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Electron correlations in stripe phases for doped antiferromagnets
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We present the charge and magnetization density distribution in various stripe phases obtained for two-
dimensional models of correlated electrons solved within the Hartree-Fock approximation and a variational
local ansatz. Apart from the Hubbard model with local Coulomb interactionU, we investigate its two exten-
sions by adding either static Peierls electron-lattice coupling, or the correlated hopping term in the so-called
Hirsch model. It has been found that the stripe ordering is robust and occurs in underdoped (d51/8) and
overdoped (d51/4) systems. At intermediate values ofU in underdoped systems (d51/8) local correlations
stabilize the vertical~01! antiferromagnetic domains, separated by nonmagnetic domain walls filled by one
doped hole per two wall atoms. A stripe phase with the same size of magnetic domains and an increased filling
of one hole per one wall atom is stable for overdoped (d51/4) systems. At larger values ofU, both structures
are replaced by more extended magnetic domain walls oriented along the~11! direction. These findings agree
qualitatively with the experimental results.@S0163-1829~99!13733-0#
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I. INTRODUCTION

Nonhomogeneous charge and spin ordering in real sp
so-calledstripe phases, attracted much attention due to the
possible role in the high-temperature superconductivity
the cuprates. In contrast to the high-temperature super
ductivity itself, the stripe instability of the effective Hubbar
model describing a normal phase of the cuprates was
predicted in the theory within Hartree-Fock~HF! calcula-
tions on finite clusters with periodic boundary condition1

and later verified experimentally. The theoretical discov
was soon followed by the experimental observation of
commensurate spin correlations in La22xSrxCuO4 by neutron
scattering experiments.2 However, a clear identification of a
stripe phase was possible only more recently
La1.62xNd0.4SrxCuO4, where the stripe structures are pinne

Neutron scattering experiments3–5 performed on
La1.62xNd0.4SrxCuO4 demonstrate the existence of the stri
phases, with antiferromagnetic~AF! spin domains, separate
by charged domain walls. Neutron diffraction measureme
on single crystals with the hole doping ratiod.1/8 revealed
the existence of two kinds of incommensurate superlatt
peaks.4 In the reciprocal space the magnetic peaks are sa
lites of the AF Bragg reflection atk5(p,p); they are dis-
placed along the (10) and (01) directions tok5@p(1
62h),p# andk5@p,p(162h)#, respectively, while at the
same time the charge-order x-ray satellite diffraction pe
are displaced by 4h with respect to the peak atk5(0,0)
found for a uniform distribution. Experiments at low tem
perature for La1.62xNd0.4SrxCuO4 showed thath.d at small
dopingd<1/8, whileh is almost constant at higher doping5

The appearance of peaks in neutron scattering at inc
mensurate positions points out toward two possibilites: eit
~i! there are two types of twin domains, half of them with t
modulation wave vector aligned along thex axis and the
PRB 600163-1829/99/60~10!/7429~11!/$15.00
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other half with the modulation along they axis or~ii ! only a
single type of domain with the modulation both along thex
and they axes is formed. The experiments are usually int
preted within the first scenario, which is also supported
numerous theoretical papers devoted to the study of str
phases.1,6–10

So far, the stripe phases were found numerically using
two-dimensional~2D! Hubbard ~or t-J) model in the HF
calculations,1,6,7 using the density matrix renormalizatio
group ~DMRG!,8 in slave boson calculations,9 and in the
dynamical mean field theory~DMFT!.10 All these calcula-
tions point out a universal instability of the Hubbard mod
the stripe phases with the domain walls along one of
main directions, either~10! or ~01!, called also for conve-
nience vertical stripes@which refer to the domain walls alon
the ~01! direction#, were found independently of the applie
method at intermediate values ofU/t, where U is a local
Coulomb interaction, andt is a nearest-neighbor hopping e
ement.

Experimentally, the domain walls found atd51/8 doping
occur at every fourth vertical line which implies that th
density of doped holes is one doped hole per two atoms
the domain wall.3,4 Such stripes are called half-filled stripes7

in contrast to the stripes with one hole per domain wall ato
so-called filled stripes, observed in the nickelates.11 Both
types of stripe phases were found in the HF calculations,7 but
it turned out to be difficult to stabilize the ground state w
half-filled domain walls, as observed in the cuprates.3 There-
fore, it is necessary to go beyond the HF approach and
clude explicitly the effects of electron correlation. Here w
address three important questions related to the stabilit
stripe phase in the presence of electron correlations:~i!
whether electron correlations are stabilizing the stripe so
tions, ~ii ! whether the half-filled domain walls are mor
stable than other stripe solutions, and finally~iii ! whether
7429 ©1999 The American Physical Society
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7430 PRB 60GÓRA, ROŚCISZEWSKI, AND OLEŚ
new types of stripe phases could be stabilized by elec
correlations. We investigate these questions using a loca
satz ~LA ! method, introduced some time ago to treat lo
correlations in quantum chemistry,12 and used also succes
fully in various models of correlated electrons on
lattice.13–15

In this contribution we will not attempt to understand t
nature of the stripe quantum fluid.16,17 Instead, we will con-
centrate on a simpler question to what extent the stripe
stability is universal and occurs for different Hamiltonia
with strong on-site Coulomb interactions. We will argue th
this universality supports rather the frustrated phase sep
tion mechanism18 over a Fermi-surface instability,1,6 in
agreement with recent experiments.3,4 Therefore, we investi-
gate three different Hamiltonians of the Hubbard type.~i!
First, we study the standard single-band Hubbard Ham
tonian, being a generic model of correlated electrons.~ii !
Second, we included in this model static Peierls coupling
the lattice. This extension of the Hubbard model was m
vated by the idea that nonhomogeneous solutions with do
holes localized on domain walls, as found in striped pha
might be stabilized by accompanying them static lattice d
tortions. The same model was considered earlier in the
studies of Ref. 7, and here we investigate the correcti
which follow from the correlation effects.~iii ! Finally, we
introduce also the correlated hopping term which depend
the actual occupancy of the involved bond by the electr
of the opposite spin, considered in the so-called Hirs
model.19,20 Here we investigate whether such terms chan
significantly the stripe stability. Altogether, we believe th
these three models may be considered as effective mode
the low-energy physics of realistic high temperature sup
conductors and could be justified by an appropriate mapp
of the realistic electronic models onto a single-band Ham
tonian of Hubbard type.21

The paper is organized as follows. The models of cor
lated electrons in a nondegenerate band are presented in
II. In the same section we introduce the LA method to tr
local correlations, and define the characteristic functio
used to describe the numerically obtained charge and
density distributions in stripe phases. The numerical res
for two doping levelsd51/8 and 1/4 are presented and d
cussed in Sec. III. A short summary and conclusions
given in Sec. IV.

