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Coherent potential approximation for d-wave superconductivity in disordered systems
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A coherent-potential approximation CPA is developed davave andd-wave superconductivity in disor-
dered systems. We show that the CPA formalism reproduces the standard pair breaking formula, the self-
consistent Born approximation and the self-consistentatrix approximation in the appropriate limits. We
implement the theory and compule for swave andd-wave pairing using an attractive nearest-neighbor
Hubbard model featuring both binary-alloy disorder and a uniform distribution of scattering site potentials. We
determine the density of states and examine its consequences for low-temperature heat capacity.
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I. INTRODUCTION wherey(x) is the digamma function ang,= (277T,) " tis
a measure of the strength of the scattering and is the

A treatment of disorder is an essential part of the theoryscattering raté.’
of superconductivity. After all, one must explain why impu- By contrast in the case of superconductors whose Cooper
rity scattering does not cause resistance. Thus it is naturglairs are of exotip-wave ord-wave character even simple
that as evidence for novel superconducting states multipliepotential scattering, which does not break time-reversal sym-
the foundations of the subject, due mainly to Andefsamd  metry, causes pair breakidghis fact was noted already in
Abrikosov and Gorko;® are being reexamined. The experi- the early contributions to the field,but has become a sub-
ments which stimulate most strongly the current revival ofject of intense scrutiny only recently* Of particular inter-
interest in the problem are those on the high-temperaturgst are two-dimensional models featuridgvave pairing as
superconductor$,which are now universally regarded as these may be relevant to experiments on Highsupercon-
“d-wave superconductors:’and those involving some of ductors. Notably, for cuprates many experiments have ex-
the heavy fermion systems which display signs pfwave”  Plored the variation off;, the density of states and other
pairing® In what follows, we wish to contribute to the theo- Properties as a function of Ni and 2[1275“b5t't”“°”5 on the
retical discussiofi* of the issues raised by these very inter- COPPEr site¥/ or |rra.d|at|o_r}32damagé‘r? Altbgsugh awide
esting developments. variety of theoretical ided’ *and method® have been

The case of classic, stwave,” superconductors is by applied to interpret the experiments, a comprehensive picture

now well understood. If the perturbation does not breakOf the role of _disprd_er is far from c_omplete. On a more fc_>r-
time-reversal symmetry and the coherence length is suffi'-nal level, an Intriguing problem arlses_fror_n the observation

: - : of Gorkov and Kalugif that the scattering in models where
ciently long, so that the pairing potential does not fluctu-

he And heord hat there i b the order parameter has a line of zeros on the Fermi surface
ate, the Anderson theorerguarantees that there is an abso-js pigh1y singular and this may be a manifestation of inter-

lute gap in the quasiparticle spectrum and the main effect Ofs(ing new physics. Indeed in two dimensions, Nersesyan
disorder is that the density of normal states in the gap equa;ng co-worker¥ predict that the quasiparticle density of

tion is replaced by its average over configuratith@n the _statesN(E) approaches zero, even in the disordered state, as
other hand, if the perturbation breaks time-reversal invari-, . law~|E|*, with positive exponent, instead of go-

ance, as is the case with paramagnetic impurities, the effeg g to a finite value as was found by Gorkov and Kalufin
is more dramatic. For instance, the transition temperalre  apother interesting and controversial issue is the relative im-
is reduced from its clean limit valug, according to the  4rtance of the self-consistent Born approximatiSCBA)
well-known pair breaking formula and resonant scattering in the unitarity lithit> Our aim
here is to explore the subject systematically on the basis of
explicit calculations, albeit for a simple, extended Hubbard
Te) (1 _ 1 model with attractive interactions and site diagonal random-
In| = |=4| 5] —¥| 5 +pc| ()
Teo 2 2 ness only.
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In short, we will examine the problem of disordered un-  Starting from Eq. (2 we apply  the
conventional superconductors making use of the coherentdartree-Fock-Gorko 47 approximation, which results in
potential approximatiolCPA). The CPA is the most reliable the following Bogoliubov-de Gennes equation:
approximation developed for the theory of electronic struc-
ture of random metallic alloys in the normal staté° Nota- <('w”_8i+’“)5i' i A”)
bly, it has been shown to be exact in both the weak and thér Ai’j (lop,te,— )6 —t;
strong scattering limits, and applicable to systems with low . .
as well as high concentration of impurities. Significantly, the x( Gu(hj1en) Gl 1Jv|wn)> s ( 1 0) @

CPA reduces to the self-consistent Born approximation Goiljitwn)  Gooll,j;10p) o 1)

(SCBA) f(_)r weak scattering ‘m.P“”t_ie& and agrees with thel‘or the Green’s-function matrixs(i,j;1w,) at the Mastus-
self-con5|stentT_-ma_tr|x ap_proxmatlon(SCTA) r_esults for  para frequency, = (2n+ 1) kgT, in units wherei = 1. For
strongly scattering impurities of low concentrations. '”deedcomputational convenience we shall take the hopping inte-
it remains a good approximation in the unitarity limit of gralt;j to be nonzero only when the sitesnd] are nearest
resonant scattering:*?Finally, on account of the fact that it neighbors. The mean-field pairing potentlg| can either be
becomes exact as the number of nearest neighbors goesltmal (i=j) or nearest-neighbor nonlocal. Of course, the
infinity, the CPA is often referred to as a mean-field theoryabove equations are completed by the self-consistency con-
of disorder*! dition that

