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Microscopic theory of weakly coupled superconducting multilayers in an external magnetic field
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We present a fully microscopic, self-consistent, and self-contained theory of superconducting weakly
coupled periodic multilayers with tunnel barriers in the presence of externally applied parallel magnetic fields,
in the local Ginzburg-Landau regime. We solve a nontrivial mathematical problem of a microscopic derivation
and exact minimization of the free-energy functional. In the thin-layer limit that corresponds to the domain of
validity of the phenomenological Lawrence-Doniach model, our physical results strikingly contrast with those
of our predecessors. In particular, we completely revise previous calculations of the lower critical field and
refute the concept of a triangular Josephson vortex lattice. We show that Josephson vortices penetrate into all
the barriers simultaneously and form peculiar structures that we term ‘‘vortex planes.’’ We calculate the
superheating field of the Meissner state and predict hysteresis in the magnetization. In the vortex state, the
magnetization exhibits distinctive oscillatory behavior and jumps due to successive penetration of the vortex
planes. We prove that the vortex-plane penetration and pinning by the edges of the sample cause the Fraun-
hofer pattern of the critical Josephson current. We calculate the critical temperature and the upper critical field
of infinite ~along the layers! multilayers. For finite multilayers, we predict a series of first-order phase transi-
tions to the normal state and oscillations of the critical temperature versus the applied field. Finally, we discuss
some theoretical and experimental implications of the obtained results.@S0163-1829~99!08633-6#
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I. INTRODUCTION

In this paper, we present a fully microscopic, se
consistent, and self-contained theory of superconduc
weakly coupled periodic multilayers~superlattices! of the
S/I -type~S for a superconductor,I for an insulator or a semi
conductor! in the presence of externally applied paral
magnetic fields, in the local Ginzburg-Landau1 ~GL! regime
@i.e., temperatures are close to the bulk critical tempera
Tc0 , all characteristic dimensions of theS layers are much
larger than the BCS~Ref. 2! coherence lengthj0#.

In Sec. II, we derive a microscopic free-energy function
that describes a smooth transition from the single-junct
case to the thin-layer limit, when theS-layer thicknessa is
small compared to all other relevant length scales.@By con-
trast, previous treatment was based predominantly on
phenomenological Lawrence-Doniach3 ~LD! model, appli-
cable only in the thin-layer limit.# Our analysis of implica-
tions of gauge invariance reveals important facets of
theory. In particular, we establish the existence of fundam
tal constraint relations coupling the phases of the order
rameter to the vector potential and equalizing the phase
ferences at neighboring barriers. Mathematically, th
constraints complement the usual Euler-Lagrange equat
and make the free energy a minimum. Physically, they s
that the average intralayer currents are always equal to
and the local magnetic field has, in general, the periodicity
the multilayer.~The latter has recently received strong e
perimental support in polarized neutron reflectivity measu
ments on artificial Nb/Si multilayers.4! As a result of this
investigation, we obtain a closed, self-consistent set of me
field equations. These equations have a particularly sim
form in the thin-layer limit: Remarkably, the phase diffe
ences ~the same at all the barriers! obey a
PRB 600163-1829/99/60~10!/7496~16!/$15.00
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Ferrell-Prange-type5 equation with a single length scale, th
Josephson penetration depthlJ5(8pep j0)21/2 ~p is the pe-
riod, j 0 is the critical Josephson current!. ~This should be
contrasted with a mathematically ill-defined infinite set
differential equations containing two length scales, propo
without appropriate justification in the literature.6,7! Further-
more, due to the absence of screening by the intralayer
rents in the thin-layer limit, the local magnetic field proves
be independent of the coordinate normal to the layers.

In Sec. III, we obtain exact analytical solutions to th
equations of the thin-layer limit. This limit corresponds
the domain of validity of the phenomenological LD mode
which allows us to draw a comparison with the results of o
predecessors. Thus we show that previously suggested s
Josephson vortex penetration8,9 as well as the occurrence6 of
a triangular Josephson vortex lattice are incompatible w
the above-mentioned fundamental constraints of the theo10

We also disprove the claim of Ref. 7 that the Fraunho
pattern of the total critical Josephson current occurs in
absence of Josephson vortices. However, our considera
contains as a limiting case a particular exact solution for
vortex state obtained in the framework of the LD model
Theodorakis11 and fully supports phenomenologica
calculations12,13 of the upper critical fieldHc2` in infinite
~along the layers! multilayers.

Among interesting physical results of Sec. III are the fo
lowing. We provide comprehensive description of the Mei
ner state in semi-infinite~along the layers! multilayers and
show that at the fieldHs5(eplJ)

21 ~the superheating field!
the Meissner phase becomes unstable with regard to Jos
son vortex penetration. We predict simultaneous and co
ent penetration into all the barriers.~This prediction has been
confirmed experimentally.4! We show that in the absence o
screening by the intralayer currents~see above! the ‘‘tails’’
7496 ©1999 The American Physical Society
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PRB 60 7497MICROSCOPIC THEORY OF WEAKLY COUPLED . . .
of Josephson vortices overlap in the layering direction for
ing peculiar structures, ‘‘vortex planes.’’ The lower critic
field at which the formation of a single vortex plane becom
energetically favorable in an infinite multilayer is found to
Hc1`52(peplJ)

21. For the lower critical field in a finite
multilayer with W!lJ ~W is the S-layer length! we obtain
Hc1W5p/epW, which corresponds to the first minimum o
the Fraunhofer pattern. We prove that the Fraunhofer os
lations occur due to successive penetration of the vo
planes and their pinning by the edges of the sample.
show that vortex-plane penetration leads also to jumps of
magnetization.~Such features have been already observe4!
For a certain field range, we predict a small paramagn
effect. We calculate the critical temperature and the up
critical field of an infinite multilayer. The obtained implic
dependence Hc2`(T) exhibits the well-known three
dimensional–two-dimensional ‘‘~3D-2D! crossover’’ and is
free from the unphysical ‘‘low-temperature’’ divergence14 of
the LD model. In addition, we predict interesting size effe
in finite multilayers: a series of first-order phase transitio
to the normal state and oscillations of the critical temperat
versus the applied field.

In Sec. IV, we discuss some theoretical and experime
implications of the obtained results. In the Appendix, w
write down a few mathematical formulas related to the
plication of Mathieu functions in Sec. III.

II. BASIC EQUATIONS OF THE THEORY

A. Derivation and exact minimization of the microscopic
free-energy functional

Our starting point is a microscopic second-quantiz
BCS-type Hamiltonian of the form15,16

H5E
R
d3rca

1~r !H 2
1

2m
@“2 ieÃ~r !2 ieAext~r !#22EFJ

3ca~r !2
ugu
2 E

Rs

d3rg~r !ca
1~r !c2a

1 ~r !c2a~r !ca~r !

1E
Rs

d3rca
1~r !Vimp~r !ca~r !1U0E

Rb

d3rca
1~r !ca~r !

1
1

8p E
R
d3rh̃2~r !,

Rs5 ø
n52`

1`

Rsn
, Rb5 ø

n52`

1`

Rbn
, R5RsøRb , ~1!

Rsn
5@2a/21np<x<a/21np#3@Ly1<y<Ly2#

3~2`,z,1`!,

Rbn
5@a/21~n21!p<x<2a/21np#3@Ly1<y<Ly2#

3~2`,z,1`!,
-

s

il-
x
e
e
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s
s
e
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-

d

h̃~r !5“3Ã~r !, H5“3Aext~r ![~0,0,H !,

“5~¹x ,¹y ,¹z![S ]

]x
,

]

]y
,

]

]zD . ~2!

Here \5c51, EF5kF
2/2m is the Fermi energy~with kF

being the Fermi momentum!, Rs andRb correspond respec
tively to the superconducting and barrier regions~with a be-
ing the S-layer thickness,b the barrier thickness andp5a
1b the period, thex axis being normal to the barrier inter
faces!, ca(r ) is the electron field operator for spina ~a sum-
mation over repeated spin indices is implied!, g,0 is the
BCS coupling constant,Vimp(r ) is the nonmagnetic impurity
potential,U0.0 is the repulsive barrier potential,Aext andÃ
are the external~classical! and induced~operator! vector
potentials.17 The system is taken to be infinite in the dire
tion of the x and z axes, while no restrictions on the linea
dimensions along they axis is so far imposed. The extern
magnetic fieldH is directed along thez axis ~see Fig. 1!.