II. DESCRIPTION OF STRIPE PHASES

A. Models of correlated electrons

As already mentioned, we study the stripe phases i
nondegenerate band with local Coulomb interactionU, using
finite clusters described by three Hamiltonians: the sing
band Hubbard Hamiltonian

H152t(
i j s

cis
† cj s1U(

i
ni↑ni↓ , ~1!

the single-band Hubbard Hamiltonian which includes the
called static phonons7

H252t(
i j s

~11aui j !cis
† cj s1U(

i
ni↑ni↓1 1

4 K(
i j

ui j
2 ,

~2!
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and, finally, the Hirsch Hamiltonian19,20

H352t(
i j s

@12b~12ni ,2s2nj ,2s!#cis
† cj s1U(

i
ni↑ni↓ .

~3!

Here cis
† (cis) are creation~annihilation! operators for an

electron with spins5↑,↓ at sitei, andnis5cis
† cis are elec-

tron number operators. The hopping elements are finitet i j
52t, on the bonds (i j ) which connect nearest neighbor
The correlated hopping matrix element}b describes a dif-
ference in electron hopping amplitudes between singly
doubly occupied sites.19,20Finally, K in Eq. ~2! stands for the
elastic energy andui j are fractional changes of the (i j )
bondlength between nearest-neighbor sitesi and j with re-
spect to its~equilibrium! reference value.22

We investigated also the consequences of the correl
hopping term by taking a single representative value ob
50.3 in the Hirsch model~3!. Therefore, the hopping ele
ment in an empty band amounts tot(12b)50.7t. Using the
independent electron picture, the hopping increases whe
least one of the sitesi or j, is occupied by an electron with a
opposite spin, and for the present choice of parameters
finds again the effective hoppingt within the HF approxima-
tion at half filling. However, in the strongly correlated re
gime where the double occupancies are excluded, the co
lation effects reduce the hopping to (12b)t. The
Hamiltonian~3! serves to address the problem of nonhom
geneity from the point of view of possible ‘‘Coulomb insta
bilities.’’ We note that a similar problem was recently a
dressed in the presence of long-range Coulomb interact
within the slave-boson technique.9

We considered 2D square clusters containing up toN
564 sites with periodic boundary conditions, i.e., using
838 supercell, with hole dopingd512n away from half
filling ( n51), wheren is an electron density. Let us remar
on inherent~but well understood! limitations of modelling an
infinite solid by finite cluster calculations. In this respect t
used periodic boundary conditions ensure that influence
finite size effects~versus bulk properties! is minimized. The
actual number of holes in the cluster isNh5Nd, whereN is
the number of sites. For convenience we chooset51 as an
energy unit, and vary the Coulomb interactionU in the range
of 3,U/t,10 which includes the typical values for the c
prate superconductors, 8<U/t<10. The other parameters o
the Hamiltonian with static phonons~2! were assumed to be
the same as in the previous HF study:7 K/t518 anda53.

The model Hamiltonians~1!, ~2!, and~3! are first solved
self-consistently within the standard nonhomogeneous
approximation, where the on-site interactions are replaced
one-particle terms

ni↑ni↓.ni↑^ni↓&1^ni↑&ni↓2^ni↑&^ni↓&. ~4!

As we do not consider spin spirals, we use the simp
close-shell version of the HF method with a product of tw
Slater determinants for up and down spins separately. S
solutions serve as reference statesuF0& for calculating the
correlated states, as described in Sec. II B.

The calculations performed for the Hubbard Hamiltoni
with phonons~2! use an approximate procedure as intr
duced in the Appendix. Unfortunately, a rigorous inclusi
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of the phonon~kinetic and potential! energies is a difficult
task. So far, only a limited progress was achieved in spite
numerous attempts~a typical recent example is given in Re
23!. Therefore, we limit ourselves to the static phonons, a
follow the procedure introduced by Dobryet al.24 and by
Zaanen and Oles´.7

B. Local correlations

The electronic correlations were treated using anonhomo-
geneousvariational method, known as a local ansatz.12,13,15

This method captures the leading contribution to the corr
tion energy in the present systems with nonhomogene
density distribution of doped holes. It follows from the for
of model Hamiltonians~1!–~3! that it suffices to introduce
only the on-site local correlation operators in oder to de
mine the ground state energy with reliable accuracy. Th
the wave function up to lowest order is equivalent to th
introduced by Gutzwiller for the Hubbard model.25 Here we
avoid the simplifications introduced by the Gutzwiller a
proximation, and use an exponential ansatz for the correl
ground state12,13

uC0&5expS 2(
i

h iOi D uF0&, ~5!

where

Oi5ni↑ni↓2^ni↑&^ni↓& ~6!

are the local operators andh i are the corresponding varia
tional parameters. The averages^•••& are determined, as
usually, by averaging over the HF ground state funct
uF0&. By construction the local operators describe the co
lations which gobeyondthe HF state, and̂Oi&50. For con-
venience, we use also a shorter notation for the one-par
averages,n̄i↑5^ni↑&, and define the local doped hole dens
in the correlated ground stateuC0& as follows:

nhi,LA5
^C0u12~ni↑1ni↓!uC0&

^C0uC0&
. ~7!

The HF ground state functionuF0& describes the refer
ence state with magnetic order and local order paramete

mi ,LA5
u^C0u~1/2!~ni↑2ni↓!uC0&u

^C0uC0&
, ~8!

defined by the breaking of symmetry with respect to thezth
spin componentSi

z5 1
2 (ni↑2ni↓). This construction allows

us to use a closed-shell version of the HF wave funct
uF0& with the factorization of the Slater determinant in
up-spin and down-spin parts.26

The variational parametersh i are fixed by minimizing the
total energy in the correlated ground state

E05
^C0uHmuC0&

^C0uC0&
, ~9!

whereHm(m51,2,3) is one of the Hamiltonians introduce
in the previous section, and the values of the variational
rametersh i

0 correspond to the global minimum. After ex
f

d

-
us

r-
s,
t

ed

n
-

le

n

a-

panding the exponential factors in the wave functionsuC0&
~5! up to linear order inh i , they can be easily determined b
minimizing the energy~9!,12

h05â21b, ~10!

