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Resonant states and order-parameter suppression near pointlike impurities
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We examine the role of order-parameter suppression in the development of low-energy(imeaksso-
nance in the tunneling density of states near a nonmagnetic impuritydanave superconductor. Without
order-parameter suppression, the zero-energy resonance appears only in thdiwnjtatyong impurity limit.

However, suppression makes the resonance appear even when the impurity is much weaker. To model this
situation, we make the physical hypothesis that the order parameter is reduced whenever one electron of a
Cooper pair encounters the impurity, a hypothesis that retains the exact solvability of the problem. In this way,
we determine that suppression of the order parameter drives the effective strength of the impurity towards the
unitary limit. We determine the order-parameter reduction variationally, and show that the ratios between the
main energy scales—the bandwidth and superconducting gap—strongly affect this reduction and, in conse-
guence, the position and width of the resonaf&©163-1829)11033-9

[. INTRODUCTION cuprates. Indeed, as was argued in Ref. 11, the observed
low-temperature behavior of cuprates is inconsistent with the
The role played by nonmagnetic impurities in high- relatively small suppression of the critical temperature, un-
temperature superconductdTSC'’s) represents an impor- less the impurities argor at least behave as if they aie the
tant element of the subject of high-temperature superconduétnitary limit.
tivity. In contrast with the case of conventional
superconductors, in which tleewave symmetry of the order Il. MODEL OF ORDER-PARAMETER SUPPRESSION
parameter tends to weaken the effect of such impurités NEAR AN IMPURITY
Anderson’s theorem), the HTSC materials display rich and ) o ) o i )
interesting sensitivity to the amount of disorder, even at low Consider a pointlike impurity in a two-dimensional
disorder-concentrations. Indeed, many physical propertieg'wave superconductor. As a fuI_Iy s_elf-con5|stent treatment
are affected at low temperatures and frequencies, the mOQ{ the order-parameter suppression Is out of reach, we shall
direct example being the appearance of a nonzero density oceed t.)y exploring a physmally mot_lvated hypotheS|s for
states(DOS) at the Fermi levef.One of the reasons for this € functéonal fqrm of th|s'suppre33|on. It is commonly
T T . N .7 assumef?® that this suppression takes the form
sensitivity lies in the properties ahdividual nonmagnetic
impurities in ad-wave superconducting host, such impurities
g@ving rise to resonant quasiparticle states at §ubgap ener- SA(r,r')ocf
gies. The occurrence of these states was predicted theoreti-
cally by Balatsky, Salkola, and co-worke¥$and is consis-
tent with recent experimental observations by Yazaaril>  Wheref gives the spatial shape of the suppressiap(r
These states are localized near impurity sites, and have finite ') is the bulk value of thel-wave order parameter, and
lifetimes, due to the existence of bulk quasiparticle state&h® impurity is located at the origin. This form includes only

into which they may decay. Upon neglecting the changes ithed-wave pairing channel, and therefore is very convenient.

the order parameter induced by an impurity, it was found"Ve show, however, that Ed1) is meaningful only for

that, as the strength of the impurity increases, the resonancég'oo_th]c (varying O,nl length scales much .Ionger than -the
move towards the Fermi level and their widths decreasef€Mi wave lengtrkg ), and does not describe the physical
only in the unitary(i.e., infinitely-strong impurity limit do ~ Situation at short distances from the impurity. This short-
the resonances reach the Fermi level and become infiniteﬁ:Stance behavior is important, as it affects the formation of
sharp. The role of the order-parameter charfges suppres- (he scattering resonances. As an extreme example, consider
sion) has been analyzed by several groligse, e.g., Refs. the setting of tight-binding electrons moving on a two-
6-10. In the present paper we focus on one particular effecflimensional square lattice with on-site repulsion and nearest-
of order-parameter suppression which has not been reportétgighbor attractior(i.e., the simplest situation fod-wave
previously: we show that the suppression of the order paransuPerconductivity. If we locate an impurity at the origin and
eter drives(i.e., renormalizesthe effective strength of the Wish to suppress the order parameter in the four bonds con-
impurity towards the unitary limit. Further, we argue that this "€Cting the origin to its nearest neighbors, we arrive at the
renormalization may be appreciable in the HTSC materialsfollowing functional form of the suppression:

and may be important for the development of a more com-

plete understanding of the low-temperature behavior of the SA(r,r")y=a[8(r)+8(r")JAg(r—r"), (2

