te
perature plotted versus concentrationc for various strength
of binary-alloy disorderd with band fillings of n51, n
50.7, andn50.1. Figures 9~a! and~b! correspond tod-wave
while Fig. 9~c! corresponds to intersite extendeds-wave pair-
ing. Again for large enough alloy disorder pair breaking ph
nomena takes place. If disorder is introduced by a fixed
tential d, but varying the concentration of scatters,c!1,
from 0 we see that the results are similar to the case o
fixed c and increasingd from 0. This shows that CPA ca
work equally well, and indeed is asymptotically exact,
both the Born~smalld) andT-matrix ~smallc) and resonant
scattering regimes.

FIG. 11. The coefficientsa8 ~a!, b8 ~b!, andc8 ~c! which rep-
resent the imaginary part of the self-energy, in the region of
Fermi energy, as a function of temperature, for different alloy
disorder strengthsd @d50.6t ~diamonds!, d51.0t ~1!, d52.0t
~squares!, andd52.6t (3)#. The interaction is nonlocal withuUu
53.5t, n51, andc50.5.
-

-
-

a

VII. N„E… AND S11„E… AS E˜0 AND THE
LOW-TEMPERATURE SPECIFIC HEAT

As mentioned earlier, the behavior of the quasiparti
density of statesN(E) and the imaginary part of the self
energy ImS11(E) nearE50 is of general conceptual signifi
cance. For instance, the power-law behavior ofN(E)}uEua,
for d-wave superconductors give rise to power-law dep
dence with temperature of many thermodynamic quantit
such as the specific heatcv(T), instead of the exponentia
cutoff characteristic of a gap in the quasiparticle spectru5

Naturally, the dramatic changes in the low-energy behav
of N(E) and ImS11(E) as disorder is added to the proble
are also of general interest and, as it turns out, of liv
controversy.10–14,51,52 In this section we wish to examin
those predictions of the CPA calculations which are relev
to these issues in particular. Using the methods outlined
the previous sections we calculate numerically the quasi
ticle local density of statesN(E) and the self-energy
Im S11(E), and then investigate how these two quantit
change with both temperature and disorder.

For simplicity we have studied the half filled band (m
50, n51). This is the band filling for whichTc , in the
d-wave case, is a maximum. We will examine the effects
alloyed disorder on the system and show that as we incre
the amount of scattering the specific heat vs temperature
lation changes fromT2, in the clean limit, toT in the limit of
strong scattering. As is widely recognized5 this behavior is
the consequence ofN(E);uEu changing toN(E)5constant
and is consistent with experiments.8

To get an impression of the form ofN(E) and
2Im S11(E) in the region of the chemical potentialm, we fit
them to the functiona1buEuc in the energy range2DE
,E,DE, whereDE is small compared to the gap. Usin
the coefficientsa, b, and c to fit the curvesN(E) and
2Im S11(E) in the region ofm gives us a tool to analyze
their functional form. For example,a tells us if the curves are
finite at E50, b controls the gradient of the curve andc
controls the curvature.

In Figs. 10~a!–~c! we have plotted these coefficients, fo
N(E), as a function ofT, for different values ofd. We also
included in Fig. 10~d! plots of the magnitude of thed-wave
superconducting order parameteruDu vs T, for the same val-
ues of alloyed disorder strengthd, to indicate the tempera
ture where the order parameter goes to zero. Regarding t
curves as a brief summary of what the CPA predicts ab
the low-energy behavior ofN(E) and S(E) we now com-
ment on their implications.

First we note that in Fig. 10~a! the parametera(T) tends
to a finite limit asT→0 and this limit increases more an
more rapidly as the disorder described byd increases. Hence
N(0) is finite in agreement with our earlier discussion
Sec. IV where we derived for low scattering and low tem
peratures the dependence ofN(0) on d @see Eq.~43!#. It
lends credit to the general consistency of our results that
a(T)>N(0,T) curves rise to their normal state values asT
→Tc . Interestingly, as can be seen in Fig. 10~b! the gradient
of N(E), namelyb, changes dramatically only nearTc . In
fact, for the case whered is small~squares! the gradient even
changes sign. This means that we go from having a ga
the density of states belowTc to having a Van Hove singu

e
d
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FIG. 12. The specific heat as a function
temperature for different strengths of alloyed di
order d @d50.6t ~squares!, d51.0t ~circles!, d
52.0t ~triangles!, andd52.6t ~1!#; again the in-
teraction is nonlocal withuUu53.5t, n51, and
c50.5.
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larity aboveTc . The curvature, represented byc and plotted
in Fig. 10~c!, shows that for low disorder~squares! as we
increase the temperature we go from a curvature ofc<1,
i.e., a cusp, to a curvaturec.1. Finally, when the critical
temperature is reached for each of the four different disor
typesc goes to 2.

