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We present the charge and magnetization density distribution in various stripe phases obtained for two-
dimensional models of correlated electrons solved within the Hartree-Fock approximation and a variational
local ansatz Apart from the Hubbard model with local Coulomb interactidnwe investigate its two exten-
sions by adding either static Peierls electron-lattice coupling, or the correlated hopping term in the so-called
Hirsch model. It has been found that the stripe ordering is robust and occurs in underdop&) and
overdoped §=1/4) systems. At intermediate valuesdfin underdoped systems€ 1/8) local correlations
stabilize the vertical01) antiferromagnetic domains, separated by nonmagnetic domain walls filled by one
doped hole per two wall atoms. A stripe phase with the same size of magnetic domains and an increased filling
of one hole per one wall atom is stable for overdopée (/4) systems. At larger values bf, both structures
are replaced by more extended magnetic domain walls oriented alorigjlihdirection. These findings agree
qualitatively with the experimental resul{$s0163-182@09)13733-0

I. INTRODUCTION other half with the modulation along theaxis or(ii) only a
single type of domain with the modulation both along the
Nonhomogeneous charge and spin ordering in real spacand they axes is formed. The experiments are usually inter-
so-calledstripe phasesattracted much attention due to their preted within the first scenario, which is also supported by
possible role in the high-temperature superconductivity ohumerous theoretical papers devoted to the study of striped
the cuprates. In contrast to the high-temperature supercophases:®-1°
ductivity itself, the stripe instability of the effective Hubbard  So far, the stripe phases were found numerically using the
model describing a normal phase of the cuprates was firgivo-dimensional(2D) Hubbard (or t-J) model in the HF
predicted in the theory within Hartree-Foc¢kiF) calcula-  calculations;®’ using the density matrix renormalization
tions on finite clusters with periodic boundary conditidns, group (DMRG),? in slave boson calculatioffsand in the
and later verified experimentally. The theoretical discoverydynamical mean field theoryDMFT).1° All these calcula-
was soon followed by the experimental observation of in-tions point out a universal instability of the Hubbard model:
commensurate spin correlations in,LaSr,CuQ, by neutron  the stripe phases with the domain walls along one of the
scattering experimenszowever, a clear identification of a main directions, eithef10) or (01), called also for conve-
stripe phase was possible only more recently innjence vertical stripegvhich refer to the domain walls along
Lay, ¢ x\Ndy 4SK,CuQ,, where the stripe structures are pinned.the (01) directior], were found independently of the applied
Neutron scattering experimeftS performed on method at intermediate values bf/t, whereU is a local
Lay 6 xNdy ,Sr,CuQ, demonstrate the existence of the stripe Coulomb interaction, antlis a nearest-neighbor hopping el-
phases, with antiferromagneti&F) spin domains, separated ement.
by charged domain walls. Neutron diffraction measurements Experimentally, the domain walls found &t 1/8 doping
on single crystals with the hole doping raide=1/8 revealed occur at every fourth vertical line which implies that the
the existence of two kinds of incommensurate superlatticegensity of doped holes is one doped hole per two atoms of
peaks’ In the reciprocal space the magnetic peaks are satethe domain walf+* Such stripes are called half-filled stripes,
lites of the AF Bragg reflection &= (m,7); they are dis- in contrast to the stripes with one hole per domain wall atom,
placed along the (10) and (01) directions ko=[ (1 so-called filled stripes, observed in the nickeldfe®oth
+=27),m] andk=[7,m(1+27)], respectively, while at the types of stripe phases were found in the HF calculatidns,
same time the charge-order x-ray satellite diffraction peak# turned out to be difficult to stabilize the ground state with
are displaced by # with respect to the peak &=(0,0) half-filled domain walls, as observed in the cuprat@here-
found for a uniform distribution. Experiments at low tem- fore, it is necessary to go beyond the HF approach and in-
perature for Lag4Ndy 4Sr,CuO, showed thaty= & at small  clude explicitly the effects of electron correlation. Here we
doping §<1/8, while 7 is almost constant at higher dopifg. address three important questions related to the stability of
The appearance of peaks in neutron scattering at inconstripe phase in the presence of electron correlatigis:
mensurate positions points out toward two possibilites: eithewhether electron correlations are stabilizing the stripe solu-
(i) there are two types of twin domains, half of them with thetions, (ii) whether the half-filled domain walls are more
modulation wave vector aligned along tixeaxis and the stable than other stripe solutions, and finaliiy) whether
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new types of stripe phases could be stabilized by electroand, finally, the Hirsch Hamiltoniaf?°
correlations. We investigate these questions using a local an-
satz (LA) method, introduced some time ago to treat local +
) i ’ . =- - —Nj _,—N ioCjot ithi| -
correlations in quantum chemisti§and used also success- Hs tijzg [1-B(1=ni _;=Nj _5)]CisCs Uzi ni Ny

fully in various models of correlated electrons on a 3
13-15

lattice: Y + . ihilati ;
In this contribution we will not attempt to understand the 7€' Ci,(Cis) are creation(annihilation opfrators or an

