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Analytical description of the flux-flow mode in a long Josephson junction

Marek Jaworski
Institute of Physics and College of Science, Polish Academy of Sciences, Al. Lotniko´w 32/46, 02-668 Warszawa, Poland

~Received 5 February 1999!

The flux-flow mode in a long one-dimensional Josephson junction is studied analytically. An approximate
steady-state solution of the perturbed sine-Gordon equation is derived in the form of a dense fluxon chain
accompanied by small-amplitude plasma waves. Next, some time-averaged quantities are calculated, making it
possible to evaluate the constant bias current and the constant voltage between the junction electrodes. The
analytical results are compared with numerical simulations both for the field distribution within the junction
and for theI -V characteristics.@S0163-1829~99!12533-5#
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I. INTRODUCTION

The flux-flow ~FF! mode was suggested more than a d
cade ago1 as a simple mechanism of multifluxon propagati
in a long one-dimensional Josephson junction. The FF m
appears for a sufficiently large external magnetic field
plied in the junction plane, and can be described briefly a
unidirectional viscous flow of fluxons, created at one end
the junction and annihilated at the other.

Since the first publications on the FF phenomena,
Josephson junction operated in the FF mode has attra
considerable attention in view of possible applications, e
as a local oscillator for integrated submillimeter-wa
receivers.2,3 On the other hand, the FF mode is also of the
retical interest, since multiperiodic solutions of the under
ing sine-Gordon equation have not been thoroughly stud
so far.

Contrary to many experimental papers on FF phenome
the theoretical results are scarce and confined mainly to
rect numerical simulations1,4 or infinite expansions with re
spect to linear cavity modes.5 On the other hand, a purel
analytical approach is based on the traveling-wave appr
mation, thus ignoring the boundary effects.6,7 In this connec-
tion, when many results~mainly experimental and numer
cal! have already been published, there is a need for
adequate analytical model, making it possible to describe
mechanism of the FF propagation in a long junction of fin
length.

In the present paper we discuss such a simple mo
making use of exact multiperiodic solutions of the sin
Gordon equation, reported recently.8 The boundary condi-
tions are satisfied by the FF mode interacting with sm
amplitude plasma waves. The steady-state solution ta
into account bias and losses is obtained by a simple pe
bation scheme, based on the energy balance.9,10

The paper is organized in the following way: Approx
mate analytical solutions of the perturbed sine-Gordon eq
tions are discussed in Sec. II. This section contains the m
result of the paper, i.e., the approximate steady-state solu
satisfying appropriate boundary conditions at the junct
edges. The approximate solution is then used in Sec. II
evaluate some time-averaged quantities, like the cons
current and the constant voltage measured across the
tion. In Sec. IV analytical results are compared with nume
PRB 600163-1829/99/60~10!/7484~5!/$15.00
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cal data, both for the field patterns within the junction a
for the I -V characteristics. Section V contains summary
the results; we discuss also some open problems and pos
generalizations of the method.

II. FORMULATION OF THE PROBLEM AND
APPROXIMATE ANALYTICAL SOLUTIONS

Fluxon dynamics in a long one-dimensional Joseph
junction is described by the perturbed sine-Gord
equation9–11

fxx2f tt5sinf1af t2g, ~1!

wheref denotes the quantum phase difference between
junction electrodes,a is the dissipation coefficient, andg is
the normalized bias current density. The above equatio
written in the dimensionless form such that the spatial co
dinatex is normalized to the Josephson penetration depthlJ

and timet to the inverse plasma frequencyv0
21. We consider

a long junction, i.e., satisfying the relationL@1, whereL is
the normalized junction length.