E05EHF2bh0, ~11!

where the elements of the vectorb and matrixâ are defined
as follows:

bi5^OiHm&, ~12!

ai j 5^Oi~Hm,HF2EHF!Oj&, ~13!

and EHF is the HF energy calculated from the HF Ham
tonianHm,HF, which is obtained fromHm . The above equa-
tion is valid provided that any third and higher order fluctu
tions such as;^(ni↑2n̄i↑)3& are small and can be
neglected.12 This condition is well satisfied in the symmetry
broken states with AF order considered in the present stu
More details on the energy minimization in the LA metho
may be found in Refs. 13 and 14.

As an example, we give below explicit formulas forb and
â for the Hubbard Hamiltonian, either without@Eq. ~1!# or
with @Eq. ~2!# static phonons,

bi5U(
s

$^ni↑ns↑&^ni↓ns↓&2n̄i↑n̄s↑^ni↓ns↓&

2n̄i↓n̄s↓^ni↑ns↑&1n̄i↑n̄s↑n̄i↓n̄s↓%, ~14!

ai j 5^ni↓nj↓&(
Mm

~«m
↑ 2«M

↑ !v iM
↑ v im

↑ v jM
↑ v j m

↑ 1^ni↑nj↑&

3(
Mm

~«m
↓ 2«M

↓ !v iM
↓ v im

↓ v jM
↓ v j m

↓ , ~15!

where the subscriptsM andm run over occupied and unoc
cupied~virtual! HF one-particle states, respectively. In ord
to distinguish them from lattice site indices we use eith
capitals~for occupied states! or Greek characters~for unoc-
cupied states!. The HF eigenenergies are«M and«m , respec-
tively, andv iM

s andv im
s label the componenti of the corre-

sponding eigenvectors for spins. Let us remind here that the
~real! unitary transformation from electron creation~annihi-
lation! operators defined on lattice sites to the electron c
ation ~annihilation! operators corresponding to occupied a
virtual one-particle HF states is realized by the matrix co
structed from the eigenvectors$vM

s ,vm
s%. For the Hirsch

Hamiltonian H3 one finds that Eq.~15! does not change
while thebi elements may be straightforwardly derived a
satisfy a slightly modified Eq.~14!.

The ground-state energies of the obtained correlated s
tions, E0(d), depend on the size of the cluster and on t
doping leveld. As a measure of stability of various texture
it is convenient to introduce the energy gain per one do
hole,7

Eh5
1

Nh
@E0~d!2E0~d50!#, ~16!
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whereE0(d50) is the reference energy of the undoped A
phase. As the ground-state energy we use either the ene
found within the LA method~9!, as explained above, or th
HF energy as introduced before in Ref. 7.

C. Charge and spin structure factors

For the characterization of charge and magnetization
tribution in the correlated states$uC0&% it is convenient to
introduce two functions which are directly measured in el
tic coherent scattering experimentsC(k) and S(k). First of
them, the x-ray elastic scattering functionC(k) is a Fourier
transform of the density distribution

C~k!5
1

N (
i j

^ni&^nj&e
ik(Ri2Rj ), ~17!

whereRi are the real space lattice vectors. The second fu
tion S(k) is related to the elastic neutron unpolarized s
scattering. The measured double differential cross sectio
proportional to the neutron scattering function27

F~k!5(
a,b

S dab2
kakb

k2 D Sab~k!, ~18!

where

Sab~k!5
1

N (
i j

^Si
a&^Sj

b&eik(Ri2Rj ) ~19!

describes the spin structure andka is thea component of the
scattering vector. We note that for the stripe states con
ered in the present paper one finds^Si

x&5^Si
y&50 ~assuming

the magnetization direction along thez axis!,26 so the neutron
scattering function may be further simplified. We use bel
S(k)5Szz(k) for the only nonvanishing component of th
spin-spin correlation function.

We introduce also after White and Scalapino8 a different
way of describing the domain wall structure by the charg

nh~ l x!512
1

Ly
(

l y51

Ly

^n( l x ,l y),↑1n( l x ,l y),↓& ~20!

and spin

Sp~ l x!5
1

Ly
(

l y51

Ly

~21! l x1 l y
1

2
^n( l x ,l y),↑2n( l x ,l y),↓&, ~21!

correlation functions in real space. Here we use an exp
notation for the site indicesl5( l x ,l y) in terms of two coor-
dinates. Equations~20! and~21! are well designed to analyz
vertical domain walls, as they describe the changes of
charge and magnetization distribution in thex direction per-
pendicular to such domain walls. Analogous formulas w
the summations performed along one of the diagonal di
tions capture the relevant density changes for the diag
domain walls.

We have verified that the charge and magnetization
tribution for particular stripe phases do not change sign
cantly in the presence of electron correlations. However,
ies

s-

-

c-

is

d-

it

e

c-
al

s-
-
e

stripe phase found in the ground state depends on the a
value of the local Coulomb interactionU/t, as presented in
the next section.

III. NUMERICAL RESULTS

We considered 2D square clusters containing up toN
564 sites with periodic boundary conditions, i.e., an 838
supercell, with hole dopingd512n away from half-filling
(n51), wheren is an electron density. Let us remark o
inherent ~but well understood! limitations of modelling an
infinite solid by finite cluster calculations. In this respect t
used periodic boundary conditions ensure that influence
finite size effects~versus bulk properties! is minimized.

We have investigated the ground states of the Hami
nians ~1!–~3! by performing self-consistent calculations fo
the 838 clusters with periodic boundary conditions for th
undoped systems and for two doping levelsd50.125 andd
50.25. They correspond to the underdoped and overdo
regime of the high-temperature superconductors, resp
tively. In the undoped case the ground state is homogene
with AF long-range order, independently of the assum
narrow-band Hamiltonian~1!–~3!. In contrast, in the doped
systems a rich variety of textures can be systematically
vestigated by varying the initial conditions and the value
Coulomb interactionU. We have identified several new
phases as compared with the earlier HF study,7 some of them
stabilized by the electron correlations. Below we pres
only the most stable solutions found for two investigat
doping levels.