Given these desirable features, it is clearly worthwhile to 1
explore the consequences of the CPA for disordered super- Ai=|Ui| = D eentG i ji1wp), (4)
conductors. For the case of conventiosalave pairing this J "B 4
has already been done, generating many useful réSdits. where 7 is a positive infinitesimal. To simplify matters we
The case of superconductors with Cooper paird symme-  phaye assumed that the normal Hartree and exchange terms
try will be treated here within CPA, developing in detail the can pe absorbed into the definitions of the chemical potential
method introduced in our earlier pafiéand the limited dis-  ,, or the hopping integrals; . As usual, Eqs(3) and (4) are

cussion in Ref. 45. S ~ to be solved subject to the requirement on the chemical po-
We will demonstrate that in various limits our formalism tential that

reproduces many of the well-known results for disordered
superconductors, and examine in detail the phase diagram of
the local and nonlocal attractive two-dimensional Hubbard
models. In particular, we study the variations Bf with
impurity scattering strength and with impurity concentration

Ior ;he case of Ioczd:-jwave painng asv\\//vell ?S nonl(t)céé';(-th equations depends on the set of site energigs Our task is
ended swave andd-wave pairing. We also contrast the ,'finq the configurationally averaged Green’s-function ma-

cases for a binary alloy)-B type, disorder with the case of iy (G(i,j:1w,)). Evidently, this is made much easier if we

uniformly distributed scattering potentials on each site. Fi-assyme that the pairing potential does not fluctuate from con-

nally, we investigate the density of statéd30S), N(E), at  figuration to configuration. As was argued by @ffig, Litak,

low energies and its consequences for measurements of th@d Wysokiiski'® for swave superconductors this is a good

specific heat. approximation when th&@=0 coherence lengtlj, is large.
Thus our specific results will have to be treated with appro-
priate care when applied to superconductors vdttvave

Il INCORPORATING CPA symmetry or short coherence length such as superconducting
INTO BOGOLIUBOV-DE GENNES EQUATION cuprates.

Our starting point is the single band Hubbard model with Let us now proceed to deploy the CPA strategy for cal-

an attractive extended interaction which is described by théﬂlﬁgzg tz)hsh:\/:erﬁgceo?]s(,i;sfe?\rls L%r;(g;ggngal(@(' Jilen))
following Hamiltonian: ) y '

ni=% S G (i, ii 1wy, (5

where n; is the number of electrons at site Clearly, the
Green’s-function matrixs(i, j;1w,) determined by the above

_ 1 -
. Ai;=luijlg§ e'“n™(Gyyi,j;10p)), (6)

H:; tijCiTonrr"_E; Uijﬁiﬁj_zi: (u—epn;, (2 ,
_:E; (G yy(i i} 10p)). @

where ciT(, andc,, are, respectively, the usual creation and

annihilation operators for electrons on sitith spin o, and The first move in deriving the fundamental equations of

the local charge operator "A'fi:ﬁiﬁ ﬁii with ﬁio:CiTaCio- thedgohegnt p9tefntial.approxir%e;ti.o.n. is to t()Jlefine a coherent
The chemical potential ig.,t;; are the hopping integralgor ~ MeAIUM BrEEN's- unction matrig(i,j;1w,) by

i #]) ande; is the local site energy. The interaction te _ .

can be either a local attractive interactiod;(<0) givﬁ% D ([_""n+# Sp(lon)]di+t Ay G 1wp)
rise to swave pairing, or a nonlocal attractive interaction [ T Den—up—2x(lw,)]8 —t;

(Uj;<<0 fori#j) giving rise tod-wave or extended-wave

pairing. Disorder is introduced into the problem by allowing _ 5"(1 0) ®)
the site energies; to vary randomly from site to site. o 1/)°
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As will be clear later,G(i,j;1w,)=(G(i,j;1m,)) and energies, or Eq(14) for the case of uniform distribution, to
henceX ;(1w,) and X, (1w,) are the diagonal components determine the self-energi&s;,(1w,) and > ,(1w,).
of the usual self-energy. Note that we did not introduce any
off-diagonal self-energies such as,(lw,) and 2,;(1w,),

because for the single site perturbations of our model they )
are zero. The next step is to consider the scattering of the W& now relate the CPA formulas derived above to the

Ill. PAIR BREAKING FORMULA IN CPA

quasiparticles, propagating accordingG&(i,j;1w,) by the
defects described by the potentials:

) (211('6%) 0
0 Slep)

wherel labels one of then different site energies we wish to
consider.

In a straightforward application of the CPA principf@s,
> (1w,) and thereforez¥(i,j;1w,) is determined by the con-
dition that these defects do not scatter on the average, i.e.

0

—¢g

€

o ©)

Vl(lwn):(

m

> ¢T(lw,)=0,

I=1

(10

where
TOw,)=V(1w,)[1-G%i,i;lw,)V']? (11)

and the concentration of sites of energyis c,, obeying

m
2 C|:1.
I=1

From Egs.(10) and (11) it is now possible, in conjunction
with Egs.(6)—(8), to calculateX(1w,) andG%(i,j;1w,). The
numerical methodology for calculating(i,j;1w,) and
2 (1w,) closely follows that in Ref. 48.

12

A number of recent studies of superconductors with un-
conventional pairing suggest that the consequences of disor-
der depend sensitively on the models used to describe the

randomnes&>*°Thus we are going to investigate two differ-

usual results of disordered superconductors, corresponding to
the well-known pair breaking formula Edql). As is well
known, the pair breaking formula was first derived for mag-
netic impurities ins-wave superconductdrdut it also ap-
plies in many other interesting circumstances such as our
present concern, namely, the case of nonmagnetic impurities
in d-wave superconductors.