Using field-theoretical methods of Ref. 15, we can der
from Eq.~1! a microscopic free-energy functional of the sy
tem V@Dn ,Dn* ,A;H#, whereDn and A are classical vari-
ables:Dn is the pair potential~order parameter! of the nth S

layer, andA5Ã1Aext is the total vector potential,h(r )
5“3A(r ) being the corresponding local magnetic field. F
external fields satisfying the quasiclassical conditionH
!kF /ej0 , in the GL regime

t[
Tc02T

Tc0
!1, ~3!

j0!a, W[Ly22Ly1 , ~4!

whereTc0 is the bulk critical temperature,j05v0/2pTc0 is
the BCS coherence length (v05kF /m), this functional takes
on the form

FIG. 1. Geometry of the problem. Alternating superconduct
layers and nonsuperconducting barriers are shown by white
gray rectangles, respectively. The system is supposed to be in
in the x and z directions. An external magnetic fieldH is applied
along thez axis.
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V@ f n ,fn ,Ax ,Ay ;H#5
Hc

2~T!

4p
WzE

Ly1

Ly2
dyF (

n52`

1` E
2a/21np

a/21np

dxF2 f n
2~x,y!1

1

2
f n

4~x,y!1z2~T!

3 (
i 5x,y

$@¹ i f n~x,y!#21@¹ ifn~x,y!22eAi~x,y!#2f n
2~x,y!%1

az2~T!

2aj0

3$ f n21
2 @a/21~n21!p,y#1 f n

2~2a/21np,y!22 f n~2a/21np,y! f n21@a/21~n

21!p,y#cosFn,n21~y!%14e2z2~T!l2~T!E
Lx1

Lx2
dx@h~x,y!2H#2G , ~5!
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Fn,n21~y!5fn~2a/21np,y!2fn21@a/21~n21!p,y#

22eE
a/21~n21!p

2a/21np

dxAx~x,y!,

a5
3p2

7z~3!x~j0 / l ! E0

1

dttD~ t !,

D~ t !5
16EFt2~U02EFt2!

U0
2 exp@22bA2m~U02EFt2!#,

x~j0 / l !5
8

7z~3! (
n50

1`

~2n11!22~2n111z0 / l !21,

Hc
2~T!54pN~0!D`

2 ~T!t,

h~x,y!5
]Ay~x,y!

]x
2

]Ax~x,y!

]y
. ~6!

In Eq. ~5!, we have introduced the reduced modulus 0< f n
<1 and the phasefn of the pair potential in thenth S layer
via the relation Dn5D` f n exp(ifn), where D`(T)
5A8p2Tc0

2 t/7z(3) is the bulk gap,z(m) is the Riemann
zeta function.18 The rest of the notations are as follows:Wz
5Lz22Lz1 is the length of the system in thez direction,
D(t) is the tunneling probability of an insulating barrier b
tween two successiveS layers @D(1)!1#, x(j0 / l ) is the
impurity factor19 ~l is the electron mean free path!, z(T)
5j0A7z(3)x(j0 / l )/12t is the GL coherence length,l(T)
5)@px(j0 / l )j0N(0)t#21/2/8peTc0 is the GL penetration
depth,N(0)5mkF/2p2 is the one-spin density of states
the Fermi level, andHc(T) is the bulk thermodynamic criti-
cal field nearTc0 .19 The term proportional toa!1 deter-
mines the interlayer Josephson coupling. Equation~6! is
merely the Maxwell equation for the local magnetic fieldh
5(0,0,h).

The microscopic free-energy functional~5! covers all
well-known limiting cases. In the limita50 ~no Josephson
interlayer coupling!, Eq. ~5! reduces to a sum of free-energ
functionals of independentS layers. Making a shift of the
coordinate systemx→x2a/22b/2 and taking the limita
→`, one gets the case of a single SIS junction. Shiftingx
→x2a/2 and takinga→`, b→`, we recover the limit of a
semi-infinite superconductor in contact with vacuum.

Our task now is to establish mean-field equations of
theory, which is mathematically equivalent to the problem
e
f

minimization of Eq. ~5! with respect to f n , fn , and A
5(Ax ,Ay,0). This problem should be approached with c
tain caution, because Euler-Lagrange equations forfn , and
Ax ,Ay are not independent.

Indeed, the functional~5! is invariant under the genera
gauge transformation

fn~x,y!→fn~x,y!1h~x,y!,

Ai~x,y!→Ai~x,y!1
1

2e
¹ ih~x,y!, ~7!

whereh(x,y) is an arbitrary gauge function, defined in th
whole regionR. As a result, the variational derivatives wit
respect tofn , and Ax ,Ay are related through fundament
functional identities

dV

dfn~x,y!
[

1

2e (
i 5x,y

¹ i

dV

dAi~x,y!
. ~8!

The occurrence of such identities is typical of gau
theories.20 Moreover, identities relating variational deriva
tives appear already in some problems of classical variatio
calculus with degenerate~i.e., invariant under symmetry
transformations! functionals.21 As in degenerate theories th
number of variables exceeds the number of independ
Euler-Lagrange equations, complementary relations sho
be normally imposed to eliminate irrelevant degrees of fr
dom and close the system mathematically. Whereas in b
superconductors and single junctions the elimination of
physical degrees of freedom amounts merely to an appro
ate choice of gauge, in periodic weakly coupled structu
this problem has additional implications. Namely, in t
presence of the Josephson interlayer coupling phase di
encesFn,n21 and Fn11,n at two successive barriers are
themselves not independent, which means, mathematic
that we are dealing with a variational problem with co
straints. Unfortunately, this fundamental feature was not
ticed in previous literature.

The variations with respect tof n are independent and ca
be taken first. Varying under the assumption of arbitraryd f n
at the boundaries, we obtain

F11z2~T! (
i 5x,y

$¹ i
22@¹ ifn~x,y!22eAi~x,y!#2%G

3 f n~x,y!2 f n
3~x,y!50. ~9!
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~x,y!PRsn
;

] f n

]y
~x,Ly1!5

] f n

]y
~x,Ly2!50; ~10!

] f n

]x
~2a/21np,y!5

a

2j0
$ f n~2a/21np,y!2 f n21

3@a/21~n21!p,y#cosFn,n21~y!%,

~11!

] f n

]x
~a/21np,y!52

a

2j0
$ f n~a/21np,y!2 f n11

3@2a/21~n11!p,y#cosFn11,n~y!%.

~12!

Here, Eq.~9! is the usual GL equation for the bulk orde
parameter. Relations~10! are the usual GL boundary cond
tions at the superconductor/vacuum interfaces. Bound
conditions~11! and ~12!, describing the suppression of th
order parameter due to the Josephson currents at
superconductor/insulator interfaces, are of the type deri
by de Gennes22 for a single junction.

By contrast tof n , the variablesAx ,Ay are defined in the
whole regionR. For these variables, continuity up to th
second-order partial derivatives at the supercond
tor/insulator interfaces should be assumed. The corresp
ing Euler-Lagrange equations are

2
]h~x,y!

]x
5

1

2e

f n
2~x,y!

l2~T! F]fn~x,y!

]y
22eAy~x,y!G

[4p j ny~x,y!, ~13!

]h~x,y!

]y
5

1

2e

f n
2~x,y!

l2~T! F]fn~x,y!

]x
22eAx~x,y!G

[4p j nx~x,y!, ~x,y!PRsn
; ~14!

]h~x,y!

]y
54p j 0f n~2a/21np,y!

3 f n21@a/21~n21!p,y#sinFn,n21~y!

[4p j n,n21~y!, ~15!

j 05
7z~3!ax~j0 / l !

6
eN~0!j0D`

2 ~T!, ~16!

]h~x,y!

]x
50, ~x,y!PRbn

. ~17!

Here, Eqs.~13! and~14! are the Maxwell equations in theS
layers, with jn being the intralayer supercurrent densitie
Equations~15! and ~17! are the Maxwell equations in th
barrier regions, withj n,n21 being the Josephson current de
sity between thenth and the (n21)th layers. Relation~16! is
the definition of the Josephson critical current density in
single SIS junction.15
ry

he
d

c-
d-

.

a

Equations~13!–~17! should be complemented by boun
ary conditions at the outer interfacesy5Ly1 ,Ly2 . @When
deriving these equations, we have only assum
dAx(x,Ly1)5dAx(x,Ly2)50.# As we do not consider here
externally applied currents in they direction, the first set of
boundary conditions follows from the requireme
@ j ny#y5Ly1 ,Ly2

50:

F]fn~x,y!

]y
22eAy~x,y!G

y5Ly1 ,Ly2

50. ~18!

Applied to Eq.~13!, these boundary conditions show that t
local magnetic field at the outer interfaces is independen
the coordinatex:h(x,Ly1)5h(Ly1), h(x,Ly2)5h(Ly2). The
boundary conditions imposed onh should be compatible
with Ampere’s lawh(Ly2)2h(Ly1)54p l obtained by inte-
gration of Eqs.~13! and ~15! over y, where

I[E
Ly1

Ly2
dy jnx~x,y!5E

Ly1

Ly2
dy jn,n21~y! ~19!

is the total current in thex direction. Throughout this paper
depending on a physical situation under consideration,
will employ three types of boundary conditions onh:

H h~Ly1!5h~Ly2!5H, ~ i!;
h~Ly1!5H22pI , h~Ly2!5H12pI , ~ ii !;

h~Ly1!5H, h~Ly2!5H14pI , ~ iii !.
~20!

