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We present a fully microscopic, self-consistent, and self-contained theory of superconducting weakly
coupled periodic multilayers with tunnel barriers in the presence of externally applied parallel magnetic fields,
in the local Ginzburg-Landau regime. We solve a nontrivial mathematical problem of a microscopic derivation
and exact minimization of the free-energy functional. In the thin-layer limit that corresponds to the domain of
validity of the phenomenological Lawrence-Doniach model, our physical results strikingly contrast with those
of our predecessors. In particular, we completely revise previous calculations of the lower critical field and
refute the concept of a triangular Josephson vortex lattice. We show that Josephson vortices penetrate into all
the barriers simultaneously and form peculiar structures that we term “vortex planes.” We calculate the
superheating field of the Meissner state and predict hysteresis in the magnetization. In the vortex state, the
magnetization exhibits distinctive oscillatory behavior and jumps due to successive penetration of the vortex
planes. We prove that the vortex-plane penetration and pinning by the edges of the sample cause the Fraun-
hofer pattern of the critical Josephson current. We calculate the critical temperature and the upper critical field
of infinite (along the layersmultilayers. For finite multilayers, we predict a series of first-order phase transi-
tions to the normal state and oscillations of the critical temperature versus the applied field. Finally, we discuss
some theoretical and experimental implications of the obtained ref80463-18229)08633-9

I. INTRODUCTION Ferrell-Prange-typeequation with a single length scale, the
Josephson penetration depth= (8mepj,) ~Y? (p is the pe-

In this paper, we present a fully microscopic, self-riod, j, is the critical Josephson curréntThis should be
consistent, and self-contained theory of superconductingontrasted with a mathematically ill-defined infinite set of
weakly coupled periodic multilayerésuperlatticep of the  differential equations containing two length scales, proposed
S/1-type (Sfor a superconductot,for an insulator or a semi-  without appropriate justification in the literatuté). Further-
conductoy in the presence of externally applied parallel more, due to the absence of screening by the intralayer cur-
magnetic fields, in the local Ginzburg-LandaL) regime  rents in the thin-layer limit, the local magnetic field proves to
[i.e., temperatures are close to the bulk critical temperaturge independent of the coordinate normal to the layers.

Tco, all characteristic dimensions of ti&layers are much In Sec. lll, we obtain exact analytical solutions to the
larger than the BC$Ref. 2 coherence lengtl]. equations of the thin-layer limit. This limit corresponds to

In Sec. Il, we derive a microscopic free-energy functionalthe domain of validity of the phenomenological LD model,
that describes a smooth transition from the single-junctiorwhich allows us to draw a comparison with the results of our
case to the thin-layer limit, when tH&layer thicknessais  predecessors. Thus we show that previously suggested single
small compared to all other relevant length scalBy.con-  Josephson vortex penetratfotas well as the occurrentef
trast, previous treatment was based predominantly on the triangular Josephson vortex lattice are incompatible with
phenomenological Lawrence-DonidctiD) model, appli- the above-mentioned fundamental constraints of the th€ory.
cable only in the thin-layer limit.Our analysis of implica- We also disprove the claim of Ref. 7 that the Fraunhofer
tions of gauge invariance reveals important facets of thepattern of the total critical Josephson current occurs in the
theory. In particular, we establish the existence of fundamenabsence of Josephson vortices. However, our consideration
tal constraint relations coupling the phases of the order pasontains as a limiting case a particular exact solution for the
rameter to the vector potential and equalizing the phase difvortex state obtained in the framework of the LD model by
ferences at neighboring barriers. Mathematically, thesdheodorakis® and fully supports phenomenological
constraints complement the usual Euler-Lagrange equatiorgglculations®*® of the upper critical fieldH,.. in infinite
and make the free energy a minimum. Physically, they statéalong the layegsmultilayers.
that the average intralayer currents are always equal to zero Among interesting physical results of Sec. Ill are the fol-
and the local magnetic field has, in general, the periodicity ofowing. We provide comprehensive description of the Meiss-
the multilayer.(The latter has recently received strong ex-ner state in semi-infinit¢along the layersmultilayers and
perimental support in polarized neutron reflectivity measureshow that at the fieltHs= (e P\ ;) ! (the superheating field
ments on artificial Nb/Si multilayer§. As a result of this the Meissner phase becomes unstable with regard to Joseph-
investigation, we obtain a closed, self-consistent set of mearson vortex penetration. We predict simultaneous and coher-
field equations. These equations have a particularly simplent penetration into all the barriefhis prediction has been
form in the thin-layer limit: Remarkably, the phase differ- confirmed experimentall§). We show that in the absence of
ences (the same at all the barrigrs obey a screening by the intralayer currersee abovethe “tails”
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of Josephson vortices overlap in the layering direction form- Y
ing peculiar structures, “vortex planes.” The lower critical
field at which the formation of a single vortex plane becomes
energetically favorable in an infinite multilayer is found to be
He=2(meph;) L. For the lower critical field in a finite ,
multilayer with W<\ ; (W is the Slayer length we obtain L] [0
Hciw= m/epW, which corresponds to the first minimum of
the Fraunhofer pattern. We prove that the Fraunhofer oscil-
lations occur due to successive penetration of the vortex
planes and their pinning by the edges of the sample. We
show that vortex-plane penetration leads also to jumps of the
magnetization(Such features have been already obsefyed.
For a certain field range, we predict a small paramagnetic "
effgct. We Calcula_te_the C”tlc_al temperature gnd t,he upper g, 1. Geometry of the problem. Alternating superconducting
critical field of an infinite multilayer. The obtained implicit layers and nonsuperconducting barriers are shown by white and

dependence H,..(T) exhibits the We"'knowrl three-  gray rectangles, respectively. The system is supposed to be infinite
dimensional—two-dimensional(3D-2D) crossover” and is  jn the x and z directions. An external magnetic field is applied

free from the unphysical “low-temperature” divergentef  ajong thez axis.

the LD model. In addition, we predict interesting size effects

in finite multilayers: a series of first-order phase transitions - -

to the normal state and oscillations of the critical temperature h(r)=VXA(r), H=VXAg(r)=(0,0H),
versus the applied field.

In Sec. IV, we discuss some theoretical and experimental
implications of the obtained results. In the Appendix, we
write down a few mathematical formulas related to the ap-
plication of Mathieu functions in Sec. III.

®H

aaa)

V:(VX’Vy’VZ)E(ﬁ_X'W'E

2

Herei=c=1, EF=k§/2m is the Fermi energywith kg
being the Fermi momentumR, and R, correspond respec-
A. Derivation and exact minimization of the microscopic tively to the superconducting and barrier regidgwith a be-

free-energy functional ing the Slayer thicknessp the barrier thickness and=a
; oL - ; ) .__ +b the period, thex axis being normal to the barrier inter-

Our startlng. po!nt S mm;g.z,é:opm second quant|zedface9‘ ,(r) is the electron field operator for spin(a sum-

BCS-type Hamiltonian of the forim mation over repeated spin indices is implied<O is the

BCS coupling constan¥/(r) is the nonmagnetic impurity

_ 3+ 1 L= . 2 potential,U,> 0 is the repulsive barrier potentia,; andA

H_JRd r¢a(r)[ _ﬁ[v_'EA(r)_'eAeX‘(r)] —Er are the externalclassical and induced(operatoy vector
potentialst’ The system is taken to be infinite in the direc-
Bl tion of thex and z axes, while no restrictions on the linear
X (1) — 7f ABrg(n) g (DT (1) (1) (1) dimensions along thg axis is so far imposed. The external

Rs magnetic fieldH is directed along the axis (see Fig. L

Using field-theoretical methods of Ref. 15, we can derive
from Eqg.(1) a microscopic free-energy functional of the sys-
tem Q[A,,Ar ,A;H], whereA, and A are classical vari-
ables:A,, is the pair potentialorder paramete¢rof thenth S

layer, andA=A+A. is the total vector potentialh(r)

Il. BASIC EQUATIONS OF THE THEORY

3+ _ 3, 4
+fRSd rwa<r>v.mp<r>wa<r>+uobed (D (D)