!

r+r
T)Ao(r—r’), (]
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where « is the amplitude of the suppression which has the é(r r’):é (rr’)

dimensionality of a volume. This form may also be used for ' o

other cases, inasmuch as it encodes the idea that the order ~ A -

parameter is altered whenever one of the electrons in the +f dx dxaGo(r,X1) X (X1,X2) G(X2,1")
Cooper pair encounters the impurity. The Fourier transform

of Eq. (2) reads (78

=Gy(r,r')+ f dxg dxGo(r,X1) T(X1,X2) Gol(Xa, ).

A(k,k’)EJ drdr’ SA(r,r")exp(ikr +ik'r")
(7b)

= [ Ao(k)+Ao(=k")]. ®) Our aim is to find thel matrix T(x;,X,), which would allow

Qs to calculate, via Eq(7b), the full Green’s function and
therefore the DOS. The Dyson equation for thematrix
reads

As usual for superconductivity, the most important regime i
the one in which botlk andk’ are close to the Fermi surface.
Thus the assumptio(2) may be relaxed in favor of Eq3)
near the Fermi surface. The for(B) includes pairing chan- ~ A

nels other thar-wave. Let us, e.g., adopt the tight-binding T (X1:X2) =2 (X1.,Xz)
shape of the order parametéry(k) = A ¢4(k), where R . R
+f dy1 dy,2(X1,Y1)Go(Y1,Y2) T(Y2,X2).
das(k)= cogap,)+ cogap), 4

()
in which a is the lattice constant, and the subscripts stand . . .
for the d and extended-channels. By introducing the total This model is exactly solvable, owing to the fact that the

[q=k+k'] and the relativd p=(k—k’)/2] momenta of a Fourier transform of the self-enerdy(k,k’) is a degenerate
Cooper pair we arrive at kernel(i.e., a sum of factorized functions &fandk’):

88 p.q= @Al $u(P) bs(0/2) + d(P) be(a/2)].  (5) S(kk)=U0,=al oK) +8o(—K o (9
Recent numerical se_lf-consi_stent simula@tﬁ)_yliaeld an ord_er- By using this degeneracy property we may rewrite &jas
fhecwave contibution having the form factor of teevave 1K) = U~ al8o(k) oK)t U F (K)
Ak o el o 2L K- asdlonE0, a0a
and(1). Further support for the choice of the functional form

(3) may be provided by examining the imbalance in the self- IE(k’)EV‘12 éo(k”)?(k”,k’), (10b)
consistent equation for the order parameter with the impurity K”

present and the order parameter unchan@ed the model

considered in Ref.)é_.lThe |mbalr_:1nce means thas th_e gradient H(k)=VD Ag(k")Go(K)T(K" k'), (100
of the free energy in the function space »fk,k’) is non- '

zero and the “direction” of this gradient gives the functional

form of the linear response of the order paramet&rto the the remaining task being to determine the as-yet unknown

presence of the impurity. We find that the “direction” of the matrix-valued functiong andH. Here and sub_seq_uently, we

imbalance is close to Eq3), and also has the same symme-US€ the symmetryAo(—K)=2o(k). By multiplying Eg.