A. Underdoped systems,d50.125

Let us concentrate first on the underdoped systems w
d50.125. The most typical solutions obtained in this ca
with the increasing value of Coulomb interactionU/t are
presented in Fig. 1: two vertical half-filled domain wal
@Fig. 1~a!#, two types of the half-filled walls with density
alternation@Figs. 1~b! and 1~c!#, and two extended diagona
walls @Fig. 1~d!#. These structures reproduce a generic cro
over from the vertical~01! to diagonal~11! walls with in-
creasing Coulomb interaction, as reported in the early
studies.1,6 However we emphasize that the structure depic
in Fig. 1~d! although being more spacially extended h
lower energy than the simpler phase with the doped ho
located on single lines along the~11! direction. The most
stable stripe structures shown in Fig. 1 are globally stable
particular Coulomb interactionU/t, but frequently other
stripe phases are locally stable, with only small energy d
ference with respect to the determined ground state. Th
fore, while the regions of stability of various solutions mig
still change in a more accurate treatment, one expects
the phase separation into~doped! hole-rich and hole-poor
regions, similar to that established for thet-J model,18,28

occurs in the present model systems, with the doped h
ordered along particular lines.

As seen in Fig. 1 and in the charge density maps for th
four typical structures~see also Figs. 2!, the regions of in-
creased doped holes concentration separate AF domains
large magnetic moments and with small almost nonmo
lated hole density. Concerning the hole density distributi
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the half-filled walls of Fig. 2~a! have a uniform density along
the wall, while the other three structures of Fig. 1 whi
occur at higher values ofU/t are characterized by the spaci
modulation of doped hole density, either along the~01! di-
rection@Figs. 2~b! and 2~c!#, or along the~11! direction@Fig.
2~d!#.

The obtained magnetic textures may be classified into
types of solutions: the domain walls of Figs. 1~a! and 1~b!
separate two different AF domains, while the remaini
structures@shown in Figs. 1~c! and 1~d!# correspond to a
single domain with a nonhomogeneous distribution of dop
holes. This difference is best seen in the distribution
maxima in the magnetic structure factorS(k), shown in Figs.
2~a!–2~d!. One finds strong maxima at the values ofk
5(63p/4,6p) for the structures with two domain wall
@Figs. 1~a! and 1~b!#, while for the structures with a singl
AF domain the strongest peak atk5(p,p) is accompanied
by some weaker satellites@Figs. 1~c! and 1~d!#. The same
applies to the spin-bag structure stable at small values ofU/t
~not shown!, with an extended region of increased hole de
sity and reduced AF order. Looking at the reciprocal sp
pattern we conclude that such spin-bag structure corresp
to the intersecting grid of diagonal walls, i.e., along (11) a
(11̄) directions. We further note that only the structures w
the magnetic maxima displaced from the AF value ofk
5(p,p) agree well with the experimental observations.3–5

The numerical results obtained for the energy of differ
textures are summarized in Fig. 3. First of all, the collec
data allow us to conclude that the tendency to form vert
walls for the intermediate values ofU/t is generic—they

FIG. 1. The most typical stripe phases as obtained at dopind
50.125 using LA method:~a! a half-filled nonmagnetic~01! do-
main wall~Hubbard model,U510t), ~b! two weakly ferromagnetic
~FM! half-filled ~01! domain walls with charge alternation~Hub-
bard model with static phonons,U59.25t), ~c! two FM half-filled
~01! structures with quadrupling of charge and spin ordering wit
a single AF domain~Hirsch model,U56.5t), ~d! diagonal extended
walls with FM order and isolated holes~Hirsch model,U59.5t).
The diameter of the grey circles is proportional to the hole den
nhi,LA ~7!, and the length of the arrows is proportional to^Si

z&LA ~8!
according to the scales shown at the figure bottom.
o

d
f

-
e
ds

d

t
d
l

exist in all three situations shown in Fig. 3. This confirms t
trend observed in the earlier HF simulations in the interm
diate coupling regime, where the vertical domain walls we
found both for small dopingd<0.08~see Ref. 6!, and for the
present doping leveld50.125~see Ref. 7!.

Secondly, the correlation energy gives typically a subst
tial energy lowering. As it depends on the actual dens
distribution, it is thus different in various stripe phase
Therefore, the sequence of the obtained ground states in
LA method differs from that found in the HF calculation. A
rather low values ofU/t one finds the spin-bag phase both
the Hubbard model and in the Hubbard model with sta
phonons. This phase is characterized by rather small m
netic moments and therefore is stabilized by electron co
lations. The particular correlation energy gain found for th
solution supports the generic tendency towards phase s
ration into hole-rich and hole-poor regions already in t
regime of U/t.5, and may be considered as a precur
effect to the formation of vertical stripes. The vertical no
magnetic half-filled stripes@Fig. 2~a!# take over for larger
values ofU/t. They are robust and are stabilized by partic
larly large correlation energy gains at the nonmagnetic ato
in the broad range ofU/t, while some other states with mag
netic atoms on the walls are more stable at the HF level. T
phenomenon is analogous to large correlation energy g
in the paramagnetic phase, known in itinerant magnetism14

y

FIG. 2. The magnetic and charge ordering obtained in recipro
space for dopingd50.125 in an 838 cluster within the LA
method: the magnetic peaks~full circles! correspond to spin struc
ture~19! seen in neutron elastic scattering functionS(k); the charge
peaks~open circles! give the charge distribution~17! as observed in
x-ray scattering functionC(k). The numbers accompanying th
circles indicate the peaks intensities. Different panels represen
most stable solutions shown in Fig. 1:~a! striped phase with two
half-filled nonmagnetic~01! domain walls,U510t @Fig. 1~a!#, ~b!
striped phase with two half-filled~01! domain walls with charge
alternation, U59.5t @Fig. 1~b!#, ~c! two half-filled FM stripes
within a single AF domain,U56.5t @Fig. 1~c!#, ~d! polarons in the
~11! extended stripes of increased hole density within a single
domain,U59.5t @Fig. 1~d!#.
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Finally, the coupling to the lattice and the correlated ho
ping term in the Hirsch model results either in certain mo
fications of the vertical stripes, or in diagonal extended str
tures at large values ofU/t. Local distortions due to static
phonons stabilize the domain walls with magnetic mome
on the walls forU/t.7.5. The same sequence of solutions
in the Hubbard model with phonons is also found in t
Hirsch model, but here the spin-bag solution and the vert
half-filled walls @Fig. 2~a!# are almost degenerate in a ran
of small U,3,U/t,4.5. In such a situation one might ex
pect that one of these phases could be stabilized eithe
additional hopping elements to further neighbors, or by
coupling to the lattice. ForU/t.6.5 one finds here the ex
tended diagonal walls of Fig. 2~d!.