1 ~
+— | d%h?(r),

87 Jr =V X A(r) being the corresponding local magnetic field. For
external fields satisfying the quasiclassical conditibin
. ) <kg/eé&q, in the GL regime
Re= U Ry, Ry= U R,, R=RUR,, (1)
n=—o n=—oo
Teo—T
= °T° <1, 3)
R, =[ a2+ np=x=a/2+np]x[Ly,y<y=L,,] <0
X (—oo<z<+®), éo<<a, W=Ly,—Ly, (4)
R, =[a/2+(n—1)p=x=<-—a/2+np]X[Ly<y=<L,,] whereT.q is the bulk critical temperaturé,=vy/27 T IS

the BCS coherence lengtli{=kg /m), this functional takes
X (—oo<z< + ), on the form
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HZ(T) Ly2 te al2+np 1
Q[fn, b0 AcAyiH]=— wzf dy| X dx| —f20xy) + 5 FRxy) + 25(T)
™ Ly1 n=-w J—a/2+np

Xigy {LVif (V) 12+ [Vidha(X,y) — 28 A(X,Y) IRy} +

al*(T)
2aéy

x{f2_.[a/2+(n—1)p,y]+f3(—al2+np,y)—2 f,(—a/2+np,y)f,_i[a/2+(n

Lx2
—1)p.ylcos®y n_1(y)}+4€22(TINAT) fL dxTh(x,y)—HT?|,
x1

Pnn-1(Y) = ¢n(—a/2+np,y) — dn_s[a/2+(n—1)p,y]

—al2+np

—ZeJ dxA(X,y),
a/l2+(n—1)p

a

32 1
T 7L3x(E ) Jo detb(v),

~ 16E(t?(Ug— Eet?)

D(t) 2 exd —2bv2m(Uy—Ert?)],
0
(&)= ano (2n+1)"2(2n+1+ /)7L,

H%(T)=4mN(0)A2(T)7,

h(x.y) = IAYGY) ALY

X ay
In Eq. (5), we have introduced the reduced modulus fQ,
=<1 and the phasé,, of the pair potential in theth Slayer
via the relation A,=A.f,expl¢,), where A.(T)
= \/8772TC207/7§(3) is the bulk gap,(m) is the Riemann
zeta function'® The rest of the notations are as follow,
=L,,—L, is the length of the system in thedirection,

(6)

D(t) is the tunneling probability of an insulating barrier be-

tween two successiv8 layers[D(1)<<1], x(&q/l) is the
impurity factor® (I is the electron mean free path’(T)
=&TL(3)x(£/1)/127 is the GL coherence length,(T)
=V3[mx(&,/1)EN(0) 7] Y28mre T, is the GL penetration

©)

minimization of Eg.(5) with respect tof,, ¢,, and A
=(Ax,Ay,0). This problem should be approached with cer-
tain caution, because Euler-Lagrange equationspfpr and
Ay,Ay are not independent.

Indeed, the functiona(5) is invariant under the general
gauge transformation

bn(X,Y)— dn(X,y) + n(X,y),

1
Ai(XY) = A Y) + 5 Vim(x,y), (7
where 7(x,y) is an arbitrary gauge function, defined in the
whole regionR. As a result, the variational derivatives with
respect tog,, andA,,A, are related through fundamental
functional identities

50
S¢n(X,y)

The occurrence of such identities is typical of gauge
theories?® Moreover, identities relating variational deriva-
tives appear already in some problems of classical variational
calculus with degeneraté@.e., invariant under symmetry
transformationsfunctionals?* As in degenerate theories the
number of variables exceeds the number of independent
Euler-Lagrange equations, complementary relations should
be normally imposed to eliminate irrelevant degrees of free-
dom and close the system mathematically. Whereas in bulk
superconductors and single junctions the elimination of un-
physical degrees of freedom amounts merely to an appropri-

6Q)

VisAxy)

®

1
- 2ei:x‘y

depth,N(0)=mk:/272 is the one-spin density of states at ate choice of gauge, in periodic weakly coupled structures

the Fermi level, andi.(T) is the bulk thermodynamic criti-
cal field nearT,.!® The term proportional tax<1 deter-
mines the interlayer Josephson coupling. Equatién is
merely the Maxwell equation for the local magnetic fiéld
= (0,0h).

The microscopic free-energy function@b) covers all
well-known limiting cases. In the limike=0 (no Josephson
interlayer coupling Eq. (5) reduces to a sum of free-energy
functionals of independerfs layers. Making a shift of the
coordinate systenx—x—a/2—b/2 and taking the limita
—o, one gets the case of a single SIS junction. Shifting
—XxX—al2 and takinga— oo, b—oo, we recover the limit of a
semi-infinite superconductor in contact with vacuum.

this problem has additional implications. Namely, in the
presence of the Josephson interlayer coupling phase differ-
ences®, ,_; and®, ;, at two successive barriers are in
themselves not independent, which means, mathematically,
that we are dealing with a variational problem with con-
straints. Unfortunately, this fundamental feature was not no-
ticed in previous literature.

The variations with respect th, are independent and can
be taken first. Varying under the assumption of arbitréfry
at the boundaries, we obtain

1+ §2<T>i§xy (VZ=[Vign(x,y)—2eA(X,y) 1%}

Our task now is to establish mean-field equations of the

theory, which is mathematically equivalent to the problem of

X f(x,y) = f3(x,y)=0. 9)
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(.y) R

of of .
W(X,Lyl)zw(X,Lyz)ZO, (10
AL 2t (—an f
(T2 +np,y)—2—&){ n(—al2+npy)—f,_y
X[a/2+(n—1)p,y]cos®, ,_1(y)},
(11
ALy —_ 2 it an f
o (@ +np,y)——2—§0{ n(@/2+np,y)—fn, g

X[—al2+(n+1)p,ylcosdy . 1n(Y)}-
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Equations(13)—(17) should be complemented by bound-
ary conditions at the outer interfacgs=L;,L,,. [When
deriving these equations, we have only assumed
OA(X,Ly1) = 6A(x,Ly,)=0.] As we do not consider here
externally applied currents in thedirection, the first set of

boundary conditions follows from the requirement
[Jny]y:Lyl,LyZZO:
dPn(X,
M—ZeAy(x,y) =0. (18)
ay _
y*Lyl'LyZ

Applied to Eq.(13), these boundary conditions show that the
local magnetic field at the outer interfaces is independent of
the coordinatex:h(x,Ly;) =h(L,1), h(x,Ly2)=h(L,). The
boundary conditions imposed dm should be compatible
with Ampere’s lawh(L,) —h(Ly,) =4l obtained by inte-

(12
_ ) gration of Eqs(13) and(15) overy, where
Here, Eq.(9) is the usual GL equation for the bulk order

parameter. Relationd 0) are the usual GL boundary condi- . .

tions at the superconductor/vacuum interfaces. Boundary lEf yzdyjnx(x,y)=f yzdyjn a1(Y) (19)

conditions(11) and (12), describing the suppression of the Ly Ly ’

order parameter due to the Josephson currents at the

superconductor/insulator interfaces, are of the type derive the total current in th& direction. Throughout this paper,

by de GennéZ for a single junction. depending on a physical situation under consideration, we
By contrast tof,,, the variablesA, ,A, are defined in the will employ three types of boundary conditions bn

whole regionR. For these variables, continuity up to the

second-order partial derivatives at the superconduc- [ h(Ly)=h(Ly)=H, (i);

tor/insulator interfaces should be assumed. The correspond- h(Ly)=H—2ml, h(Ly)=H+2al, (i); (20

ing Euler-Lagrange equations are

h(Ly))=H, h(Ly)=H+4al, (ii).
dh(x,y) 1 oY) [ddn(x.y)
T Tax 28 ZA(T) 3y —2eA/(x,y) As usual, the Maxwell Eqgs(13) and (14) yield the
current-continuity equations inside tisdayers:
=4mjn(XY), (13
hxy) _ 1S9 [ogaey) oo o 2 VATROWIVidn(xy) ~2eACLY) 1} =0. (21
gy  2e \N¥(T) X Adxy
=4 (%), (%Y)eRs; (14) The conservation of Josephson interlayer current is readily

verified from Eq.(15). Using Egqs(14) and(15) and assumed

continuity of oh/dy, we arrive at the boundary conditions
ah(x,y)

=4mjof,(—a/l2+np,y)

ady
. [(M”(X’y)—ZeAx(x,y))fn(x,y)
><fn,l[a/2+(l’l—1)p,y:|5|nq)n,nfl(y) X x=—al2+np
=4mjnn-1(Y), (15
Tinn-1 =3¢ fo-[@/2+ (= 1)pyIsin® - 1(y), (22)
74(3 /l ’
jo:%eN(o)goAi(T)* (16)
[(M—zwx,y) f,00Y)
ah(x,y) IX x=al2+np
=0 (xy)eRy . 17
o .
Here, Eqs(13) and(14) are the Maxwell equations in tH& :2_50fn+1[—a/2+(n+1)p,y]S|n(I>n+1,n(Y), 2

layers, withj,, being the intralayer supercurrent densities.