try as Eq.(3). (109 first by Gy(k) and then byAy(k)Gy(k) from the left,
and integrating ovek, we obtain a system of linear equations

lIl. DENSITY OF STATES NEAR THE IMPURITY for F andH:
First, we investigate the local DOS near the impurity. We (U |E>(}Z_ af_(;x_ 1)!5(k)— alE’r}XI:l(k)
employ the standar@-matrix technique. The system is gov- A A A
ermned by the Hamiltonian =—UPao,+aLa,+aPAy(k)ay, (119
H(r,r')=Ho(r,r")+3(r,r") (ULo,— aM&)E(K) —(al oy + 1)H(K)
=Ho(r,r")+U8(r)8(r")o,— SA(r,r")ay, (6) =—ULo,+ aMa +alAy(K) oy, (11b)

where H, is the Bogolubov—de Gennes kernel, which de-Where P=V"13,Gy(k), L=V"'5,40(k)Go(K), and M

scribes the unperturbaetiwave superconductor, and the term =V~ 12kA0(k)G0(k)

with the coefficientU represents the potential scatte(ee., Thus far, we have not made use of tvave symmetry

impurity), hats denote 2 matrices in the Nambu space. of the order parameter, and we have not made any approxi-
The Dyson equation for the full Matsubara Green'’s func-mation beyond the mean-fielogolubov—de Genngsp-

tion é(r,r’,iwn)E[i wy,—H(r,r")] ! reads proximation. To determine the matricés I:, andM we use
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the d-wave character of the order parameter to eliminate inwherevy(E)= (7 1)Im P(E) is the unperturbed DOS in the
tegrals of the odd powers dfy(k), and we assume the pres- d-wave superconductor. Far=0, the behavior ofv(r,E)
ence of particle-hole symmetry to eliminate integrals of oddfor r =0 was described in Ref. 4. There it was shown that a
powers of the single-electron energyk). Taking for the

- resonant peak appears at negative energies Wwhet)
unperturbed Green'’s function P PP 9 g VF

becomes comparable to 1v{ being the DOS at the Fermi
. surface in the normal stgteThe peak moves toward zero
! Tlenm el =Rl db ; IOo| ke In th
. energy and becomes narrower and wea ows. In the
MK+ (0t —Agk)  —iwgte(k) STy ant BEcomes. e grows. e
12 unitary limit (i.e., forU—x) the peak disappears. This dis-
appearance simply means that an infinitely strong impurity
we obtainP(iw,)=P(iw,)(—1), L(iw,)=L(iw,)(—a,), epelsallthe electronic density from itself. The resonance is
andM (i) =iw.L(iw)(~1), where still there, and to analyze it, one should calculate the tunnel-
n n n ' ing density of states in the vicinity of the impuritgee Ref.
4). There, four maxima appear along the lobes ofdhveave

Go(k)=

Pliw)=V1S 1@n , (139  order parameter at a distance of the order of the Fermi wave
K A(Z)(k)+.52(k)+wr21 length A from the impurity site. Moreover, a second reso-
nance, corresponding to a singularity of the subdeterminant
Aé(k) D,, shows up in the vicinity of the impurity. The width of
L(iw,) =V, 5 5 (13p  this second resonance is exactly equal to the width of the
K AG(K) + (k) + o] first, and the positions of the two are symmetric with respect

