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Green’s function formalism for calculating spin-wave spectra

F. Aryasetiawan
Joint Research Center for Atom Technology–Angstrom Technology Partnership, 1-1-4 Higashi, Tsukuba, Ibaraki 305, Japan

K. Karlsson
Institutionen fo¨r naturvetenskap, Ho¨gskolan i Sko¨vde, 54128 Sko¨vde, Sweden
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We propose a formalism for calculatingab initio spin-wave spectra which is based on the many-body
temperature Green’s function. The main quantity to be calculated is the linear magnetic susceptibility from
which all magnetic excitations involving the creation of an additional spin in the system can formally be
obtained. The Schwinger functional derivative technique is employed in calculating the self-energy. The
approach avoids both the assumption of local spins~Heisenberg model! and the use of alocal exchange and
correlation interaction~local-density approximation!. Starting from the GW approximation we obtain a Bethe-
Salpeter equation for the kernel describing the interaction between electrons in both spin channels. However,
this kernel exhibits anonlocalscreened interaction.@S0163-1829~99!08933-X#
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I. INTRODUCTION

Collective spin excitations in solids are involved in ma
physical phenomena.1 The energy scale of spin excitations
typically of the order of tens of meV. Spin excitations cou
therefore be coupled to excitations around the Fermi surf
Many physical phenomena lie in this low-energy regim
Transport and thermal phenomena such as the electronic
cific heat and electrical and thermal resistivity are among
most well-known ones. Due to thermal excitations of sp
waves at low temperature the magnetization in a ferromag
obeys the Bloch law;T3/2. Spin-wave excitations are als
observable in the specific heat where aT3/2 term appears in
addition to theT3 term due to phonon excitations. The di
covery of high-temperature superconductivity has also
hanced the interest in spin excitations. There is compel
evidence to believe that spin excitations are involved in
perconductivity. Like in conventional BCS~Bardeen-
Cooper-Schrieffer! theory where the phonons mediate attra
tive interaction between electron pairs, it is proposed t
spin fluctuations are the mediator of attractive interaction
the high-temperature superconductivity.2,3

There have been many works in the field of spin exc
tions or spin waves, starting from the early work of Heise
berg whose model has been very successful in expla
many phenomena involving spin fluctuations. Fir
principles calculations have also been performed by a n
ber of authors. These are often based on frozen-spin
proach where the excitation energy is calculated by assum
a certain spin-spiral configuration.4–7 The system is usually
mapped to the Heisenberg model and the exchange pa
eterJ is then obtained from realistic band-structure calcu
tions. This approach is restricted to static spin excitations
is well known that the discrepancy with experiment can
quite large. Three sources of errors are evident in this
proach. The first is the use of the local-density approxim
tion ~LDA ! in calculating the total energy. The second is t
assumption of local spins inherent in the Heisenberg mo
and the third is that the assumed spin configuration may
PRB 600163-1829/99/60~10!/7419~10!/$15.00
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correspond to the true eigenstate of a spin excitation.
Spin-wave spectra can also be calculated using tim

dependent density-functional theory~TDFT!. In the early
works, severe approximations were made regarding the
ergy bands, wave functions, and the electron-elect
interaction.8–11 Only recently, full calculations for Fe, Ni
and Cr were made by Savrasov.12 The spin-wave spectra ar
obtained from the magnetic susceptibility thus avoiding m
ping to the Heisenberg Hamiltonian. The calculations s
cessfully reproduced the spin-wave spectra of Fe but for
significant deviation from experiment is observed. In TDF
the response function is given exactly, so that discrepa
with experiment is mainly due to the approximate exchan
correlation functional. The local and orbital-independent n
ture of the local-density approximation~LDA ! or its refine-
ments appears to be the major source of the problem. Ind
as will be shown later, the interaction between electrons
sponsible for the correlations determining the spectra is v
nonlocal.

The purpose of this paper is to present a method to
used for practialab initio calculations of the linear magneti
susceptibility. The approach is based on the Matsub
Green’s function and the Schwinger functional derivati
technique. The main advantage is the possibility of havin
nonlocal interaction which comes out naturally from the fo
malism, in contrast to the LDA where a local exchang
correlation kernel is employed for describing the interact
between the electrons. Starting from the self-energy in
GW approximation~GWA!, to be described later, we obtai
a Bethe-Salpeter equation for the nonlocal kernel describ
the interaction between electrons in both spin channels.