In the same manner, we now examine the correspond
coefficientsa8, b8, andc8 for 2Im S11(E). In Figs. 11~a!–
~c! we have plotted the calculated coefficients f
2Im S11(E) at different values ofd as a function of the
temperature. In Fig. 11~a! we can see that at low temper
tures2Im S11(0) increases with disorder; again this agre
with our results in Sec. IV where an analytical form for th
dependence of2Im S11(0) upond was derived atT50, see
Eq. ~44!. As we increase the temperature we can see
self-energy at the chemical potential also rises until
normal-state value is reached at the critical temperature
Fig. 11~b! we can see how the gradient changes from be
large for larged and small for smalld at low T, and at
temperatures greater thanTc to be large and negative fo
large d and small and negative for smalld. Finally, Fig.
11~c! shows how the curvaturec goes from being almos
linear, c51, at low temperatures, regardless ofd, to c52
aboveTc .

To illustrate the consequences of these results for the l
temperature thermodynamic properties we have calcul
the effect of disorder upon the specific heat. Using the ab
temperature-dependent coefficients for the density of st
nearE;0 we calculated the limiting behavior of the speci
heat asT→0. The results are shown in Fig. 12 for differe
strengths of disorderd. In the case whered is small~squares!
we can see that the specific heat has aT2 dependence~the
plotted continuous solid line with no points! and for larged
the dependence upon temperature is linear, as expected6

VIII. CONCLUSIONS

We have compared and contrasted the effects of diso
on conventionals- andd-wave superconductors on the bas
of an extended, negativeU Hubbard model and a mean field
CPA treatment of disorder. On the one hand we have der
er

g
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e
e
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g

-
ed
e

es

er

d

many of the well-known results, such as the pair break
formula in Eq.~32! or that for the quasiparticle density o
statesN(0), Eq.~43!. On the other hand we have solved th
Gorkov-CPA Eqs.~13! and ~14! numerically and surveyed
the salient features of their consequences by explicit ca
lations. The use of CPA in describing disorderedd-wave
superconductors is an advance in this very act
field4–14,49,50because it allows us to avoid the usually de
cate choice between methods, sets of diagrams, designe
deal with either weakly or strongly scattering perturbatio
The CPA treats both kinds of problems equally accurat
and it is known to provide a very credible interpolation b
tween the two.40 As an example where above feature of CP
may have a crucial role to play we recall the use of t
resonant scatterer model in interpreting experimental d
both on the cuprates8,53 and some heavy fermion
systems.11,54 In short, note that in the impurity,c→0, limit
the self-energy for the Green’s function describing an el
tron moving on a lattice is given by

S~E!5cT~0,0;E!, ~48!

where theT matrix is defined, in terms of the impurity ‘‘po
tential’’ Vimp , a real local shift in the site energy, as

T~0,0;E!5
Vimp

12VimpG~0,0;E!
. ~49!

FIG. 13. Relations between ImS(0) andN(0) for weakd/t
51.0 and strongd/t53.0 scatterers in binary alloys (c50.5).
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EvidentlyT(0,0;E) is a complex number with an amplitude

a~E!

5Vimp /A~12@Vimp Re G~0,0;E!#21@Vimp Im G~0,0;E!#2

and a phase, the phase shiftf(E), given by

tanf~E!5
Vimp Im G~0,0;E!

12Vimp ReG~0,0;E!
. ~50!

Now, observe that while for weak scatterers

Im SB~E!52cpuVimpu2N~E! ~51!

for a resonant scatterer in the unitary limit, defined
f(E)5p/2,

Im SR~E!52c
1

pN~E!
. ~52!

It is the above dramatic difference in the dependence
Im SB and Im SR on the density of statesN(E) that the
cited authors rely on in interpreting the relevant experimen
data. Evidently, since the individual scattering events
scribed by the localT matrices are always treated exactly
the CPA, the CPA describes weak scatterers and reso
scatterers equally well. Moreover, since it is a reliable
proximation not only in the impurity limit,c;0, where we
would be doing the same calculation as Fehrenbacher,49 but
also for arbitrary concentrations corresponding to our mod
it deals with resonance scatterers even when Eq.~52! no
longer holds. Thus CPA should be the preferred treatm
for models with strong, even resonant scattering.
.

.

Hi
. B

tt.
f

l
-

ant
-

ls

nt

Although we have not specifically concentrated on t
aspect of the method, the principle feature of Eqs.~51! and
~52!, namely the dependence ofS(E) on N(E), can be seen
to be at work in our calculations of the previous section.
demonstrate this we have calculatedS(0) andN(0) as func-
tions of band fillingn in the most interesting regionn;1.0,
and compared in Fig. 13 their relationships for weak a
strong scatterers atc50.5. Clearly, for weak scatterersd/t
51, 2Im S(0) is a more or less linear function ofN(0) as
in Eq. ~51!, while for strong scatterersd/t53, ImS(0) is
inversely proportional toN(0) as in the resonant scattere
model described by Eq.~52!. Thus we conclude that the CPA
employed in the calculation gives a reliable account of d
order in both the weak and strong scattering regimes.

Having listed the above desirable properties of the C
we hasten to emphasize that it is a ‘‘mean-field’’ theory
disorder and hence does not describe such interesting
nomena as localization53 even in the normal state.54 Conse-
quently, our result thatN(0) is finite for the smallest amoun
of disorder can not be taken as evidence against the con
sion thatN(E);uEua of Nersesyan and co-workers.14 As this
originates from the divergence of the vertex corrections
perturbation series forS(E) we may conjecture that it has t
do with localization effects not described by CPA. This ve
interesting point is in the need of further clarification, a
indeed we shall return to it in a later publication.
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