As usual, the Maxwell Eqs.~13! and ~14! yield the
current-continuity equations inside theS layers:

(
i 5x,y

¹ i$ f n
2~x,y!@¹ ifn~x,y!22eAi~x,y!#%50. ~21!

The conservation of Josephson interlayer current is rea
verified from Eq.~15!. Using Eqs.~14! and~15! and assumed
continuity of ]h/]y, we arrive at the boundary conditions

F S ]fn~x,y!

]x
22eAx~x,y! D f n~x,y!G

x52a/21np

5
a

2j0
f n21@a/21~n21!p,y#sinFn,n21~y!, ~22!

F S ]fn~x,y!

]x
22eAx~x,y! D f n~x,y!G

x5a/21np

5
a

2j0
f n11@2a/21~n11!p,y#sinFn11,n~y!, ~23!

reflecting the continuity of thex component of the supercur
rent at the internal interfacesx56a/21np.

Integrating Eqs.~9! and ~21! over x and applying bound-
ary conditions~11!, ~12!, ~22! and~23!, respectively, we ob-
tain very useful integrodifferential representations
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f n~x,y!2 f n
3~x,y!2z2~T!

3 (
i 5x,y

@¹ ifn~x,y!22eAi~x,y!#2f n~x,y!

1z2~T!
]2f n~x,y!

]y2

5
az2~T!

2aj0
$ f n~2a/21np,y!1 f n~a/21np,y!

2 f n11@2a/21~n11!p,y#cosFn11,n~y!

2 f n21@a/21~n21!p,y#cosFn,n21~y!%, ~24!

]$ f n
2~x,y!@]fn~x,y!/]y22eAy~x,y!#%

]y

5
a

2aj0
$ f n~2a/21np,y! f n21@a/21~n21!p,y#

3sinFn,n21~y!2 f n~a/21np,y!

3 f n11@2a/21~n11!p,y#sinFn11,n~y!%, ~25!

where (x,...)[(1/a)*2a/21np
a/21np (x,...)dx denotes averaging

over the interval2a/21np<x<a/21np.
By summing Eqs.~25! over the layer indexn, integrating

and applying boundary conditions~18!, we obtain the inte-
gral

(
n52`

1`

f n
2~x,y!F]fn~x,y!

]y
22eAy~x,y!G50, ~26!

which is, physically, the conservation law for the total sup
current in they direction. Mathematically, Eq.~26! has the
form of a constraint relation between variables]fn /]y and
Ay .20,23 To find the rest of constraints of the theory, closi
the system of equations, we must minimize the functional~5!
with respect tofn and]fn /]y.

By virtue of fundamental identities~8!, a naive variation
of Eq. ~5! with respect tofn ~with arbitrary dfn at the
boundaries! does not yield new equations. Indeed, the cor
sponding Euler-Lagrange equation reduces to the conse
tion law ~21!, while surface variations merely reproduc
boundary conditions~18!, ~22!, and~23!. Considering varia-
tions of the type fn(x,y)→fn(x,y)1ecn(y),
]fn(x,y)/]y→]fn(x,y)/]y1e]cn(y)/]y, where e is a
small parameter andcn(y) are arbitrary functions ofy, we
arrive at Eqs.~25!. To obtain genuinely new equations, min
mizing Eq. ~5! with respect tofn and ]fn /]y, we must
enlarge the class of allowed variations.

A mathematically rigorous approach to this problem is
follows. While varying fn(x,y)→fn(x,y)1dfn(y),
]fn(x,y)/]y→]fn(x,y)/]y1]dfn(y)/]y, with dfn(y)
being small arbitrary functions ofy, instead of integrating by
parts, we impose additional constraints

f n
2~x,y!F]fn~x,y!

]y
22eAy~x,y!G50, ~27!
-

-
a-

s

compatible with boundary conditions~18! and constraint re-
lation ~26!. The requirement of compatibility with the
current-conservation law~25! automatically yields anothe
set of constraints

f n~2a/21np,y! f n21@a/21~n21!p,y#sinFn,n21~y!

5 f n~a/21np,y! f n11@2a/21~n11!p,y#sinFn11,n~y!.

~28!

The above procedure is formally equivalent to minimizati
of Eq. ~5! with respect to independent variations offn and
]fn /]y . As this class of variations offn and ]fn /]y is
larger than that employed in deriving Eq.~25!, we can argue
that Eqs.~27! and ~28! provide the sought necessary cond
tions for the true minimum of the free-energy functional~5!.

The physical meaning of Eqs.~27! and~28! is quite trans-
parent. Constraints~27! minimize the kinetic-energy term in
Eq. ~5! with respect to variations ]fn(x,y)/]y
→]fn(x,y)/]y1dcn(y), wheredcn(y) are small arbitrary
functions ofy. They show that the average intralayer curre
in the y direction are always equal to zero, and, as a res

h~2a/21np,y!5h~a/21np,y! ~29!

@see Eq.~13!#. These constraints appear already in the cas
decoupledS layers. By contrast, constraints~28! are uniquely
imposed by the Josephson interlayer coupling. Their funct
is to make the Josephson energy stationary with respec
variations fn(x,y)→fn(x,y)1dfn(y) and to assure the
conservation of the total Josephson currentI in neighboring
barriers@see Eqs.~15! and ~19!#.

As no other conditions are imposed on the variables,
can satisfy Eq.~28! by choosing

f n~x,y!5 f n21~x2p,y![ f ~x,y!, f ~x1np,y!5 f ~x,y!,
~30!

Fn11,n~y!5Fn,n21~y![F~y!. ~31!

These relations finalize the determination of a closed, co
plete, self-consistent system of mean-field equations fo
S/I superlattice in the GL regime.

Constraints~27!, ~28!, and their corollaries~29!–~31! be-
long to key results of this paper. Derived by means o
rigorous mathematical analysis of the impact of gauge
variance, they are not restricted to the functional~5!, but
should hold for any superconducting weakly coupled pe
odic structure. To illustrate their importance, we point o
that Eqs.~28! and~29!, for example, completely rule out an
possibility of single Josephson vortex penetration8,9 and tri-
angular Josephson vortex lattice,6 proposed without appro
priate physical and mathematical justification. On the co
trary, they imply that the distribution of the local magnet
field due to the Josephson vortices has, in general, the p
odicity of the multilayer, as recently verified
experimentally.4 It should be noted, however, that althoug
the role of constraints~28! and ~29! in minimizing the free
energy and closing the system of Euler-Lagrange equat
for f n , fn , andA has not been realized until now, relation
~30! and~31! were implicitly employed in phenomenologica
calculations ofHc2` .3,12–14,24Moreover, relations of the type
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~27!, ~30!, and ~31! were used by Theodorakis11 in his par-
ticular exact solution of the LD model in a parallel field.

The equations of this subsection admit exact solution
two limiting situations: the single-junction case, whena
@max$z(T),l(T)%; the thin-layer limit, when j0!a
!min$z(T),l(T),a21 j0,W% ~W[Wy5Ly22Ly1 is the length
of the S layer in they direction!. The single-junction case i
well known. The thin-layer limit will be extensively dis
cussed in the next subsection and in Sec. III.

B. The thin-layer limit

The mean-field equations of the previous subsection al
remarkable simplification in the thin-layer limit, whenj0
!a!min$z(T),l(T),a21 j0,W%.

First, we can neglect thex dependence off, defined by Eq.
~30!: f (x,y)[ f (y). Second, fixing the gauge by the cond
tion

Ax~x,y![0, Ay~x,y![A~x,y!, ~32!

we can neglect thex dependence offn as well: fn(x,y)
[fn(y). In the gauge~32!, Fn,n21(y)5fn(y)2fn21(y),
and Eqs.~31! become

fn11~y!1fn21~y!52fn~y!,fn~y!2fn21~y!5f~y!,

with the solution

fn~y!5nf~y!1x~y!, ~33!

wheref(y) is the coherent phase difference~the same for all
the barriers!, and x(y) is an arbitrary gauge function, a
lowed by particular gauge transformationsfn(y)→fn(y)
1x(y), A(x,y)→A(x,y)1(1/2e)@]x(y)/]y#. Without any
loss of generality, we can setx[0.

In view of independence off andfn from x in the thin-
layer limit, the physical meaning of constraints~27! and~28!
becomes even more obvious. Thus Eqs.~28! are now the
conditions of stationarity of the Josephson energy with
spect to all allowed variations offn . Due to Eqs.~27!, the
term in Eq. ~24! responsible for the kinetic energy of th
intralayer currents becomes

z2~T! (
i 5x,y

@¹ ifn~x,y!22eAi~x,y!#2f ~x,y!

→z2~T!Fdfn~y!

dy
22eA~x,y!G2

f ~y!

5z2~T!Fdfn~y!

dy
22eA~x,y!G2

f ~y!