The boundary conditions depend on the electrode ge
etry, and for the overlap structure can be written as11

fx~2L/2!5h, ~2a!

fx~L/2!5h, ~2b!

whereh denotes the normalized external magnetic field.
the overlap geometry we neglect the self-field effects, a
the bias current densityg follows from the aproximation of
the transversal field distribution in a real~two-dimensional!
junction.11

Let us consider first the lossless case (a50,g50), for
which the exact analytical solutions of Eq.~1! are known.12

It can be shown8 that the unidirectional flow of solitons
~fluxons! in the limit of a ‘‘dense soliton train’’ is described
approximately as

f5Q~kx1vt !24qsin@Q~kx1vt !#1O~q2!, ~3!

whereQ@1, q5exp(2Qp/2)!1, and the dispersion rela
tion is

4qQ2~k22v2!51. ~4!
7484 ©1999 The American Physical Society
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The normalized magnetic field within the junction is give
by fx :

fx5Qk24qQkcos@Q~kx1vt !#1O~q2!. ~5!

Using the dispersion relation~4! and denoting the externa
magnetic field ash5Qk we obtain

fx5h2
1

h~12v2!
cos@h~x1vt !#1O~q2!, ~6!

wherev5v/k and 12v2 is the usual Lorentz factor.
One can see that the above simple expression reprod

well all the characteristic features of the FF mode discus
in the literature.4 In particular, we obtain a dense train o
overlapping fluxons separated by 2p/h. As the external
magnetic fieldh increases, the fluxon train becomes mo
dense and its amplitude decreases.

It is clear, however, that the boundary conditions~2! can-
not be satisfied by the solution~6!, since apart from the con
stant termh it contains also the oscillatory term. Therefo
we have to consider a more complicated solution of Eq.~1!,
which in the lossless case describes the interaction of
fluxon train with quasilinear plasma waves. In the limit
small amplitudes both interacting excitations~i.e., fluxon
train and plasma wave! enter the formalism additively an
we have8

f5Q~kx1vt !24q sin@Q~kx1vt !#

1p sin~kx1Vt1Q!1O~q2,p2!, ~7!

wherek andv are related by the dispersion Eq.~4!, as be-
fore, p, Q denote the amplitude and phase of the plas
wave, respectively, while the dispersion parametersk andV
satisfy the relationk56V.

In other words, the unidirectional fluxon train is accom
panied by plasma waves of arbitrary frequency, propaga
in both directions with a critical velocity~corresponding to
the normalized Swihart velocity! V/k561. It will be
shown later that the proper choice of the amplitudes
phases of two plasma waves propagating in opposite di
tions makes it possible to satisfy exactly the boundary c
ditions ~2!.

Let us consider now the case with bias and damping,
the full perturbed Eq.~1!. We assume the solution to b
~multi!periodic, but allow both amplitudes and phases to
pend slowly onx. ReplacingQkx by q(x) andkx by m(x)
we can write the most general ansatz in the form

f5q~x!1Qvt24q~x!sin@q~x!1Qvt#

1p~x!sin@m~x!1Vt1Q#1O~q2,p2!. ~8!

Substituting Eq.~8! into Eq. ~1! and comparing two mos
dominant terms forq andp we find

qxx2aQv52g, ~9a!

4q@~qx!
22~Qv!2#24qxx51, ~9b!

pxx2p~mx!
21pV250, ~9c!

2pxmx1pmxx2paV50. ~9d!
es
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The simplest solution of the above system of equatio
yields

q~x!5const, ~10a!

q~x!5Qkx, ~10b!

p~x!5pedx, ~10c!

m~x!5kx, ~10d!

and substituting the solution~10! into Eqs.~9! we obtain

aQv5g, ~11a!

4qQ2~k22v2!51, ~11b!

d22k21V250, ~11c!

2dk5aV. ~11d!

The above equations describe the Ohmic current density,
persion relation for the FF mode, dispersion relation for
damped plasma wave, and the relation between the dam
factor d and the loss factora, respectively.

Substituting Eqs.~10! back into the ansatz~8! we obtain
finally the approximate solution of the perturbed sin
Gordon Eq.~1!:

f5Q~kx1vt !24q sin@Q~kx1vt !#

1pedx sin~kx1Vt1Q!1O~q2,p2!. ~12!

Thus, in the first-order approximation, the term describ
the FF mode remains unchanged as compared to the los
case, while the only infuence of losses on the plasma wav
an exponential dependence of its amplitude.