_ _ to the Fermi energy. However, the spatial density distribu-
~The system(113 and (11b) consists of a pair of four- tions of the two resonances differ from one another.
dimensional systems of linear equations having common co- The effect that we report here is that if one fixes the
fvf/fcl)msenstt;]nastr:gzs ;12i:;t't?g;l'ngg:cggegﬁgliﬁufrt?;'e_;(rzstsﬁwpurity potential and allows the order-parameter suppres-
t'y b y built vt 3:5 (103)’ Then th ¢ sion a to grow instead, the DOS behaves similarly to the
ga ”X, n}ay t'e re UIb “g".‘lgb att .E g)n ghexac scenario outlined above. Specifically, the resonances move
threlen SI I'“D"gs'on caB € IUII tydus_lng ), and hence toward zero energy, become sharper, and a maximum in the
€ loca may be calculated via DOS is found along the lobes dfy(k) at a distance of the
1 order of A\ from the impurity. Indeed, foE— 0, we obtain
v(r,E)=—=ImGy(r,r,.E+id)|5 0. (14  from Eq. (13b that L(E)—2Ave [we have takemy(Kk)
™ = A cos(2py)]. In this regime we can approximalg A E) as
. (1-2a)?+UP(E), wherea=aAvg. We find that the po-
Before we present exact results for the DOS, it may be .. :
noted that thepsingular behavidre., resonancesof the Ty sitions (iﬂ‘?) and t_he width [') of the resonances may be
matrix at subgap energig$or E<A) originate only from now determined using the formulas of Ref. 4:
zeros of the determinait(E) of the systen{l1g and(11b).
This is so because the right-hand side of E§$a and(11b)
has at most branch cuts at the subgap energies. Thus it is _ A r= (g (17)
instructive to write down this determinant: 0 2U 4 In (8U ) 2In(8U o)
D(E)=D1(E)Dy(E),
in which the original strength of the impurity is substituted
D1 AE)=1-2al(E)+a’L*(E) by a renormalized one, vizl)gg=U/(1—2a)2. Now, uni-

— a’EL(E)P(E)*=UP(E). (15)  tary behavior is achieved Beﬁ>1, and a strong renormal-

_ . ization of the bare strength of the impurity occurs if it is

_If _a=0 (|.e_., no order-p_argmetgr suppressitme (;haracter— possible fora to be close to 1/2. In the next section we will
istic equat|onD(E).=0 |s_|denfucal to the equation for the argue that such a regime may be realistic in the HTSC ma-
poles of theT matrix obtained in Ref. 4. Thus we may con- terjgls. In the meantime, let us assume that strong renormal-

clude that the role of the order-parameter suppression in thgation has occurred, i.e., that the bare strength of the impu-
present model is to modif§i.e., shify the resonance found in

Ref. 4, rather than to add a new resonafte results from
the model proposed in Ref).7
We now calculate the DOS precisaythe impurity. We

rity U was not large enough to cause the unitary behavior but
that U is. Then we may ask the question: Is there any
difference in the spatial distribution of the resonant-state

obtain density between this case and the case wherl? We find
that the only difference is preciselgt the impurity site:
1 [P(E)(D«(E)—-1) there, the electrons “know” that the impurity is not so
v(r,E)|r=o=vo(E)— ;Im{ D,(E) } strong, and therefore the DOS is less suppressed than in the

“true” unitary limit (i.e., D>1). Farther from the impurity,
however, the two cases are indistinguishable. The scaling

1 P(E)
B ;Im[ D 1(E)}’ (16) relation between these two cases may be expressed as
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A= U,2) Note that we have introduced the Kronecker sym&g}, ,
Y corresponding to the conservation of the total momentum, in
(1, E,Ugtr,@)|5—0 order to emphasize the matrix structure of this interaction.
= , for r=0E~O0; This matrix has a twofold indexp(q) corresponding to the
~ (1-2a) relative and the total momenta of the electrons in a Cooper

pair, respectively. To avoid confusion, we shall use the let-

tersp and q for the relative and the total momenta of the
(18 electrons in a Cooper pair, reserving the lekéor momenta

It is not clear that such a behavior could be detectable exOf individual electrons. The standard Hubbard-Stratonovich

perimentally because even when STM tips are preciselfiecoupling proceduféyields the following effective action

above impurities tunneling occurs over some neighborhoodor the order parameter:

of the impurity. However, this is at least consistent with the

experimental results reported in Ref. 5.

v(r,E,fJeﬁ,Zz)lgzo, for |r|>\g,E~O.