The models~1! and~2! give quite similar results in the HF
method,7 with the same ground states moved to larger val
of U/t in the presence of static phonons~Fig. 3!. Such a
change of the size of effective interaction follows from t
enhancement of the local hopping elements on the bo
which connect the atoms at the domain walls with their ne
est neighbors in the direction perpendicular to the wall due
lattice relaxation, effectively reducing the correlation effec
The opposite trend is observed in the Hirsch model~3!,
where the hopping elements in the regions of increa
doped hole density are reduced, and the correlation eff

FIG. 3. Energy per one doped holeEh /t ~16! for various stripe
phases found for 838 clusters atd50.125 for increasing Coulomb
repulsionU/t. The results of HF and LA calculations are shown
solid and dotted lines, respectively, for~a! Hubbard Hamiltonian
~1!, ~b! Hubbard Hamiltonian with static phonons~2!, ~c! Hirsch
Hamiltonian ~3!. In case~a! apart from the ground state structu
also the locally stable states at higher energy are shown. Diffe
symbols indicate various stripe phases:L—nonmagnetic half-filled
domain walls@Fig. 2~a!#, ^ —two alternating~01! domain walls
@Fig. 2~b!#, h—vertical half-filled walls ~with one hole per two
atoms of the wall! @Fig. 2~c!#, ¹—ordered polarons in the~11!
direction corresponding to a grid of diagonally intersecting wa
@Fig. 2~d!#, !—horizontal domain walls with quadrupling of charg
and spin ordering~not shown!, n—magnetic half-filled domain
walls ~not shown!, s—spin-bag structure~not shown!.
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are thus enhanced. Moreover, the magnetic moments~8! are
here larger than in the Hubbard model for the same value
U/t. Therefore, the transition to the diagonal domain wa
occurs for the Hirsch model at a much lower value ofU/t
.6.5 than in the Hubbard model, where such structures
found in the ground state only forU/t.9.7. We note that the
same crossover is found in HF method applied to the H
bard Hamiltonian atU/t.7.7t which agrees well with the
value of U/t58 reported in the early study of Zaanen a
Gunnarsson.1

Although the vertical half-filled domain walls are stable
a broad regime of intermediate values ofU/t for the Hub-
bard model, without and with static phonons, we have fou
that the lines of enhanced doped hole density~7! may con-
tain magneticatoms, in contrast to the earlier HF studies,1,6,7

where no magnetic moments were reported on the dom
walls. This occurs in particular in the case of the Hirs
model at stronger interactionsU @Figs. 1~c! and 1~d!#, but
such regions of enhanced doped-hole density occur t
within a single AF domain, in contrast to the nonmagne
and weakly magnetic structures which separate two differ
domains@see Figs. 1~a! and 1~b!#.

The difference by a factor of 2 in the periodicity of charg
and magnetic structures for the~01! half-filled domain walls
which expresses the alternation of AF domains is shown
Figs. 4~a! and 4~b!. The lines of increased hole density a
accompanied by the reduced values of magnetizationSp( l x),
and a change of phase in the AF order is found on the cha

nt
FIG. 4. Average doped hole densitynh( l x) ~filled circles! and

spin structure functionSp( l x) ~open squares! as obtained for the
most typical stripe phases found atd50.125. Different panels cor-
respond, respectively, to the solutions shown in Figs. 1~a!–~d!.
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walls. Such structures were observed in the experiment
Tranquadaet al.,3,4 and we conclude that the observed stri
phases might correspond either to nonmagnetic homo
neous walls@Fig. 2~a!#, or to the walls with charge alterna
tion @Fig. 2~b!#. In contrast, the remaining two structure
shown in Fig. 1 are characterized bythe same periodicityof
the charge and magnetization distribution@see Figs. 4~c! and
4~d!#. Oscillation of both distributions along the~10! direc-
tion in the latter case is consistent with the diagonal cha
ter of the extended walls.

We have compared in Table I the charge~7! and the mag-
netization ~8! density per site obtained in different phas
shown in Fig. 1, as found in the HF and in the LA calcu
tions ~the HF values are defined here as the respective a
ages over the HF ground state!. It is found that local corre-
lations almost do not influence the density distribution a
lead only to a slight increase of the magnetic moments. T
behavior demonstrates that the leading on-site correlat
give only small modifications of the ground state, increas
somewhat the differences between the charge density a
domain walls and within the undoped regions of the A
phase.

B. Overdoped systems,d50.25

For the higher doping leveld50.25 somewhat differen
types of stripe phases are found. We present the typ
stable solutions for increasing values ofU/t in the panels
~a!–~d! of Fig. 5, while some other structures found only
the HF ground states are shown in Fig. 6. First, the corr

TABLE I. Local charge densitynhi5^12(ni↑1ni↓)& and local
magnetization densitymi5

1
2 u^ni↑2ni↓&u, for various stripe phase

and parameters (U/t) of Fig. 1. Nonequivalent atoms in differen
textures are labelled according to the decreasing doped hole de

stripe phase i nhi,HF nhi,LA mi ,HF mi ,LA

Fig. 1~a! 1 0.379 0.396 0.000 0.000
2 0.058 0.050 0.439 0.444
3 0.005 0.004 0.462 0.463

Fig. 1~b! 1 0.468 0.523 0.082 0.090
2 0.181 0.179 0.360 0.373
3 0.149 0.127 0.354 0.380
4 0.099 0.098 0.386 0.396
5 0.052 0.038 0.414 0.427
6 0.022 0.017 0.428 0.436
7 0.014 0.007 0.447 0.453

Fig. 1~c! 1 0.440 0.445 0.242 0.247
2 0.167 0.181 0.341 0.350
3 0.112 0.119 0.367 0.377
4 0.056 0.046 0.401 0.417
5 0.028 0.024 0.413 0.423

Fig. 1~d! 1 0.455 0.455 0.263 0.265
2 0.125 0.130 0.399 0.404
3 0.119 0.122 0.404 0.409
4 0.112 0.114 0.411 0.416
5 0.033 0.025 0.451 0.458
6 0.018 0.014 0.455 0.460
7 0.013 0.010 0.455 0.460
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tions stabilize a homogeneous phase at lowU/t, and the
spacially extended~broad! diagonal stripes along the (11
direction at larger values ofU/t.5 ~this is a different
ground state than that obtained using the HF approximati!.
These qualitatively new states may be understood as follo

ity.