Let us consider now the flux-flow mode accompanied
two plasma waves propagating in opposite directions. Si
we are interested in a steady-state and strictly time-perio
solution, we assume additionallyV5Qv, i.e., we make the
plasma-wave frequency equal to that of the FF mode. De
ing, as before,Qk5h and neglecting the higher-order term
we find

f.hx1Vt24q sin~hx1Vt !1p1edx sin~kx1Vt1Q1!

1p2e2dx sin~kx2Vt1Q2!, ~13!

thus the space derivativefx is given by

fx.h24qh cos~hx1Vt !1p1Ak21d2edx cos~kx1Vt

1Q12j!1p2Ak21d2e2dx cos~kx2Vt1Q21j!,

~14!

wherej5arctan(d/k).
For given parametersh andV, q follows directly from the

dispersion relation~4!, thus Eq. ~14! has four degrees o
freedom:p1 ,p2 ,Q1 ,Q2. It can be easily shown that a prope
choice of these parameters enables the boundary condi
~2! to be satisfied for arbitraryt.

Lengthy and tedious calculations will not be quoted he
we present only the final results:
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p1
2
54qh

r

~k21d2!1/2H 122r 2 cos@~h6k!L#1r 4

122r 4 cos 2kL1r 8 J 1/2

, ~15a!

Q1
2
5arctan

~12r 6!sin@~h7k!L/2#1r 2~12r 2!sin@~h63k!L/2#

~11r 6!cos@~h7k!L/2#2r 2~11r 2!cos@~h63k!L/2#
6j, ~15b!
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where r 5exp(2dL/2), and the upper~lower! sign corre-
sponds to the index 1~2!, respectively.

III. CURRENT-VOLTAGE CHARACTERISTICS

Having derived the approximate solution~13! satisfying
appropriate boundary conditions~2! we are in a position to
discuss some time-averaged, directly measurable quant
like the total current flowing through the junction and t
constant voltage between the electrodes. To calculate
current-voltage (I -V) characteristics we use a simple pertu
bation method based on the energy balance.9,10

Let us consider the Hamiltonian

H5E
2L/2

L/2 F1

2
fx

21
1

2
f t

21~12cosf!Gdx. ~16!

Differentiating with respect to time and using Eq.~1! we find

dH
dt

5E
2L/2

L/2

~gf t2af t
2!dx1fxf tu2L/2

L/2 . ~17!

According to earlier assumptions, we consider a steady-s
and strictly periodic solution, hence the time-averag
change of energy must be zero:

E
2L/2

L/2

~g^f t&2a^f t
2&!dx1^fxf t&u2L/2

L/2 50, ~18!

where^ f (t)&[(1/T)*0
Tf (t)dt.

The time derivative of Eq.~13! is given by

f t.V@124q cos~hx1Vt !1p1edx cos~kx1Vt1Q1!

2p2e2dx cos~kx2Vt1Q2!#

5V@11F~x!cosVt1G~x!sinVt# ~19!

where

F~x!524q coshx1p1edx cos~kx1Q1!

2p2e2dx cos~kx1Q2!,

G~x!54q sinhx2p1edx sin~kx1Q1!

2p2e2dx sin~kx1Q2!.

It is clear that the average value off t , corresponding to the
constant voltage, iŝf t&5V for arbitrary x. On the other
hand, the boundary conditions implyfx(2L/2)5fx(L/2)
5h. Thus ^fxf t&u2L/2

L/2 50 in Eq. ~18!, and the energy bal
ance can be written as
es,

he

te
d

gVL5aE
2L/2

L/2

^f t
2&dx. ~20!

Calculating the average off t
2 we find

^f t
2&5V2F11

1

2
F2~x!1

1

2
G2~x!G . ~21!

Thus substituting Eq.~21! into Eq. ~20! and identifying the
frequencyV with the constant voltageV we obtain finally

g5aVH 11
1

2LE2L/2

L/2

@F2~x!1G2~x!#dxJ . ~22!