nature of the stripe quantum flulé!” Instead, we will con- ~ €lectron with spinr="1, | at sitei, andn;, = ¢;,Ci, are elec-
centrate on a simpler question to what extent the stripe intfon number operators. The hopping elements are fitjte,
stability is universal and occurs for different Hamiltonians = —t, on the bondsif) which connect nearest neighbors.
with strong on-site Coulomb interactions. We will argue that The correlated hopping matrix elemenj3 describes a dif-
this universality supports rather the frustrated phase separfgrence in electron hopping amplitudes between singly and
tion mechanisitf over a Fermi-surface instabiliy? in  doubly occupied siteS:*°Finally, K in Eq. (2) stands for the
agreement with recent experimeftsTherefore, we investi- €lastic energy andy; are fractional changes of thej]
gate three different Hamiltonians of the Hubbard tyfie. —Pondlength between nearest-neighbor sitesmd | with re-
First, we study the standard single-band Hubbard HamilSpect to itstequilibrium) reference valué?
tonian, being a generic model of correlated electrdiis. We investigated also the consequences of the correlated
Second, we included in this model static Peierls coupling td10pping term by taking a single representative valuggof
the lattice. This extension of the Hubbard model was moti-= 0.3 in the Hirsch mode(3). Therefore, the hopping ele-
vated by the idea that nonhomogeneous solutions with dope@€ent in an empty band amountst(d — g) =0.7%. Using the
holes localized on domain walls, as found in striped phasedndependent electron picture, the hopping increases when at
might be stabilized by accompanying them static lattice disleast one of the siteisor j, is occupied by an electron with an
tortions. The same model was considered earlier in the HPPPOsite spin, and for the present choice of parameters one
studies of Ref. 7, and here we investigate the correctionfinds again the effective hoppirtgvithin the HF approxima-
which follow from the correlation effectgiii) Finally, we  tion at half filling. However, in the strongly correlated re-
introduce also the correlated hopping term which depends oéiime where the double occupancies are excluded, the corre-
the actual occupancy of the involved bond by the electrondation effects reduce the hopping to {JB)t. The
of the opposite spin, considered in the so-called HirscHiamiltonian(3) serves to address the problem of nonhomo-
model*®?° Here we investigate whether such terms changé@eneity from the point of view of possible “Coulomb insta-
significantly the stripe stability. Altogether, we believe thatbilities.” We note that a similar problem was recently ad-
these three models may be considered as effective models fefessed in the presence of long-range Coulomb interactions
the low-energy physics of realistic high temperature superwithin the slave-boson techniqde.
conductors and could be justified by an appropriate mapping We considered 2D square clusters containing ugNto
of the realistic electronic models onto a single-band Hamil-= 64 sites with periodic boundary conditions, i.e., using an
tonian of Hubbard typé* 8% 8 supercell, with hole doping=1—n away from half

The paper is organized as follows. The models of correfilling (n=1), wheren is an electron density. Let us remark
lated electrons in a nondegenerate band are presented in Seo.inherenibut well understoodlimitations of modelling an
II. In the same section we introduce the LA method to treatinfinite solid by finite cluster calculations. In this respect the
local correlations, and define the characteristic functiongised periodic boundary conditions ensure that influence of
used to describe the numerically obtained charge and spifinite size effectgversus bulk propertigss minimized. The
density distributions in stripe phases. The numerical resultgctual number of holes in the clusterNg=NJ, whereN is
for two doping levelss=1/8 and 1/4 are presented and dis-the number of sites. For convenience we chdosé as an

cussed in Sec. Ill. A short summary and conclusions arenergy unit, and vary the Coulomb interactidrin the range
given in Sec. IV. of 3<U/t<10 which includes the typical values for the cu-
prate superconductorss8J/t<10. The other parameters of
Il. DESCRIPTION OF STRIPE PHASES the Hamiltonian with static phonon®) were assumed to be

the same as in the previous HF stud/t=18 anda=3.

The model Hamiltoniansl), (2), and(3) are first solved

As already mentioned, we study the stripe phases in aelf-consistently within the standard nonhomogeneous HF
nondegenerate band with local Coulomb interactiprusing  approximation, where the on-site interactions are replaced by
finite clusters described by three Hamiltonians: the singleone-particle terms
band Hubbard Hamiltonian

A. Models of correlated electrons

NN =N () )N = ()N ). )

H1=—t2 cfacngrUZ Nip N |, (1) As we do not consider spin spirals, we use the simplest
N ' close-shell version of the HF method with a product of two
the single-band Hubbard Hamiltonian which includes the soSlater determinants for up and down spins separately. Such

called static phonoris solutions serve as reference stalés) for calculating the
correlated states, as described in Sec. Il B.
H,= _tz (1+anj)CiTnga+U2 niTniL"'%KZ uizj , The calculations performed for the Hubbard Hamiltonian
i i

with phonons(2) use an approximate procedure as intro-
(2)  duced in the Appendix. Unfortunately, a rigorous inclusion

ijo
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of the phonon(kinetic and potentialenergies is a difficult panding the exponential factors in the wave functi¢irg)
task. So far, only a limited progress was achieved in spite of5) up to linear order iny; , they can be easily determined by
numerous attempi@ typical recent example is given in Ref. minimizing the energy9),'?
23). Therefore, we limit ourselves to the static phonons, and
follow the procedure introduced by Dobst al®* and by »’=a"'b, (10)
Zaanen and Ole5

Eo=Epe—b7’, (11)

B. Local correlations LA .
where the elements of the vectorand matrixa are defined

The electronic correlations were treated usirrgpahom%— as follows:
geneousvariational method, known as a local ans&tZ>

This method captures the leading contribution to the correla- bi=(O;H ), (12
tion energy in the present systems with nonhomogeneous
density distribution of doped holes. It follows from the form a;;=(Oi(Hm e~ Enp) O)), (13

of model Hamiltoniang1)—(3) that it suffices to introduce ) i
only the on-site local correlation operators in oder to deter@"d Enr is the HF energy calculated from the HF Hamil-
mine the ground state energy with reliable accuracy. ThudOni@nHm i, which is obtained fronH,. The above equa-
the wave function up to lowest order is equivalent to thattlon is valid provided that_any third and higher order fluctua-
introduced by Gutzwiller for the Hubbard modélHere we ~ tions such as~((n;;—n;;)%® are small and can be
avoid the simplifications introduced by the Gutzwiller ap- neglected? This condition is well satisfied in the symmetry-
proximation, and use an exponential ansatz for the correlatdgroken states with AF order considered in the present study.
ground stat&!? More details on the energy minimization in the LA method
may be found in Refs. 13 and 14.
Wo)—e —E oo ©) As an example, we give below explicit formulas foand
0) = X v o) a for the Hubbard Hamiltonian, either witho{Eq. (1)] or
with [Eq. (2)] static phonons,

where
Oi=n;nip=(nip)nj;) (6) bi:UZS {(nignsp (i Ns) = NiNg(Ni Ng )
are the local operators angl are the corresponding varia- - — -
tional parameters. The averagés -) are determined, as =i Mg (Ni{Nsy) + NiyNg N N (14)

usually, by averaging over the HF ground state function
|®,). By construction the local operators describe the corre-
lations which gdbeyondthe HF state, an¢O;)=0. For con-
venience, we use also a shorter notation for the one-particle
averagesn;; =(n;;), and define the local doped hole density x> (&) — el )Vigvi Vi, (15)
in the correlated ground staf@ ) as follows: Mu M oI

aj; =<nilnu>ME (SL_8K/|)ViTMViTHVjTMVjTM+(nm”jT>
"