To derive it within the CPA let us start with the gap
equation

1 1 -
’ Ai=y 2 Uk-ig 2 Giddiiwpe’. (15
q “n

As a motivation for our argument we recall the method of
Abrikosov and Gorko¥ for solving the gap equation at,
for a clean superconductor. In that case, to findwe lin-
earize the analog of Eq.l5 by approximating the off-
diagonal Green’s functio], as follows:

—A;
'wn_gd)uwn"_gd) ,

where §5=¢e4—u, and for our tight-binding model with a
square lattices = — 2t[ cos(),) +cos(@,)]. Then, we note that
the kernel of the linear integral equation fdg is a four-term
degenerate kernel:

GSH(0;1wp) = ( (16)

Mgt YkVq

U(IZ—(i)=|U|( 7 + 2 sink, sing,

+2 sink, sinqy), 17)

ent models. The first corresponds to binary-alloy disorder,

wherem=2. Namely, we consider twtypesof sites with
site energies; and e, and concentrations of and 1-c,

where 7= 2[ cosk,) —cosk,)] and yi= 2[ cosk,) +cosk)].
Consequently, the general; will be a linear superposition

respectively. The second model is described by a uniforn®f 7¢, vk, sink,, and sirk,. However, when the internal
distribution of site energies. Here we shall have in mind thesymmetry of the singlet Cooper pair is putevave we may

limit where m—o with g, e[ —46/2, 6/2]. Consequently,
in Eq. (10) the sumX, becomes the integral (d)fde, .

In the bimodal case, whemm=2, we can simplify Eq.
(10) to find

6 |6
Ell(lwn):(zc_l)i_(E_Ell(lwn))

5 SENCE

XGE1(|wn)( 2 (1wy)
where|e,— &,|= 8, while for uniform distribution one gets

s
+= :
GS(lwy) 2 tam( 5Gil(lwn))
2

2(lwp)=— (14

Thus our CPA calculations will consist of solving numeri-
cally either Eq.(13) for the bimodal distribution of the site

take A to be of the form

Ap=Axg. (18

Then the condition for nonzero order parameter becomes

1
—_— . 19
% Wit € 19

Let us now define a@-wave weighted density of states:

2
Ul < 74
=N 27T
q

1
==
N

and write the above condition, which determines the transi-
tion temperaturd o, as

s
No(E) S OE=&) (20

* 2
1=|U|J dEN(E)Teo 2 ———., ()
—o >0 wpt+E
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wherew,=
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7T.0(2n+1). In the above equation the integral

PRB 60

and the sum are divergent, so we need to introduce a cutoff, 1= —|U|f_xdENd(E)Tc

oy . In the usual way we assume the density of statg€)

is slowly varying up to the cut-off energy, so we will make

the approximatioN4(E) =Ng4(0). Then, considering that

Nd(O)f dE de(O)— (22
we can write
wp 1
1=|U|Ng(0)27 T 2, — (23)
w,>0 Wnp

and hence rewrite Eq21) as

1 (1 S ) (1)~ ( S )
UINg0) - N\ 27 2070~ ¥2) ™M Y207, )
(24)

2
E+1[So)) (1w, +E+1[2q])

X 29
wn2>0 ('wn_ ( )
Again takingNy(E) outside of the integration &$4(0) and
performing the integration ovei, we find

1=|U|N4(0)27T, 2 (30)

+|Eo|

where again the sum is cut off, as in the clean limit,dgy.
If we now add and subtract the terms corresponding. §o
=0 (the clean cagewe find

w w

C [
1 n n
——=27T —+27T
[UINg(0) ~ ™ "¢~ c

o)
n w,>0 wn+|zo| Wn .
(3D

1
w

This is the BCS result for the superconducting transitionClearly the term 1U|Ng4(0) on the left-hand side of E¢31)
temperature in the case dfwave pairing® It differs from  can be replaced by IMwy/27T )] on account of Eq(24).
the conventional result only in that tldeprojected density of  With the same accuracy, the first sum on the RHS of(B#).
statesNy4(0) has replaced the usual full density of statesequals Ifi{w/27T.)] and the second sum is convergent.
N(0). Hence the cutoffo’ can be extended to infinity. As has been

Let us now return to disordered superconductors and exoted frequently before, this infinite sum can be readily
amine how the above well-known argument is mOd'f'edperformea and we find

when the randomness is dealt with within the CPA. Using

Eqg. (8) it can be easily seen that instead of Ef6) we T 1 1
C
- —A; where
Gl (g;lwy) = 1
A0 ) = TS o [lont &~ Sollon)]

25 _ I3

to linearize Eq(15) at T.. Thus noting that ¢
Equations(32) and(33) are the central results of this sec-
S il1on) = =S 11— 10), (26 quations(32) and (33

the condition which determin€B, can be written as

1=—|U|f dENy4(E)T,

tion. Reassuringly, while Eq32) is the standard pair break-
ing formula/ Eq. (33) is a very natural CPA expression for
the pair breaking parametgf . Recall that our derivation of
the above result from CPA involved the approximation
2 11(1w,)=12. To test the validity of this approximation we
wish to compare exact CPA numerical results with the pre-

5 dictions of the analytical expression: E¢82) and(33). Us-
% ) ing numerical solutions of the CPA equation, to be discussed
on>0 [lop—E=2p(1ep) J[1oq+E+Z15(—1wp)] latter, Fig. 1 plots the pair breaking strengihp vs &/t, the
27) disorder strength for the binary alloy-type disorder. To find
pair breaking parameter, we calculatedr for each disor-
Now, at this point we need to know the form ®Bf,(1w,) to  der strengths/t and inverted Eq(32) to obtain an effective
progress any further. As a first approximation we assume.. The exact CP4 can then be compared to the solid line
that the most important component to the self-energy is thén Fig. 1 where we have taken our numerically calculated
component at the Fermi ener@y=Er= u. Later on we will ~ values forX, and directly calculateg., via Eq.(33). Fi-
test the accuracy of this approximation by examining oumally, the dashed line in Fig. 1 correspondsptoobtained
numerical results fo2 ;(1w,). For now, however, let us using the self-consistent Born approximatitBCBA). Evi-
proceed by taking dently, the self-energy at the Fermi ener@s u=0, 2,
gives a good description of the pair breaking parampter
(28)  via Eq. (32). Also it is clear that, as expected, the self-
consistent Born approximatio o=#/7=m6°N(0) only
works well in the weak scattering limit.

