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Analytical description of the flux-flow mode in a long Josephson junction
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The flux-flow mode in a long one-dimensional Josephson junction is studied analytically. An approximate
steady-state solution of the perturbed sine-Gordon equation is derived in the form of a dense fluxon chain
accompanied by small-amplitude plasma waves. Next, some time-averaged quantities are calculated, making it
possible to evaluate the constant bias current and the constant voltage between the junction electrodes. The
analytical results are compared with numerical simulations both for the field distribution within the junction
and for thel -V characteristics.S0163-1829)12533-5

[. INTRODUCTION cal data, both for the field patterns within the junction and
for the I-V characteristics. Section V contains summary of
The flux-flow (FF) mode was suggested more than a de-the results; we discuss also some open problems and possible
cade agbas a simple mechanism of multifluxon propagationgeneralizations of the method.
in a long one-dimensional Josephson junction. The FF mode
appears for a sufficiently large external magnetic field ap- Il. FEORMULATION OF THE PROBLEM AND

plied in the junction plane, and can be described briefly as a APPROXIMATE ANALYTICAL SOLUTIONS
unidirectional viscous flow of fluxons, created at one end of o ) )
the junction and annihilated at the other. Fluxon dynamics in a long one-dimensional Josephson

Since the first publications on the FF phenomena, thdunction 'is described Dby the perturbed sine-Gordon
Josephson junction operated in the FF mode has attract@giuatiort”
considerable attention in view of possible applications, e.g., .
as a local oscillator for integrgted subr?fijllimeter-wavge Pxx— Pu=SiNG+ ad— 7, @)
receivers:® On the other hand, the FF mode is also of theowhere ¢ denotes the quantum phase difference between the
retical interest, since multiperiodic solutions of the underly-junction electrodesy is the dissipation coefficient, angis
ing sine-Gordon equation have not been thoroughly studie¢he normalized bias current density. The above equation is
so far. written in the dimensionless form such that the spatial coor-
Contrary to many experimental papers on FF phenomengjinatex is normalized to the Josephson penetration dagth
the theoretical results are scarce and confined mainly to disnq timet to the inverse plasma frequenmjl. We consider
rect numerical simulatioft$ or infinite expansions with re- a long junction, i.e., satisfying the relatiar>1, whereL is
spect to linear cavity modesOn the other hand, a purely ,q normalized’jﬁn.c;tion length. ’
analytical approach is based on the traveling-wave approxi- Tpe boundary conditions depend on the electrode geom-

mation, thus ignoring the boundary effebtsin this connec-  etry, and for the overlap structure can be writtehtas
tion, when many resultémainly experimental and numeri-

cal) have already been published, there is a need for an ¢ (—L/12)=h, (29
adequate analytical model, making it possible to describe the

mechanism of the FF propagation in a long junction of finite by (L12)=h, (2b)
length.

In the present paper we discuss such a simple modeY;’]hereh ?enotes the normahzeld ex:}ernallfn;g?(;\et:ccf: field. Ind
making use of exact multiperiodic solutions of the sine-IN€ Overiap geometry we neglect the seli-field eftects, an

Gordon equation, reported recenflythe boundary condi- the bias current _densiFy f_olloyvs from the apr(_)ximat_ion of
tions are satisfied by the FF mode interacting with smallthe transversal field distribution in a re@o-dimensional

H 11
amplitude plasma waves. The steady-state solution takingMction-

into account bias and losses is obtained by a simple pertur- L€t us consider first the lossless case<0,y=0), for
bation scheme, based on the energy baldrite. which the exact analytical solutions of Ed) are knowrn
The paper i,s organized in the following way: Approxi- It can be showh that the unidirectional flow of solitons

mate analytical solutions of the perturbed sine-Gordon equafluxons in the limit of a “dense soliton train” is described
tions are discussed in Sec. II. This section contains the maiiPProximately as

result of the paper, i.e., the approximate steady-state solution _ . 2

satisfying appropriate boundary conditions at the junction ¢=Q(loct wt) =4gsif Q(kx+ )]+ O, (3
edges. The approximate solution is then used in Sec. lll tavhere Q>1, gq=exp(—Q=/2)<1, and the dispersion rela-
evaluate some time-averaged quantities, like the constafibn is