One can see that the total current densityg consists of an
Ohmic term and a small contribution following from a no
zero Josephson term. In the nonrelativistic region, whev
5V/h!1, the quantitiesF and G are negligibly small and
the total current is equal practically to the Ohmic term. Ho
ever, in the relativistic limit (v→1), the coefficients
q,p1 ,p2, and consequentlyF and G, become larger. As a
result, the integral contribution in Eq.~22! cannot be ne-
glected, giving rise to the so-called FF step.

IV. RESULTS AND DISCUSSION

In this section we compare analytical expressions deri
above with numerical results, obtained by the finit
difference implicit scheme.13 Examples of the magnetic field
distribution within the long junction (L510) are shown in
Fig. 1 for different frequenciesV, corresponding to differen
velocities of the fluxon train~and consequently, differen
voltages on theI -V characteristics!. For the remaining pa-
rameters we take realistic valuesh56, a50.1, typical for
the FF mode. The solid line shows the analytical approxim
tion @Eq. ~14!#, while the open circles — results of numeric
simulations — are shown graphically in a discrete set ox
values.

Figure 1~a! shows a fluxon train for moderate velocityv
50.665, i.e., far below the relativistic limit. It is clear tha
the fluxon train is indeed dense, the average distance be
adjacent maxima being 1.048, in good agreement with
theoretical prediction 2p/h51.047.4 However, we can ob-
serve also a weak dependence of the amplitude on thx
coordinate, following from the interference of fluxons wi
plasma waves. The agreement between analytical and
merical results is excellent, we can see the analytical solu
reproducing perfectly all the details of the numerical data

Similar results are shown in Figs. 1~b! and ~c! for higher
velocities (v50.930 andv50.977), closer to the relativistic
limit. One can see the effect of interference between flux
and plasma waves to be much stronger than for Fig. 1~a!.
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Since in the relativistic limit (v→1) the propagation con
stant of the plasma wavek tends to that of the fluxon train
~equal toh), a typical envelope pattern appears, similar
the interference of two waves of nearly equal frequenc
We can observe the agreement between theory and nume
results to be worse than in Fig. 1~a!, nevertheless, the dis
crepancy is mainly confined to the amplitude, and all
qualitative features of the solution are reproduced correc
@Note that the amplitudes are generally much larger than

FIG. 1. Comparison of the analytical approximation~solid line!
and the numerical results~open circles! for the magnetic-field dis-
tribution corresponding to different velocities of the fluxon train:~a!
v50.665, ~b! v50.930, ~c! v50.977. The remaining paramete
are:L510, h56, a50.1.
s.
ical

e
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in

Fig. 1~a!.# A worse agreement of the results follows from th
fact that in the relativistic limit the amplitudesq,p1 ,p2 be-
come too large, and the approximate solution, being in f
an expansion with respect to small parameters, becomes
accurate. It should be noted here that without plasma wa
taken into account we would have simply a traveling-wa
approximation@Eq. ~6!#, i.e., an oscillatory solution of con
stant amplitude in the form of a cosine wave on the ba
ground of external magnetic fieldh. It is clear that such a
solution does not satisfy the boundary conditions~2! and is
not able to reproduce correctly the interference patte
shown in Figs. 1~a!–~c!.

In Fig. 2 an analytically derivedI -V characteristic is com-
pared with the results of direct numerical simulation. A
analytical approximation~solid line! has been obtained b
evaluating the current densityg as a function of voltageV
according to Eq.~22!. Numerical simulation~open circles!
has been performed by solving Eq.~1! for giveng and evalu-
ating the average value off t as ^f t&5@f(t1T)2f(t)#/T
after a sufficiently long evolution when the time-depende
solution can be regarded as a steady state. For compar
we show also theI -V characteristic calculated within th
traveling-wave approximation~dashed line! using Eq.~22!
with p15p250, thus ignoring the contribution from plasm
waves. Figure 3 shows details of theI -V characteristics and
the hysteresis region in the vicinity of the FF step. The poi
A, B, andC correspond to the magnetic-field distribution
shown in Figs. 1~a!–~c!, respectively.

