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Resonant states and order-parameter suppression near pointlike impurities
in d-wave superconductors

Alexander Shnirman, I˙nanc Adagideli, Paul M. Goldbart, and Ali Yazdani
Department of Physics and Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 18 March 1999!

We examine the role of order-parameter suppression in the development of low-energy peaks~i.e., reso-
nances! in the tunneling density of states near a nonmagnetic impurity in ad-wave superconductor. Without
order-parameter suppression, the zero-energy resonance appears only in the unitary~i.e., strong impurity! limit.
However, suppression makes the resonance appear even when the impurity is much weaker. To model this
situation, we make the physical hypothesis that the order parameter is reduced whenever one electron of a
Cooper pair encounters the impurity, a hypothesis that retains the exact solvability of the problem. In this way,
we determine that suppression of the order parameter drives the effective strength of the impurity towards the
unitary limit. We determine the order-parameter reduction variationally, and show that the ratios between the
main energy scales—the bandwidth and superconducting gap—strongly affect this reduction and, in conse-
quence, the position and width of the resonance.@S0163-1829~99!11033-6#
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I. INTRODUCTION

The role played by nonmagnetic impurities in hig
temperature superconductors~HTSC’s! represents an impor
tant element of the subject of high-temperature supercon
tivity. In contrast with the case of convention
superconductors, in which thes-wave symmetry of the orde
parameter tends to weaken the effect of such impurities~cf.
Anderson’s theorem1!, the HTSC materials display rich an
interesting sensitivity to the amount of disorder, even at l
disorder-concentrations. Indeed, many physical proper
are affected at low temperatures and frequencies, the m
direct example being the appearance of a nonzero densi
states~DOS! at the Fermi level.2 One of the reasons for thi
sensitivity lies in the properties ofindividual nonmagnetic
impurities in ad-wave superconducting host, such impuriti
giving rise to resonant quasiparticle states at subgap e
gies. The occurrence of these states was predicted theo
cally by Balatsky, Salkola, and co-workers,3,4 and is consis-
tent with recent experimental observations by Yazdaniet al.5

These states are localized near impurity sites, and have fi
lifetimes, due to the existence of bulk quasiparticle sta
into which they may decay. Upon neglecting the change
the order parameter induced by an impurity, it was fou
that, as the strength of the impurity increases, the resona
move towards the Fermi level and their widths decrea
only in the unitary~i.e., infinitely-strong impurity! limit do
the resonances reach the Fermi level and become infin
sharp. The role of the order-parameter changes~i.e., suppres-
sion! has been analyzed by several groups~see, e.g., Refs
6–10!. In the present paper we focus on one particular eff
of order-parameter suppression which has not been repo
previously: we show that the suppression of the order par
eter drives~i.e., renormalizes! the effective strength of the
impurity towards the unitary limit. Further, we argue that th
renormalization may be appreciable in the HTSC materi
and may be important for the development of a more co
plete understanding of the low-temperature behavior of
PRB 600163-1829/99/60~10!/7517~6!/$15.00
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cuprates. Indeed, as was argued in Ref. 11, the obse
low-temperature behavior of cuprates is inconsistent with
relatively small suppression of the critical temperature, u
less the impurities are~or at least behave as if they are! in the
unitary limit.

II. MODEL OF ORDER-PARAMETER SUPPRESSION
NEAR AN IMPURITY

Consider a pointlike impurity in a two-dimensiona
d-wave superconductor. As a fully self-consistent treatm
of the order-parameter suppression is out of reach, we s
proceed by exploring a physically motivated hypothesis
the functional form of this suppression. It is common
assumed7,8 that this suppression takes the form

dD~r ,r 8!} f S r 1r 8

2 DD0~r 2r 8!, ~1!

where f gives the spatial shape of the suppression,D0(r
2r 8) is the bulk value of thed-wave order parameter, an
the impurity is located at the origin. This form includes on
thed-wave pairing channel, and therefore is very convenie
We show, however, that Eq.~1! is meaningful only for
smooth f ~varying on length scales much longer than t
Fermi wave lengthkF

21), and does not describe the physic
situation at short distances from the impurity. This sho
distance behavior is important, as it affects the formation
the scattering resonances. As an extreme example, con
the setting of tight-binding electrons moving on a tw
dimensional square lattice with on-site repulsion and near
neighbor attraction~i.e., the simplest situation ford-wave
superconductivity!. If we locate an impurity at the origin and
wish to suppress the order parameter in the four bonds c
necting the origin to its nearest neighbors, we arrive at
following functional form of the suppression:

dD~r ,r 8!5a@d~r !1d~r 8!#D0~r 2r 8!, ~2!
7517 ©1999 The American Physical Society
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wherea is the amplitude of the suppression which has
dimensionality of a volume. This form may also be used
other cases, inasmuch as it encodes the idea that the
parameter is altered whenever one of the electrons in
Cooper pair encounters the impurity. The Fourier transfo
of Eq. ~2! reads

dD~k,k8![E drdr8dD~r ,r 8!exp~ ikr 1 ik8r 8!