FIG. 5. The most typical stripe phases as obtained at dopind
50.25 using LA method:~a! two diagonal spacially extended do
main walls with spin alternation (U56t), ~b! two filled ~01! do-
main walls (U510t), ~c! ringlike domain wall with AF order (U
57t), ~d! two diagonal extended walls intersecting each otherU
510t). The stripe phases~a! and~b! @~c! and~d!# were obtained in
the Hubbard model with static phonons@Hirsch model#. The mean-
ing of grey circles and arrows as in Fig. 1.

FIG. 6. Stripe structures found in the HF ground state at dop
d50.25, but destabilized by electron correlations within the L
method:~a! extended diagonal domain walls with spin alternati
(U58.5t), ~b! ring of increased doped hole density in an AF d
main (U510t), ~c! two walls intersecting each other in a single A
domain (U58t), ~d! two diagonal extended walls with locally in
creased hole density (U59.5t). The stripe phases~a! and ~b! @~c!
and ~d!# were obtained in the Hubbard model with@without# static
phonons. The meaning of grey circles and arrows as in Fig. 1.
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Under the tendency towards phase separation into hole
and hole-poor regions,18,28 it is more difficult to accommo-
date the increased hole density in the vertical or horizo
stripes and therefore it appears to be easier to stabilize
stead the broad diagonal stripes, either along the~11! direc-
tion alone, or intersecting domain walls along the~11! and
(1̄1) direction ~Fig. 5!. The AF correlations are weaker a
this level of doping~in comparison to these found ford
50.125), and except for the case of strong AF correlation
vertical ~01! walls of Fig. 5~b!, the reduced weak AF corre
lations survive only within the spacially extended doma
walls @Figs. 5~a!, 5~c!, and 5~d!#. As in the case ofd
50.125, increasing Coulomb interactionU/t suppresses the
vertical nonmagnetic stripes and gives instead new exten
structures, with all atoms being magnetic.

The extended domain walls@Fig. 7~a!# separate two AF
domains and give the magnetic structure factorS(k) with
two distinct maxima at the k5(3p/4,23p/4) and
(23p/4,3p/4) points. This structure is, however, foun
only at relatively small values ofU/t.5 and is therefore no
expected to emerge in an experiment. At higher values
U/t we have found again the vertical~01! nonmagnetic do-
main wallsfilled now by one hole per one wall atom@Fig.
7~b!#. Except for the increased doped hole density and so
what reduced magnetic moments, this structure is qua
tively equivalent to two half-filled walls discussed above f
the d50.125 case@Fig. 2~a!#, with strong magnetic maxima
of S(k) found again at the pointsk5(63p/4,p).

The remaining two phases found in the overdoped s
tems (d50.25; the LA method! show diagonal charge struc
tures, and the corresponding magnetic and charge max
are found both along the (11̄) and the~11! direction @Figs.
7~c! and 7~d!#, i.e., the intersecting diagonal walls with e

FIG. 7. The same as in Fig. 2, but for dopingd50.25. Different
panels represent the most stable solutions shown in Fig. 5:~a! di-
agonal filled domain wall,U56t @Fig. 5~a!#, ~b! two filled ~01!
domain walls,U510t @Fig. 5~b!#, ~c! striped phase with a ring
structure,U57t @Fig. 5~c!#, ~d! striped phase with two intersectin
diagonal walls,U510t @Fig. 5~d!#.
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hanced doped hole density. There is only a single AF
main, and thus strong maxima are found inS(k) at the AF
pointsk5(6p,6p). Having both charge@C(k)# and mag-
netic @S(k)# maxima at the same values ofk, the structures
shown in Figs. 7~c! and 7~d! may be considered as a mod
fication of the same phase with diagonal walls of increa
density.

The complexity of the ground states found for the ov
doped systems~at the doping ofd50.25) is best illustrated
by the dependence of energy gain per one doped holeEh /t
on the Coulomb interactionU/t, shown in Fig. 8. A homo-
geneous solution with weak AF long-range order found
low values of U/t is replaced by several different strip
phases with increasing values ofU/t. As expected, the onse
of the stripe ordering occurs at higher values ofU/t in the
presence of electron correlations than in the HF calculat
Electron correlations contribute significantly to the stabil
of stripe phases, and stabilize in particular the filled verti
domain walls@Fig. 7~b!# at intermediate values ofU/t. These
structures were also found in the HF calculations in a ra
of smaller values ofU/t for all three considered mode
Hamiltonians~1!–~3!.

We have found the same qualitative trends when comp
ing three different models~1!–~3! as the trends found in the
case ofd50.125, namely,~i! there is little difference be-
tween the Hubbard model without and with static phono

FIG. 8. Energy per one doped holeEh /t for various stripe
phases as obtained for 838 clusters atd50.25 for increasing Cou-
lomb repulsionU/t. The results of HF and LA calculations ar
shown by solid and dotted lines, respectively, for~a! Hubbard
Hamiltonian~1!, ~b! Hubbard Hamiltonian with static phonons~2!,
~c! Hirsch Hamiltonian ~3!. Different symbols indicate various
stripe phases:d—homogeneous AF phase, *—diagonal~11! ex-
tended walls@Fig. 7~a!#, L—filled nonmagnetic~01! domain walls
@Fig. 7~b!#, 3—fuzzy ringlike structures@Fig. 7~c!#, v—filled ver-
tical walls @Fig. 7~d!#, !—diagonal double walls@Fig. 6~a!#,
x—ring structure@Fig. 6~b!#, % —two walls intersecting each othe
@Fig. 6~c!#, *—two extended walls@Fig. 6~d!#, 1—extended ring
structures@similar to that of Fig. 7~d!#, s—spin bag structure~not
shown!.
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FIG. 9. Average doped hole densitynh( l x1 l y)@nh( l x)# ~filled circles! and spin structure functionSp( l x1 l y)@Sp( l x)# ~open squares! as
obtained for the stable solutions of Fig. 5.
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except that the same stripe structures are stable at hi
values ofU in the latter case and~ii ! the Hirsch Hamiltonian
corresponds to a stronger coupling, and therefore the fu
ring-like @Fig. 7~c!# and intersecting domain wall@Fig. 7~d!#
structures occur here in a broad range of 6,U/t,10, while
the first of these structures is stable in the Hubbard mo
only aboveU/t510. Somewhat surprisingly, the range
stability of the filled vertical walls@Fig. 7~b!# is much nar-
rower (5,U/t,6) in the Hirsch model than in the Hubbar
models, where such structures are favored in the regime
responding to the cuprates, i.e., forU/t.8. This may sug-
gest that the Hirsch Hamiltonian is less realistic model
the cuprates, in agreement with the published results c
cerning the mapping procedures from realistic multiba
Hamiltonians~in cuprates! to simplified effective single band
Hamiltonians.21,29