S=S,+S,
IV. AMPLITUDE OF THE ORDER-PARAMETER 8 1 -
SUPPRESSION EJ’ d RV E ,Q(P,D';qwq,q’Ap,qA;’,q’
Our next step is to estimate the amplitude of the order P.p-.a.4
parameter suppressiaen In principle, one may envision two _Trin é*l, 20)

different scenarios. In the first, the electron-electron interac-
tion is unchanged by the presence of the impurity, and, in the A R
d-wave case, the suppression of the order-parameter is oniyhere G (r,t;r' t)=168(t—t")S(r—r")ialat’' — &(t
due to the pair breaking effect of the impurity. In the second_t,)lq(r o) andg(p p’:q) stands for the inverse of the
scenario, the electron-electron interaction is itself suppresseéi(p pr.q’) matrix in p, sp;ace[the inversion ing space is
near the impurity, thus furthering the suppression f,r’). triviéllly1 performed in Eq.(20)]:

Let us make a very crude estimate for the second scenario.

We again exploit the tight-binding model, and assume that

the order parameter is zero in the four bonds connecting the 1 =

impurity to its neighbors but unchanged elsewhere. This re- v E, 9(p.p"a)9(p".p"0q) =V Jp,pr. (21)
gime would be reasonable for purely electronic mechanisms P

of superconductivity, as the local electronic structure is COM=, ¢ alectronic free enerdyin the mean-field approximation
pletely altered by the impurity. Thea~a® and a=aAv is thus given by

~A/2t, where 2 is the bandwidth and we have used as an

estimate for the density of states=1/2ta’. If we take into

account the fact that in the definition of the DOS at the F[A, )= §:F +F

Fermi levelvg should be used, whereas the lattice constant p.d v

is naturally connected to the DOS averaged over the whole

. . . L~ 1 — 1 B
band (i.e., v)_, we arrive at .a more r§f|ned estimate: =-= 2 g(p,p’;q)Ap,qA;,,q—ETr InG-L.
~(A/2t)(ve/v). We see that in conventional superconduct- Vo b’

ors a is always small, and thus essentially no renormaliza- (22)

tion can happen. In the HTSC materials, howevegt can
be of the order 0.1, and the proximity of the Van Hove sin-

gularity makes the factorg /v important. Thus in this case a g,
strong renormalization situation cannot be ruled out.

Next, we show that, even if the electron-electron interac-
tion is unchanged near the impurity, the pair breaking pro-d _  d (1 24
cess creates a suppression of the order parameter to the valpg ' 2~ 9o ZrinG

p B
estimated abovEEw(A/Zt)(vF/v)] whenU~1. We estab- 1 J
lish this variationally, i.e., we minimize the free energy of = _TrG—G !
the system with respect te. To calculate this free energy da

one has to know the form of the electron-electron interaction

We now minimize Eq(22) with respect tax. The second
m of Eq.(22) is treated readily; indeed,

responsible for the superconductivity of the system. __ 1 2 tr[é(k K iw )(Ao(k)+Ao(k'))t} ]
The most general form of the pairing interaction may be BVZ kKo, B x>
written as 23
Him:ﬁ ; p,% . 9(p.p":q) where the symbol tr stands for the trace in the Nambu space
o T + only. The Green’s functiorG is known exactly:G(k,k")
" Pqq'Cp+ai2C-praziCopr a2 Cprrarizy - =V, _1Go(K) + Go(K) T(k,k')Go(k'). Therefore we can

(19 rewrite Eq.(23) as
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025

d

2 PRI
SFa= ~ v kEw Ag(k) tr[Go(k,iwp)ay]

v > [Ag(k)+Ag(k) It Go(k,iwy)
k,k',wn

XT(K,K' i wn)Go(K' i wp) 0] (24)

Rl

As for the first term of Eq(22), we recall that

Apq=Vq080(P)— a[Ag(P+a/2)+Ag(p—a/2)], 25

and thereford-, is a quadratic polynomial i. The deriva-
tive of F4 with respect tax contains a term independent @f -
and a term linear inx. It is straightforward to verify that the v
term independent of in dF,/da, when combined with the ) i ) ~ ~
first term in Eq.(24), cancel, as together they constitute the ~'G- 1. Results of the numerical simulations fe(U). A/2t
BCS self-consistency equation for the unperturbed order pa=9-1. »e/»=1, the coupling constangy~0.8 is determined
rameter(The appearance of this equation was to be expecteself-consistently, and it is assumed tligt=d .