5a@D0~k!1D0~2k8!#. ~3!

As usual for superconductivity, the most important regime
the one in which bothk andk8 are close to the Fermi surface
Thus the assumption~2! may be relaxed in favor of Eq.~3!
near the Fermi surface. The form~3! includes pairing chan-
nels other thand-wave. Let us, e.g., adopt the tight-bindin
shape of the order parameter:D0(k)5Dfd(k), where

fd/s~k![ cos~apx!7 cos~apy!, ~4!

in which a is the lattice constant, and the subscriptsd/s stand
for the d and extended-s channels. By introducing the tota
@q[k1k8# and the relative@p[(k2k8)/2# momenta of a
Cooper pair we arrive at

dDp,q5aD@fd~p!fs~q/2!1fs~p!fd~q/2!#. ~5!

Recent numerical self-consistent simulations6 yield an order-
parameter suppression having a form similar to Eq.~5!, with
thed-wave contribution having the form factor of thes-wave
symmetry and vice versa. Note that at small values ofq only
the d-wave contribution survives, which reconciles Eqs.~3!
and~1!. Further support for the choice of the functional for
~3! may be provided by examining the imbalance in the s
consistent equation for the order parameter with the impu
present and the order parameter unchanged~i.e., the model
considered in Ref. 4!. The imbalance means that the gradie
of the free energy in the function space ofD(k,k8) is non-
zero and the ‘‘direction’’ of this gradient gives the function
form of the linear response of the order parameterdD to the
presence of the impurity. We find that the ‘‘direction’’ of th
imbalance is close to Eq.~3!, and also has the same symm
try as Eq.~3!.

III. DENSITY OF STATES NEAR THE IMPURITY

First, we investigate the local DOS near the impurity. W
employ the standardT-matrix technique. The system is gov
erned by the Hamiltonian

Ĥ~r ,r 8!5Ĥ0~r ,r 8!1Ŝ~r ,r 8!

5Ĥ0~r ,r 8!1Ud~r !d~r 8!ŝz2dD~r ,r 8!ŝx , ~6!

where Ĥ0 is the Bogolubov–de Gennes kernel, which d
scribes the unperturbedd-wave superconductor, and the ter
with the coefficientU represents the potential scatterer~i.e.,
impurity!, hats denote 232 matrices in the Nambu space.

The Dyson equation for the full Matsubara Green’s fun

tion Ĝ(r ,r 8,ivn)[@ ivn2H(r ,r 8)#21 reads
e
r
der
e

s

-
y

t

-

-

-

Ĝ~r ,r 8!5Ĝ0~r ,r 8!

1E dx1 dx2Ĝ0~r ,x1!Ŝ~x1 ,x2!Ĝ~x2 ,r 8!

~7a!

5Ĝ0~r ,r 8!1E dx1 dx2Ĝ0~r ,x1!T̂~x1 ,x2!Ĝ0~x2 ,r 8!.

~7b!

Our aim is to find theT matrix T̂(x1 ,x2), which would allow
us to calculate, via Eq.~7b!, the full Green’s function and
therefore the DOS. The Dyson equation for theT matrix
reads

T̂~x1 ,x2!5Ŝ~x1 ,x2!

1E dy1 dy2Ŝ~x1 ,y1!Ĝ0~y1 ,y2!T̂~y2 ,x2!.

~8!

This model is exactly solvable, owing to the fact that t

Fourier transform of the self-energyŜ(k,k8) is a degenerate
kernel ~i.e., a sum of factorized functions ofk andk8):

Ŝ~k,k8!5Uŝz2a@D0~k!1D0~2k8!#ŝx . ~9!

By using this degeneracy property we may rewrite Eq.~8! as

T̂~k,k8!5Uŝz2a@D0~k!1D0~k8!#ŝx1UŝzF̂~k8!