As before, in the nonrelativistic region~point A) the ana-
lytical approximation reproduces perfectly the numerica
obtainedI-V characteristic, together with small but clear
visible maxima following from the interference of plasm
waves. The accuracy becomes worse when we approach
relativistic limit ~pointsB andC), nevertheless we obtain a
least qualitatively correct results for the hysteresis region
particular, we can observe the main FF step atV5h accom-
panied by a Fiske resonance atV.h2p/L with a segment
of negative differential conductivity. This part of the chara
teristics is visible only in the analytical approximation, sin
for a sufficiently small loss factora any solution within the

FIG. 2. I -V characteristics calculated analytically~solid line!
and numerically ~open circles!. The dashed line shows th
traveling-wave approximation, i.e., theI -V characteristic calculated
without taking into account quasilinear plasma waves. The poinA
corresponds to the field pattern shown in Fig. 1~a!.
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7488 PRB 60MAREK JAWORSKI
negative conductivity segment is unstable and cannot be
tained numerically. Similarly as in the case of magnetic fi
distributions~Fig. 1!, a worse agreement of the results in t
relativistic limit follows first of all from the fact that the
amplitudesq,p1 ,p2 grow as we approach the FF step regio
and the series expansions with respect to small param
become slowly convergent.

We note also that neglecting the plasma waves results
smooth and monotonicI -V dependence without a fine stru
ture related to Fiske resonances. In other words,
traveling-wave approximation is not sufficient to descri
correctly theI -V characteristic in the hysteresis region.

V. SUMMARY AND CONCLUSIONS

In the present paper a simple analytical model has b
proposed, making it possible to describe the FF mode pro
gating in a long one-dimensional Josephson junction. T
model takes into account both bias and damping ter
present in the perturbed sine-Gordon Eq.~1!. The boundary
conditions are satisfied by an approximate solution in wh
the unidirectional fluxon train is accompanied by two plas
waves propagating in opposite directions with a veloc
V/k.1. Analytical approximation, in turn, allows some e
perimental quantities like current and voltage to be evalua
and compared with the results of direct numerical simu
tions.

The comparison shows an excellent agreement in the n

FIG. 3. Details of theI -V characteristics in the hysteresis r
gion. The pointsB andC correspond to the field patterns shown
Figs. 1~b! and ~c!, respectively.
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relativistic region, both in the case of field patterns within t
junction @Fig. 1~a!# and in the current-voltage characteristic
In the relativistic limit we observe some discrepancy b
tween analytical and numerical results. Nevertheless, ow
to the analytical approximation it is possible not only to r
produce~at least qualitatively! the hysteresis region, but als
to determine a segment of negative conductivity in theI -V
characteristic. It seems that such a segment can be dire
responsible for various important parameters of the FF os
lator such as the linewidth, stability, etc. Thus a more d
tailed analysis of theI -V characteristic in the vicinity of the
FF step is needed, in view of possible applications in sup
conducting electronics.

It should be stressed, however, that the consistency
agreement between analytical and numerical results does
mean that the one-dimensional model is adequate for
description of a real three-dimensional structure. As sho
in Ref. 11, the overlap structure can be effectively reduced
the one-dimensional model, provided the bias current den
g is small and evenly distributed along the junction. Unfo
tunately, in the vicinity of the FF step the current grow
rapidly and the ‘‘smallness’’ condition may be violated. O
the other hand, as shown in several papers dealing with s
phenomena,14,15 the current density distribution is not un
form but exhibits sharp maxima at the junction edges. O
could expect the constant current density in the dynam
~time-dependent! state to be also nonuniform, thus it seem
that the problem of current distribution,~and more generally,
the problem of reducing a real junction to a one-dimensio
model! requires further investigation.

Finally, it is worthwhile to note that the formalism deve
oped in the present paper is not restricted to a single ove
junction. Preliminary results for the ‘‘in-line’’ geometry
~with the self-field taken into account! show again an excel
lent agreement between analytical approximation and
merical data. On the other hand, the approximate solu
derived here can be considered as a starting point in
analysis of more advanced structures, such as, e.g., sta
junctions investigated extensively over the last years.
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