Equations(15) and (17) are the Maxwell equations in the reflecting the continuity of th& component of the supercur-
barrier regions, withj, ,_; being the Josephson current den-rent at the internal interfaces= +a/2+np.

sity between thath and the (—1)th layers. Relatio16) is Integrating Egs(9) and(21) overx and applying bound-
the definition of the Josephson critical current density in aary conditiong(11), (12), (22) and(23), respectively, we ob-
single SIS junctiort® tain very useful integrodifferential representations
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F(xv) (x y)——fs(x V)= ZA(T) compatible with boundary conditiori4¢8) and constraint re-
e me lation (26). The requirement of compatibility with the
current-conservation law25) automatically yields another

Xig(y [Vi¢n(x,y)—2eAi(x,y)]2fn(x,y) set of constraints
2T Pfn(X,Y) fo(—ai2+np,y)f,_s[a/2+(n=1)p,y]sin® ,-1(y)
&) ay* =fy(a2+np,y)f [ —a/2+(n+1)p,yIsin® ;1 4(Y).
_ald¥(T) (28)

ag. (n(—a2+npy)+fa(al2+npy)

ato The above procedure is formally equivalent to minimization

—f .. [—al2+(n+1)p,y]cosd of Eq. (5) with respect to independent variations 4f and
il ( Pyl n+1a(Y) dp,ldy . As this class of variations o$,, and d¢,/dy is

—f,_i[al2+(n—1)p,y]Jcos®, ,_1(y)}, (24  larger than that employed in deriving E@5), we can argue

that Eqgs.(27) and (28) provide the sought necessary condi-

2 — tions for the true minimum of the free-energy functiof@).
NI Y[ pa(X,y) dy —2eA(X,Y) ]} The physical meaning of Eq&7) and(28) is quite trans-
ay parent. Constraint&7) minimize the kinetic-energy term in

Eq. (5 with respect to Vvariations d¢o,(X,y)/dy

= L{fn( —al2+np,y)f,_[al2+(n—1)p,y] — dPpn(X,y)dy+ o, (y), wheredy,(y) are small arbitrary
2ago functions ofy. They show that the average intralayer currents

xsin®, _1(y)—f.(a/2+np,y) in they direction are always equal to zero, and, as a result.

Xfppal—a2+(n+1)p,ylsin®,.10(y)}, (29 h(—a/2+np,y)=h(a/2+np,y) (29)

[see Eq(13)]. These constraints appear already in the case of
decoupledSlayers. By contrast, constrain{®8) are uniquely
imposed by the Josephson interlayer coupling. Their function
is to make the Josephson energy stationary with respect to
variations ¢,(x,y)— ¢n(X,y) +¢,(y) and to assure the
conservation of the total Josephson curret neighboring
barriers[see Eqs(15) and(19)].

As no other conditions are imposed on the variables, we
can satisfy Eq(28) by choosing

where (x,...)E(l/a)fi’i,*z’l”np(x,...)dx denotes averaging
over the interval-a/2+np<x<a/2+np.

By summing Eqgs(25) over the layer index, integrating
and applying boundary conditiori48), we obtain the inte-
gral

+oo P (X
2 fixy) %—%Mx,y) =0, (26

which is, physically, the conservation law for the total super-  fn(X,Y)=fn_1(x=p,y)=f(x,y),f(x+np,y)=f(xy),

current in they direction. Mathematically, Eq26) has the (30
form of a constraint relation between variablas,,/dy and
A, .2>%To find the rest of constraints of the theory, closing @i 1n(Y) =P n-1(Y)=D(Y). (3D

the system of equations, we must minimize the functigbpl
with respect top,, and d¢,,/dy.

By virtue of fundamental identitie€8), a naive variation . .

) . . S/I superlattice in the GL regime.

of Eq. (5) with respept togy, (with a_lrb|trary O¢y at the Constraintg27), (28), and their corollarie$29)—(31) be-
boundgne‘sdoes not yield new e_quaﬂons. Indeed, the corre—Iong to key results of this paper. Derived by means of a
sponding Euler-Lagrange equation reduces to the Conservﬁ'gorous mathematical analysis of the impact of gauge in-
tion law (21), while surface variations merely reproduce

oy N - variance, they are not restricted to the functiof@l, but
boundary condition$18), (22), and(23). Considering varia- X .
. should hold for any superconducting weakly coupled peri-
tions of the type y(X,y)— dn(x.y)+ €tn(y), y ouP g weay coupiec p

) odic structure. To illustrate their importance, we point out
IPn(X,Y)/ 9y — I hn(X,y) Iy + Ea‘ﬂ“(y)/‘?y’ where €15 a  iat Eqs.(28) and(29), for example, completely rule out any
sm.all parameter and/n(y). are arpnrary funct|ons. oy, we possibility of single Josephson vortex penetratidand tri-
arrive at Eqs(25).. To obtain genuinely new equations, mini- angular Josephson vortex lattit@roposed without appro-
mizing Eq. (5) with respect to¢,) e_md dépn/dy, we must priate physical and mathematical justification. On the con-
enlarge the cIa;s of qllowed variations. . . trary, they imply that the distribution of the local magnetic
A mathematically rigorous approach to this problem is a

. : Sield due to the Josephson vortices has, in general, the peri-
follows. While varying ¢n(x,y)—>¢n(x,y_); 5¢n(Y), odicity of the multilayer, as recently verified
Ihn(X,Y)]9Y— dpa(X,Y)I 0y + 0 8¢hy(y) /9y, With  S¢pn(y) experimentally* It should be noted, however, that although

being sma_ll arbitrary fl_mctions o ins_tead of integrating by the role of constraint$28) and (29) in minimizing the free
parts, we impose additional constraints energy and closing the system of Euler-Lagrange equations
for f,, ¢,, andA has not been realized until now, relations
dpn(X,Y) ) o 5 (30) and(31) were implicitly employed in phenomenological

gy 2eAY)=0, @7 calculations oH ¢, 21274 2\Moreover, relations of the type

These relations finalize the determination of a closed, com-
plete, self-consistent system of mean-field equations for a

f2(x,y)
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(27), (30), and(31) were used by Theodorakisin his par- G2A(X,Y)
ticular exact solution of the LD model in a parallel field. 2 0 (xy)eR (34)

The equations of this subsection admit exact solutions in

two limiting situations: the single-junction case, whan "
1 9°AXY)

>max{(T),\(T)}; the thin-layer limit, when ¢&;<a - =i f2 ; R - (35
<minldDAM.a~ & W) (W=W,=L,,—L,, is the length ~ 4m ayax 1o VSO0 (0 ERe i (39
of the Slayer in they direction. The single-junction case is
well known. The thin-layer limit will be extensively dis- de(y)
cussed in the next subsection and in Sec. Ill. NGy 2eA(x,y)=0, (X,y)eRs; (36)
B. The thin-layer limit IAXY)
The mean-field equations of the previous subsection allow h(xy)=—0r— (xy)eR, (37)
remarkable simplification in the thin-layer limit, whegy
<a<min{Z(MNT),a 1 & W -
First, we can neglect thedependence df defined by Eq. f(y)—f3(y) —4e*A(T)[A*(x,y) —A(x,y)?1f(y)
(30): f(x,y)=f(y). Second, fixing the gauge by the condi- d?f(y)
tion D 2
we can neglect thex dependence oth, as well: ¢,(X,y) ~ag YY),
=¢n(y). In the gauge32), @y, - 1(y) = dn(Y) — dn-1(Y),
and Eqs(31) become (xy)eRs. (38
Grs1(Y)+ D 1(Y)=200(Y), dn(Y) — bn_1(Y) = d(Y), These equations, of course, should be complemented by con-
tinuity conditions onA, dA/dx and boundary conditiond.0)
with the solution and (20).
It is worth noting that an immediate consequence of Egs.
DY) =no(y)+x(y), (33 (34) and (37) is independence of the local fiehlfrom the

coordinatex in the whole regiorR: h(x,y)=h(y), —o<x
< +o0. This result is fully compatible with the requirement
(29) and demonstrates that the intralayer supercurrents in the
thin-layer limit are unable to screen out the magnetic field:
The situation is very familiar from the physics of isolated
superconducting films wita<\ (T).1#422:25

Our next objective is to eliminate the vector potential and
obtain a closed set of equations involving orflyand ¢.

whered(y) is the coherent phase differenitee same for all
the barriers and x(y) is an arbitrary gauge function, al-
lowed by particular gauge transformatiows,(y)— ¢,(y)
+x(y), A(Xy)—A(X,y)+(1/2e)[ dx(y)/dy]. Without any
loss of generality, we can sgt=0.