14e2z2~T!@A2~x,y!2A~x,y!2# f ~y!

54e2z2~T!@A2~x,y!2A~x,y!2# f ~y!,

which shows that conditions~27! minimize the kinetic en-
ergy for a given configuration of the vector potentialA.

Concerning the Maxwell equations, the right-hand side
Eq. ~13! is of ordera2/l2(T) and can be discarded. Equatio
~14! can be altogether dropped. Thus we arrive at a closed
of equations
in

w

-

f

et

]2A~x,y!

]x2 50, ~x,y!PR; ~34!

1

4p

]2A~x,y!

]y]x
5 j 0f 2~y!sinf~y!, ~x,y!PRbn

; ~35!

n
df~y!

dy
22eA~x,y!50, ~x,y!PRsn

; ~36!

h~x,y!5
]A~x,y!

]x
, ~x,y!PR, ~37!

f ~y!2 f 3~y!24e2z2~T!@A2~x,y!2A~x,y!2# f ~y!

1z2~T!
d2f ~y!

dy2

5
az2~T!

aj0
@12cosf~y!# f ~y!,

~x,y!PRsn
. ~38!

These equations, of course, should be complemented by
tinuity conditions onA, ]A/]x and boundary conditions~10!
and ~20!.

It is worth noting that an immediate consequence of E
~34! and ~37! is independence of the local fieldh from the
coordinatex in the whole regionR: h(x,y)5h(y), 2`,x
,1`. This result is fully compatible with the requiremen
~29! and demonstrates that the intralayer supercurrents in
thin-layer limit are unable to screen out the magnetic fie
The situation is very familiar from the physics of isolate
superconducting films witha!l(T).14,22,25

Our next objective is to eliminate the vector potential a
obtain a closed set of equations involving onlyf and f.
Equations~25! and~35! can be easily solved forA in thenth
‘‘elementary cell’’ Rn5Rsn

øRbn
~the S layer plus the adja-

cent barrier!. Applying the continuity conditions onA,
]A/]x, boundary conditions~20!, and the constraint relation
~36!, we get

A~x,y!5F4p j 0E
Ly1

y

du f2~u!sinf~u!1H1G~x2np!

1
n

2e

df~y!

dy
, ~39!

whereH1[H for Eq. ~20! ~i! and~iii !, andH1[H22pI for
Eq. ~20! ~ii !. Matching Eq.~39! to an analogous solution in
the adjacent cellRn21 leads to the solvability condition

df~y!

dy
58pe j0pE

Ly1

y

du f2~u!sinf~u!12epH1 . ~40!

Equation~40! is nothing but an analog of the Ferrell-Prang5

relation for a single Josephson junction, which can be rea
verified by differentiation. From this point of view, the qua
tity (8pe j0p)21/2 should be identified with the Josephso
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penetration depthlJ . Note that instead of the factor 2l en-
tering the definition oflJ in the single-junction case,26,27 in
our case we get the periodp.

With the help of Eq.~39!, we arrive at the expression fo
the vector potential in the whole regionR5øn52`

1` Rn

5RsøRb :

A~x,y!5
1

2ep

df~y!

dy
x, ~x,y!PR. ~41!

This equation should be substituted into Eqs.~37! and ~38!.
In this manner, we obtain a closed, complete set of eq

tions describing a thin-layerS/I superlattice in an externa
parallel magnetic field:

D~x,y!5D` f ~y!(
n

dRsn
~x,y!exp@ inf~y!#, ~42!

dRsn
~x,y!5H 1,

0,

for ~x,y!PRsn
,

for ~x,y!¹Rsn
;

F12
1

12
z2~T!S a

pD 2S df~y!

dy D 2G f ~y!1z2~T!
d2f ~y!

dy2 2 f 3~y!

2
az2~T!

aj0
@12cosf~y!# f ~y!50, ~43!

d f

dy
~Ly1!5

d f

dy
~Ly2!50, ~44!

d2f~y!

dy2 5
f 2~y!

lJ
2 sinf~y!, ~45!

lJ5~8pe j0p!21/2, ~46!

h~y!5
1

2ep

df~y!

dy
, ~47!

j ~y![ j x~y![ j 0f 2~y!sinf~y!5
1

4p

dh~y!

dy
, ~48!

with boundary conditions~20! and I[*Ly1

Ly2
dy j(y), where

j (y) is thex component of the supercurrent density~both in
the S layers and the barriers!. They component of the intra-
layer supercurrent, whose average over the layer thickne
equal to zero, within the accepted accuracy enters the th
only implicitly, via the average kinetic-energy term in E
~43!.

Significantly, the coherent phase differencef ~the same
for all the barriers! obeys only one nonlinear second-ord
differential Eq.~45! with only one length scale, the Josep
son penetration depthlJ , as in the case of a singl
junction.26,27 Due to the factorf 2, Eq. ~45! is coupled to
nonlinear second-order differential Eq.~43!, describing the
spatial dependence of the superconducting order paramef
~the same for all theS layers!. In the latter equation, the term
proportional toa2/p2 accounts for the average kinetic ener
of the intralayer currents, while the term proportional toa
accounts for the kinetic energy of the interlayer Joseph
a-

is
ry

r

n

currents. The Maxwell Eq.~47! and~48!, combined together
yield Eq. ~45!, as they should by virtue of self-consistency

It is instructive to compare the above equations with tho
now circulating in literature concerned with the phenomen
logical LD model. As already mentioned, neither mutual d
pendence of the Euler-Lagrange equations forfn andA, nor
fundamental complementary relations of the type~27! and
~28!, minimizing the free energy, have been established
previous publications. Left with an incomplete set of equ
tions, some authors make a non-self-consistent approxi
tion f n51 and, regarding the phase differences, propos
mathematically ill-defined infinite set of differential equ
tions with two different length scales~see, e.g., Refs. 6 an
7!. In view of the conditions~31!, these equations reduce t
our Eq.~45! with f 51.

Finally, the free-energy functional~5! in the thin-layer
limit after a transition to the mean-field approximation wi
respect toA takes the form

V@ f ,f;H#5
Hc

2~T!

4p
WxWzE

Ly1

Ly2
dyH a

p F2 f 2~y!1
1

2
f 4~y!

1z2~T!S d f~y!

dy D 2

1
z2~T!

12 S a

pD 2S df~y!

dy D 2

f 2~y!1
az2~T!

aj0

3@12cosf~y!# f 2~y!G14e2z2~T!l2~T!

3F 1

2ep

df~y!

dy
2HG2J , ~49!

where Wx5Lx22Lx1 . As expected, minimizing Eq.~49!
with respect tof and the phase differencef, and neglecting
terms of ordera2/l2, we arrive at Eqs.~43!–~45!.

The functional ~49! and complementing Maxwell Eqs
~48! and ~49! contain much more physical information tha
the phenomenological LD model in a parallel field: the d
main of validity is exactly determined, all the coefficients a
microscopically defined, and a finiteS layer thickness is ex-
plicitly taken into account.~As we show in Sec. III, this
factor removes unphysical divergence ofHc2` , typical14 of
the LD model.! Another important difference is the propo
tionality of the condensation energy in Eq.~49! to the layer
thicknessa, instead of the periodp in the LD functional.

The equations of the thin-layer limit admit exact solutio
for all physical situations of interest. These solutions are
subject of the next section.

III. MAJOR PHYSICAL EFFECTS
IN THE THIN-LAYER LIMIT

A. The Meissner state in a semi-infinite multilayer:
The superheating fieldH s5„eplJ…

21

Consider a semi-infinite~in the y direction! multilayer
with Ly150, Ly251` in the external fields

0<H<Hs5~eplJ!
21, ~50!

with boundary conditions of the type~20! ~iii !:
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h~0!5
1

2ep

df

dy
~0!5H, h~1`!5

1

2ep

df

dy
~1`!

5H14pI 50, f~1`!50. ~51!