211(|(‘L’n):||§:O|Sgr(wn)-

Evidently this leads to
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FIG. 1. The effective pair breakegr, as calculatedi) by nu-
merically findingT. /T, and inverting Eq(32) (square} (ii) nu-
merically finding|Z,| and using this in Eq(33) (solid line), and
(iii) using the self-consistent Born approximation to fiig)| and
then evaluating Eq33) (dashed ling

IV. ANALYTICAL FEATURES AND PREDICTIONS
OF CPA EQUATIONS
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00 05 10 15 20 25

ot

FIG. 2. A comparison of the density of states at the chemical
potential vs different strengths of alloyed disordes = 6/2. The
solid line is the analytical form derived in E43) and the dashed
one represents our self-consistent numerical calculations.

Note that in the case of a nonisotropitywave gapAy is
not renormalized if the disorder is diagonal both in site and
Nambu space. This is different from the case of laealave
pairing where, as can be readily showdy, is renormalized

In this section we examine various analytically accessibleby the same factor a®,, in Eq. (34). Thus for conventional
n . .

limits of the CPA formalism described above. First, we dem-

onstrate that Anderson’s theorem is obeyed gavave su-

perconductors and the CPA equations are consistent with the

superconductors, in contradiction to E¢34)—(37), we find
that the CPA yields

results of Abrikosov and Gorko¥Second, we show that for ~
d-wave superconductors the quasiparticle density of states at L

the Fermi energyN(0) is nonzero in the presence of non- ®n
magnetic disorder scattering and is consistent with the resultg, agreement with Born approximation or Abrikosov-Gorkov

B >

, (39

of Gorkov and Kalugirt?

A. Anderson’s theorem in coherent-potential approximation

Formally, the CPA Egs(10) and (11) can be written in
terms of renormalized Matsubara frequencies, pairing

parametei;, and particle energieg;. These quantities are

defined as follows:

g)n:wn( 1 M) (34)
Wnp
A=Ay, (35)
&= & ntReY(1oy), (36)
consequently
1 lwn+ &k
G =— = ~ ~ 3
n(lon) =5 % R (37

and for the alloy-type disorder witb=0.5 ande|= = 6/2,
the self-energy 14(1w,) which renormalizesw,,Ag, and
&, and is defined by Eq13), can be written as
(8%14)G,(10,)
1+Gi1(|wn)211(|wn) .

2 11(1wp) (38)

The alternative expression f@r;;(1w,) in the case of a uni-
form distribution of local potentials,— 6/2<g, <612, is
given in Eq.(14).

theory? As is widely appreciate@® the above equation im-

plies the Anderson’s theorem gawave superconductors. By

contrast in thed-wave case represented by E@34), Eq.

(39) does not hold and hence there is no Anderson theorem.
Finally, in concluding this section, we would like to stress

that Egs.(34)—(38) represent strictly a purd-wave result.

Even if we stick to the singlet case, a more general solution

of the CPA equation will imply a renormalization &; to
Ag. A good example of such a situation is a case where the

symmetry of K,; is of extendedswave symmetrys*
=[ cosk,)+cosk,)] type. We shall encounter this interesting
circumstance later on in this paper.

B. Density of statesN(0) in d-wave superconductors

Moving on and returning to thd-wave case, we observe
that the form of Eqs(34)—(38) are the same as were found
by Larkin® Thus again the CPA reproduces the expected
general form of the gap and frequency renormalizations, but
with an improved description of the disorder. The most
prominent feature of a conventional superconductor is van-
ishing of the quasiparticle density of statégE) for energies
E measured from the Fermi ener@y, less thamA. In the
case of cleang-wave superconductors, the line of zeros of
A on the Fermi surface leads to finl{E) for all E except
E=0. In fact, as is well knowd,N(E) approaches zero lin-
early inE. In the present section we shall investigate what
happens tdN(E) in the presence of disorder.

As it turns out for a given gap parameteg=A »; and in
the limit of small disorders— 0 the CPA equations can be
solved analytically. To affect the solution note that in Eq.
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FIG. 3. Density of stateBl(E) for a normal state with various 6.0
alloyed disorder strength&/t andn=1. =1.0 —|
5.0 M=2.0 —
(37) the major part of the summation is coming from the four gﬁjg:g -
singular points in the Brillouin zone where the denominator ﬂ4'0
vanishes. Linearizing around these points and performing the ;1'30
summation ovek analytically, we find that c '
T 20
¢~ Ilm 311(0) | (4A)%+[Im 211(0)]2‘ }i i
u0)=——_—~—1I (M (01 , (40 1.0 (b) A
wherea=2tA . Clearly in the limit|Im X;,(0)|<4A this "8 6 4 2 0 2 4 6 8
leads to E/t
c 1Im 244(0) 4A ‘ FIG. 5. (a) Density of statesN(E) and (b) self-energies
1(0)~ o In Im 211(0)‘ - (41 Im 3 (E) for a superconducting state with various alloyed disorder

strengthsé/t, calculated for a local interactiofJ|=3.5% and n
Moreover, whens 4(1w,) is small compared to the band- =1.