In view of independence dfand ¢, from x in the thin-
layer limit, the physical meaning of constraii#y) and(28)
becomes even more obvious. Thus E(8) are now the . ; )
conditions of stationarity of the Josephson energy with re_‘I‘Equanons(ZS) an,<,j(35) can be easily solved fokin the nth
spect to all allowed variations ab,. Due to Eqs(27), the elementgry cell Rfj: Rs,URb, (theslayer pI.u.s the adja-
term in Eq.(24) responsible for the kinetic energy of the cent barriey. Applying the continuity conditions oA,

intralayer currents becomes dAl dx, boundary condition$20), and the constraint relation
(36), we get
() 2 [Vign(xy) =26 A0GY) PH(XY) y
=xy A(X,y)= 477j0f duf?(u)sing(u)+H, |(x—np)
1
den(y) 2 '
—>§2(T)[ G 2eAxYy) | f(y) n de(y)
y oo (39
5 2e dy
_ 2T d¢n(y)_2 YOI
=8 (D) =gy —2eAly) | T(y) whereH,=H for Eq.(20) (i) andiii), andH,=H — 2 for
Eq. (20) (ii). Matching Eqg.(39) to an analogous solution in
+4e2A(T)[A%(x,y) — A(x,Y)?1f(y) the adjacent celR,,_; leads to the solvability condition
=4e* (A% (xY) =AY I (y), do(y) y
— . 2 -
which shows that condition€27) minimize the kinetic en- dy 87rejopry1duf (Wsing(u)+2epH,. (40

ergy for a given configuration of the vector potential

Concerning the Maxwell equations, the right-hand side ofEquation(40) is nothing but an analog of the Ferrell-Prange
Eq.(13) is of ordera?/A?(T) and can be discarded. Equation relation for a single Josephson junction, which can be readily
(14) can be altogether dropped. Thus we arrive at a closed setrified by differentiation. From this point of view, the quan-
of equations tity (8wejop) ~Y? should be identified with the Josephson
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penetration depth ;. Note that instead of the factonZn-  currents. The Maxwell Eq47) and(48), combined together,
tering the definition of\ ; in the single-junction cas®?’in  yield Eq.(45), as they should by virtue of self-consistency.
our case we get the periqd It is instructive to compare the above equations with those
With the help of Eq(39), we arrive at the expression for now circulating in literature concerned with the phenomeno-
the vector potential in the whole regioR=U,”__R, logical LD model. As already mentioned, neither mutual de-

=R,URy: pendence of the Euler-Lagrange equationsdigrandA, nor
fundamental complementary relations of the ty@€) and

1 dé(y) (28), minimizing the free energy, have been established in

Alx.y)= Ep dy X, (xy)eR. (41) previous publications. Left with an incomplete set of equa-

. . . _ tions, some authors make a non-self-consistent approxima-
This equation should be substituted into E(@) and (38). tion f,=1 and, regarding the phase differences, propose a

_ Inthis manner, we obtain a closed, complete set of equay athematically ill-defined infinite set of differential equa-
tions descrlblng_ a_thm-layefﬁ/l superlattice in an external tions with two different length scaldsee, e.g., Refs. 6 and
parallel magnetic field: 7). In view of the conditiong31), these equations reduce to
our Eq.(45) with f=1.
A(x,y)=Af(y) >, Sr_(x,y)exding(y)], (42 ~ Finally, the free-energy function_e(B) in the thin-layer
n " limit after a transition to the mean-field approximation with
respect toA takes the form

1, for (x,y)eRs,
Sr, (X,y)= " H3(T Ly [a 1
s, 0, for (x,y)e&Rs; O[f.iH]= o( )Wszf yzdy & _r2iy)+ = 14(y)
4 Lyt p 2
1 a\? d¢(y)ﬂ d*f(y)
1- 2N =] | —=—]| [f(y)+&T —f3 df(y)\?
[ OS] =5y [fo+ 8D —5 W) +§2(T)< d(yy))
al*(T)
- [1-cosg(y)]f(y)=0, (43 F(T)(a\?[de(y)\? al*(T)
ago + —| | —=| fA(y)+
12 \p dy aky
df _ df B
dy b =gy (b2 =0 (44 X [1-cosg(y)]F2(y) |+ 4€2C2(TINA(T)
d?g(y)  fA(y) 1 de(y) 2
——— =——%—Sin , 45 —
dy? N2 oY) (45) 2ep dy H ) (49)
\,=(8mejop) 12 46 where W,=L,,—L,;. As expected, minimizing Eq(49)
)= (8melop) (46) with respect tdf and the phase differeneg and neglecting
1 de(y) terms of ordera?/\?, we arrive at Eqs(43)—(45).
h(y)=2—d—, (47 The functional (49) and complementing Maxwell Egs.
ep dy (48) and (49) contain much more physical information than
1 dh(y) the phenomenological LD model in a parallel field: the do-
i(Y)=idY)=iof?(y)sing(y)= — _y (48) main of validity is exactly determined, all the coefficients are
4m dy microscopically defined, and a finitlayer thickness is ex-
with boundary conditiong20) and |Ef|[yzdyj(y), where plicitly taken into account(As we show in Sec. lll, this
y

f factor removes unphysical divergencetdf,.., typical* of
j(y) is thex component of the supercurrent dengityth in  the LD model) Another important difference is the propor-
the Slayers and the barriexsThey component of the intra-  tionality of the condensation energy in E49) to the layer
layer supercurrent, whose average over the layer thickness tisicknessa, instead of the periog@ in the LD functional.

equal to zero, within the accepted accuracy enters the theory The equations of the thin-layer limit admit exact solutions
only implicitly, via the average kinetic-energy term in Eq. for all physical situations of interest. These solutions are the

(43). subject of the next section.

Significantly, the coherent phase differenggthe same
for all the barriery obeys only one nonlinear second-order ll. MAJOR PHYSICAL EFFECTS
differential Eq.(45) with only one length scale, the Joseph- IN THE THIN-LAYER LIMIT

son penetration depth;, as in the case of a single
junction?%?” Due to the factorf?, Eq. (45) is coupled to
nonlinear second-order differential E@3), describing the
spatial dependence of the superconducting order parafeter Consider a semi-infinitgin the y direction multilayer
(the same for aI2I thzslayers. In the latter equation, the term with L, =0, L,,= +0 in the external fields

proportional toa“/p“ accounts for the average kinetic energy _
of the intralayer currents, while the term proportionaldo O<H=Hs=(epry) ", (50)
accounts for the kinetic energy of the interlayer Josephsowith boundary conditions of the typ@0) (iii ):

A. The Meissner state in a semi-infinite multilayer:
The superheating fieldH ;= (epn;) ~*
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h(0) = d¢ H 1 de
(0)_2_epd_y(0)_H' (+°°)—E)d—y(+°°)
=H+47wl =0, ¢(+»)=0. (52
For
oM (52)
ao ’
the Meissner solutions of Eq&13)—(48) are
Hexd —y/\;]

¢(y)=—4 arcta (53

——,
He+ VHZ—H?