2aŝxĤ~k8!2aD0~k!ŝxF̂~k8!, ~10a!

F̂~k8![V21(
k9

Ĝ0~k9!T̂~k9,k8!, ~10b!

Ĥ~k8![V21(
k9

D0~k9!Ĝ0~k9!T̂~k9,k8!, ~10c!

the remaining task being to determine the as-yet unkno
matrix-valued functionsF andH. Here and subsequently, w
use the symmetryD0(2k)5D0(k). By multiplying Eq.

~10a! first by Ĝ0(k) and then byD0(k)Ĝ0(k) from the left,
and integrating overk, we obtain a system of linear equation

for F̂ and Ĥ:

~UP̂ŝz2aL̂ŝx21̂!F̂~k!2a P̂ŝxĤ~k!

52UP̂ŝz1aL̂ŝx1a P̂D0~k!ŝx , ~11a!

~UL̂ŝz2aM̂ ŝx!F̂~k!2~aL̂ŝx11̂!Ĥ~k!

52UL̂ŝz1aM̂ ŝx1aL̂D0~k!ŝx , ~11b!

where P̂[V21(kĜ0(k), L̂[V21(kD0(k)Ĝ0(k), and M̂

[V21(kD0
2(k)Ĝ0(k).

Thus far, we have not made use of thed-wave symmetry
of the order parameter, and we have not made any appr
mation beyond the mean-field~Bogolubov–de Gennes! ap-

proximation. To determine the matricesP̂, L̂, andM̂ we use
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PRB 60 7519RESONANT STATES AND ORDER-PARAMETER . . .
the d-wave character of the order parameter to eliminate
tegrals of the odd powers ofD0(k), and we assume the pre
ence of particle-hole symmetry to eliminate integrals of o
powers of the single-electron energye(k). Taking for the
unperturbed Green’s function

Ĝ0~k!5
1

D0
2~k!1e2~k!1vn

2 S 2 ivn2e~k! 2D0~k!

2D0~k! 2 ivn1e~k!
D

~12!

we obtain P̂( ivn)5P( ivn)(21̂), L̂( ivn)5L( ivn)(2ŝx),

andM̂ ( ivn)5 ivnL( ivn)(21̂), where

P~ ivn![V21(
k

ivn

D0
2~k!1e2~k!1vn

2
, ~13a!

L~ ivn![V21(
k

D0
2~k!

D0
2~k!1e2~k!1vn

2
. ~13b!

The system~11a! and ~11b! consists of a pair of four-
dimensional systems of linear equations having common
efficient matrices and distinct inhomogeneous terms. Th
two systems may be analytically solved, and thus the exaT
matrix may be rebuilt using Eq.~10a!. Then the exact
Green’s function can be built by using Eq.~7b!, and hence
the local DOS may be calculated via

n~r ,E!52
1

p
Im Ĝ1,1~r ,r ,E1 id!ud→0 . ~14!

Before we present exact results for the DOS, it may
noted that the singular behavior~i.e., resonances! of the T
matrix at subgap energies~for E,D) originate only from
zeros of the determinantD(E) of the system~11a! and~11b!.
This is so because the right-hand side of Eqs.~11a! and~11b!
has at most branch cuts at the subgap energies. Thus
instructive to write down this determinant:

D~E!5D1~E!D2~E!,

D1,2~E![122aL~E!1a2L2~E!

2a2EL~E!P~E!6UP~E!. ~15!

If a50 ~i.e., no order-parameter suppression! the character-
istic equationD(E)50 is identical to the equation for th
poles of theT matrix obtained in Ref. 4. Thus we may co
clude that the role of the order-parameter suppression in
present model is to modify~i.e., shift! the resonance found in
Ref. 4, rather than to add a new resonance~as results from
the model proposed in Ref. 7!.

We now calculate the DOS preciselyat the impurity. We
obtain

n~r ,E!ur 505n0~E!2
1

p
ImFP~E!~D1~E!21!

D1~E! G
5

1

p
ImF P~E!