For

az2~T!

aj0
!1, ~52!

the Meissner solutions of Eqs.~43!–~48! are

f~y!524 arctan
H exp@2y/lJ#

Hs1AHs
22H2

, ~53!

h~y!5
2HHs@H21AHs

22H2#exp@2y/lJ#

@Hs1AHs
22H2#21H2 exp@22y/lJ#

, ~54!

j ~y!52
HHs

2plJ
@Hs1AHs

22H2#
†@Hs1AHs

22H2#22H2 exp@22y/lJ#‡exp@2y/lJ#

†@Hs1AHs
22H2#21H2 exp@22y/lJ#‡

2
, ~55!

f ~y!512
4az2~T!

aj0

H2@Hs1AHs
22H2#2 exp@22y/lJ#

†@Hs1AHs
22H2#21H2 exp@22y/lJ#‡

2
. ~56!
e

s
ll

or
r

e

,

li-
f

he

the
flu-

.
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The Meissner solutions persist up to the fieldHs

5(eplJ)
21 that should be regarded as the superheating fi

of the Meissner state.
Indeed, as we will show below, the presence of Joseph

vortices inside an infinite multilayer becomes energetica
favorable at a fieldH5Hc1`,Hs . As in the case of the
well-known Bean-Livingston barrier28,22,25 in semi-infinite
type-II superconductors, the penetration of Josephson v
ces at fieldsHc1`<H,Hs is prevented by a surface barrie
due to surface currentsj (0). @Compare the discussion of th
superheating field in the case of a single junction,26 where it
is given by the expressionHs5(2ellJ)

21.# Equation~55!
shows thatu j (0)u increases in the interval 0<H,Hs /&,
reaches its maximum value atH5Hs /&, decreases in the
interval Hs /&,H,Hs and vanishes atH5Hs . Moreover,
the phase difference at the surfacef~0!, being a nonpositive
monotonously decreasing function ofH in the whole interval
0<H<Hs , also reaches its minimum valuef(0)52p at
H5Hs . The appearance of the phase difference2p can be
attributed to the formation of a line singularity of the amp
tude of condensation̂c↑(r )c↓(r )& at the outer interface o
the barrier~‘‘the Josephson vortex core’’!. In addition, the
magnetic flux per ‘‘elementary cell’’ atH5Hs is F
5F0/2, whereF05p/e is the flux quantum.

Finally, from the second of Eqs.~51! and the condition
H<Hs for the Meissner solutions, the maximal value of t
total Josephson currentuI u5I max in a semi-infinite multilayer
is

I max5
Hs

4p
52lJj 0 . ~57!
ld

on
y

ti-

For uI u.I max, the field at the boundary ish(0).Hs , and the
stationary flow of the Josephson current is disrupted by
penetration of Josephson vortices that move under the in
ence of the Lorentz force.

Thus in fieldsH.Hs , only vortex solutions are possible
Owing to the specific feature of the thin-layer limit, i.e., th
absence of screening by the intralayer currents, the ‘‘tai
of magnetic field distribution of individual Josephson vor
ces overlap in the layering direction, causing the format
of unique vortex structures that we term here ‘‘Joseph
vortex planes.’’ We begin the discussion of these structu
form a single ‘‘vortex plane,’’ forming in an infinite layered
superconductor at the lower critical fieldH5Hc1` .

B. The lower critical field H c1`52„pelJp…21

in infinite multilayers: Vortex planes

Consider now an infinite~in the y direction! layered su-
perconductor withLy152`, Ly251`, subject to boundary
conditions of the type~20! ~i!, with H50. The condition~52!
is supposed to be fulfilled. We are looking for a vortex s
lution with one flux quantumF0 per ‘‘elementary cell’’, i.e.,
with

f~1`!2f~2`!52p,
1

2ep

df

dy
~6`!50, f~0!5p.

~58!

The sought solution has the form of a kink:

f~y!54 arctan expF y

lJ
G . ~59!
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This solution describes a single vortex plane positioned
y50. @Compare the phase differencef(0)5p of Eq. ~59!
with the phase differencef(0)52p of Eq. ~53! at the sur-
face of a semi-infinite superconductor in the fieldH5Hs ,
when a vortex plane only starts to penetrate. After the ac
penetration, the phase difference changes by 2p, as expected
from general considerations.29#

Corresponding distribution of the local magnetic field
given by

h~y!5~eplJ!
21 cosh21F y

lJ
G . ~60!

Notice that at the vortex planeh(0)5Hs . The density of the
Josephson currents is

j ~y!522 j 0 cosh22F y

lJ
GsinhF y

lJ
G . ~61!

At the vortex plane,j (0)50. The Josephson currents vani
exponentially aty→6` and reach their peak values aty5
6 ln(11&)lJ'60.88lJ . As regards the order paramete
we get

f ~y!512
4az2~T!

aj0

exp@22y/lJ#

~11exp@22y/lJ# !2 . ~62!

Notice that Eqs.~60!–~62!, considered in the half spac
0<y,1`, have exactly the same form as the solutio
~54!–~56! for a semi-infinite multilayer in the external fiel
H5Hs , in full agreement with our interpretation ofHs as
the penetration field for a single vortex plane.

To find the lower critical fieldHc1` at which the solution
~59! becomes energetically favorable, we must consider
free-energy functional~49!, which in this case takes the form

V@f~y!;H#2V@H#Nv50

5NcellWzH j 0

2e E2`

1`

dyF12cosf~y!1
lJ

2

2 S df~y!

dy D 2G
2

1

4p

@f~1`!2f~2`!#H

2e J , ~63!

whereV@H#Nv50[V@f50;H# is the free energy in the ab

sence of vortices~Nv is the number of vortex planes!, and
Ncell5Wx /p is the number of elementary cells. Inserting E
~59! into Eq. ~63!, we obtain the free-energy contribution o
a single vortex plane:

V@H#Nv512V@H#Nv505NcellWzF4lJj 0

e
2

F0H

4p G ,
~64!

with F05p/e the flux quantum. From the conditio
V@Hc1`#Nv515V@Hc1`#Nv50 , the lower critical field is

Hc1`52~peplJ!
215

2

p

F0

pplJ
, ~65!

as in the case of a single junction, apart from the factorp in
the denominator instead of 2l(T).26,27 As expected,Hc1`

52Hs /p,Hs5h(0). On the contrary, Eq.~65! is com-
at

al

s

e

.

pletely different from previously proposed ones for layer
superconductors,8 based on an invalid assumption of singl
vortex penetration.

From the proportionality of the right-hand side of Eq.~64!
to Ncell , we infer that the total number of Josephson vortic
~i.e., 1D singularities of the amplitude of condensation! in
one vortex plane is equal to the total number of element
cells. This means that Josephson vortices penetrate al
cells simultaneously and coherently. As in the case o
single junction,26 the quantity

E05
4lJj 0

e
~66!

can be identified with the self-energy of a single Joseph
vortex per unit length~in the z direction!. In higher external
fields (H@Hc1`), we expect to get a ‘‘stack’’ ofNv vortex
planes with the total number of Josephson vorticesNv tot
5Nv Ncell ~see Fig. 2!.

C. The vortex state in intermediate fieldsH c1`!H
!†eaz„T…‡21. The lower critical field H c1W5p/epW
in finite-size samples„W!lJ…: A paramagnetic effect

Consider a finite-size~in the y direction! multilayer with
2Ly15Ly25L, W[2L, in the field range Hc1`!H
!@eaz(T)#21 and in the absence of externally applied cu
rent (I 50), i.e., subject to the boundary conditions~20! ~i!.
The validity of the condition~52! is again assumed.@The
upper bound„eaz(T)…21 for the field range means that w
rare concerned withH!Hc2`(T).#

Under these assumptions, the phase difference up to
order in the small parameter (eplJH)22 is

f~y!52epHy1pNv~H !2
~21!Nv

4~eplJH !2 @sin~2epHy!

22epHycos~epWH!#. ~67!

The constant of integrationpNv(H) accounts here for the
phase shift due toNv vortex planes@p per each vortex plane

FIG. 2. Vortex state in a finite LD multilayer~in cross section!.
Josephson vortices~i.e., singularities of the amplitude of condens
tion! are conventionally denoted by black dots. The vortex pla
@i.e., maxima of the microscopic magnetic fieldh(y)# are shown by
dashed lines. Arrows show the direction of supercurrents.
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see the last of Eqs.~58!#. The number of vortex planesNv is
itself a singular function of the applied fieldH:

Nv~H !5FepWH

p G5F F

F0
G , ~68!

where@u# means the integer part ofu, andF5pWH is the
flux through an elementary cell. This choice of the const
of integration guarantees that the energy of the Joseph
couplingEJ in Eq. ~49! takes the minimal value for a give
H:

EJ@H#5
Hc

2~T!

4p
WxWWz

az2~T!

aj0
F12

F0

pF Usin
pF

F0
UG

~69!

~this expression should be compared with its analog fo
single Josephson junction26!.

The physical quantities corresponding to Eq.~67! are

h~y!5HF12
~21!Nv

4~eplJH !2 @cos~2epHy!2cos~epWH!#G ,
~70!

j ~y!5~21!Nv j 0 sin~2epHy!, ~71!

f ~y!512
az2~T!

2aj0
F12

~21!Nv cos~2epHy!

112@epHz~T!#2

2
&epHz~T!usin~epHW!u

112@epHz~T!#2

cosh@&y/z~T!#

sinh@W/&z~T!#
G .

~72!

@The term 2„epHz(T)…2 in the denominators of Eq.~72! can
only be retained ifp@a.#

In the limit W@z(T), uyu!W/2, Eq. ~72! becomes

f ~y!512
az2~T!

2aj0
F12

~21!Nv cos~2epHy!

112@epHz~T!#2 G . ~73!