II. THEORY

A. Basic relations

We summarize some basic properties of the Matsub
Green’s function in this section. More details may be fou
in standard textbooks on many-body theory.13,14
7419 ©1999 The American Physical Society



ne

yt

re

ar

on

r

ti

mo-

n

h-
ter-

ld
of
ro
ot

in
e

he
rnal
ac

7420 PRB 60F. ARYASETIAWAN AND K. KARLSSON
The Matsubara or temperature Green’s function is defi
by the following 232 matrix:

Gab~1,2!52^T@ĉa~1!ĉb
†~2!#&. ~1!

Here, 1[(r ,t), a andb denote the spin, and the symbol^ &
means grand canonical ensemble average:

^Ô&5Tr@ r̂0Ô# ~2!

and

r̂05Z0
21 exp~2bK̂0!, Z05Tr exp~2bK̂0!, ~3!

K̂05Ĥ02mN̂, b[
1

kBT
. ~4!

The field operators are defined in the~modified! Heisenberg
picture:

Ô~t!5exp~K̂0t!Ô exp~2K̂0t! ~5!

so that

ĉa~rt!5exp~K̂0t!ĉa~r !exp~2K̂0t! ~6!

ĉa
†~rt!5exp~K̂0t!ĉa

†~r !exp~2K̂0t!. ~7!

Note thatĉa
†(rt) is not the adjoint ofĉa(rt) whent is real.

If t is interpreted as a complex variable, it may be anal
cally continued to a pure imaginary valuet5 i t . The result-
ing expressionĉa

†(r ,i t ) is then the true adjoint ofĉa(r ,i t )
and is formally identical with the usual Heisenberg pictu

apart from the substitution ofK̂0 for Ĥ0.15

In the Matsubara formulation, the Fourier transforms
defined by

G~ inn!5E
0

b

dt einntG~t!, ~8!

G~t!5
1

b (
n

e2 inntG~ inn!, ~9!

where nn denotes the Matsubara frequency for fermi
propagators. For bosons we usevn as a convention.

nn5
~2n11!p

b
, ~10!

vn5
2np

b
. ~11!

The Matsubara formulation is almost identical to the ze
temperature one except:

• Integral overt runs from 0 tob.
• For every diagram of ordern, we have the factor

(21)n instead ofi n as in the zero-temperature case.
• The retarded Green’s function is obtained by analy

continuation:

GR~n!5G~ inn→n1 id!. ~12!
d

i-

e

o

c

The field operator satisfies the Heisenberg equation of
tion

]

]t
ĉa~rt!5@K̂0 ,ĉa~rt!#. ~13!

From Eq.~13! we can easily derive the equation of motio
for the Green’s function:

F ]

]t
2¹ r

2/22mGGab~rt,r 8t8!

1E d3r 9E
0

b

dt9(
g

Mag~rt,r 9t9!Ggb~r 9t9,r 8t8!

52dabd~r2r 8!d~t2t8!. ~14!

The mass operatorM is defined by

E d3r 9E
0

b

dt9(
g

Mag~rt,r 9t9!Ggb~r 9t9,r 8t8!

5(
g
E d3r 9 v~r2r 9!Gabgg

(2) ~rt,r 8t8,r 9t,r 9t1!,

~15!

whereG(2) is the two-particle Green’s function defined as

Gabhg
(2) ~1,2,3,4![~21!2^Tĉa~1!ĉh~3!ĉg

†~4!ĉb
†~2!&.

~16!

B. The Schwinger functional derivative technique

We will now use Schwinger’s functional derivative tec
nique to calculate the self-energy. Since we are also in
ested in magnetic response, we introduce at-varying exter-
nal field which includes a magnetic field. This external fie
functions as a mathematical trick, similar to the principle
virtual work in classical mechanics, and it will be set to ze
at the end. The coupling to the orbital motion is n
considered.16

f~rt!5wW ~rt!•sW , ~17!

where

wW ~rt!5Fw0~rt!,
1

2
gmBB~rt!G , ~18!

s05S 1 0

0 1D , sx5S 0 1

1 0D ,

sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D . ~19!