. 2HH[H,+ VHi—H2]exd —y/\ ] 54
Y " [He+ VHZ=HZ2+H%exd —2y/\ 5]’

. HH, [[He+ VHZ—H?12—HZ exqd — 2y/\;]]exd — y/\ ;]
J(y)=—m[HS+JﬁS—W1 1L 2yMollextd ~y/k,

[[Hs+ VHZ—H?]2+H2 exd — 2y/A ;] 59
2 H2[Hg+ VHI—H?]? exd —2y/
fy)=1- 4al5(T) [Hs+ vHg 17exd —2y/\,] 56

ado  [[He+ VHZ—H2]2+H2exd —2y/\,] 1

The Meissner solutions persist up to the fieldg For|1]>1 max the field at the boundary I50)>Hg, and the
=(ep\;) ! that should be regarded as the superheating fieldtationary flow of the Josephson current is disrupted by the
of the Meissner state. penetration of Josephson vortices that move under the influ-
Indeed, as we will show below, the presence of Josephso@nce of the Lorentz force.
vortices inside an infinite multilayer becomes energetically Thus in fieldsH>Hs, only vortex solutions are possible.
favorable at a fieldH=H_...<H. As in the case of the Owing to the specific feature of the thin-layer limit, i.e., the
well-known Bean-Livingston barriét?2%%in semi-infinite ~ absence of screening by the intralayer currents, the “tails”
type-II superconductors, the penetration of Josephson vortRf magnetic field distribution of individual Josephson vorti-
ces at fieldsH,,..<H<H, is prevented by a surface barrier ces overlap in the layering direction, causing the formation

due to surface currenig0). [Compare the discussion of the \c,)f)rl:g(qu|2n\gt-?)\(/v§r§guf;etshéh;;gjes;%rr:no?fﬁgs?gﬁiﬁ?j@g
superheating field in the case of a single junctibmhere it b . g

is given by the expressioH = (2e\\;) ~1.] Equation(55) L%rg;iosr.]rﬁgogt?ﬁepm; gﬁ:ir:g%;lﬂinl_'mﬂmte layered
shows that|j(0)| increases in the interval<OH<H /v2, el
reaches its maximum value Bt=H/v2, decreases in the

interval Hg/v2<H<H, and vanishes ai =H,. Moreover, B. The lower critical field Hy..=2(meX;p)~*
the phase difference at the surfap@®), being a nonpositive, in infinite multilayers: Vortex planes
monotonously decreasing functionldfin the whole interval Consider now an infinitéin the y direction layered su-

Os=H=Hyg, also reaches its minimum valug(0)=—m at  perconductor with.,; = —, L,,= +, subject to boundary
H=H,. The appearance of the phase differerce can be conditions of the typ&20) (i), with H=0. The condition52)
attributed to the formation of a line singularity of the ampli- is supposed to be fulfilled. We are looking for a vortex so-
tude of condensatiot(r)(r)) at the outer interface of lution with one flux quantun®, per “elementary cell”, i.e.,
the barrier(“the Josephson vortex cor@!’ In addition, the  with

magnetic flux per “elementary cell” atH=H  is ®

=®dy/2, wheredy= /e is the flux quantum. 1 d¢
Finally, from the second of Eq¢51) and the condition ~ ¢(+%)—¢(—*)=2m, 5 (£*)=0, ¢(0)=m.
. . . p dy
H=<H, for the Meissner solutions, the maximal value of the (58)
total Josephson currefif =1 .« in a semi-infinite multilayer
is

The sought solution has the form of a kink:

. (59

H y
max:4_; =2\3jo. (57) ¢(y)=4 arctan exb—J
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This solution describes a single vortex plane positioned at
y=0. [Compare the phase differengg0)= = of Eg. (59
with the phase differencé(0)= — 7 of Eq. (53) at the sur-
face of a semi-infinite superconductor in the figdd=Hg,
when a vortex plane only starts to penetrate. After the actual
penetration, the phase difference changesya? expected
from general consideratiors]

Corresponding distribution of the local magnetic field is
given by

y
)\—J . (60)

Notice that at the vortex plartg 0)=Hg. The density of the
Josephson currents is
Y sin Y
A

s

h(y)=(epr;)~*cosh™*

FIG. 2. Vortex state in a finite LD multilaygin cross section
Josephson vorticegs.e., singularities of the amplitude of condensa-
tion) are conventionally denoted by black dots. The vortex planes
) _ [i.e., maxima of the microscopic magnetic fidgl¢ly) ] are shown by
At the vortex planej(0)=0. The Josephson currents vanish gashed lines. Arrows show the direction of supercurrents.
exponentially aty— = and reach their peak valuesat
+In(1+v2)A;~=*0.88\;. As regards the order parameter, pletely different from previously proposed ones for layered
we get superconductorpased on an invalid assumption of single-

2 _ vortex penetration.
4al(T)  exil —2y/\] 5. (62 From the proportionality of the right-hand side of E64)
agy (1+exd—2y/n]) to Ny, We infer that the total number of Josephson vortices
Notice that Eqs(60)—(62), considered in the half space (i.e., 1D singularities of the amplitude of condensatiam

O<y< -+, have exactly the same form as the solutions®"€ vortex plane is equal to the total number of elementary

e i X ! cells. This means that Josephson vortices penetrate all the
l(_?i);'(%)“:%ﬁ‘;’grrgg'rggnn':ew?huIg:?ryﬁ]rté?pt:;a%tnerg{al gsld cells simultaneously and coherently. As in the case of a
S S

the penetration field for a single vortex plane. single junctiort” the quantity
To find the lower critical fieldH ., at which the solution

j(y)=—2j,cosh 2 . (61)

fly)=1-

(59) becomes energetically favorable, we must consider the 024)\310 (66)
free-energy functional9), which in this case takes the form €
Q[é(y);H]—-Q[H]n -0 can be identified with the self-energy of a single Josephson

vortex per unit lengtiin the z direction. In higher external

i +oo A3 do(y)\? fields H>H.1..), we expect to get a “stack” oN, vortex
. Jo J y _ /
=NceW, 2] . dy 1_COS¢(V)+7 “dy planes with the total number of Josephson vortidbgs,;
=N, Neeys (see Fig. 2
1 [g(+2)—g(—=)H ©3
417 2e ! C. The vortex state in intermediate fieldsH .;.,<H

_ ) <[eaZ(T)]~L. The lower critical field H = w/epW
whereQ[H]y -o=Q[#=0;H] is the free energy in the ab- in finite-size samples(W<X\;): A paramagnetic effect
sence of vorticegN, is the number of vortex plangsand
Ncen= W, /p is the number of elementary cells. Inserting Eq.
(59) into Eq. (63), we obtain the free-energy contribution of
a single vortex plane:

Consider a finite-sizéin they direction multilayer with
—Ly1=Ly=L, W=2L, in the field range H...<H
<[eaz(T)] ! and in the absence of externally applied cur-
rent (1 =0), i.e., subject to the boundary conditiof®9) (i).
INjj, DoH The validity of the condition(52) is again assumed.The
Q[H]szl—Q[H]Nv:oz NegWy ——— ——|, upper boundeaZ(T)) ! for the field range means that we

64) rare concerned witll <H,..(T).]
Under these assumptions, the phase difference up to first
with ®y=m/e the flux quantum. From the condition order in the small parameteep\;H) 2 is
Q[Hclw]NV:1=Q[Hclw]NV:0, the lower critical field is

_ (-
Hc1w=2(7re|0>u)‘1=E o : (65) #ly)=2epHyt aN,(H) = 7o myzlsinZepHy)
T TP
—2epHycogepWH)]. (67)

as in the case of a single junction, apart from the faptor

the denominator instead of\2T).?®?’ As expectedH.;..  The constant of integratiomN,(H) accounts here for the
=2H /m<Hs=h(0). On thecontrary, Eq.(65) is com- phase shift due tdl, vortex plane$ per each vortex plane,
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see the last of Eq$58)]. The number of vortex plands, is
itself a singular function of the applied field:

®
D,

where[u] means the integer part of and®=pWH is the

epWH

Ny(H)=

: (68)

ks

flux through an elementary cell. This choice of the constant
of integration guarantees that the energy of the Josephson

couplingE; in Eq. (49) takes the minimal value for a given
H:

HZ(T)
A

ad

=

o

Ej[H]= -3

2T
wawzag( )[

a&

(69
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the vortex planeg=y, and in the planes of local minima of
h(y), y=y,*= w/2epH. When passing through zero in these
planes,j(y) changes the sign, as depicted in Fig. 2.