(Wol1— (i1 +n; )| W) where the subscript¥! and x run over occupied and unoc-
Nhita= A AR (7)  cupied(virtual) HF one-particle states, respectively. In order
(Vo Wo) to distinguish them from lattice site indices we use either

capitals(for occupied statgsor Greek character§or unoc-
cupied states The HF eigenenergies asg ande, , respec-
tively, andviy andvy, label the componeritof the corre-

The HF ground state functioftb,) describes the refer-
ence state with magnetic order and local order parameters

WAl(12) (e — e )W sponding eigenvectors for spin Let us remind here that the
| LA:|< ol M2 (ni; = i) | Wo)| , (8)  (rea) unitary transformation from electron creatigannihi-
(WolWo) lation) operators defined on lattice sites to the electron cre-

ation (annihilation operators corresponding to occupied and
spin componen&?=2(n;;—n; ). This construction allows virtual one-particle HF states is realized by the matrix con-

us to use a closed-shell version of the HF wave functior"lsuuc_tled from the e'fge(;“’eﬁtor{S’M ,vﬂ}.dFor the ':]'rSCh
|d,) with the factorization of the Slater determinant into J@miltonianHs one finds that Eq(15) does not change,

up-spin and down-spin parté. while theb; elements may be straightforwardly derived and

The variational parameteng are fixed by minimizing the satisfy a slightly modified I_Eq(.14). .
total energy in the correlated ground state The ground-state energies of the obtained correlated solu-

tions, Eq(6), depend on the size of the cluster and on the

defined by the breaking of symmetry with respect to tie

doping levels. As a measure of stability of various textures

(WolHm| Vo) o . ) .

OZW, (9) it is convenient to introduce the energy gain per one doped
oo hole/

whereH,,(m=1,2,3) is one of the Hamiltonians introduced 1
in the prevc!ous section, and the values qf Fhe variational pa- Eh:N_[EO( 8)—Eo(6=0)], (16)
rametersz; correspond to the global minimum. After ex- h
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whereEy(6=0) is the reference energy of the undoped AFstripe phase found in the ground state depends on the actual
phase. As the ground-state energy we use either the energiealue of the local Coulomb interactidd/t, as presented in
found within the LA method?9), as explained above, or the the next section.

HF energy as introduced before in Ref. 7.

. NUMERICAL RESULTS
C. Charge and spin structure factors
For the characterization of charge and magnetization dis- 6\1\(6 .tconsu'jtﬁred .23. sguared clustersd.gontanjmg up;lBto
tribution in the correlated statd$W)} it is convenient to S| is W{h hpelrlod . ou_nla_ry con ||fons, Lelf fE'J‘I}IQ'{
introduce two functions which are directly measured in elas_sugelrce ’P;NI o€ op:ng?t— dn a\{\;ay chftm a-t Inkg
tic coherent scattering experimer@¢k) and S(k). First of (n=1), wheren is an electron density. Let us remark on

them, the x-ray elastic scattering functi@k) is a Fourier inherent(but well understoodlimitations of modelling an
transi‘orm of the density distribution infinite solid by finite cluster calculations. In this respect the

used periodic boundary conditions ensure that influence of
1 finite size effectgversus bulk propertigds minimized.
Ck)=— > <ni><nj>eik(Ri*Rj), (17) We have investigated the ground states of the Hamilto-
N nians (1)—(3) by performing self-consistent calculations for
. the 8X 8 clusters with periodic boundary conditions for the
v_vhereRi are the real space Iattl(_:e vectors. The sec_:ond funcﬂndoped systems and for two doping levéls 0.125 andd
tion S(l.() is related to the elastic n_eutron_unpolanzed SPIN_ g 25, They correspond to the underdoped and overdoped
scattering. The measured double @fferenuﬁaé cross section 'rsegime of the high-temperature superconductors, respec-
proportional to the neutron scattering function tively. In the undoped case the ground state is homogeneous
‘K with AF long-range order, independently of the assumed
B aRa | o narrow-band Hamiltoniaril)—(3). In contrast, in the doped
}—(k)_% (5“3 k2 )S Pk, (18 systems a rich variety of textures can be systematically in-
vestigated by varying the initial conditions and the value of
where Coulomb interactionU. We have identified several new
phases as compared with the earlier HF stlislgme of them
Bl 1 N iK(Ri—R) stabilized by the electron correlations. Below we present
SY(k=y Z (SRR (19 only the most stable solutions found for two investigated
: doping levels.
describes the spin structure akglis the« component of the
scattering vector. We note that for the stripe states consid-
ered in the present paper one fif@&) =(S') =0 (assuming _ _
the magnetization direction along thexis),”® so the neutron Let us concentrate first on the underdoped systems with
scattering function may be further simplified. We use belowd=0.125. The most typical solutions obtained in this case
S(k)=S¥(k) for the only nonvanishing component of the with the increasing value of (_:oulomb !nteract|mJ1F are
spin-spin correlation function. prgsented in Fig. 1: two vertical 'half-fllled dqmam wglls
We introduce also after White and Scaladimodifferent  [Fig- 1(@], two types of the half-filled walls with density

way of describing the domain wall structure by the charge alternation[Figs. 1(b) and Xc)], and two extended diagonal
walls[Fig. 1(d)]. These structures reproduce a generic cross-