Equations of the type~67!, ~70!, and~73! for Nv52m ~m is
an integer! were first obtained by Theodorakis11 in the
framework of the LD model. Our Eq.~67! for Nv52m
should also be compared with an analogous solution for
infinite single junction given, for instance, in Ref. 25.

The singular functionNv(H) introduces discontinuities in
Eqs. ~67! and ~70!–~73!. These discontinuities witness th
the system undergoes a first-order phase transition wh
vortex plane penetrates or leaves the sample~compare with
the discussion of a single junction in Ref. 26!.

The positions of vortex planesyv correspond to loca
maxima of the fieldh(y) in Eq. ~70!. @In the case~73!, yv
exactly coincide with local minima off (y).# In the vortex
planesy5yv , the microscopic magnetic field is higher tha
the applied one:

h~yv!5HF11
1

4~eplJH !2 @11~21!Nv cos~epWH!#G.H,

~74!

which is expected for any vortex solution. The Joseph
current densityj (y)5(1/4p)@dh(y)/dy# vanishes both in
t
on

a

n

a

n

the vortex planesy5yv and in the planes of local minima o
h(y), y5yv6p/2epH. When passing through zero in thes
planes,j (y) changes the sign, as depicted in Fig. 2.

From Eq.~68! with Nv(H)51, we obtain the lower criti-
cal field Hc1W in a finite multilayer withW!lJ :

Hc1W5
p

epW
5

p2

2
Hc1`

lJ

W
@c1` . ~75!

The definition of the magnetizationM,25

4pM5
1

W E
2L

1L

dyh~y!2H, ~76!

and Eq.~70! yield

M ~H !52
1

16pH~eplJ!
2 F usin~epWH!u

epWH
2

2~21!Nv cos~epWH!G . ~77!

The magnetization~77! shows distinctive oscillatory behav
ior and discontinuities atepWH→pN ~N is an integer!,
when a vortex plane penetrates or leaves the sample.

Interestingly enough, the right-hand side of Eq.~77!
passes through zero and may have both signs. Thus, foF
5pWH@F0 , the sample exhibits a small paramagnetic
fect, if NvF0,F,(Nv1 1

2 2F0 /p2F)F0 :

M ~H !5
1

16pH~eplJ!
2 FUcos~epWH!U2 usin~epWH!u

epWH G.0.

~78!

D. Fraunhofer oscillations of the Josephson current
in multilayers with W!lJ , in the field range 0<H

!†eaz„T…‡21: ‘‘Edge pinning’’ of the vortex planes

Now we proceed to the case of a finite-size~along the
layers! multilayer with 2Ly15Ly2[L, W[2L in the pres-
ence of an externally applied currentI, i.e., subject to the
boundary conditions~20! ~ii !. ~Compare the discussion b
Owen and Scalapino30 of the single-junction case.! The rela-
tion ~52! is supposed to hold. The applied magnetic fields
within the range 0<H!@eaz(T)#21.

Assuming W!lJ , we can considerW2/lJ
2 as a small

expansion parameter in Eq.~45!. In this way, we obtain

f~y!52epHy1pNv~H !1w

2
~21!Nv

4

W2

lJ
2 F F0

pFG2Fsin~2epHy1w!

22epHycos
pF

F0
cosw2sinw G , ~79!

I ~w,F![E
2L

1L

dy j~y!5 j 0W
F0

pF Usin
pF

F0
Usinw, ~80!
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h~y!5HH 12
~21!Nv

4

W2

lJ
2 F F0

pFG2Fcos~2epHy1w!

2cos
pF

F0
coswG J , ~81!

f ~y!512
az2~T!

aj0
F12

~21!Nv cos~2epHy1w!

112@epHz~T!#2

2
&epHz~T!usin~epHW!ucosw

112@epHz~T!#2

cosh@&y/z~T!#

sinh@W/&z~T!#

2
~21!Nv&epHz~T!cos~epHW!sinw

112@epHz~T!#2

3
sinh@&y/z~T!#

cosh@W/&z~T!#
G , ~82!

whereNv(H)5@epWH/p# is the number of vortex planes
F5pWH is the flux through an elementary cell,F05p/e,
as usual, and the constantw (uwu<p/2) parameterizes the
total Josephson currentI given by Eq.~80!. Equation~80!
yields the well-known Fraunhofer pattern, the only diffe
ence from the single-junction case being the occurrenc
the periodp in place of 2l(T).26,27Note that the first zero o
the Fraunhofer pattern, by virtue of Eq.~75!, corresponds to
the lower critical fieldHc1W . In the absence of the transpo
current, i.e., forw50, Eqs.~79!, ~81!, and ~82! reduce, re-
spectively, to Eqs.~67!, ~70!, and~72!, as they should.

The self-consistency of our calculations can be ea
verified by means of Ampere’s lawh(1L)2h(2L)
54pI . It is assured by terms proportional toW2/lJ

2 in Eqs.
~79! and ~81! that explicitly take into account the effect o
self-induced fields. Although Eq.~80! was first derived in the
framework of the LD model in Ref. 7, the authors of th
publication did not calculate the phase differences s
consistently and did not evaluate the local magnetic field
first order inW2/lJ

2. As a result, they arrived at an incorre
conclusion that Fraunhofer oscillations ofI could be ob-
served in the absence of Josephson vortices. Unfortuna
this misunderstanding is shared in some other rec
publication.31 Therefore we provide below a detailed an
rigorous clarification.

As we see from Eq.~81!, in the presence of the transpo
currentI, the vortex planes are shifted by the Lorentz force
new equilibrium positions@local maxima ofh(y)#:

ȳv5yv2
w

2epH
, ~83!

whereyv correspond to local maxima of the right-hand si
of Eq. ~81! for w50. The local magnetic field in the vorte
planes now is

h~ ȳv!5HS 11
1

4~eplJH !2

3@11~21!Nv cos~epWH!cosw# D.H. ~84!
of

y
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In equilibrium, the Lorentz forcef L per elementary cell
acting on the vortex planes is counterbalanced by the pinn
force f pin that can be defined as32

f pin~Y!52
1

NcellWz

dUpin~Y!

dY
, ~85!

whereUpin(Y) is the pinning potential arising owing to th
shift by Y of the vortex planes from their equilibrium pos
tions in the absence of the transport currentI. To evaluate the
pinning potential, we consider the increase of the free ene
in first order inaz2(T)/az0 , caused by such a shift. Notin
that first-order corrections tof (y)'1 andh(y)'H do not
contribute to the free energy, takingf(y)'2epHy
1pNv(H), making the transformationy→y2Y and substi-
tuting into Eq.~49!, we obtain

Upin~Y![V@H;Y#2V@H;Y50#

5NcellWWz

j 0

2e

F0

pF Usin
pF

F0
UF12cosS 2pF

F0

Y

WD G .
~86!

It is very instructive to rewrite Eq.~86! as

Upin~Y!5NcellWWz

1

2e

F0

pF
@2 j ~1L;Y50!1 j ~2L;Y!

2 j ~1L;Y!#, ~87!

where

j ~6L;Y!5~21!Nv j 0 sin~62epHL12epHY!

are the surface currents in the presence of the shiftY. We see
that the pinning potential foruYu,p/4epH arises owing to
the emergence of additional surface currents on the oppo
side of the superconductor. At 2epHL5pN1 1

2 ~N is an
integer!, j (2L;Y)52 j (1L;Y), i.e., these currents flow in
the opposite directions, and the pinning potential reaches
maximum. On the contrary, at 2epHL5pN ~N is an inte-
ger!, j (2L;Y)5 j (1L;Y), i.e., the surface currents flow i
the same direction and mutually compensate each othe
Eq. ~87!, the pinning potential vanishes, and vortex plan
freely penetrate or leave the sample~compare with the dis-
cussion at the beginning of this section of the case of a se
infinite multilayer forH5Hs!. The surface currents also flow
in the same direction and mutually compensate each o
when the magnitude of the shiftuYu reaches the valueuYu
5Ymax[p/4epH. Moreover, the pinning potential vanishe
for F@F0 .

From Eqs.~85! and ~86!, we obtain the pinning force for
the shiftY:

f pin~Y!52I S 2pF

F0

Y

W
;F DF,

I S 2pF

F0

Y

W
;F D[ j 0W

F0

pF Usin
pF

F0
UsinS 2pF

F0

Y

WD .

~88!
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From these expressions we infer that the maximal value
the pinning force u f pinu for given flux F is f pin

max

5uI(up/2u;F)uF.
In the presence of the transport currentI (w;F) @Eq. ~80!#,

the shift of the positions of the vortex planes, according
Eq. ~83!, is Y52w/2epH, with the maximal equilibrium
valueuYu5Ymax[p/4epH. Taking into account the fact tha
in equilibrium f L52 f pin , we arrive at the expression for th
corresponding Lorentz force:

f L52I ~w;F!F. ~89!