D1~E!G , ~16!
-

d

o-
se

e

is

he

wheren0(E)5(p21)Im P(E) is the unperturbed DOS in th
d-wave superconductor. Fora50, the behavior ofn(r ,E)
for r 50 was described in Ref. 4. There it was shown tha

resonant peak appears at negative energies whenŨ[UnF

becomes comparable to 1 (nF being the DOS at the Ferm
surface in the normal state!. The peak moves toward zer

energy and becomes narrower and weaker asŨ grows. In the

unitary limit ~i.e., for Ũ→`) the peak disappears. This dis
appearance simply means that an infinitely strong impu
repels all the electronic density from itself. The resonanc
still there, and to analyze it, one should calculate the tunn
ing density of states in the vicinity of the impurity~see Ref.
4!. There, four maxima appear along the lobes of thed-wave
order parameter at a distance of the order of the Fermi w
length lF from the impurity site. Moreover, a second res
nance, corresponding to a singularity of the subdetermin
D2, shows up in the vicinity of the impurity. The width o
this second resonance is exactly equal to the width of
first, and the positions of the two are symmetric with resp
to the Fermi energy. However, the spatial density distrib
tions of the two resonances differ from one another.

The effect that we report here is that if one fixes t

impurity potentialŨ and allows the order-parameter suppre
sion a to grow instead, the DOS behaves similarly to t
scenario outlined above. Specifically, the resonances m
toward zero energy, become sharper, and a maximum in
DOS is found along the lobes ofD0(k) at a distance of the
order oflF from the impurity. Indeed, forE→0, we obtain
from Eq. ~13b! that L(E)→2DnF @we have takenD0(k)
5D cos(2fk)#. In this regime we can approximateD1,2(E) as
(122ã)26UP(E), whereã[aDnF . We find that the po-
sitions (6V0) and the width (G) of the resonances may b
now determined using the formulas of Ref. 4:

V05
D

2Ũeff ln ~8Ũeff!
, G5

pV0

2ln ~8Ũeff!
, ~17!

in which the original strength of the impurity is substitute

by a renormalized one, viz.,Ũeff[Ũ/(122ã)2. Now, uni-

tary behavior is achieved ifŨeff@1, and a strong renormal
ization of the bare strength of the impurity occurs if it
possible forã to be close to 1/2. In the next section we w
argue that such a regime may be realistic in the HTSC m
terials. In the meantime, let us assume that strong renorm
ization has occurred, i.e., that the bare strength of the im

rity Ũ was not large enough to cause the unitary behavior
that Ueff is. Then we may ask the question: Is there a
difference in the spatial distribution of the resonant-st

density between this case and the case whenŨ@1? We find
that the only difference is preciselyat the impurity site:
there, the electrons ‘‘know’’ that the impurity is not s
strong, and therefore the DOS is less suppressed than in

‘‘true’’ unitary limit ~i.e., Ũ@1). Farther from the impurity,
however, the two cases are indistinguishable. The sca
relation between these two cases may be expressed as
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n~r ,E,Ũ,ã !

'H n~r ,E,Ũeff ,ã !u ã50

~122ã !2
, for r 50,E'0;

n~r ,E,Ũeff ,ã !u ã50 , for ur u.lF ,E'0.

~18!

It is not clear that such a behavior could be detectable
perimentally because even when STM tips are precis
above impurities tunneling occurs over some neighborh
of the impurity. However, this is at least consistent with t
experimental results reported in Ref. 5.

IV. AMPLITUDE OF THE ORDER-PARAMETER
SUPPRESSION

Our next step is to estimate the amplitude of the or
parameter suppressiona. In principle, one may envision two
different scenarios. In the first, the electron-electron inter
tion is unchanged by the presence of the impurity, and, in
d-wave case, the suppression of the order-parameter is
due to the pair breaking effect of the impurity. In the seco
scenario, the electron-electron interaction is itself suppres
near the impurity, thus furthering the suppression ofD(r ,r 8).
Let us make a very crude estimate for the second scen
We again exploit the tight-binding model, and assume t
the order parameter is zero in the four bonds connecting
impurity to its neighbors but unchanged elsewhere. This
gime would be reasonable for purely electronic mechanis
of superconductivity, as the local electronic structure is co
pletely altered by the impurity. Thena'ad and ã5aDn
'D/2t, where 2t is the bandwidth and we have used as
estimate for the density of statesn'1/2tad. If we take into
account the fact that in the definition ofã the DOS at the
Fermi levelnF should be used, whereas the lattice constana
is naturally connected to the DOS averaged over the wh
band ~i.e., n̄), we arrive at a more refined estimate:ã

'(D/2t)(nF / n̄). We see that in conventional supercondu
ors ã is always small, and thus essentially no renormali
tion can happen. In the HTSC materials, however,D/2t can
be of the order 0.1, and the proximity of the Van Hove s
gularity makes the factornF / n̄ important. Thus in this case
strong renormalization situation cannot be ruled out.