A. Underdoped systems$=0.125

1 Y over from the vertical01) to diagonal(11) walls with in-
nh(ly)=1—— >, (N iy 1N (200  creasing Coulomb interaction, as reported in the early HF
Lyp=a e o studies'® However we emphasize that the structure depicted

in Fig. 1(d) although being more spacially extended has
lower energy than the simpler phase with the doped holes
located on single lines along th@1) direction. The most
stable stripe structures shown in Fig. 1 are globally stable for
particular Coulomb interactiordJ/t, but frequently other
stripe phases are locally stable, with only small energy dif-
correlation functions in real space. Here we use an expliciference with respect to the determined ground state. There-
notation for the site indicek=(l,l,) in terms of two coor-  fore, while the regions of stability of various solutions might
dinates. Equationg20) and(21) are well designed to analyze still change in a more accurate treatment, one expects that
vertical domain walls, as they describe the changes of théhe phase separation infa@loped hole-rich and hole-poor
charge and magnetization distribution in theirection per-  regions, similar to that established for the) model*®%®
pendicular to such domain walls. Analogous formulas withoccurs in the present model systems, with the doped holes
the summations performed along one of the diagonal direcerdered along particular lines.
tions capture the relevant density changes for the diagonal As seen in Fig. 1 and in the charge density maps for these
domain walls. four typical structuregsee also Figs.)2 the regions of in-

We have verified that the charge and magnetization disereased doped holes concentration separate AF domains with
tribution for particular stripe phases do not change signifidlarge magnetic moments and with small almost nonmodu-
cantly in the presence of electron correlations. However, théated hole density. Concerning the hole density distribution,

and spin

L
1Y 1
Sa(lo=¢ 2 (CDNYSng, 70,00 (2D
=
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FIG. 1. The most typical stripe phases as obtained at dofing 2 k. 2 2 k, ?

=0.125 using LA method(a) a half-filled nonmagneti¢01) do-

main wall (Hubbard modely = 10t), (b) two weakly ferromagnetic FIG. 2. The magnetic and charge ordering obtained in reciprocal
(FM) half-filled (01) domain walls with charge alternatiaiiiub- ~ space for dopingé=0.125 in an &®8 cluster within the LA
bard model with static phononkl=9.23), (c) two FM half-filled =~ method: the magnetic peakialll circles) correspond to spin struc-
(01) structures with quadrupling of charge and spin ordering withinture (19) seen in neutron elastic scattering functi(k); the charge

a single AF domairHirsch modelU = 6.5), (d) diagonal extended peaks(open circleygive the charge distributiofl?) as observed in
walls with FM order and isolated holdslirsch model,U=9.5). x-ray scattering functionC(k). The numbers accompanying the
The diameter of the grey circles is proportional to the hole densityircles indicate the peaks intensities. Different panels represent the
Nhi LA (7), and the length of the arrows is proportionaK&ﬂLA (8) most stable solutions shown in Fig. ()] striped phase with two

according to the scales shown at the figure bottom. half-filled nonmagneti¢01) domain walls,U =10t [Fig. @], (b)
striped phase with two half-filled01) domain walls with charge

) . ) . alternation, U=9.% [Fig. 1b)], (c) two half-filled FM stripes
the half-filled walls of Fig. 22) have a uniform density along ithin a single AF domainy = 6.5 [Fig. 1(c)], (d) polarons in the
the wall, while the other three structures of Fig. 1 which (11) extended stripes of increased hole density within a single AF
occur at higher values &/t are characterized by the spacial domain,u=9.% [Fig. 1(d)].

modulation of doped hole density, either along tbé&) di-
rection[Figs. 2b) and Zc)], or along the(11) direction[Fig.  exist in all three situations shown in Fig. 3. This confirms the
2(d)]. ) ) o trend observed in the earlier HF simulations in the interme-
The obtained magnetic textures may be classified into tWejiate coupling regime, where the vertical domain walls were
types of solutions: the domain walls of Figdaland Xb)  found both for small doping<0.08(see Ref. § and for the
separate two diff(_arenF AF domains, while the remainingpresent doping leveb=0.125(see Ref. V.
structures[shown in Figs. {c) and Xd)] correspond to a Secondly, the correlation energy gives typically a substan-
single domam.Wlth a nophomogeneou; d|str|bu't|or.1 of.dopeqia| energy lowering. As it depends on the actual density
holes. This difference is best seen in the distribution ofyjstribution, it is thus different in various stripe phases.
maxima in the magnetic structure fac&(k), shown in Figs.  Therefore, the sequence of the obtained ground states in the
2(a)-2(d). One finds strong maxima at the values lof | A method differs from that found in the HF calculation. At
=(*3m/4,xm) for the structures with two domain walls rather low values obJ/t one finds the spin-bag phase both in
[Figs. X&) and Xb)], while for the structures with a single the Hubbard model and in the Hubbard model with static
AF domain the strongest peak lat= (7, ) is accompanied phonons. This phase is characterized by rather small mag-
by some weaker satellitgsigs. Xc) and Xd)]. The same petic moments and therefore is stabilized by electron corre-
applies to the spin-bag structure stable at small valués/of  |ations. The particular correlation energy gain found for this
(not shown, with an extended region of increased hole den-sp|ytion supports the generic tendency towards phase sepa-
sity and reduced AF order. Looking at the reciprocal spaceation into hole-rich and hole-poor regions already in the
pattern we conclude that such spin-bag structure correspon@@gime of U/t=5, and may be considered as a precursor
to the intersecting grid of diagonal walls, i.e., along (11) andeffect to the formation of vertical stripes. The vertical non-
(11) directions. We further note that only the structures withmagnetic half-filled stripe$Fig. 2(a)] take over for larger
the magnetic maxima displaced from the AF valuekof values ofU/t. They are robust and are stabilized by particu-
= () agree well with the experimental observatidns. larly large correlation energy gains at the nonmagnetic atoms
The numerical results obtained for the energy of differentin the broad range dfi/t, while some other states with mag-
textures are summarized in Fig. 3. First of all, the collectechetic atoms on the walls are more stable at the HF level. This
data allow us to conclude that the tendency to form verticaphenomenon is analogous to large correlation energy gains
walls for the intermediate values d&J/t is generic—they in the paramagnetic phase, known in itinerant magnetfsm.
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FIG. 3. Energy per one doped hdig /t (16) for various stripe 0.14f

phases found for 8 8 clusters aty=0.125 for increasing Coulomb
repulsionU/t. The results of HF and LA calculations are shown by £ 0.10}
solid and dotted lines, respectively, fe@ Hubbard Hamiltonian