From Eq.(68) with N,(H)=1, we obtain the lower criti-
cal field H.qy in a finite multilayer withW<< ;:

(this expression should be compared with its analog for @and Eq.(70) yield

single Josephson junctitf.
The physical quantities corresponding to Egj7) are

(=N
h(y)=H{1—W[COSZepHy)—cos(epWFD]},
(70)
j(y)=(—1)NWj,sin(2epHy), (71
. aA(M|_ (—1)"cog2epHy)
f=1" e |1 T 2epem P2

~ V2epH{(T)[sin(epHW)| coshiv2y/{(T)]
1+2[epHI(M]®  sinHWIVZL(T)]

(72

[The term ZepHZ(T))? in the denominators of Eq72) can
only be retained ifp>a.]
In the limit W>¢(T), |y|<WI/2, Eq.(72) becomes

al’(T) (—1)"vcog2epHy)
2agy 1+2[epH(T)]*

Equations of the typ€67), (70), and(73) for N,=2m (mis
an integer were first obtained by Theodoraklsin the
framework of the LD model. Our Eq(67) for N,=2m

f(y)=1-

| o

should also be compared with an analogous solution for a

infinite single junction given, for instance, in Ref. 25.

The singular functioN, (H) introduces discontinuities in
Egs. (67) and (70)—(73). These discontinuities witness that
the system undergoes a first-order phase transition when
vortex plane penetrates or leaves the sanipdenpare with
the discussion of a single junction in Ref.)26

The positions of vortex planeg, correspond to local
maxima of the fieldh(y) in Eq. (70). [In the casg73), y,
exactly coincide with local minima of(y).] In the vortex
planesy=y, , the microscopic magnetic field is higher than
the applied one:

1
h(y,)=H|1+ W[H(—lwv cos(epWH)]}>H,
(74

which is expected for any vortex solution. The Josephson

current densityj(y) = (1/47)[dh(y)/dy] vanishes both in

T w? A
Heiw= ePW % Hereyy > c1e (75
The definition of the magnetizatiad,?
1 (+L
4WM_WJ,Ldyh(y)_H’ (76)
1 |sinfepWH)|
M(H)=— ,
167H(ep\ ;) epWH

—(—1)NcogepWH|. (77)

The magnetizatiori77) shows distinctive oscillatory behav-
ior and discontinuities aepWH— 7N (N is an integer,
when a vortex plane penetrates or leaves the sample.

Interestingly enough, the right-hand side of E7)
passes through zero and may have both signs. Thusb for
=pWH>®,, the sample exhibits a small paramagnetic ef-
fect, if N, ®@y<DP<(N,+ 35— Do/ m2D)Dy:

o

(78)

|sinfepWH)|
epWH

M(H)_1677H(ep)\3)2

cos(epWH)‘—

D. Fraunhofer oscillations of the Josephson current
in multilayers with  W<A\,, in the field range O<H
<[eaf(T)]~*: “Edge pinning” of the vortex planes

Now we proceed to the case of a finite-si@ong the

layerg multilayer with —L,,=L,,=L, W=2L in the pres-
nce of an externally applied currehti.e., subject to the
oundary conditiong20) (ii). (Compare the discussion by

Owen and Scalapirid of the single-junction caseThe rela-

tion (52) is supposed to hold. The applied magnetic fields are
within the range &sH<[eaZ(T)]™*.

Assuming W<\ ;, we can consideWZ/A§ as a small
expansion parameter in EGL5). In this way, we obtain

¢(y)=2epHyt 7N, (H)+ ¢

(DWW R
T 2| sin(2epHy+ ¢)
TP )
—2epHycos——-cosep—sing|, (79
@,
Lo . Do | mD|
(o.®)= | dyiy=ioW—gsing sing, (80
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2 In equilibrium, the Lorentz forcé, per elementary cell

()™ W2[ @y
cog2epHy+ o) acting on the vortex planes is counterbalanced by the pinning

o
m force f,, that can be defined ¥s
7d 81)
~COS=—COSe |, 1 dUg(Y)
P (Y)=— “pnt 7
foin(Y) Now, dy (85)

V)= 1— al*(T) B (—1)™ cog2epHy+ o) whereU ,(Y) is the pinning potential arising owing to the
)= a&, 1+2[epHi(T)]? shift by Y of the vortex planes from their equilibrium posi-

tions in the absence of the transport curterito evaluate the
V2epHZ(T)|sinlepHW)|cose coshiv2y/{(T)] pinning potential, we consider the increase of the free energy

1+2[epH{(T)]? SinHWv24(T)] in first order ina{?(T)/aZ,, caused by such a shift. Noting
that first-order corrections tb(y)~1 andh(y)~H do not
(—1)"2epH;(T)cogepHWsing contribute to the free energy, takingb(y)~2epHy
B 1+2[epHi(T)]? + 7N, (H), making the transformatiop—y—Y and substi-
tuting into Eq.(49), we obtain
sinfv2y/{(T)] -
X Costiwvaz(m])’ 62 U (Y)=0[H;Y]- Q[H;Y=0]
whereN,(H)=[epWH ] is the number of vortex planes, =Nce|,WWZ£ & sinﬂ [1_(:0{277(1) i”
®=pWH is the flux through an elementary celb,= /e, 2e m®@ | Do o W
as usual, and the constaat(|¢|=<m/2) parameterizes the (86)

total Josephson curremtgiven by Eq.(80). Equation(80)
yields the well-known Fraunhofer pattern, the only differ- It is very instructive to rewrite Eq(86) as
ence from the single-junction case being the occurrence of
the periodp in place of 2 (T).2%2"Note that the first zero of 1 &y ,
the Fraunhofer pattern, by virtue of E@5), corresponds to Upin(Y) = NeaWWoro — 2 [2j(+LY=0)+](-L}Y)
the lower critical fieldH.,y, . In the absence of the transport
current, i.e., fore=0, Egs.(79), (81), and (82) reduce, re- —j(+L;Y)], (87
spectively, to Eqs(67), (70), and(72), as they should.

The self-consistency of our calculations can be easilyvhere
verified by means of Ampere’'s lawh(+L)—h(—L) . N
=4, Itis assured by terms proportional W¢?/\ 2 in Egs. J(=LY)=(=1)"josin(+2epHL+2epHY)
(79) and (81) that explicitly take into account the effect of
self-induced fields. Although E@80) was first derived in the
framework of the LD model in Ref. 7, the authors of that s .
publication did not calculate the phase differences self-the emergence of additional surface currentslon th_e opposite
consistently and did not evaluate the local magnetic field ir?Ide of the superconductor. AtepHL==N+35 (N is an

first order inW?/\2. As a result, they arrived at an incorrect integey, j(—L;Y)=—j(+L;Y), i.e., these currents flow in
conclusion that Fraunhofer oscillations bfcould be ob- the c_)pposne directions, and the pinning poten_t|al regches its
’%:axmum. On the contrary, atepHL==N (N is an inte-

are the surface currents in the presence of the ¥hifVe see
that the pinning potential fofY|< w/4epH arises owing to

served in the absence of Josephson vortices. Unfortunately,

this misunderstanding is shared in some other rece en, J(_L;Y):J.(JFL;Y)' l.e., the surface currents flow in .
publication®! Therefore we provide below a detailed and € same dlre(_:t|0_n and muf[ually gompensate each other in
rigorous clarification Eqg. (87), the pinning potential vanishes, and vortex planes

As we see from Eq(81), in the presence of the transport freely penethratg or Iegve tfhi_samp@mp?rﬁ with thef dis- .
currentl, the vortex planes are shifted by the Lorentz force to?nlzsnsiltcemmajlziIaeye(ragtl)r:mrlgHo)t'l'lzesiﬁtrlg r::: ctur(ree?tl:il?s oa:‘lf)svml_
new equilibrium positionglocal maxima of(y) J: in the same direction and mutually compensate each other
when the magnitude of the shif¥] reaches the valugy|
Vo=yy— ¢ (83) =Ymna=ml4epH. Moreover, the pinning potential vanishes

VooV 2epH’ for &> d,.