The charge and magnetic structures found in the ov
doped regime~Fig. 9! are somewhat less symmetric tha
those found in the underdoped regime. Low doped hole d
sity nh ~20! is accompanied by large magnetic moments~21!
with AF nearest-neighbor correlations, resulting in large v
ues ofSp . It is well seen in Figs. 9~a!, 9~c!, and 9~d! that the
periodicity of magnetic structure is in these cases identica
that of the charge distribution; it involves half of the 838
cluster for two diagonal walls of Fig. 9~a!, while it extends
over the whole cluster in the remaining two cases. In c
trast, the magnetic unit cell has a length of eight sites wh
the charge cell has a length of four sites for two vertical fill
nonmagnetic stripes of Fig. 9~b!. This result shows once
again that this phase is physically equivalent to the vert
half-filled stripes found in the underdoped systems.

IV. DISCUSSION AND CONCLUSIONS

Summarizing, we have studied the stability of stri
phases in the Hubbard model without and with sta
er

y-

el
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r
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phonons, and in the Hirsch model at two hole doping leve
d51/8 andd51/4, which correspond to the underdoped a
overdoped cuprates. In both cases the stripe phases are
stable than the homegeneous solutions, indicating that
stripe ordering is generic and occurs always in doped
Mott-Hubbard systems with intermediate Coulomb intera
tion U. The type of the stripe ordering, however, depends
the actual parameters and on the doping level.

We have found that electron correlations always incre
the stability of the stripe phases, while the charge and m
netization distribution in a particular phase are only lit
modified by electron correlations with respect to those fou
in the HF approximation. Although the observed half-fille
vertical stripes were found before in the HF calculation
they were unstable with respect to the filled walls and sp
phases.7 Here we have found that electron correlations pla
prominent role in stripe phases andstabilize the observed
half-filled domain wallsin the underdoped systems~at d
51/8). We emphasize that such solutions occurwithout any
long-range Coulomb interaction which was recently sho
to enhance the stability of half-filled domain walls within th
Gutzwiller ansatz.9 The most stable stripe phase obtained
these systems has the expected alternating AF domains s
rated by nonmagnetic domain walls, as observed experim
tally. Interestingly, the half-filled stripes absorb more ho
with increasing doping beyondd51/8, and give still the
same form ofS(k) for the doping ofd51/4, in qualitative
agreement with the observed5 broad plateau in the shift o
the maxima ofS(k), found at k5@(162h)p,p#, with h
51/8 in both cases, with respect to the AF peak found ak
5(p,p).

The present method gives also that the nonmagnetic h
filled walls are more stable atd51/8 in the regime of inter-
mediate values ofU/t than any of the other textures, includ
ing the bond-centered domain walls found in the DMR
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calculations,8 pointing out that the accurate treatment of co
relation effects is crucial for a better understanding of
ground states in doped antiferromagnets. However, the
swer obtained in the present study concerning the instab
of bond-ordered stripes obtained in the DMRG calculatio
by White and Scalapino8 with respect to the site-ordere
stripes might not be final. The ansatz for the correla
ground state~5! does not include two important effects:~i!
the spin-spin correlations between nearest neighbors and~ii !
the one-particle excitations which optimize the charge dis
bution in nonhomogeneous systems.30 It may be expected
that both types of correlations would decrease the ene
difference between the bond-ordered and site-ordered str
and might stabilize the former. Moreover, the quantum fl
tuations which go beyond the present treatment are expe
to be large in bond-ordered stripes,31 and they might stabilize
such structures. Further studies are needed to clarify u
which circumstances the bond-ordered stripes could form
the ground state.

Finally, we did not address here the consequences of
extended hopping to second (t8) and third (t9) neighbors. As
these elements are small as in La22xSrxCuO4,21,29 we expect
that the vertical nonmagnetic stripes obtained in the pre
study are the most stable structures in the relevant regim
U/t. However, for stronger next-neighbor hoppingst8 and
t9, as found for doped Y and Bi superconductors,21,29 there
are indications that the stripe structures are more spac
extended and are diagonal, as obtained also within
DMFT method,10 or even can evaporate and so enhan
dx22y2 pairing correlations.32 If confirmed, this would ex-
plain ~i! why it is so difficult to observe static stripes in the
two classes of high-temperature superconductors and~ii !
why their superconducting transition temperatures are
much higher than those of La superconductors.

Summarizing, we have found nonmagnetic~01! domain
walls within the most stable stripe phases with a charge
cell consisting of four atoms atd51/8 and d51/4, and
qualitatively the same magnetic responseS(k) in neutron
scattering experiments. Our results show that the short-ra
~on-site! Coulomb interactions alone suffice to stabilize t
stripe phases and thus explain the physical origin of
stripes.33 It is likely that such stripe phases as found in t
present paper are metallic,10,17 but this question could be
answered only in a dynamical approach. We believe that
present results motivate further search for more accurate
scription of change and magnetic ordering in stripe pha
and for a better understanding of the interplay between m
netic and charge degrees of freedom in doped Mott ins
tors.
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APPENDIX: TREATMENT OF STATIC PHONONS

The single-band Hubbard Hamiltonian with added Peie
coupling between the electrons and the~static! lattice distor-
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tions was used in Ref. 7 as a possible model which mi
support the formation of stripe phases in the cuprates. AU
50 this Hamiltonian reduces to the Su-Schriffer-Heeg
model22 which was applied with great success to explain
dimerization of polyacetylene. Originally, the Su-Schriffe
Heeger Hamiltonian was introduced for a homogeneous
tem ~with the same charge at each lattice site!, and under a
constraint that the sum of neighboring bond dilatations a
elongations is zero. This condition is absent in the pres
model,7 and the lattice contracts. The energy minimum in t
HF approximation was found by using an iterative proced
~until self-consistency! in Ref. 7. Thereby, an approximat
saddle-point formula for the phonon field was used wh
relates the actual contraction of a given bondui j to the bond
charge densitŷcis

† cj s&,

ui j .2
at

K (
s

^cis
† cj s&. ~A1!