current and the constant voltage measured across the junc-

tion. In Sec. IV analytical results are compared with numeri- 4qQ%(k*— w?)=1. (4)
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The normalized magnetic field within the junction is given The simplest solution of the above system of equations

by ¢,: yields
¢x=Qk—4qQkcog Q(kx+wt)]+0O(q?). (5 q(x) = const, (10a
Using the dispersion relatio®) and denoting the external _
magnetic field ahi=Qk we obtain F00=Qkx (10b)
1 p(x)=pe™, (109
p=h— ————cofh(x+v)]+O(¢?),  (6)
h(1—-v?) M (X) = KX, (100
wherev=w/k and 1-v? is the usual Lorentz factor. and substituting the solutiofi0) into Egs.(9) we obtain
One can see that the above simple expression reproduces
well all the characteristic features of the FF mode discussed aQw="1, (113
in the literature® In particular, we obtain a dense train of
overlapping fluxons separated byrth. As the external 40Q%(K*— w?) =1, (11b
magnetic fieldh increases, the fluxon train becomes more
dense and its amplitude decreases. 52— Kk?+Q?=0, (110
It is clear, however, that the boundary conditig@scan-
not be satisfied by the solutid6), since apart from the con- 28k=al). (11d)

stant termh it contains also the oscillatory term. Therefore

we have to consider a more complicated solution of @y. ~ The above equations describe the Ohmic current density, dis-
which in the lossless case describes the interaction of theersion relation for the FF mode, dispersion relation for the
fluxon train with quasilinear plasma waves. In the limit of damped plasma wave, and the relation between the damping
small amplitudes both interacting excitatiofise., fluxon factor 6 and the loss factow, respectively.

train and plasma waveenter the formalism additively and  Substituting Egs(10) back into the ansaté®) we obtain
we havé finally the approximate solution of the perturbed sine-
Gordon Eq.(2):

¢=Q(kx+ wt) —4q sif Q(kx+ wt)]
+peXsin(kx+Qt+0)+O(g?,p?). (12)

¢=Q(kx+ wt)—4q sif Q(kx+ wt)]
+p sin(kx+Qt+0)+0O(g?,p?), (7)

wherek and w are related by the dispersion E¢), as be-
fore, p, ® denote the amplitude and phase of the plasmahus, in the first-order approximation, the term describing
wave, respectively, while the dispersion parameteesd ) the FF mode remains unchanged as compared to the lossless
satisfy the relationc=+ ). case, while the only infuence of losses on the plasma wave is
In other words, the unidirectional fluxon train is accom-an exponential dependence of its amplitude.
panied by plasma waves of arbitrary frequency, propagating Let us consider now the flux-flow mode accompanied by
in both directions with a critical velocitycorresponding to two plasma waves propagating in opposite directions. Since
the normalized Swihart velocityQ/x==1. It will be  we are interested in a steady-state and strictly time-periodic
shown later that the proper choice of the amplitudes angolution, we assume additionalfy=Quw, i.e., we make the
phases of two plasma waves propagating in opposite direg@lasma-wave frequency equal to that of the FF mode. Denot-
tions makes it possible to satisfy exactly the boundary coning, as beforeQk=h and neglecting the higher-order terms,
ditions (2). we find
Let us consider now the case with bias and damping, i.e.,
the full perturbed Eq(l). We assume the solution to be ¢=hx+Qt—4gsin(hx+Qt)+pe”™sin(xkx+Qt+0,)
(multi)periodic, but allow both amplitudes and phases to de-

pend slowly onx. ReplacingQkx by 9(x) and kx by u(x) TP Tsin(iex— QL+ 0,), (13
we can write the most general ansatz in the form thus the space derivatiwg, is given by
¢=9(x) + Qut—4q(x)sin F(x) + Qut] by=h—4ghcoghx+Qt)+p; Ve + 5%e™ cog kx+ Ot
+p(x)sin w(x) +Qt+ 0]+ O(g?,p?). €) 1@, &)+ Py k2T %6 Cog kX — Qt+ @, + &),
Substituting Eq(8) into Eq. (1) and comparing two most (14)

dominant terms fog and p we find
. P where ¢é=arctan@/ ).