From Egs.(85) and(86), we obtain the pinning force for

wherey, correspond to local maxima of the right-hand sidethe shiftY:
of Eq. (81) for ¢=0. The local magnetic field in the vortex

planes now is 27D Y
1:pin(Y):_I D, W;q) D,
_ 1
h =H|1+ —F—
(yo) 4(ephjH) I(ZWCD Y_(b N cho Ca®| (27D Y
D, w1V e 13 "o, W)

X[14+(—1)N cogepWHcose] |>H. (84 (89
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From these expressions we infer that the maximal value oéquations: for the od®l,=2m+1 (m=0,1,2...) and the
the pinning force [fy, for given flux ® is fgﬁx evenN, =2m number of vortex planes. Both of them have
=[1(|7/2]; )| D. the usual form of Mathieu equatioifsee the Appendix As

In the presence of the transport currefip; @) [Eq.(80)],  to the boundary conditions, it is convenient to také.
the shift of the positions of the vortex planes, according to=L,,=L=W/2 and, by symmetry, consider E1) in the
Eq. (83), is Y=—¢/2epH, with the maximal equilibrium interval O<y<L, with
value|Y|=Y.=mn/4epH. Taking into account the fact that

in equilibriumf, = —f;;,, we arrive at the expression for the df _ df _
corresponding Lorentz force: dat (0)= at (epHL)=0. (92
fL=—1(¢;P)P. (89 The critical parameter$, andH,, are now determined by

This expression was to be expected from genera‘he smallest eigenvalue of the boundary proble@) and

considerationd? which prescribe for the magnitude of the (92). e N .

Lorentz force the relatiotf, | =|I|®, wherel is the transport In an infinite in they direction multilayer {—), the
current. It is therefore absolutely clear that the stationar)Pnly bounded at the |nf|n|_ty solutions of E(@1) are periodic
Josephson effect becomes impossible if the magnitude of thdathieu functions, —with fy _om.1(t)=Ceo(t.q) and
transport currenii| exceeds the valug,,,=|I(|7/2;®)|, be-  fn, —2m(t)<cey(m/2—t,q) corresponding to the smallest ei-
cause in this situatioff, |>|f;|, and the vortex planes are genvaluesy(q) anday(—q)=a(q), respectively. Thus the

completely depinned. critical parameters are given by the equation
Notice that the physics of the Fraunhofer pattern in single
junctions was discussed in terms of a series of first-order [A(T,H)]e=Ta0(q) ]coe » (93

phase transitions due to successive penetration of Josephson . _ _ .
vortices long agd® A qualitative explanation by means of Where one should fix to obtainT... or, alternatively, fixT

the edge pinning was proposed in the book by Tinkfam.  to obtainHc... As in the case of Eq73), local minima of
general, the pinning of Josephson vortices in weakly couple¢he reduced order parametit) in Eq. (91) correspond to
superconducting structures withi<\ ; is completely analo- the positions of the vortex planes: in_cpnve_ntional units the
gous to the pinning of Abrikosov vortices by the edges of adistance between two successive minimaig, = m/epH,

thin [compared to\(T)] type-Il superconducting filrf which gives the fluxb=Ay,pH=®, per single vortex.
Finally, we observe that the magnetization in the presence B
of the transport currerit(¢;®), according to Eqs(76) and 1. The critical temperature T..
(81), is given by For magnetic field$ in the range
1 sinfepW
M(H):_167TH(ep)\ )2 | erE)NHH)' H<+, (94)
J agox(&o/l)
—(—1)NvcogepWH)|cose. (90)  the general expression fdr.. resulting from Eq(93) is
>dg, N P<P<(N,+35—Dy/7P)D,, we again obtain 12 3 aé
the paramagnetic effecompare with Eq(78)]. N
+(epH)ag —)” (95
E. Critical parameters of an infinite multilayer: T..., Hcw 2aty(epH)?
At the point of the second-order phase transition to the | weak fields
normal state,f?> can be considered as a small parameter.
Thus the termf® in Eq. (68) and the right-hand side of Eq. 1 o ®, o
(70) can be dropped. Applying boundary conditiai2®) (i) H< ep 2a§0: o VZag , (96)

yields ¢(y) =2epHy+ 7N, (H). With this phase difference,

the linearized version of Eq19) can be transformed into  pair preaking effect of intralayer supercurrents is unimpor-
tant, and we get

d?f(t)
——— +[A(T,H)— (- 1)™*q(H)cos 2]f(t) =0,
dt ™I(3) «
Tew=Teo| 1= =5 &ox(&o/l) \ gz ePH|. (97)
AT H)= 1—(1/3)e?H%a%(T) — al¥(T)lak, ago
’ [eps(TH]? ’ In strong fields
o
aH) =572 (91) ® @ ®
2 H Qo [ @ Lo 0
aéo Pty 7 V288, " e ) 9

where we have introduced a dimensionless variable
=epHy: f(t)=f(t/epH). Hence one gets two independent Eq. (95) becomes
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_ 743 , 1,0, @
Tew=Teo 1_T§oX(§o/|) 3¢ Ha +a_§0

cog2epHy). (106

(=) a? al*(T)
” T T

(99 This expression should be compared with E£B) for inter-
The term proportional ter takes into account pair breaking mediate fields in the same temperature raf@). In the
by the Josephson currents, locally equal to the critical dhes. limit =0 (no Josephson couplingEq. (105 goes over into
In the absence of weak coupling=0), Eq. (99) reduces to the well familiar one for an isolated thin superconducting
the well-known expression for an isolated thin superconductfilm.???>1* Equation (105 explains the origin of the

ing film.224 well-known** unphysical “low-temperature” divergence of
the LD model: taking a formal limia—0 while keeping
2. The upper critical field H,., al?(T)laéy=const, we geH ,..(T)— .
For a fixedT, Eq. (93 yields an implicit expression for Aside from microscopically determined parameters, de-
H.,.. as a function off: pendence(102 for layered superconductors was first ob-
¢ tained within the framework of the LD mod&F*1*Expres-
1/a\? al%(T) sions of the typg105) were derived phenomenologically in
[eps(T)Hcz.]? 5(5) +ag 2agepl(TH ]2” Refs. 12 and 13. In all these publications relati¢88 and
0 oz (31) were implicitly adopted as physically plausible assump-
. al?(T) (100 tions. The very fact that these results are contained as limit-

a&, ing cases in our Eq$42)—(48) once again demonstrates the
) ) o generality and self-consistency of the approach of this paper.
This expression exhibits the so-caléBD-2D crossover, Finally, we emphasize that the concept of Josephson vor-

expgrimentgrzlly verified, for example, on Nb/Ge {ex planes applies both in limitd01) and(104). Contrary to
multilayers®” The crossover temperatufé can be conven- previous suggestiorfé;’ there is no transition from the

tionally defined by the relation{*(T*)/a&y=1. “Abrikosov-core regime” to the “Josephson-core regime”
For temperatures close W, when at T*: The existence of Abrikosov vortices with normal
wl2(T) cores in the thin-layer limit is not allowed by the solutions of
>1, (101 Eq. (91) [mathematically, the function gé,q) is strictly
ao positive).
Hepo(T) = P \/a_‘fo F. Size effects: Oscillations ofT .y
V2mpy(T) el (T) Aside from a special casepHL=7wk/2 (®P=kd,, k
=0,1,2...), for multilayers with finite Slayer lengthW
- 12 (DO\/a_go _ l) =2L only approximate solutions of the boundary problem
7V2((3)ma PEX(&ol1) Teo/ (91) and (92) can be obtained. Using Galerkin's methtd,
we have found two groups of solutions corresponding to the
(102 . .
smallest eigenvalug ], :
In this 3D regime, the positive kinetic energy of small inter-
layer Josephson currents in E49) competes with the nega- f#,NV=2n+1(t)occosr(ut)cq,(t,q),

tive intralayer condensation energy. The superconductivity

of the Slayers is strongly depressed by the vortex planes, as -

a comparison between local maximg,, and local minima fun,=2n(t)=cosiutice| 5—t.qf, (107
f min Of the order parameter shows

|(deey/dt)(epHL,q)|
fmi f 22T =coth(uepHL , (108
fmax  f(yy=m/2epH;y.) aé
(103 [A(T,H)]e=[a0(a) ~ 2], (109
At lower temperatures, when and
2
al(T) <1, (104) f, N, =2n+1(t)ccogwt)cey(t,q),
ao
a
oo e V3D, 1 af¥(T) 0 fv,NV=2n(t)°(C05{Vt)CQ)(E_taq>1 (110
_ _ : |(deey/dt)(epHL,q)|
In this 2D regime, the energy of the Josephson interlayer v=—cot(vepHL) AL , (111
coupling is small relative to the intralayer condensation ce(epHLa)
energy®® The transition to the normal phase occurs owing [A(T,H)].=[ac(q) + »?] (112
) [} c»

mainly to pair breaking by the intralayer supercurrents, and
the order parameter is almost unperturbed by the vortewhere Eqgs.(108) and (111 implicitly define parameterg
planes: and v, and Egs(109 and(112) determine the critical point.
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From Egs.(109 and (112 we see, that the eigenvalue  Thus in a finite-size multilayer the critical temperature
corresponding to the eigenfunctiorfs, is smaller than can exhibit the same oscillations with changing the flux
ag(qg), while that corresponding to the eigenfunctidinsis  through the elementary cell as the total Josephson cukrent
larger. Physically, this means that with, in a finite does[see Eq(80)]. However, a significant difference lies in
multilayer we can achieve higher values of the critical pa-the fact that while the oscillations dfare observable in any
rametersT, andH, than in an infinite onécompare with  types of Josephson systems, the oscillation3 ofs an in-