(1), (b) Hubbard Hamiltonian with static phonorig), (c) Hirsch 0.06
Hamiltonian (3). In case(a) apart from the ground state structure

also the locally stable states at higher energy are shown. Different

symbols indicate various stripe phas€s:—nonmagnetic half-filled FIG. 4. Average doped hole density(l,) (filled circles and
domain walls[Fig. 2@)], ®—two alternating(01) domain walls  spin structure functiors,(l,) (open squarésas obtained for the
[Fig. 2(b)], O—vertical half-filled walls(with one hole per two  most typical stripe phases found &t 0.125. Different panels cor-
atoms of the wa)l [Fig. 2(c)], V—ordered polarons in th€ll)  respond, respectively, to the solutions shown in Figa)id).
direction corresponding to a grid of diagonally intersecting walls
[Fig. 2(d)], x—horizontal domain walls with quadrupling of charge
and spin orderinginot shown, A—magnetic half-filled domain
walls (not shown, O—spin-bag structur¢not shown.

h(lx)

are thus enhanced. Moreover, the magnetic mom@ytare
here larger than in the Hubbard model for the same values of
U/t. Therefore, the transition to the diagonal domain walls
Finally, the coupling to the lattice and the correlated hop-occurs for the Hirsch model at a much lower valuelbft
ping term in the Hirsch model results either in certain modi-=6.5 than in the Hubbard model, where such structures are
fications of the vertical stripes, or in diagonal extended strucfound in the ground state only fai/t>9.7. We note that the
tures at large values dfi/t. Local distortions due to static same crossover is found in HF method applied to the Hub-
phonons stabilize the domain walls with magnetic momentbard Hamiltonian atJ/t=7.7 which agrees well with the
on the walls folU/t>7.5. The same sequence of solutions asvalue of U/t=8 reported in the early study of Zaanen and
in the Hubbard model with phonons is also found in theGunnarsson.
Hirsch model, but here the spin-bag solution and the vertical Although the vertical half-filled domain walls are stable in
half-filled walls[Fig. 2(@)] are almost degenerate in a rangea broad regime of intermediate valuesft for the Hub-
of small U,3<U/t<4.5. In such a situation one might ex- bard model, without and with static phonons, we have found
pect that one of these phases could be stabilized either kiat the lines of enhanced doped hole denéifymay con-
additional hopping elements to further neighbors, or by theain magneticatoms, in contrast to the earlier HF studtés
coupling to the lattice. FotJ/t>6.5 one finds here the ex- where no magnetic moments were reported on the domain
tended diagonal walls of Fig.(@). walls. This occurs in particular in the case of the Hirsch
The modelg1) and(2) give quite similar results in the HF model at stronger interactiorid [Figs. 1c) and 1d)], but
method’ with the same ground states moved to larger valuesuch regions of enhanced doped-hole density occur then
of U/t in the presence of static phonofiBig. 3). Such a  within a single AF domain, in contrast to the nonmagnetic
change of the size of effective interaction follows from theand weakly magnetic structures which separate two different
enhancement of the local hopping elements on the bonddomains[see Figs. (a) and 1b)].
which connect the atoms at the domain walls with their near- The difference by a factor of 2 in the periodicity of charge
est neighbors in the direction perpendicular to the wall due t@nd magnetic structures for tli@l) half-filled domain walls
lattice relaxation, effectively reducing the correlation effects.which expresses the alternation of AF domains is shown in
The opposite trend is observed in the Hirsch mo| Figs. 4a) and 4b). The lines of increased hole density are
where the hopping elements in the regions of increasedccompanied by the reduced values of magnetizaigh,),
doped hole density are reduced, and the correlation effecsnd a change of phase in the AF order is found on the charge
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TABLE . Local charge density,;=(1—(n;;+n;,)) and local X I
magnetization densityn, = %|(nifnu>|, for various stripe phases ® 0 94;4» ® o :%% 4=
and parametersU/t) of Fig. 1. Nonequivalent atoms in different e 9"'*;1:"‘ I ¢ ¢
textures are labelled according to the decreasing doped hole density. :"Ff‘ "'; . : :I ¢
stripe phase i Nhi HE NhiLa M wr m; LA %EIHFtti ::
Fig. 1(@ 1 0.379 0.396 0.000 0.000 .l t(gzj4° +® (b)
2 0.058 0.050 0.439 0.444 z
3 0.005 0.004 0.462 0.463 $66| 1060 ¢ ¢¢ | 00
Fig. 1(b) 1 0.468 0.523 0.082 0.090 Sl e 4@ oBoé 00| | 004
2 0181 0179 0360  0.373 ®¢ 6948 ? ‘f{“’ i
3 0149 0127 0354  0.380 .o oo | ¢l o00e o
4 0.099 0.098 0.386 0.396 + @ ¢ +Bé | 00000
5 0.052 0.038 0.414 0.427 RN Sl SN # $—+¢ &¢
6 0022 0017 0428  0.436 649 -4 49
7 0014 0007 0447 0453 (©) (d)
Fig. 1(0) 1 0440 0445 0242  0.247
2 0.167 0.181 0.341 0.350
3 0.112 0.119 0.367 0.377 FIG. 5. The most typical stripe phases as obtained at dofing
4 0056 0046 0401 0417 =025 “ﬁi“g ';hA m?thol?(a) tl’."o f(iag;r)'a'(;pf‘da'f'}l’l e(;‘t(%”l‘)je; do-
main walls with spin alternationl= 6t), wo fille o-
Fig. 1(d) i 82;2 82?51 83(152 8;2: main walls (U=_10t), (c) ringlike domain_ wall wit_h AF order (0
’ ) ) ’ ' =T7t), (d) two diagonal extended walls intersecting each othér (
2 0.125 0.130 0.399 0.404 =10t). The stripe phase®) and(b) [(c) and(d)] were obtained in
3 0.119 0.122 0.404 0.409  the Hubbard model with static phonoftdirsch mode]. The mean-
4 0.112 0.114 0.411 0.416  ing of grey circles and arrows as in Fig. 1.
5 0.033 0.025 0.451 0.458
6 0.018 0.014 0.455 0.460 . .
- 0.013 0.010 0.455 0.460 tions stabilize a homogeneous phase at low, and the