Fy— aQu=—17, (93 For given parametetsand(}, g follows directly from the
dispersion relation4), thus Eq.(14) has four degrees of
4q[(9,)°— (Qw)?]— 40y =1, (9p)  freedom:py,p,,01,0,. It can be easily shown that a proper
choice of these parameters enables the boundary conditions
Pyx— P(pey) 2+ pQ2=0, (90  (2) to be satisfied for arbitrar

Lengthy and tedious calculations will not be quoted here,
2Py Myt Pryy— Pa)=0. (9d)  we present only the final results:
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_aah r 1-2r2cog(h+x)L]+r4) M2 (153
Pz="d (k?+8%)Y2|  1-2r*cos2L+r8

1—r®sin (hF x)L/2]+r2(1—r?)sin (h=3k)L/2
®%=arctan( )sinl (h= x)L/2]+r%( )sin (h=3x)L/2] e (15b)

(1+r%cod (h¥ k)L/2]—r?(1+r?)cog (h=3k)L/2]

|
where r=exp(-4L/2), and the uppeflower) sign corre- Lz
sponds to the index (2), respectively. VQL:aﬁmW&dX- (20
IIl. CURRENT-VOLTAGE CHARACTERISTICS Calculating the average @§; we find
Having derived the approximate soluti¢h3) satisfying N 2 1, 1,

appropriate boundary conditiori2) we are in a position to (¢1)=07 1+ §F (X)+§G (x)]. (21

discuss some time-averaged, directly measurable quantities o ) i o

like the total current flowing through the junction and the Thus substituting Eq(21) into Eq. (20) and identifying the
constant voltage between the electrodes. To calculate tHEeduency() with the constant voltag¥ we obtain finally
current-voltage I(-V) characteristics we use a simple pertur- 1 (e

bation method based on the energy balahCe. y= av[ 14 — [FZ(X)JFGZ(X)]dX]. 22)
Let us consider the Hamiltonian 2L) -2

L2 1 1 One can see that the total current densitgonsists of an

H=f [—¢§+—¢f+(1—cos¢) dx. (16)  Ohmic term and a small contribution following from a non-
-2 2 2 zero Josephson term. In the nonrelativistic region, when
=0/h<1, the quantitied= and G are negligibly small and

the total current is equal practically to the Ohmic term. How-
dH L2 , P ever, in the relativistic limit ¢—1), the coefficients
E:f le('yd)t—ad)t)dx-l— NN (17 9,p1,P2, and consequently and G, become larger. As a
result, the integral contribution in Eq22) cannot be ne-

Differentiating with respect to time and using Ed) we find

According to earlier assumptions, we consider a steady—staﬁeleded’ giving rise to the so-called FF step.

and strictly periodic solution, hence the time-averaged
change of energy must be zero: IV. RESULTS AND DISCUSSION

o In this _section we compare analyticql expressions d_er_ived
f (7<¢t>_a<¢t2>)dx+<¢x¢t>|I:/E/2: 0, (18 above with numerical results, obtained by the finite-
2 difference implicit schemé& Examples of the magnetic field
distribution within the long junctionl{=10) are shown in

where(f(t))=(L1/T)fof(t)dt. Fig. 1 for different frequencie€, corresponding to different
The time derivative of Eq(13) is given by velocities of the fluxon trainand consequently, different
voltages on thd-V characteristios For the remaining pa-

$=Q[1—4q coghx+Qt)+pe™ cog kx+Qt+0 ) rameters we take realistic values=6, «=0.1, typical for

the FF mode. The solid line shows the analytical approxima-

_ — X _ 4
Poe T cosix—(t+0;)] tion [Eq. (14)], while the open circles — results of numerical