Next, we show that, even if the electron-electron inter
tion is unchanged near the impurity, the pair breaking p
cess creates a suppression of the order parameter to the

estimated above@ã'(D/2t)(nF / n̄)# whenŨ'1. We estab-
lish this variationally, i.e., we minimize the free energy
the system with respect toa. To calculate this free energ
one has to know the form of the electron-electron interact
responsible for the superconductivity of the system.

The most general form of the pairing interaction may
written as

H int5
1

V3 (
p,p8,q,q8

g~p,p8;q!

3dq,q8cp1q/2,↑
† c2p1q/2,↓

† c2p81q8/2,↓cp81q8/2,↑ .

~19!
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Note that we have introduced the Kronecker symboldq,q8 ,
corresponding to the conservation of the total momentum
order to emphasize the matrix structure of this interacti
This matrix has a twofold index (p,q) corresponding to the
relative and the total momenta of the electrons in a Coo
pair, respectively. To avoid confusion, we shall use the
ters p and q for the relative and the total momenta of th
electrons in a Cooper pair, reserving the letterk for momenta
of individual electrons. The standard Hubbard-Stratonov
decoupling procedure12 yields the following effective action
for the order parameter:

S5S11S2

[E
0

b

dtF2
1

V3 (
p,p8,q,q8

ḡ~p,p8;q!dq,q8Dp,qDp8,q8
* G

2Tr ln Ĝ21, ~20!

where Ĝ21(r ,t;r 8,t8)[1̂d(t2t8)d(r 2r 8) i ]/]t82d(t

2t8)Ĥ(r ,r 8), and ḡ(p,p8;q) stands for the inverse of th
g(p,p8;q) matrix in p space@the inversion inq space is
trivially performed in Eq.~20!#:

1

V (
p8

g~p,p8;q!ḡ~p8,p9;q!5Vdp,p9 . ~21!

The electronic free energyF in the mean-field approximation
is thus given by

F@Dp,q#5
S

b
5F11F2

52
1

V3 (
p,p8,q

ḡ~p,p8;q!Dp,qDp8,q
* 2

1

b
Tr ln G21.

~22!

We now minimize Eq.~22! with respect toa. The second
term of Eq.~22! is treated readily; indeed,

]

]a
F252

]

]aS 1

b
Tr ln Ĝ21D

52
1

b
Tr Ĝ

]

]a
Ĝ21

52
1

bV2 (
k,k8,vn

tr@Ĝ~k,k8,ivn!„D0~k!1D0~k8!…ŝx#,

~23!

where the symbol tr stands for the trace in the Nambu sp

only. The Green’s functionĜ is known exactly:Ĝ(k,k8)

5Vdk,2k8Ĝ0(k)1Ĝ0(k)T̂(k,k8)Ĝ0(k8). Therefore we can
rewrite Eq.~23! as
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]

]a
F252

2

bV (
k,vn

D0~k! tr@Ĝ0~k,ivn!ŝx#

2
1

bV2 (
k,k8,vn

@D0~k!1D0~k8!#tr@Ĝ0~k,ivn!

3T̂~k,k8,ivn!Ĝ0~k8,ivn!ŝx#. ~24!

As for the first term of Eq.~22!, we recall that

Dp,q5Vdq,0D0~p!2a@D0~p1q/2!1D0~p2q/2!#,
~25!

and thereforeF1 is a quadratic polynomial ina. The deriva-
tive of F1 with respect toa contains a term independent ofa
and a term linear ina. It is straightforward to verify that the
term independent ofa in ]F1 /]a, when combined with the
first term in Eq.~24!, cancel, as together they constitute t
BCS self-consistency equation for the unperturbed order
rameter.~The appearance of this equation was to be expe
as it emerges from the condition that the free energy be m
mal when no impurity is present.! We denote the parts ofF1

and F2 remaining after the cancellation asF1
(2) and F2

(2) ,
respectively, and the variational condition fora now reads

]F

]a
5

]

]a
F1

(2)2
]

]a
F2

(2)50, ~26a!

]

]a
F2

(2)[
1

bV2 (
k,k8,vn

2D0~k!tr@Ĝ0~k,ivn!

3T̂~k,k8,ivn!Ĝ0~k8,ivn!ŝx#, ~26b!

F1
(2)[2

1

V3 (
p,p8,q

ḡ~p,p8;q!dDp,qdDp8,q
* . ~26c!