width, we can rewrite Eq(38) as

and
2

2ll("‘)n)zz il('wn)a (42) _|m211(0)~4Atef877At/52_ (44)
which is the result one gets in self-consistent Born approxi- Tnhese formulas agree with the results of Kalugin and
mation. On substituting this result into EG1) the latter kot and Haaset al2® and have been verified numeri-
becomes an equation f@3,(0) which determines the den- ca|ly. For example, Fig. 2 compardg0) as calculated from
sity of quasiparticles statedl(0) via the formulaN(0)  Eq. (43 and calculated using completely self-consistent
=(U/m)Giy(1w,=0). Indeed, we find CPA. As one can see, faf/t<1 there is good agreement
between the two results and thus we conclude th&-ad

the density of states, in CPA, becomes finite when an arbi-
trary small amount of disorder is introduced. For a more
detailed description of what is happening M(0) and

0.4 —Im 34;(0), in the presence of disorder, see Sec. VIl of
this paper, where we have analyzed their properties more
closely and report, extensively, further numerical results.

4At
N(O)% _Ze—BTrAt/&z (43)
7o

0.3

V. LOCAL QUASIPARTICLE DENSITY-OF-STATES

0.2 CALCULATIONS

N(E)

In this section we present results for the single site local
quasiparticle density-of-states calculations. As mentioned
before, we consider two types of disordé: binary alloys
where we have two on-site potentials randomly distributed
throughout the lattice an@i) a uniform distribution of ran-

E/t dom on-site potentials. For both types of disorder we have
solved, numerically, Eq8) in conjunction with its appropri-

FIG. 4. Density of statedl(E) for a normal state with various ate self-consistency conditions, for the order paramgttire
uniform disorder strengthé/t andn=1. average number density and the self-energ¥ 1(1w,).

0.1

0.0
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N(E)

g//% .8 |
e $M=3.0 o
e
. $t=6.0 <
E “ =
Eos
0.4 o) ’

8 6 4 2 0 2 4 6 8
Ent

FIG. 6. (a) Density of statesN(E) and (b) self-energies
Im X (E) for a superconducting state with various uniform disorder
strengthsé/t, calculated for a nonlocal interactigh/|=3.5t and
n=1.

d-wave

T/t

The first situation we consider is a binary alloy of random
on-site energiex; and e, with equal concentratior=1
—c¢=0.5. The parameter we have chosen to use to describe
the strength of the disorder &= ¢, — ¢,. Figure 3 shows the [ [\ y
density of states in the normal state. The Van Hove singu- 0'%,0 02 04 06 08 1.0
larity characteristic of a tight-binding model with nearest- n
neighbor hopping on a square lattice is clearly visible for g 7. critical temperatur@, vs band fillingn. (a) An s-wave
small disorder §=0.6t) in the middle of the band. As Fig. 3 syperconductor with alloyed disorder, and a local interactioh
shows, for more strongly disordered alloys this Van Hove—3 5. () d-wave and extended-wave critical temperaturd’,
peak is split into two peaks with some additional smearingwith alloyed disorder, calculated for a nonlocal interactid
In the limit of & being very large we get, as one would =35 and §/t= 0,1.2,2.0,2.5,2.6,2.7,2.8,3.0 from top to bottom
expect, band splitting of states associated withand ¢, curve. (c) As for (b) but for the case of uniform disorder
respectively. On the other hand the disorder with uniform(s/t=0,1.0,2.0,3.0, 4.0,5.0,6.0 from top to bottom cyrve
distribution of site energies, Fig. 4, gives only the smearing
and flattening of density of states with, eventually, a com- . N
plete flattening of the Van Hove peak. strengths. The results confirm that, fos-wave pairing, the

Before turning to the problem of disorderedwave su- gap is absolute and, while the edges may move, they remain
perconductors for reference we have studied, briefly, thevell defined as required by Anderson’s theoreim Fig.
swave case. In short, we have introduced a site-diagonak(b) we have also plotted the self-consistent self-energy as a
local, attractive interaction with strengtth into the above function of the quasiparticle energy, for the same disorder
model. As expected, such interaction leads to conventionaltrengths used to obtain Fig(eh. From this graph we can
swave pairing. When implementing the CPA we have assee that—Im 2 ;(E) is zero inside the gap and hence the
sumed that in this case the pairing order param&tevhich  normal disorder does not act as a pair breaker,sforave
is now site diagonal, does not vary from site to site. This issuperconductivity.
consistent with the Anderson theorem which was shown to The quasiparticle density of states fiwwave supercon-
be adequate for systems with a long coherence leRdtlg-  ductors is dramatically different from the above BCS spec-
ure 5a) shows thes-wave quasipatrticle density of states astrum in thes-wave case even in the clean limit. As is well
calculated for various values of the binary-alloy disorderknown, it has the characteristic v-like dip shown in Fi¢g)6
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FIG. 8. Critical temperature ofi-wave (solid line) and local 1.0
s-wave(dashed lingsuperconducting pairing states as a function of
alloyed disorder fotU|=3.%, n=0.6, andc=0.5.

for E near the chemical potentiak=0). Upon introducing -
disorder into thed-wave system one would naturally expect )
similarly different behavior from that described above and in =
Fig. 5(a). As is clear from the results reported in Fig. 6 this is

indeed the case. Strikingly, as the analytic results of the pre- 02 %ﬂg —

vious section suggestedy(0) becomes nonzero for the SH=3.0 —om

slightest disorder. This implies gapless superconductivity in 0.%0 025- 57 505 7.0
contrast to the gapped one in thevave case. These obser- ' | ' c ' ' '

vations apply to both the uniform disorder case of Fi@) 6

and the case of alloy disorder presented eaffier. 1.0 . . . .