spacially extendedbroad diagonal stripes along the (11)

direction at larger values ofJ/t=5 (this is a different
round state than that obtained using the HF approximation
hese qualitatively new states may be understood as follows.

walls. Such structures were observed in the experiments
Tranquadaet al.>* and we conclude that the observed stripe
phases might correspond either to nonmagnetic homoge-

neous wall§Fig. 2@)], or to the walls with charge alterna- +r+@o i { o@ *? o@ ¢
tion [Fig. 2b)]. In contrast, the remaining two structures +@o i1 o@+ Go @
shown in Fig. 1 are characterized the same periodicitpf ‘?,,: ‘ ¢ p ‘?
the charge and magnetization distribut{@ee Figs. &) and ++@e ) ¢ *
4(d)]. Oscillation of both distributions along th@0) direc- e i o @ ¢
tion in the latter case is consistent with the diagonal charac- —+— o®
ter of the extended walls. : —++-@ =1 X
We have compared in Table | the chaf@eand the mag- b (a) (b)

netization (8) density per site obtained in different phases 4 o +@¢ &
shown in Fig. 1, as found in the HF and in the LA calcula- < & ¢ | ry
tions (the HF values are defined here as the respective aver- & | | 1
ages over the HF ground statét is found that local corre- L 3. 5.8 g
lations almost do not influence the density distribution and ’??‘ 1
lead only to a slight increase of the magnetic moments. This : | T ®
behavior demonstrates that the leading on-site correlations 4 ® §,$, ®
give only small modifications of the ground state, increasing % @
somewhat the differences between the charge density at the ’

domain walls and within the undoped regions of the AF

phase.

FIG. 6. Stripe structures found in the HF ground state at doping
6=0.25, but destabilized by electron correlations within the LA
B. Overdoped systemsg=0.25 method:(a) extended diagonal domain walls with spin alternation
] ) ) (U=8.5), (b) ring of increased doped hole density in an AF do-
For the higher doping leved=0.25 somewhat different  main (U=10t), (c) two walls intersecting each other in a single AF
types of stripe phases are found. We present the typicalomain (U=8t), (d) two diagonal extended walls with locally in-
stable solutions for increasing values Wft in the panels creased hole densityJ(=9.5). The stripe phase&) and (b) [(c)
(a)—(d) of Fig. 5, while some other structures found only in and(d)] were obtained in the Hubbard model witithout] static
the HF ground states are shown in Fig. 6. First, the correlaphonons. The meaning of grey circles and arrows as in Fig. 1.
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FIG. 7. The same as in Fig. 2, but for dopifgr 0.25. Different FIG. 8. Energy per one doped holg,/t for various stripe
panels represent the most stable solutions shown in Figg)%li-  phases as obtained foix@ clusters ats=0.25 for increasing Cou-

agonal filled domain wallu=6t [Fig. 5@], (b) two filled (01)  |omb repulsionU/t. The results of HF and LA calculations are
domain walls,U=10t [Fig. 5(b)], (c) striped phase with a ring shown by solid and dotted lines, respectively, fai Hubbard
structure,U =7t [Fig. 5c)], (d) striped phase with two intersecting Hamiltonian(1), (b) Hubbard Hamiltonian with static phonoKi),
diagonal wallsU=10t [Fig. 5(d)]. (c) Hirsch Hamiltonian (3). Different symbols indicate various

stripe phases®@—homogeneous AF phase, *—diagorall) ex-
Under the tendency towards phase separation into hole-ricignded wall§Fig. 7(@)], ¢ —filled nonmagneti¢01) domain walls
and hole-poor region$:?8 it is more difficult to accommo-  [Fig. 7(b)], X —fuzzy ringlike structure¢Fig. 7(c)], <—filled ver-
date the increased hole density in the vertical or horizontaical walls [Fig. 7(d)], »—diagonal double walls[Fig. 6],
stripes and therefore it appears to be easier to stabilize iz —1ing structurdFig. 8b)], &—two walls intersecting each other
stead the broad diagonal stripes, either along(1i direc-  LF19- 8©)), ©—two extended wall$Fig. 6(d)], +—extended ring
tion alone, or intersecting domain walls along itid) and

structuredsimilar to that of Fig. 7d)], O—spin bag structurénot

(11) direction(Fig. 5. The AF correlations are weaker at ow).
this level of doping(in comparison to these found fa¥  npanced doped hole density. There is only a single AF do-
=0.125), and except for the case of strong AF correlations ifnain, and thus strong maxima are foundSk) at the AF
vertical (01) walls of Fig. 5§b), the reduced weak AF corre- pointsk = (= 7, + r). Having both chargéC(k)] and mag-
lations survive only within the spacially extended domai”netic[S(k)] maxima at the same values lof the structures
walls [Figs. Ha), 5(c), and &d)]. As in the case of6  shown in Figs. ) and 7d) may be considered as a modi-
=0.125, increasing Coulomb interactiah't suppresses the fication of the same phase with diagonal walls of increased
vertical nonmagnetic stripes and gives instead new extendngnsity'
structures, with all atoms being magnetic. The complexity of the ground states found for the over-