This expression was to be expected from gene
considerations,32 which prescribe for the magnitude of th
Lorentz force the relationu f Lu5uI uF, whereI is the transport
current. It is therefore absolutely clear that the station
Josephson effect becomes impossible if the magnitude o
transport currentuIu exceeds the valueI max5uI(up/2u;F)u, be-
cause in this situationu f Lu.u f pinu, and the vortex planes ar
completely depinned.

Notice that the physics of the Fraunhofer pattern in sin
junctions was discussed in terms of a series of first-or
phase transitions due to successive penetration of Josep
vortices long ago.26 A qualitative explanation by means o
the edge pinning was proposed in the book by Tinkham.14 In
general, the pinning of Josephson vortices in weakly coup
superconducting structures withW!lJ is completely analo-
gous to the pinning of Abrikosov vortices by the edges o
thin @compared tol(T)# type-II superconducting film.33

Finally, we observe that the magnetization in the prese
of the transport currentI (w;F), according to Eqs.~76! and
~81!, is given by

M ~H !52
1

16pH~eplJ!
2 F usin~epWH!u

epWH

2~21!Nv cos~epWH!Gcosw. ~90!

For w50, Eq. ~90! reduces to Eq.~77!. For F5pWH
@F0 , NvF0,F,(Nv1 1

2 2F0 /p2F)F0 , we again obtain
the paramagnetic effect@compare with Eq.~78!#.

E. Critical parameters of an infinite multilayer: Tc` , H c2`

At the point of the second-order phase transition to
normal state,f 2 can be considered as a small parame
Thus the termf 3 in Eq. ~68! and the right-hand side of Eq
~70! can be dropped. Applying boundary conditions~20! ~i!
yieldsf(y)52epHy1pNv(H). With this phase difference
the linearized version of Eq.~19! can be transformed into

d2f ~ t !

dt2
1@A~T,H !2~21!Nv11q~H !cos 2t# f ~ t !50,

A~T,H ![
12~1/3!e2H2a2z2~T!2az2~T!/aj0

@epz~T!H#2 ,

q~H ![
a

2aj0~epH!2 , ~91!

where we have introduced a dimensionless variablet
[epHy: f (t)[ f (t/epH). Hence one gets two independe
of
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equations: for the oddNv52m11 (m50,1,2, . . . ) and the
evenNv52m number of vortex planes. Both of them hav
the usual form of Mathieu equations~see the Appendix!. As
to the boundary conditions, it is convenient to take2Ly1
5Ly2[L[W/2 and, by symmetry, consider Eq.~91! in the
interval 0<y<L, with

d f

dt
~0!5

d f

dt
~epHL!50. ~92!

The critical parametersTc and Hc2 are now determined by
the smallest eigenvalue of the boundary problem~91! and
~92!.

In an infinite in they direction multilayer (L→`), the
only bounded at the infinity solutions of Eq.~91! are periodic
Mathieu functions, with f Nv52m11(t)}ce0(t,q) and

f Nv52m(t)}ce0(p/22t,q) corresponding to the smallest e

genvaluesa0(q) anda0(2q)5a0(q), respectively. Thus the
critical parameters are given by the equation

@A~T,H !#c`5@a0~q!#c` , ~93!

where one should fixH to obtainTc` or, alternatively, fixT
to obtainHc2` . As in the case of Eq.~73!, local minima of
the reduced order parameterf (t) in Eq. ~91! correspond to
the positions of the vortex planes: in conventional units
distance between two successive minima isDyv5p/epH,
which gives the fluxF5DyvpH5F0 per single vortex.

1. The critical temperature Tc`

For magnetic fieldsH in the range

H!
F0

aj0x1/2~j0 / l !
, ~94!

the general expression forTc` resulting from Eq.~93! is

Tc`5Tc0H 12
7z~3!

12
j0

2x~j0 / l !F1

3
e2H2a21

a

aj0

1~epH!2a0S a

2aj0~epH!2D G J . ~95!

In weak fields

H!
1

ep
A a

2aj0
[

F0

pp
A a

2aj0
, ~96!

pair breaking effect of intralayer supercurrents is unimp
tant, and we get

Tc`5Tc0F12
7&z~3!

12
j0

2x~j0 / l !A a

aj0
epHG . ~97!

In strong fields

F0

pp
A a

2aj0
!H!

F0

aj0x1/2~j0 / l !
, ~98!

Eq. ~95! becomes
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Tc`5Tc0F12
7z~3!

12
j0

2x~j0 / l !S 1

3
e2H2a21

a

aj0
D G .

~99!

The term proportional toa takes into account pair breakin
by the Josephson currents, locally equal to the critical one15

In the absence of weak coupling~a50!, Eq. ~99! reduces to
the well-known expression for an isolated thin supercondu
ing film.22,14

2. The upper critical field Hc2`

For a fixedT, Eq. ~93! yields an implicit expression fo
Hc2` as a function ofT:

@epz~T!Hc2`#2F1

3 S a

pD 2

1a0S az2~T!

2aj0@epz~T!Hc2`#2D G
512

az2~T!

aj0
. ~100!

This expression exhibits the so-called14 3D-2D crossover,
experimentally verified, for example, on Nb/G
multilayers.34 The crossover temperatureT* can be conven-
tionally defined by the relationaz2(T* )/aj051.

For temperatures close toTc0 , when

az2~T!

aj0
@1, ~101!

Hc2`~T!5
F0

&ppz~T!

Aaj0

Aaz~T!

5
12

7&z~3!pAa

F0Aaj0

pj0
2x~j0 / l ! S 12

T

Tc0
D .

~102!

In this 3D regime, the positive kinetic energy of small inte
layer Josephson currents in Eq.~49! competes with the nega
tive intralayer condensation energy. The superconducti
of theS layers is strongly depressed by the vortex planes
a comparison between local maximaf max and local minima
f min of the order parameter shows

f min

f max
[

f ~yv!

f ~yv6p/2epHc2`!
52& expF2

2az2~T!

aj0
G!1.

~103!

At lower temperatures, when

az2~T!

aj0
!1, ~104!

Hc2`~T!5
)F0

paz~T! F12
1

2

az2~T!

aj0
G . ~105!

In this 2D regime, the energy of the Josephson interla
coupling is small relative to the intralayer condensat
energy.15 The transition to the normal phase occurs owi
mainly to pair breaking by the intralayer supercurrents, a
the order parameter is almost unperturbed by the vo
planes:
.

t-

ty
s

r

d
x

f ~y!}12
~21!Nv

12

a2

p2

az2~T!

aj0
cos~2epHy!. ~106!

This expression should be compared with Eq.~73! for inter-
mediate fields in the same temperature range~104!. In the
limit a50 ~no Josephson coupling!, Eq. ~105! goes over into
the well familiar one for an isolated thin superconducti
film.22,25,14 Equation ~105! explains the origin of the
well-known14 unphysical ‘‘low-temperature’’ divergence o
the LD model: taking a formal limita→0 while keeping
az2(T)/aj05const, we getHc2`(T)→`.

Aside from microscopically determined parameters, d
pendence~102! for layered superconductors was first o
tained within the framework of the LD model.3,24,14Expres-
sions of the type~105! were derived phenomenologically i
Refs. 12 and 13. In all these publications relations~30! and
~31! were implicitly adopted as physically plausible assum
tions. The very fact that these results are contained as li
ing cases in our Eqs.~42!–~48! once again demonstrates th
generality and self-consistency of the approach of this pa

Finally, we emphasize that the concept of Josephson
tex planes applies both in limits~101! and~104!. Contrary to
previous suggestions,24,7 there is no transition from the
‘‘Abrikosov-core regime’’ to the ‘‘Josephson-core regime
at T* : The existence of Abrikosov vortices with norm
cores in the thin-layer limit is not allowed by the solutions
Eq. ~91! @mathematically, the function ce0(t,q) is strictly
positive#.

F. Size effects: Oscillations ofTcW

Aside from a special caseepHL5pk/2 ~F5kF0 , k
50,1,2, . . . !, for multilayers with finiteS-layer lengthW
52L only approximate solutions of the boundary proble
~91! and ~92! can be obtained. Using Galerkin’s method35

we have found two groups of solutions corresponding to
smallest eigenvalues@A#c :

f m,Nv52n11~ t !}cosh~mt !ce0~ t,q!,

f m,Nv52n~ t !}cosh~mt !ce0S p

2
2t,qD , ~107!

m5coth~mepHL!
u~dce0 /dt!~epHL,q!u

ce0~epHL,q!
, ~108!

@A~T,H !#c5@a0~q!2m2#c , ~109!

and

f n,Nv52n11~ t !}cos~nt !ce0~ t,q!,

f n,Nv52n~ t !}cos~nt !ce0S p

2
2t,qD , ~110!

n52cot~nepHL!
u~dce0 /dt!~epHL,q!u

ce0~epHL,q!
, ~111!