In Fig. 6(b) we have plotted the self-energies, correspond- (C) =10 —
ing to the quasiparticle density-of-states results presented in 08 =20 —
Fig. 6(a). This shows a complex evolution with disorder, for
small § the imaginary part of the self-ener@(E) reflects 06

the pured-wave density of state@s expected in the SCBA
limit) and hence I (0)]~0. However, increasing leads
to a finite 2(0), with a cusplike minimum in I (E)] at
E=0. Increasing the disorder even further, de-2.8&, the !
d-wave pairing is completely destroyed, and3Ir(E) reverts
to the normal system self-energy. In this casken 3 (E) is a 0.% ‘ 4
maximum atE=0, since the Fermi energyc=u was set

exactly to 0.

0 02 04 06 08 10
c

FIG. 9. Critical temperature vs concentration, at different al-
loyed disorder strengths, for a nonlocal interactjot=3.%. (a)

The casen=1.0, (b) n=0.7,(c) n=0.1.
VI. CRITICAL TEMPERATURE CALCULATIONS

To analyze the effect of the disorder updp we have
solved the gap equation together with the CPA equations. .
Again for the sake of comparison we have developed thevhereN(E) is the averaged density of states in the normal
analogous theory for the conventiorsalvave superconduct- state at energyE, as calculated within the CPA, and.
ors based on the site-diagonal particle-particle interaction, of 1/kgT,.
strengthU, mentioned briefly in a previous section. In this  The solution of Eq.(45) for T, as a function of band
case neglecting the spatial fluctuations\gf and linearizing filling and strengths of alloyed disorderis shown in Fig.
the gap equation for the configurationally averaged single7(a). From this figure we can see that the superconducting
site pairing potentiaK we find the condition for the tem- state exists for all band filling and the strength of disorder
peratureT,, below whichA#0, to be does little to suppres3.. Again this is consistent with
Anderson’s theorem.
Now let us turn to the case where the interaction is non-
local and the pairing potentidl;; connects nearest-neighbors
- sites. NealT ., where the gap equation is linear, the solutions
1:|Uo|f dE@tan!‘( BCE), (45) can be labeled by their symmetries. Indeed, we find two
- 2E 2 separate conditions on the temperatligefor the instability
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0.4

oo @)

b(T)

FIG. 10. The coefficienta (a), b (b), andc (c)
which represent the local particle density of states
in the region of the chemical potential as a func-
02 07 tion of temperature, for different alloyed disorder
' Th ) ' strengthsé [5=0.6 (diamond$, 6=1.0t (+),
5=2.0t (squarey and 6=2.6(X)]. In (d) we

| 08 have also plotted the magnitude of thewave
1.8 (C) gap vs temperature, for the same alloyed disorder
strengths as in figurds), (b), and(c). In all four
figures the interaction is nonlocal withU|
14 —3.5, n=1, andc=0.5.
T
1.0
0.6 0.0 (d)
0.0 0.2 0.4 06 0.8 0.0 0.2 04 06
Th Th

of the normal state td and extended symmetry breaking. =0,1.2,2.0,2.5,2.6,2.7,2.8,3.0 from top to bottom curves
In the first caseT? is determined by see that both thd . for the extendeds-wave andd-wave
solutions is reduced and for particularly strong disord@r (
=2.7t and 6=3.0t) the maximum in thed-wave T. is no
Ul 1 o longer atn=1. This is connected with the splitting of Van
1=- 7N Z f dE Hove singularities visible in Fig.(8), i.e., the maximum in
N the normal-state density of i-
y of states corresponds to the maxi
mum in thed-waveT¢.
( ”E ¢ (K;E) ) BoE On the other hand, for a uniform distribution of random
X1m tanr-(—) (46)  site energies there is no splitting of Van Hove singularities
2E—314(E)—3,4E) 2 and hence we see a different tenderdig. 7(c), &/t
=0,1.0,2.0,3.0,4.0,5.0,6.0 from top to bottom cdyrvéhe
maximum value off¢ is located an=1 no matter what the
strength of disorder. For extendsdvave solutions and for
relatively small disorder in the a-wave case the decreasing
tendency inTﬁ'd with growing disorder are very similar for
1=— M i 2 Jw dE the two types of disorder. However, above a certain strength
k —0o0

and in the second extendsdvave caseT? is given by

47 N in either case we note that there is no crossing between the
extendeds-wave andd-wave solutions. This fact may be
26¢ (k- s interpreted as the sign that tkeandd states cannot coexist
i ¥G11(K:E) an BE an O mix in this case. The close look at the dependenc®of
2E—311(E)—22(E) 2 | on disorder, whether alloyed or uniform prompts the conclu-
sion, which may, however, be prematdfethat T, is not
very sensitive to the details of the fluctuation in the site
where n; and y; refer tos-wave- andd-wave-like “harmon-  energy.
ics” defined previously following Eq(17). Another interesting point to investigate concerns the rela-
In Fig. 7(b) the critical temperature for botttwave and tive robustness of . against degradation by disorder in the
extendeds-wave pairing is shown as a function of band fill- cases of conventionas- and d-wave pairing’ Figure 8
ing n for various strengths of alloyed disordér Full lines ~ shows the results fol; for intersite d-wave and on site
correspond tod-wave T, while dashed ones to extended SWave superconductors versus alloyed disorder stredgth

swave solutions. In the clean limit%=0) we can see that wheren=0.6. Here one can easily recognize a typical dif-'
the extended-wave solution exists mainly at the band edges/€rénce between these two superconducting states. Clearly in
and thed-wave solution is largely confined to the central the case of a-wave superconducting state disorder acts as

portion of the band. For the interaction strength we haveé®" effective pair breaker while farwave sypercor_]ductors .it
chosen, the two solutions cross at0.38. Evidently decrease§ . only slowly or not at all. An interesting physi-

i ) . . cal consequence of this effect is that if bath andU;; (i
for n=038 the superconducting instability is at #]) are attractive increasing disorder could lead to a transi-

s . . d
TS vyhlle n=0.38 the transition temperature .FEC. AS  tion from d-wave to swave pairing, as suggested by
we increase the strength of the alloyed disordeé¥t( Aprikosov3’
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' X VII. N(E) AND X,,(E) AS E—0 AND THE
(a) LOW-TEMPERATURE SPECIFIC HEAT