The extended domain wall§ig. 7(a)] separate two AF  goped systeméat the doping ofd=0.25) is best illustrated
domains and give the magnetic structure facsk) with by the dependence of energy gain per one doped Bplé
two distinct maxima at thek=(37/4,—37/4) and on the Coulomb interactiot/t, shown in Fig. 8. A homo-
(—3m/4,37/4) points. This structure is, however, found geneous solution with weak AF long-range order found at
only at relatively small values df/t=5 and is therefore not o\ values of U/t is replaced by several different stripe
expected to emerge in an experiment. At higher values ohhases with increasing valuesdft. As expected, the onset
U/t we have found again the verticé)1) nonmagnetic do- of the stripe ordering occurs at higher valuesWft in the
main wallsfilled now by one hole per one wall atoffig.  presence of electron correlations than in the HF calculation.
7(b)]. Except for the increased doped hole density and somez|ectron correlations contribute significantly to the stability
what reduced magnetic moments, this structure is qualitagf stripe phases, and stabilize in particular the filled vertical
tively equivalent to two half-filled walls discussed above for gomain wallgFig. 7(b)] at intermediate values &f/t. These
the §=0.125 cas¢Fig. 2@)], with strong magnetic maxima  stryctures were also found in the HF calculations in a range
of S(k) found again at the points=(*3/4,m). of smaller values ofu/t for all three considered model

The remaining two phases found in the overdoped SYSHamiltonians(1)—(3).
tems (6=0.25; the LA metholishow diagonal charge struc- e have found the same qualitative trends when compar-
tures, and the corresponding magnetic and charge maximag three different model&l)—(3) as the trends found in the
are found both along the () and the(11) direction[Figs. case of§=0.125, namely i) there is little difference be-
7(c) and 1d)], i.e., the intersecting diagonal walls with en- tween the Hubbard model without and with static phonons,
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FIG. 9. Average doped hole density(I+1,)[nx(l)] (filled circles and spin structure functio8,(I1,+1,)[S,(lx)] (open squargsas
obtained for the stable solutions of Fig. 5.

except that the same stripe structures are stable at highphonons, and in the Hirsch model at two hole doping levels,
values ofU in the latter case ani) the Hirsch Hamiltonian  §=1/8 andé= 1/4, which correspond to the underdoped and
corresponds to a stronger coupling, and therefore the fuzzysverdoped cuprates. In both cases the stripe phases are more
ring-like [Fig. 7(c)] and intersecting domain welFig. 7d)]  stable than the homegeneous solutions, indicating that the
structures occur here in a broad range efB/t<<10, while Stripe Ordering is generic and occurs a|Ways in doped AF
the first of these structures is stable in the Hubbard modqi/iott_Hubbard Systems Wlth intermediate Couiomb intei’ac_
only aboveU/t=10. Somewhat surprisingly, the range of tion U. The type of the stripe ordering, however, depends on
stability of the filled vertical wall§Fig. 7(b)] is much nar-  he actual parameters and on the doping level.

rower (5<U/t<6) in the Hirsch model than in the Hubbard  \ye have found that electron correlations always increase

modelsa_where EUCh structures are i‘/avored |hn_the regime COfre stability of the stripe phases, while the charge and mag-
responding to the cuprates, i.e., fdft>8. This may sug- ,aisation distribution in a particular phase are only little

gest that the lesch Ham|lton|§1n Is less rgaahsnc mode| formodified by electron correlations with respect to those found
the cuprates, in agreement with the published results con-

cemning the mapping procedures from realistic multiban n the HF approximation. Although the observed half-filled

Hamiltonians(in cuprategto simplified effective single band vertical stripes were .found before in the HF calculaﬂops,
Hamiltonian<2° they were unstable with respect to the filled walls and spiral

The charge and magnetic structures found in the Overphaseg.Here we have found that electron correlations play a

[ i i inent role in stripe phases asthbilize the observed
doped regime(Fig. 9 are somewhat less symmetric than PrOMInNen . _
those found in the underdoped regime. Low doped hole der@-filled domain wallsin the underdoped systeniat &

sity n,, (20) is accompanied by large magnetic mome(a® =1/8). We emphasize that sgch sol_utions oowithoutany
with AF nearest-neighbor correlations, resulting in large val-/ong-range Coulomb interaction which was recently shown
ues ofS, . It is well seen in Figs. @), 9(c), and 9d) that the to enhance the stability of half-filled domain walls within the

Sutzwiller ansatZ. The most stable stripe phase obtained in
these systems has the expected alternating AF domains sepa-
rated by nonmagnetic domain walls, as observed experimen-

over the whole cluster in the remaining two cases. In Cor]_tally. Interestingly, the half-filled stripes absorb more holes

trast, the magnetic unit cell has a length of eight sites Whilé"’ith increasing doping beyo’?“’: 1/8'_ and _give Sii" _the
the charge cell has a length of four sites for two vertical filledS2M€ form Of.S(k) for the doping ofo=1/4, n qualltailve
nonmagnetic stripes of Fig.(§. This result shows once agreement with the observetiroad plateau in the shift of

again that this phase is physically equivalent to the vertical® maxima ofS(k), found atk=[(1*2%)m, 7], with 7
half-filled stripes found in the underdoped systems. 2(1/8 'r; both cases, with respect to the AF peak found at
=(m,m).
The present method gives also that the nonmagnetic half-
filled walls are more stable at=1/8 in the regime of inter-
Summarizing, we have studied the stability of stripemediate values of)/t than any of the other textures, includ-
phases in the Hubbard model without and with staticing the bond-centered domain walls found in the DMRG

periodicity of magnetic structure is in these cases identical t
that of the charge distribution; it involves half of thex®
cluster for two diagonal walls of Fig.(8), while it extends