as it emerges from the condition that the free energy be mini-

mal when no impurity is presenfWe denote the parts ¢f;,  where we have used the identity‘lzquﬁ,s(q/Z): 1/a%.
and F, remaining after the cancellation ﬁz) and ng), The appearance of the volume of the lattice @llin Eq.

respectively, and the variational condition fernow reads  (29) introduces the bandwidth energy scalé, %ia v
~1/2ta%. Defining, as usual, the pair of dimensionless cou-

. . .
1 15 2 25

f:iF(z)_iF(z):O (263 pling constantsgy <= v:0ys, and differentiating Eq(29)
da da ' g 2 with respect tow, we obtain
] 1 - d 2aA? — o~ 2t v
P iy kkE 28Kt Go(k.i wp) dat =g <gd1+gsl>=2a<gdl+gsl>( X VF)A%F.
) ) (30)
XT(k,K'iwn)Go(K' i wp) oy, (26b)
Finally, to finda we must evaluatéF$?/da, as given by
1 o Eqg. (26h). Although all the components ¢26h) are known
|:(12)E -= E a(p,p’ ;q)5Ap,q5A;,’q. (260 analytically and the integrals ov&randk’ can be expressed
Vo o' via the functionsP(i w,) andL(iw,) defined by Eqs(133

and (13b), the remaining sum over the Matsubara frequen-
cies must be carried out numerically. An analytical result is

obtained only in the “true” unitary limitU — oo

To estimateF{?), we choose the standard form of the inter-
action, which has ng dependence:

g(p,p";9) = —09dada(P) da(P') —gsds(P) Ps(p’). (27) ;

1
2 : _A~—1
We include here botd- ands-channel interactions. The part a F&— g ; 4L(iwn) =404 A%V, (32)
of F, quadratic ine reads !

where the last equation is obtained from the self-consistency

@)_ 1 1 ¢yq(p)dy(p’) condition for the unperturbed order paramefsithout im-
Fi _\F - @ N2 purities. From Eqgs.(30) and(31) we obtain
p.p'.q d
1 dp)ddp’) X < 20¢° Ave A
b R D SA g SAY, 28 a(U)[0mw=g =5 =~ = (32
gs N2 AR 29 T gttty 2ty
whereNg 4=V "2 ,¢24(p). This result would still be meaningless if the asymptotic value

To proceed further we need to assume some particulaB2) were achieved only fol)—c0, as the renormalization
form of the wave functiongpys. The simplest choice is the has no effect in the “true” unitary limit. To check how fast
tight-binding ong[Egs.(4) and(5)], for which F{?) is readily  this asymptotic value is achieved, we have solved (26a

calculated: numerically for different choices of the system parameters.
We observe that the asymptotic value is always reached al-
) a®A? 1, -1 ready forU~1 (see, e.g., Fig. )L Thus impurities having
Fi'=—5(9¢ +t0s "), 29 ~ . .
a mild” values of U may be renormalized to the unitary
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limit. We were unable, however, to approach numerically thebility of a Van Hove singularity in the DOS. The electronic

regime3~1/2 without employing the Van Hove singularity DOS around a renormalized impurjty is. indis_tinguishable
(i.e., for ve/v~1). This is because the ratia/2t would ~from the DOS around a “truly” unitary impurity, except

have to become of order 1, which is inconsistent with thePrecisely at the impurity site. Further calculations involving
BCS approximation. On the other hand, exploring the Varfhe strong-coupling regime and the effects of the real band
Hove scenario would demand calculations with realistic bandtructures are needed to establish the feasibility of the strong
structuregsee, e.g., Ref.)9the task we leave for the future. renormalization of the strength of impurities.
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