To estimateF1
(2) , we choose the standard form of the inte

action, which has noq dependence:

g~p,p8;q!52gdfd~p!fd~p8!2gsfs~p!fs~p8!. ~27!

We include here bothd- ands-channel interactions. The pa
of F1 quadratic ina reads

F1
(2)5

1

V3 (
p,p8,q

S 1

gd

fd~p!fd~p8!

Nd
2

1
1

gs

fs~p!fs~p8!

Ns
2 D dDp,q dDp8,q

* , ~28!

whereNs,d[V21(pfs/d
2 (p).

To proceed further we need to assume some partic
form of the wave functionsfd/s . The simplest choice is the
tight-binding one@Eqs.~4! and~5!#, for whichF1

(2) is readily
calculated:

F1
(2)5

a2D2

ad
~gd

211gs
21!, ~29!
a-
d
i-

ar

where we have used the identityV21(qfd/s
2 (q/2)51/ad.

The appearance of the volume of the lattice cellad in Eq.
~29! introduces the bandwidth energy scale 2t, via n̄
'1/2tad. Defining, as usual, the pair of dimensionless co
pling constantsg̃d/s[nFgd/s , and differentiating Eq.~29!
with respect toa, we obtain

]

]a
F1

(2)5
2aD2

ad
~gd

211gs
21!52ã~ g̃d

211g̃s
21!S 2t n̄

D nF
DD2nF .

~30!

Finally, to findã we must evaluate]F2
(2)/]a, as given by

Eq. ~26b!. Although all the components of~26b! are known
analytically and the integrals overk andk8 can be expressed
via the functionsP( ivn) andL( ivn) defined by Eqs.~13a!
and ~13b!, the remaining sum over the Matsubara freque
cies must be carried out numerically. An analytical result

obtained only in the ‘‘true’’ unitary limitŨ→`:

]

]a
F2

(2)→ 1

b (
vn

4L~ ivn!54g̃d
21D2nF , ~31!

where the last equation is obtained from the self-consiste
condition for the unperturbed order parameter~without im-
purities!. From Eqs.~30! and ~31! we obtain

ã~Ũ !uŨ→`5
2g̃d

21

g̃d
211g̃s

21

D

2t

nF

n̄
'

D

2t

nF

n̄
. ~32!

This result would still be meaningless if the asymptotic va

~32! were achieved only forŨ→`, as the renormalization
has no effect in the ‘‘true’’ unitary limit. To check how fas
this asymptotic value is achieved, we have solved Eq.~26a!
numerically for different choices of the system paramete
We observe that the asymptotic value is always reached

ready for Ũ'1 ~see, e.g., Fig. 1!. Thus impurities having

‘‘mild’’ values of Ũ may be renormalized to the unitar

FIG. 1. Results of the numerical simulations forã(Ũ). D/2t

50.1, nF / n̄51, the coupling constantg̃d'0.8 is determined

self-consistently, and it is assumed thatd̃s5d̃d .



th
y

th
a
n
.

e
sc
.
iv
ry
ue
e
si

ic
le

t
g

and
ong

.
is
Di-
2-
e-

7522 PRB 60SHNIRMAN, ADAGIDELI, GOLDBART, AND YAZDANI
limit. We were unable, however, to approach numerically
regimeã'1/2 without employing the Van Hove singularit
~i.e., for nF / n̄'1). This is because the ratioD/2t would
have to become of order 1, which is inconsistent with
BCS approximation. On the other hand, exploring the V
Hove scenario would demand calculations with realistic ba
structures~see, e.g., Ref. 9!, the task we leave for the future

V. CONCLUSIONS

To conclude, we have investigated the role of the ord
parameter suppression in the development of resonant
tering states around impurities ind-wave superconductors
We show that the suppression of the order parameter dr
the effective strength of the impurity towards the unita
limit. This effect may be relevant in the HTSC materials, d
to the relatively large value of the ratio between the sup
conducting gapD and the bandwidth and due to the pos
B

v

e

e
n
d

r-
at-

es

r-
-

bility of a Van Hove singularity in the DOS. The electron
DOS around a renormalized impurity is indistinguishab
from the DOS around a ‘‘truly’’ unitary impurity, excep
precisely at the impurity site. Further calculations involvin
the strong-coupling regime and the effects of the real b
structures are needed to establish the feasibility of the str
renormalization of the strength of impurities.
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