The averageŝcis
† cj s& do depend on the actual bond lengt

but the individual bonds are treated as independent fr
each other. Although this procedure works well in the H
approximation,7 there is no guarantee that it will work in
exact ground state. Therefore, we have introduced a m
accurate procedure which consists of two steps as descr
below.

First we consider that the dopingd is reasonably small so
that we are quite close to the half-filled case. The AF grou
state at half-filling is used to establish the reference bo
length in the presence of electron-phonon coupling. T
state is homogeneous and the minimum is given by a sin
variable, i.e.,ui j 5u0 for each pair of nearest neighborsi and
j.

As a second step we perform a Taylor expansion~up to
second order! of all the HF averages around the referen
solution found at half filling. It may be expected that one
still close enough to the real global minimum at not too hi
dopingd, and the linear correction tou0 will suffice. As the
first average quantity one has to expand the bond cha
density ^cis

† cj s& which determines the kinetic energy, use
before in Eq.~A1!, assuming that the local approximatio
applies in leading order

^ciscj s~$urs%!&'^ciscj s~u0!&1c1dui j 1c2dui j
2 1•••,

~A2!

wheredui j 5ui j 2u0 is the change of the bond length wit
respect to the half-filled case. The unknown expansion co
ficientsc1 andc2 can be obtained without any difficulty by
straightforward numerical differentiation. Note, howeve
that any other terms withdurs , such that$rs%Þ$ i j %, are
ignored. Therefore, this local approximation may work
not, and its validity has to be checkeda posteriori.

In order to evaluate the total energy~9! one has to deter-
mine an average double occupancy normalized per one
(1/N)( i^ni↑ni↓($urs%)&. This quantity is invariant with re-
spect to the translations of the lattice origin. This means t
there are only two expansion coefficients,d1 and d2, to be
fixed using numerical differentiation
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(
i

^ni↑ni↓~$urs%!&'(
i

^ni↑ni↓~u0!&1d1(
i j

dui j

1d2(
i j

dui j
2 1•••. ~A3!

The diagonal quadratic terms as written above are not
only possible ones, but we have chosen here once again
simplest formula using a local expansion. Its validity has
be checked once again after completing the minimizat
procedure.

By inserting the Taylor expansions~A2! and~A3! into the
HF HamiltonianHHF, and minimizing the total energyEHF
5^HHF& overdui j , one obtains an analytic solution by sol
ing a set of uncoupled quadratic equations. We have tak
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ar
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a

simplifying assumption that the same bond contractio
$dui j % as in the HF approximation minimize the energy
correlated states. As the distortionsdui j depend primarily on
the bond hole density~A2!, we have found that they may b
determined with sufficient accuracy using the HF states.

In order to trust the present procedure one has to ve
whether~i! the first order term}d1 is indeed dominant with
respect to the higher order}d2 term and~ii ! the derived set
of ‘‘semianalytic’’ dui j indeed lowers the HF energy, i.e
whether EHF($ui j %),EHF(u0). We have completed thes
checks and found positive answers to both of the above q
tions. This justifies our approximate procedure which u
the Taylor expansions~A2! and~A3! and allows us to obtain
conclusive results from the Hubbard Hamiltonian with sta
phonons~2!. We have also verified that the obtained min
mum is close to the approximate saddle-point relations~A1!.
is
nce
hni-
ol-
s
tates

As-

ys.
1J. Zaanen and O. Gunnarsson, Phys. Rev. B40, 7391~1989!.
2T.E. Mason, G. Aeppli, and H.A. Mook, Phys. Rev. Lett.65,

2466 ~1990!; S.-W. Cheong, G. Aeppli, T.E. Mason, H. Mook
S.M. Hayden, P.C. Canfield, Z. Fisk, K.N. Clause, and J.L. M
tinez, ibid. 67, 1791~1991!.

3J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, and
Uchida, Nature~London! 375, 561~1995!; J.M. Tranquada, J.D
Axe, N. Ichikawa, Y. Nakamura, S. Uchida, and B. Nachum
Phys. Rev. B54, 7489~1996!.

4J.M. Tranquada, J.D. Axe, N. Ichikawa, A.R. Moodenbaugh,
Nakamura, and S. Uchida, Phys. Rev. Lett.78, 338 ~1997!.

5K. Yamada, C.H. Lee, Y. Endoh, G. Shirane, R.J. Birgeneau,
M.A. Kastner, Physica C282-287, 85 ~1997!.

6D. Poilblanc and T.M. Rice, Phys. Rev. B39, 9749~1989!; H.J.
Schulz, Phys. Rev. Lett.64, 1445~1990!; T. Giamarchi and C.
Lhuillier, Phys. Rev. B42, 10 641~1990!; M. Inui and P. Little-
wood, ibid. 44, 4415~1991!; J. Zaanen and Littlewood,ibid. 50,
7222 ~1994!.

7J. Zannen and A.M. Oles´, Ann. Phys.~Leipzig! 5, 224 ~1996!.
8S.R. White and D.J. Scalapino, Phys. Rev. Lett.80, 1272~1998!;

81, 3227~1998!.
9G. Seibold, C. Castellani, C. Di Castro, and M. Grilli, Phys. Re

B 58, 13 506~1998!.
10A. I. Lichtenstein, M. Fleck, A. M. Oles´, and L. Hedin, J. Super

cond.~to be published!.
11J.M. Tranquada, D.J. Buttrey, V. Sachan, and J.E. Lorenzo, P

Rev. Lett.73, 1003~1994!; V. Sachan, D.J. Buttrey, J.M. Tran
quada, and J.E. Lorenzo, Phys. Rev. B51, 12 742~1995!.

12G. Stollhoff and P. Fulde, J. Chem. Phys.73, 4548 ~1980!; G.
Stollhoff, ibid. 105, 227 ~1996!.

13G. Stollhoff and P. Thalmeier, Z. Phys. B43, 13 ~1981!; A.M.
Oleś, Phys. Rev. B23, 271 ~1981!; J. Dutka and A.M. Oles´,
ibid. 42, 105 ~1990!; 43, 5622~1991!.
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