=Q[1+F(x)cosQt+ G(x)sint] (19 simulations — are shown graphically in a discrete sek of
values.
where Figure Xa) shows a fluxon train for moderate velocity
s =0.665, i.e., far below the relativistic limit. It is clear that
F(x)=—4q coshx+p;e” cog kx+0) the fluxon train is indeed dense, the average distance betwen

adjacent maxima being 1.048, in good agreement with the
theoretical prediction 2/h=1.047% However, we can ob-
serve also a weak dependence of the amplitude onxthe
coordinate, following from the interference of fluxons with
—poe” Xsin(kx+0,). plasma waves. The agreement between analytical and nu-
merical results is excellent, we can see the analytical solution
It is clear that the average value ¢f, corresponding to the reproducing perfectly all the details of the numerical data.
constant voltage, i¢)=Q for arbitrary x. On the other Similar results are shown in Figs(d and(c) for higher
hand, the boundary conditions imphky,(—L/2)=¢,(L/2)  velocities #=0.930 andv=0.977), closer to the relativistic
=h. Thus<¢x¢t)|E’E,2=O in Eq. (18), and the energy bal- limit. One can see the effect of interference between fluxons
ance can be written as and plasma waves to be much stronger than for Fig). 1

—pye” X cog kx+0,),

G(x)=4qsinhx—p,e™sin(kx+ 0 )
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12 T T T T T T T FIG. 2. |-V characteristics calculated analyticallgolid line)
8 8 & (b) and numerically (open circles The dashed line shows the
10 F gg 0 & . - traveling-wave approximation, i.e., theV characteristic calculated
g I%  ¢p i % &K without taking into account quasilinear plasma waves. The point
gl 30 4% fb 2% 98¢ f3 % A o corresponds to the field pattern shown in Figa)1
o 6 51 P e P 2 P SER % ¢ $ Fig. 1(a).] A worse agreement of the results follows from the
IRERISIRININIRIAY: fact that in the relativistic limit the amplitudes p,,p, be-
aBE 4P Th %P Bp BE BE W W - come too large, and the approximate solution, being in fact
Ab b Sp 3 B BB W ¢ an expansion with respect to small parameters, becomes less
o o8 % & B ¥ 4 accurate. It should be noted here that without plasma waves
€ % % § © taken into account we would have simply a traveling-wave
0 T R S S approximation[Eg. (6)], i.e., an oscillatory solution of con-
-4 2 0 2 4 stant amplitude in the form of a cosine wave on the back-
X ground of external magnetic field It is clear that such a
solution does not satisfy the boundary conditiéBsand is
12 1 M 1 M T v 1 N 1

not able to reproduce correctly the interference patterns
shown in Figs. &)—(c).

In Fig. 2 an analytically derivet+V characteristic is com-
pared with the results of direct numerical simulation. An
analytical approximatior(solid line) has been obtained by
evaluating the current density as a function of voltag&/
according to Eq{(22). Numerical simulationopen circles
has been performed by solving E@) for giveny and evalu-
ating the average value @, as{¢)=[d(t+T)—d(t) T
after a sufficiently long evolution when the time-dependent
solution can be regarded as a steady state. For comparison,
we show also thd-V characteristic calculated within the

O (') T 4 traveling-wave approximatiofdashed ling using Eq.(22)
with p;=p,=0, thus ignoring the contribution from plasma
x waves. Figure 3 shows details of th&/ characteristics and

FIG. 1. Comparison of the analytical approximati@olid line the hysteresis region in the vicinity of th_e FF step. T_he points
and the numerical result®pen circles for the magnetic-field dis- A B, andC correspond to the magnetic-field distributions,
tribution corresponding to different velocities of the fluxon tra@: ~ Shown in Figs. (8)—(c), respectively.
v=0.665, (b) v=0.930, (c) v=0.977. The remaining parameters  As before, in the nonrelativistic regidpoint A) the ana-
are:L=10, h=6, «=0.1. Iytical approximation reproduces perfectly the numerically