IV. DISCUSSION AND CONCLUSIONS
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calculationg pointing out that the accurate treatment of cor-tions was used in Ref. 7 as a possible model which might
relation effects is crucial for a better understanding of thesupport the formation of stripe phases in the cupratedJ At
ground states in doped antiferromagnets. However, the an=0 this Hamiltonian reduces to the Su-Schriffer-Heeger
swer obtained in the present study concerning the instabilitynodef? which was applied with great success to explain the
of bond-ordered stripes obtained in the DMRG calculationgdimerization of polyacetylene. Originally, the Su-Schriffer-
by White and Scalapiffowith respect to the site-ordered Heeger Hamiltonian was introduced for a homogeneous sys-
stripes might not be final. The ansatz for the correlatedem (with the same charge at each lattice sitend under a
ground statg5) does not include two important effects) constraint that the sum of neighboring bond dilatations and
the spin-spin correlations between nearest neighborgignd elongations is zero. This condition is absent in the present
the one-particle excitations which optimize the charge distrimodel! and the lattice contracts. The energy minimum in the
bution in nonhomogeneous systeffidt may be expected HF approximation was found by using an iterative procedure
that both types of correlations would decrease the energguntil self-consistencyin Ref. 7. Thereby, an approximate
difference between the bond-ordered and site-ordered stripesaddle-point formula for the phonon field was used which
and might stabilize the former. Moreover, the quantum flucrelates the actual contraction of a given bandto the bond
tuations which go beyond the present treatment are expectegharge densitjcfgcj o)
to be large in bond-ordered stripgsand they might stabilize
such structures. Further studies are needed to clarify under
which circumstances the bond-ordered stripes could form in Ui = — a_t E (Cfr Ciu) (A1)
the ground state. . K & eron

Finally, we did not address here the consequences of the
extended hopping to second ) and third ¢"”) neighbors. As
these elements are small as in,LgSr,CuQ,,?*?°we expect
that the vertical nonmagnetic stripes obtained in the prese
study are the most stable structures in the relevant regime
U/t. However, for stronger next-neighbor hoppingsand

The average$c;rgcjg> do depend on the actual bond length,

but the individual bonds are treated as independent from

"Yach other. Although this procedure works well in the HF
pproximatior, there is no guarantee that it will work in

. . 5 exact ground state. Therefore, we have introduced a more

", as found for doped Y and Bi superconductdrS, there ;o rare procedure which consists of two steps as described

are indications that the stripe structurgs are more :'Sp_""c'a"kfelow.

extended and 1g\re diagonal, as obtained also within the i<t \we consider that the dopingjis reasonably small so

DMFT method,” or even can evaporate and so enhancgnat we are quite close to the half-filled case. The AF ground

.. . 2 . .
de2_y2 pairing correlations? If confirmed, this would ex-  gpa0 5y half-filling is used to establish the reference bond
plain (i) why it is so difficult to observe static stripes in these length in the presence of electron-phonon coupling. This

two classes of high-temperature superconductors @Nd  gyate is homogeneous and the minimum is given by a single
why thglr superconducting transition temperatures are SQariable, i.e.u; = u® for each pair of nearest neighbarand
much higher than those of La superconductors. j. !

Summarizing, we have f°“r_‘°' nonmagne@i) domain . As a second step we perform a Taylor expangiam to
walls W|th'|n.the most stable stripe phases with a charge Unitecond ordérof all the HF averages around the reference
cell consisting of four atoms ab=1/8 and 6=1/4, and o ion found at half filling. It may be expected that one is
qualitatively the same magnetic resporSg) in neutron gy cjose enough to the real global minimum at not too high
scattering experiments. Our results show that the short—raanopin95 and the linear correction ta® will suffice. As the
(on-site Coulomb interactions alone suffice to stabilize theﬁrst ave,rage quantity one has to expand the bond charge
stripe phases and thus explain the physical origin of th%ensity(cfgcj() which determines the kinetic energy, used

stripes™ It is likely that such stripe phases as found in the ; : S
present paper are metalfi&l” but this question could be ggl;)olirgslinn Iliei((j,?nlg),o?gzlrjmmg that the local approximation
e

answered only in a dynamical approach. We believe that th
present results motivate further search for more accurate de-

scription of change and magnetic ordering in stripe phases, <cigcja({urs}))~(cigcjg(u°)>+c15uij+025ui2j+ e
and for a better understanding of the interplay between mag- (A2)
netic and charge degrees of freedom in doped Mott insula-

tors. where du;;=u;; —u° is the change of the bond length with
respect to the half-filled case. The unknown expansion coef-
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APPENDIX: TREATMENT OF STATIC PHONONS
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simplifying assumption that the same bond contractions
{6u;;} as in the HF approximation minimize the energy in
correlated states. As the distortiofis;; depend primarily on
the bond hole densit§A2), we have found that they may be
determined with sufficient accuracy using the HF states.

In order to trust the present procedure one has to verify
) ) ) whether(i) the first order termed; is indeed dominant with
The diagonal quadratic terms as written above are not thﬁéspect to the higher orderd, term and(ii) the derived set
only possible ones, but we have chosen here once again tig “semianalytic” su;; indeed lowers the HF energy, i.e.,
simplest formula using a local expansion. Its validity has toywhether Ene({U;j}) <Ene(Ug). We have completed these
be checked once again after completing the minimizatiorchecks and found positive answers to both of the above ques-
procedure. tions. This justifies our approximate procedure which uses

By inserting the Taylor expansionid2) and(A3) into the  the Taylor expansiongA2) and(A3) and allows us to obtain
HF HamiltonianH -, and minimizing the total energf;e conclusive results from the Hubbard Hamiltonian with static
=(Hyg) over éu;;, one obtains an analytic solution by solv- phonons(2). We have also verified that the obtained mini-

Ei <niTni¢({urs})>~Z <niTnil(U0)>+d1% ou;;

+dy >, SuiH (A3)
i]

ing a set of uncoupled quadratic equations. We have takenmum is close to the approximate saddle-point relati@is.
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