1.0

As mentioned earlier, the behavior of the quasiparticle
density of stateN(E) and the imaginary part of the self-
energy In%,,(E) nearE=0 is of general conceptual signifi-
cance. For instance, the power-law behavioN¢E) «|E|?,
for d-wave superconductors give rise to power-law depen-
dence with temperature of many thermodynamic quantities,
such as the specific hea{(T), instead of the exponential
, R cutoff characteristic of a gap in the quasiparticle specttum.
0.0 0.2 0.4 0.6 0.8 Naturally, the dramatic changes in the low-energy behavior
Th of N(E) and Im,1,(E) as disorder is added to the problem
are also of general interest and, as it turns out, of lively

a'(T)

1.0 . : . .
controversyt?145152|n this section we wish to examine
those predictions of the CPA calculations which are relevant

0.6 : - - - : .
to these issues in particular. Using the methods outlined in

02 the previous sections we calculate numerically the quasipar-

e NENIPN ticle local density of statedN(E) and the self-energy
o

02 \ Im 3,4(E), and then investigate how these two quantities
| change with both temperature and disorder.

06 For simplicity we have studied the half filled bang (

(b) 1 =0, n=1). This is the band filling for whichl, in the
10 d-wave case, is a maximum. We will examine the effects of
00 02 0.4 0.6 0.8 alloyed disorder on the system and show that as we increase
Th the amount of scattering the specific heat vs temperature re-

lation changes frorT?, in the clean limit, taT in the limit of
strong scattering. As is widely recognizeithis behavior is
the consequence ®(E)~|E| changing toN(E) = constant
and is consistent with experimerits.

To get an impression of the form oN(E) and
—Im 244(E) in the region of the chemical potential we fit
them to the functioma+b|E|® in the energy range- AE
<E<AE, whereAE is small compared to the gap. Using
the coefficientsa, b, and c to fit the curvesN(E) and
—ImZ44(E) in the region ofu gives us a tool to analyze
their functional form. For example,tells us if the curves are

o S S finite atE=0, b controls the gradient of the curve awd
0.0 02 '(I)'./‘; 06 08 control_s the curvature. N
In Figs. 1Ga)—(c) we have plotted these coefficients, for

FIG. 11. The coefficients’ (a), b’ (b), andc’ (c) which rep-  N(E), as a function ofT, for different values of5. We also
resent the imaginary part of the self-energy, in the region of théncluded in Fig. 10d) plots of the magnitude of thd-wave
Fermi energy, as a function of temperature, for different alloyedsuperconducting order parametéy vs T, for the same val-
disorder strengthss [§=0.6 (diamondg, =10 (+), §=2.0¢ ues of alloyed disorder strength) to indicate the tempera-
(squares and 6=2.& (X)]. The interaction is nonlocal wittJ|  ture where the order parameter goes to zero. Regarding these
=3.%, n=1, andc=0.5. curves as a brief summary of what the CPA predicts about

the low-energy behavior dll(E) and % (E) we now com-
ment on their implications.

To complete the discussion, Fig. 9 shows the critical tem- First we note that in Fig. 1@) the parametea(T) tends
perature plotted versus concentratioior various strength to a finite limit asT—0 and this limit increases more and
of binary-alloy disorderé with band fillings ofn=1, n more rapidly as the disorder described®increases. Hence
=0.7, andn=0.1. Figures @) and(b) correspond ta-wave  N(0O) is finite in agreement with our earlier discussion in
while Fig. 9c) corresponds to intersite extendediave pair-  Sec. IV where we derived for low scattering and low tem-
ing. Again for large enough alloy disorder pair breaking phe-peratures the dependence M{0) on & [see Eq.(43)]. It
nomena takes place. If disorder is introduced by a fixed polends credit to the general consistency of our results that the
tential §, but varying the concentration of scattersgl, a(T)=N(0,T) curves rise to their normal state valuesTas
from 0 we see that the results are similar to the case of a»T.. Interestingly, as can be seen in Fig(li)he gradient
fixed ¢ and increasing from 0. This shows that CPA can of N(E), namelyb, changes dramatically only neag. In
work equally well, and indeed is asymptotically exact, infact, for the case wheré&is small(squaresthe gradient even
both the Born(small §) and T-matrix (smallc) and resonant changes sign. This means that we go from having a gap in
scattering regimes. the density of states beloWl, to having a Van Hove singu-

25

c(T)