obtained!-V characteristic, together with small but clearly
Since in the relativistic limit {—1) the propagation con- Vvisible maxima following from the interference of plasma
stant of the plasma wave tends to that of the fluxon train waves. The accuracy becomes worse when we approach the
(equal toh), a typical envelope pattern appears, similar torelativistic limit (pointsB andC), nevertheless we obtain at
the interference of two waves of nearly equal frequenciesleast qualitatively correct results for the hysteresis region. In
We can observe the agreement between theory and numerigadrticular, we can observe the main FF stejy ath accom-
results to be worse than in Fig(dl, nevertheless, the dis- panied by a Fiske resonance\&t=h— /L with a segment
crepancy is mainly confined to the amplitude, and all theof negative differential conductivity. This part of the charac-
qualitative features of the solution are reproduced correctlyteristics is visible only in the analytical approximation, since
[Note that the amplitudes are generally much larger than ifior a sufficiently small loss facto any solution within the
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osoh ' ' ' ’ ] relativistic region, both in the case of field patterns within the
’ i junction[Fig. 1(a)] and in the current-voltage characteristics.
"/ In the relativistic limit we observe some discrepancy be-
tween analytical and numerical results. Nevertheless, owing
to the analytical approximation it is possible not only to re-
produce(at least qualitativelythe hysteresis region, but also
to determine a segment of negative conductivity in Ithé
characteristic. It seems that such a segment can be directly
responsible for various important parameters of the FF oscil-
lator such as the linewidth, stability, etc. Thus a more de-
tailed analysis of thé-V characteristic in the vicinity of the
0.50 a 56 Py 5.0 FF step is needed, in view of possible applications in super-
y conducting electronics.
It should be stressed, however, that the consistency and
FIG. 3. Details of thel-V characteristics in the hysteresis re- agreement between analytical and numerical results does not
gion. The pointsB andC correspond to the field patterns shown in mean that the one-dimensional model is adequate for the
Figs. 1b) and(c), respectively. description of a real three-dimensional structure. As shown
in Ref. 11, the overlap structure can be effectively reduced to
negative conductivity segment is unstable and cannot be olthe one-dimensional model, provided the bias current density
tained numerically. Similarly as in the case of magnetic fieldy is small and evenly distributed along the junction. Unfor-
distributions(Fig. 1), a worse agreement of the results in thetunately, in the vicinity of the FF step the current grows
relativistic limit follows first of all from the fact that the rapidly and the “smallness” condition may be violated. On
amplitudesy,py,p, grow as we approach the FF step region,the other hand, as shown in several papers dealing with static
and the series expansions with respect to small parametephienomend?*® the current density distribution is not uni-
become slowly convergent. form but exhibits sharp maxima at the junction edges. One
We note also that neglecting the plasma waves results in @uld expect the constant current density in the dynamical
smooth and monotoni:V dependence without a fine struc- (time-dependentstate to be also nonuniform, thus it seems
ture related to Fiske resonances. In other words, théhatthe problem of current distributioand more generally,
traveling-wave approximation is not sufficient to describethe problem of reducing a real junction to a one-dimensional
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correctly thel-V characteristic in the hysteresis region. mode) requires further investigation.
Finally, it is worthwhile to note that the formalism devel-
V. SUMMARY AND CONCLUSIONS oped in the present paper is not restricted to a single overlap

junction. Preliminary results for the “in-line” geometry

In the present paper a simple analytical model has beegwith the self-field taken into accounshow again an excel-
proposed, making it possible to describe the FF mode propaent agreement between analytical approximation and nu-
gating in a long one-dimensional Josephson junction. Thenerical data. On the other hand, the approximate solution
model takes into account both bias and damping termsjerived here can be considered as a starting point in the
present in the perturbed sine-Gordon EL). The boundary analysis of more advanced structures, such as, e.g., stacked
conditions are satisfied by an approximate solution in whichunctions investigated extensively over the last years.
the unidirectional fluxon train is accompanied by two plasma
waves propagating in opposite directions with a velocity
QO/k=1. Analytical approximation, in turn, allows some ex-
perimental quantities like current and voltage to be evaluated The author wishes to thank Professor J. Zagrakiifor
and compared with the results of direct numerical simulafruitful and stimulating discussions. This work was sup-
tions. ported by the KBN Grant Nos. 2P03B 114-11 and 2P03B

The comparison shows an excellent agreement in the nori-48-14.
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