@A~T,H !#c5@a0~q!1n2#c , ~112!

where Eqs.~108! and ~111! implicitly define parametersm
andn, and Eqs.~109! and~112! determine the critical point.
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From Eqs.~109! and ~112! we see, that the eigenvalu
corresponding to the eigenfunctionsf m is smaller than
a0(q), while that corresponding to the eigenfunctionsf n is
larger. Physically, this means that withf m in a finite
multilayer we can achieve higher values of the critical p
rametersTc and Hc2 than in an infinite one@compare with
Eq. ~93!#. At epHL5pk/2 ~F5kF0 , k50,1,2, . . . !, these
equations yieldm5n50.

For epHL→`,m is a bounded, oscillating function o
epHL and does not tend to any limit. On the contrary,n
→p/2epHL, whenepHL→`. This signifies that at certain
values ofepHL the solutionf m becomes unstable and give
way to the solutionf n with lower values of the critical pa
rameters, presumably by means of a first-order phase tra
tion. As the parametersm and n can enter the free energ
only via the combinationsmepHL and nepHL, we expect
the transitions f m↔ f n to occur when @mepHL#*
5@nepHL#* , hence the relation

cot@mepHL#* 52coth@mepHL#*
with the numerical solution@mepHL#* '2.37. Thus the so-
lution f m with Eq. ~109! is realized when

epHLu~dce0 /dt!~epHL,q!u
ce0~epHL,q!

,@mepHL#* tanh@mepHL#*

'2.33, ~113!

while for

epHLu~dce0 /dt!~epHL,q!u
ce0~epHL,q!

.2.33, ~114!

the system ‘‘chooses’’f n with Eq. ~112!. The condition
~113! is met, for instance, whenF[pWH'kF0 ~W52L,
k50,1,2, . . . !. Because of the oscillating character of t
left-hand sides of Eqs.~113! and~114!, the system oscillates
between the states withf m and f n with increasingepHL. For
larger epHL, the domain of existence off m becomes nar-
rower, while that off n widens. ForepHL→`, the solution
f n goes over smoothly into that of an infinite multilayer.

We want to point out here that the exact character of
transitions f m↔ f n can only be established by solving th
nonlinear boundary problem and comparing the correspo
ing free energies, which is beyond the scope of the pre
paper.

As an important application of the above results, we c
sider the critical temperature of a finite multilayerTcW in the
field range given by Eq.~98!, and withW!plJ /l(T). Un-
der such circumstances, the condition~113! is satisfied, and
the solution of Eq.~108! is

m25
a

aj0~epH!2

F0

pF Usin
pF

F0
U,

which on substituting into Eq.~109! yields

TcW5Tc0H 12
7z~3!

12
j0

2x~j0 / l !F1

3
e2H2a21

a

aj0

3S 12
F0 Usin

pFU D G J . ~115!

pF F0
-

si-

e

d-
nt

-

Thus in a finite-size multilayer the critical temperatu
can exhibit the same oscillations with changing the fl
through the elementary cell as the total Josephson curreI
does@see Eq.~80!#. However, a significant difference lies i
the fact that while the oscillations ofI are observable in any
types of Josephson systems, the oscillations ofTc is an in-
teresting feature, because in a single Josephson junction
thick superconducting electrodes any shifts ofTc are negli-
gible. In the limitF@F0 , Eq. ~115! reduces to Eq.~99!, as
anticipated.

IV. DISCUSSION

Based solely on the microscopic Hamiltonian~1!, we
have constructed a self-consistent theory that provide
comprehensive, unified picture of physical effects inS/I
multilayers in parallel magnetic fields in the GL regime.

Employing rigorous technique of variational calculus, w
have derived in Sec. II fundamental constraint relations~27!
and~28! and solved a nontrivial problem of exact minimiz
tion of the microscopic functional~5!. Up until the present
study, such a problem has not been solved even for the m
simpler phenomenological LD functional. Surprisingly, ev
mutual dependence and incompleteness of the Eu
Lagrange equations forfn andA were not noticed in previ-
ous publications. This incompleteness fully manifests its
in unphysical degrees of freedom and an irrelevant len
scale of equations for the phase differences proposed, e.g
Refs. 6 and 7: Making use of constraints of the type~28!, one
can reduce these equations to our Eq.~45! with f (y)51.
Emerging as a direct mathematical consequence of such
eral physical properties as gauge invariance and Josep
interlayer coupling, constraints~27! and~28! should apply to
any superconducting weakly coupled periodic structure. T
discovery of their role in minimizing the free energy mak
further progress in the development of the theory possib

In the thin-layer limit which corresponds to the domain
validity of the phenomenological LD model, we have d
rived a remarkably simple, closed set of self-consistent
croscopic mean-field Eqs.~42!–~48! and the generating func
tional ~49!. The fact that the solution~67!, ~70!, and~73! of
these equations describing the vortex state in an infi
multilayer reproduces the result obtained by Theodorak11

in the framework of the LD model is not an occasional c
incidence. The application of the mathematical methods
this paper allows us to obtain the complete exact solution
the LD model in parallel fields as well~this solution will be
published elsewhere!. The resulting mean-field equations a
merely a limiting case of our Eqs.~42!–~48! for a/p→0. As
our equations contain more physical information, we prop
that they should replace the LD model in parallel fields.

Concerning some major physical results of Sec. III in t
thin-layer limit, we have completely revised previou
calculations8,9 of Hc1 based on an invalid assumption o
single Josephson vortex penetration and refuted the conc6

of a triangular Josephson vortex lattice. Our considerat
envisages simultaneous and coherent penetration in the
of the vortex planes. Our prediction of the superheating fi
Hs for semi-infinite multilayers implies hysteretic behavi
of the magnetization. In the vortex state, the magnetiza
should exhibit jumps due to the vortex-plane penetration.
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7510 PRB 60SERGEY V. KUPLEVAKHSKY
have fully clarified the widespread7,31 misunderstanding o
the physics of the Fraunhofer oscillations: our self-consis
treatment of the Josephson effect unambiguously proves
the Fraunhofer pattern occurs due to successive penetr
of the vortex planes and their pinning by the edges of
sample. Our prediction of novel size-effects in finite mul
layers, a series of first-order phase transitions to the nor
state and oscillations of the critical temperature versus
applied field, should stimulate further experimental inves
gation.

The results of our investigation directly apply to artifici
superconductor/insulator36 and superconductor/semicon
ductor34,37,4 multilayers. As regards the high-Tc supercon-
ductors BSCCO and TBCCO, believed to be atomic-sc
weakly coupled superlattices,38 the application is restricted
by the limitation ~4!. However, we expect that such bas
features of the thin-layer limit as simultaneous and cohe
penetration in the form of the vortex planes will hold. F
high-Tc samples exhibiting a clear Fraunhofer pattern,39 we
anticipate the presence of the related effect of oscillation
the critical temperature~115! as well.

As to direct experimental verification of basic concepts
our theory, the best evidence is provided by the recent m
netization and polarized neutron reflectivity measureme
on Nb/Si multilayers in parallel fields.4 These measuremen
clearly revealed simultaneous penetration of Josephson
tices into all Si layers and a companion effect of jumps of
magnetization, exactly as predicted in our paper. The dis
bution of the magnetic field attributed to Josephson vorti
was found to have the periodicity of the Nb/Si layering,
agreement with the general consideration of Sec. II A.~The
experimental conditions4 did not fully match the require-
ments of the thin-layer limit for which the screening by t
intralayer currents could be neglected.! Finally, it is quite
natural that our general implicit expression~100! for
Hc2`(T) exhibits the so-called 3D-2D crossover, we
known from the experiment,34 and is free from the unphysi
cal low-temperature divergence, typical14 of the phenomeno-
logical LD model.
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APPENDIX: THE APPLICATION OF MATHIEU
FUNCTIONS

The canonical form of the Mathieu equations is18,40

d2f

dt2
1~a22q cos 2t ! f 50. ~A1!

If f (t) is a solution to Eq.~A1!, then f „(p/2)2t… stisfies

d2f

dt2
1~a12q cos 2t ! f 50. ~A2!

In the class of periodic solutions of Eq.~A1!, the smallest
eigenvaluea0(q) is a nonpositive, continuous, even, m
notonously decreasing function ofq. The corresponding
eigenfunction ce0( l ,q) has a periodp, is even and strictly
positive.

For 0<q!1, we have the asymptotics

ce0~ t,q!'
1

&
F12

q

2
cos 2t1¯G , ~A3!

a0~q!'2
q2

2
1... . ~A4!

For q@1,

a0~q!;2Aq22q, ~A5!

but there is no uniform asymptotics for ce0(t,q). In this case,
the behavior of ce0(t,q) may be characterized by the formu
las

ce0~ t,q!;S p

2 D 1/4

q1/8e2Aq cos2 t/4, ucostu,
21/4

Aq
; ~A6!

ce0~0,q!;2&e22Aqce0~p/2,q!;2~2p!1/4q1/8e22Aq.
~A7!
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