Eq. (93)]. At epHL=wk/2 (b=kd,, k=0,1,2...), these teresting feature, because in a single Josephson junction with
equations yieldu=»r=0. thick superconducting electrodes any shiftsTefare negli-

For epHL—,u is a bounded, oscillating function of gible. In the limit®>d,, Eq. (115 reduces to Eq(99), as
epHL and does not tend to any limit. On the contrapy, anticipated.
—a/2epHL, whenepHL—oo. This signifies that at certain
values ofepHL the solutionf , becomes unstable and gives
way to the solutionf, with lower values of the critical pa-
rameters, presumably by means of a first-order phase transi- Based solely on the microscopic Hamiltonidh), we
tion. As the parameters and v can enter the free energy have constructed a self-consistent theory that provides a
only via the combinationgepHL and vepHL, we expect comprehensive, unified picture of physical effects SH
the transitions f,—f, to occur when [uepHL],  multilayers in parallel magnetic fields in the GL regime.

IV. DISCUSSION

=[vepHL], , hence the relation Employing rigorous technique of variational calculus, we
have derived in Sec. Il fundamental constraint relati(#¥s
cof uepHL], = —cott{ uepHL], and(28) and solved a nontrivial problem of exact minimiza-

tion of the microscopic functiong). Up until the present
study, such a problem has not been solved even for the much
simpler phenomenological LD functional. Surprisingly, even
epHL|(dce,/dt)(epHL,q)| mutual dependence and incompleteness of the Euler-
Ceg(epHLQ) [nwepHL], tanH nepHL], Lagrangg equatlons faﬁn andA were not noticed in previ-
€o ' ous publications. This incompleteness fully manifests itself
~2.33, (113 in unphysical degrees of freedom and an irrelevant length
scale of equations for the phase differences proposed, e.g., in
while for Refs. 6 and 7: Making use of constraints of the typ®&, one
can reduce these equations to our E4p) with f(y)=1.
epHL|(dce,/dt)(epH L’Q)|>2 33 (114  Emerging as a direct mathematical consequence of such gen-
ce(epHL,Q) " eral physical properties as gauge invariance and Josephson

. N ) . interlayer coupling, constraint®7) and(28) should apply to
the system “chooses’f, with Eq. (112). The condition o, 5 nerconducting weakly coupled periodic structure. The
(113 is met, for instance, whe=pWH~k®, (W=2L, discovery of their role in minimizing the free energy makes
k=0,1,2...). Because of the oscillating character of thefiher progress in the development of the theory possible.
left-hand sides of Eq¢113) and(114), the system oscillates In the thin-layer limit which corresponds to the domain of
between the states with), andf,, with increasingepHL For 4jigity of the phenomenological LD model, we have de-
larger epHL, the domain of existence df, becomes nar- jyeq a remarkably simple, closed set of self-consistent mi-
rower, while that off, widens. ForepHL—, the solution  ¢roscopic mean-field Eq§42)—(48) and the generating func-
f, goes over smo_othly into that of an infinite multilayer.  tional (49). The fact that the solutiof67), (70), and(73) of

We want to point out here that the exact character of thgnese equations describing the vortex state in an infinite
transitionsf,—f, can only be established by solving the mytilayer reproduces the result obtained by Theodotakis
nonlinear boundary problem and comparing the correspondp, the framework of the LD model is not an occasional co-
ing free energies, which is beyond the scope of the presefcidence. The application of the mathematical methods of
paper. o this paper allows us to obtain the complete exact solution of

_As an important application of the above results, we conthe | D model in parallel fields as wefthis solution will be
sider the critical temperature of a finite multilayBfy in the  yyplished elsewheyeThe resulting mean-field equations are
field range given by Eq98), and withW<px,/\(T). Un-  merely a limiting case of our Eq&42)—(48) for a/p—0. As
der such circumstances, the conditidi3 is satisfied, and oy equations contain more physical information, we propose
the solution of Eq(108) is that they should replace the LD model in parallel fields.
Concerning some major physical results of Sec. Il in the

with the numerical solutiohuepHL], ~2.37. Thus the so-
lution f,, with Eq. (109 is realized when

ul= @ & sinﬂ thin-layer limit, we have completely revised previous
ago(epH)? 7@ |7 @g |’ calculation8® of H; based on an invalid assumptioganof
. o . single Josephson vortex penetration and refuted the cohcept
which on substituting into E¢109) yields of a triangular Josephson vortex lattice. Our consideration
7¢(3) 1 w envisages simultaneous and c_oherent penetration in'the .form
Tew= TcO| 1— ———&x(& /)| 5 e?H%a%+ — of the vortex planes. Our prediction of the superheating field
12 3 ato H, for semi-infinite multilayers implies hysteretic behavior

of the magnetization. In the vortex state, the magnetization
)H (115  should exhibit jumps due to the vortex-plane penetration. We
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FUNCTIONS

have fully clarified the widespre&d! misunderstanding of

the physics of the Fraunhofer oscillations: our self-consistent

treatment of the Josephson effect unambiguously proves that
the Fraunhofer pattern occurs due to successive penetration
of the vortex planes and their pinning by the edges of the

sample. Our prediction of novel size-effects in finite multi- d?f

layers, a series of first-order phase transitions to the normal W+(a—2q cos2)f=0.
state and oscillations of the critical temperature versus the
applied field, should stimulate further experimental investi-

gation.

The results of our investigation directly apply to artificial
superconductor/insulatr and superconductor/semicon-
ductor*®"* multilayers. As regards the high: supercon-
ductors BSCCO and TBCCO, believed to be atomic-scale
weakly coupled superlatticé8 the application is restricted

by the limitation (4). However, we expect that such basic eigenvalueay(q) is a nonpositive, continuous, even, mo-

features of the thin-layer limit as simultaneous and COherethotonously decreasing function af. The corresponding

penetration in the form of the vortex planes will hold. For iontinction cel has a periodr is even and strictl
high-T. samples exhibiting a clear Fraunhofer patt&rme ogsitive. cs(l.a) P ' y

anticipate the presence of the related effect of oscillations o For 0=q<1, we have the asymptotics
the critical temperaturél15) as well. '

As to direct experimental verification of basic concepts of
our theory, the best evidence is provided by the recent mag-
netization and polarized neutron reflectivity measurements
on Nb/Si multilayers in parallel fieldsThese measurements
clearly revealed simultaneous penetration of Josephson vor-
tices into all Si layers and a companion effect of jumps of the
magnetization, exactly as predicted in our paper. The distri-
bution of the magnetic field attributed to Josephson vortices
was found to have the periodicity of the Nb/Si layering, in
agreement with the general consideration of Sec. l[Fhe
experimental conditioffsdid not fully match the require-
ments of the thin-layer limit for which the screening by the
intralayer currents could be neglecte&inally, it is quite
natural that our general implicit expressiofl00) for  but there is no uniform asymptotics forge q). In this case,
Hc2-(T) exhibits the so-called 3D-2D crossover, well- the behavior of cgt,q) may be characterized by the formu-
known from the experimenif, and is free from the unphysi- |as
cal low-temperature divergence, typitabf the phenomeno-
logical LD model.

The canonical form of the Mathieu equation&*{&
(A1)
If f(t) is a solution to Eq(Al), thenf((7/2)—1) stisfies

d?f

W+(a+2q cos%)f=0. (A2)

In the class of periodic solutions of EGAL), the smallest

: (A3)

1], ¢
t,q)~—|1— 5cosA+---
ce(t,q) \/Q[ > €S

2

ao(q)%—q—Jr....

. (A%)

Forg>1,

ao(q)~2+q—2q, (A5)

aw

(:Q)('[,q),v(E q1/8 7\fﬁco§t/4’ |COSt|<—'

1/4 2 1/4
) N (A6)
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