15
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4x10™
3x10
T
@ 2x10* o .
T FIG. 12. The specific heat as a function of
:\.LE’ temperature for different strengths of alloyed dis-
8 ‘ order § [5=0.6t (squarey 6=1.t (circles, &
(% X107+ =2.0t (triangles, and5=2.6t (+)]; again the in-
teraction is nonlocal witHU|=3.%, n=1, and
c=0.5.
0x10° — @
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larity aboveT,. The curvature, represented byand plotted ~many of the well-known results, such as the pair breaking

in Fig. 10c), shows that for low disordefsquares as we formula in Eq.(32) or that for the quasiparticle density of
i.e., a cusp, to a curvature>1. Finally, when the critical GOrkov-CPA Eqs(13) and (14) numerically and surveyed

temperature is reached for each of the four different disordefl® salient features of their consequences by explicit calcu-

typesc goes to 2. lations. The use of CPA in describing disordergdvave
In the same manner, we now examine the correspondin ”pﬁr(iAOZ‘géJOCtorS is an advance in this very active
coefficientsa’, b’, andc’ for —Im34,(E). In Figs. 11a)— leld™™***pecause it allows us to avoid the usually deli-

(0 we have plotted the calculated coefficients for cate choice between methods, sets of diagrams, designed to

—Im34,(E) at different values ofs as a function of the deal with either weakly or strongly scattering perturbations.
temperature. In Fig. X&) we can see that at low tempera- The CPA treats both kinds of problems equally accurately

tures—Im 3.,,(0) increases with disorder: again this agreesa”d it is knogg to provide a very credible interpolation be-
with our results in Sec. IV where an analytical form for the Ween the two.” As an example where above feature of CPA
dependence of Im S ;,(0) upons was derived aT=0, see May have a crucial role to play we recall the use of the
Eq. (44). As we increase the temperature we can see thgesonant scatterer model in interpreting experimental data
. : 3 :
self-energy at the chemical potential also rises until the?©th C;{‘l’sfhe cupratéS® and some heavy fermion
normal-state value is reached at the critical temperature. [§YSt€MS:"In short, note that in the impuritg—0, limit
Fig. 11(b) we can see how the gradient changes from bein he self-e_nergy for th_e G_ree_n s function describing an elec-
large for larges and small for smalls at low T, and at  ON moving on a lattice is given by
temperatures greater than to be large and negative for _ i
large § and small and negative for sma#l. Finally, Fig. 2%(E)=cT(0,0:F), (48)
11(c) shows how the curvature goes from being almost \here theT matrix is defined, in terms of the impurity “po-
Ilrl;ear,_lc_:= 1, at low temperatures, regardless®fto c=2  tential” V;,, a real local shift in the site energy, as
aboveT,.
To illustrate the consequences of these results for the low- Vimp
temperature thermodynamic properties we have calculated T0.0B)= 1/ G(0.0E)" (49)
the effect of disorder upon the specific heat. Using the above tmp=i =
temperature-dependent coefficients for the density of states

nearE~O0 we calculated the limiting behavior of the specific 0.6

heat asT— 0. The results are shown in Fig. 12 for different

strengths of disordes. In the case wheré is small(squares _ 8it=3

we can see that the specific heat has?adependencéthe %0-4

plotted continuous solid line with no pointand for larged c

the dependence upon temperature is linear, as exp®cted. o2

VIIl. CONCLUSIONS o
0,
We have compared and contrasted the effects of disorder Soo—oss 0'1?\](05"15 020 025

on conventionak- andd-wave superconductors on the basis
of an extended, negatiwé Hubbard model and a mean field,  FIG. 13. Relations between I (0) andN(0) for weak &/t
CPA treatment of disorder. On the one hand we have derivee 1.0 and strongs/t= 3.0 scatterers in binary alloyg€ 0.5).
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Evidently T(0,0;E) is a complex number with an amplitude:

a(g)

:Vimp/\/(l_[vimp Re G(OyO;E)]2+[Vimp Im G(OaO;E)]Z
and a phase, the phase shiftE), given by
Vimp M G(0,0;E)

tand(E)= 1-VimpReG(0,0E) (50
Now, observe that while for weak scatterers
IM3B(E) = — 7| Vimp| °N(E) (51)

A. M. MARTIN et al.

PRB 60

Although we have not specifically concentrated on this
aspect of the method, the principle feature of E§4) and
(52), namely the dependence B{E) on N(E), can be seen
to be at work in our calculations of the previous section. To
demonstrate this we have calculaf&(D) andN(0) as func-
tions of band fillingn in the most interesting regiom~ 1.0,
and compared in Fig. 13 their relationships for weak and
strong scatterers at=0.5. Clearly, for weak scattere@&t
=1, —Im3(0) is a more or less linear function df(0) as
in Eq. (51), while for strong scattererd/t=3, ImX(0) is
inversely proportional taN(0) as in the resonant scatterers
model described by E52). Thus we conclude that the CPA
employed in the calculation gives a reliable account of dis-
order in both the weak and strong scattering regimes.

for a resonant scatterer in the unitary limit, defined by Having listed the above desirable properties of the CPA

¢(E)=ml2,

1
|m2R(E)=—CW(E). (52)

It is the above dramatic difference in the dependence of

Im 3B and Im 3R on the density of stateN(E) that the

cited authors rely on in interpreting the relevant experimentaf
data. Evidently, since the individual scattering events de
scribed by the locall matrices are always treated exactly in .

we hasten to emphasize that it is a “mean-field” theory of
disorder and hence does not describe such interesting phe-
nomena as localizatidheven in the normal stafé.Conse-
quently, our result thail(0) is finite for the smallest amount

f disorder can not be taken as evidence against the conclu-
sion thatN(E) ~|E|* of Nersesyan and co-workeY5As this
riginates from the divergence of the vertex corrections in
perturbation series fa¥ (E) we may conjecture that it has to

do with localization effects not described by CPA. This very

the CPA the CPA describes weak scatterers and resonalferesting point is in the need of further clarification, and

scatterers equally well. Moreover, since it is a reliable ap

proximation not only in the impurity limitc~0, where we
would be doing the same calculation as FehrenbatHeut

indeed we shall return to it in a later publication.
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