For a t-dependent perturbation, it is suitable to work
the interaction~Dirac! representation where the effects of th
external field are considered explicitly in contrast to t
Heisenberg representation where the effects of the exte
field are contained implicitly in the field operators. The Dir
operator is defined by

ÔD~t!5exp~K̂0t!Ôexp~2K̂0t!. ~20!
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The t-development operator which describes the dynam
of the wave function satisfies

2
]

]t
Û~t,t0!5f̂D~t!Û~t,t0! ~21!

with the formal solution

Û~t,t0!5T expF2E
t0

t

dt8f̂D~t8!G . ~22!

Since Û consists of pairs of fermion operators, it can
commuted with a field operator without change of sign. T
relationship between the operators in the Heisenberg
Dirac representations is given by

Ô~t!5Û~0,t!ÔD~t!Û~t,0!. ~23!

As evident from Eqs.~20! and~23! operators and states in a
representations are defined to coincide att50.

Defining

Ŝ5Û~b,0!, ~24!

the Green’s function can be rewritten in terms of the fie
operators in the Dirac representation:

Gab~1,2!52
^TŜĉDa~1!ĉDb

† ~2!&

^Ŝ&
, ~25!

where the ensemble average is taken with respect toK̂0, the

many-bodyK̂ but without the external fieldf̂, i.e., K̂5K̂0

1f̂.
The external field in the Dirac representation takes

form

f̂D~t!5E d3r wW ~rt!•ŝD~rt!

5(
ab

E d3r ĉDa
† ~rt!fab~rt!ĉDb~rt!, ~26!

where

fab~rt![(
i

w i~rt!sab
i . ~27!

Consider a change in the DiracG upon an infinitesmal
change in the external fieldf. We first note that

dŜ
dw i~3!

52T@ ŜŝD
i ~3!# ~28!

and

dGab~1,2!

dw i~3!
5(

gh
sgh

i $Gab~1,2!Ghg~3,31!

2Gabhg
(2) ~1,2,3,31!%, ~29!

whereG(2) is defined in Eq.~16! and can also be written a
s

e
nd

e

Gabhg
(2) ~1,2,3,4!

5~21!2
^TŜĉDa~1!ĉDh~3!ĉDg

† ~4!ĉDb
† ~2!&

^Ŝ&
.

~30!

It is also possible to define the Green’s function in Eq.~25!

without the denominator̂Ŝ&. In this case, the Hartree poten
tial arising from the denominator corresponding to the fi
term in Eq.~29! has to be considered explicitly.

Defining the self-energyS without the Hartree field as

Sab~1,2!5Mab~1,2!2dabd~122!VH~1! ~31!

and using Eq.~14! with K̂0 replaced withK̂ we obtain17

Gab
21~1,2!52S ]

]t1
1t12m D dabd~122!2fab~1!d~122!

2Sab~1,2!2dabd~122!VH~1!. ~32!

In contrast to the Hartree term the external field is not di
onal in spin space. Finally using the identity

d

df
~G21G!5G21

dG
df

1
dG 21

df
G50→ dG

df
52GdG 21

df
G
~33!

we extract theexactexpressions

Sab~1,2!5(
h

E d3 d4 v~123!Gah~1,4!
dGhb

21~4,2!

dw0~3!
,

~34!

dGab
21~1,2!

dw0~3!
52d~122!dabFd~123!1

dVH~1!

dw0~3! G
2

dSab~1,2!

dw0~3!
. ~35!

It is interesting to note that only a change in the electric fi
w0 has to be considered when calculating the electron s
energy. Keeping only the first term in Eq.~35! we obtain the
exchange contribution to the self-energy and including
next term generates the well-known GWA. Sin
12dVH /dw0 is the inverse dielectric functione21, the
GWA is then given byS5GW where W is the screened
Coulomb interactionW5ve21. Thus the GWA takes into
account only the change in the Hartree potential. The
sponse function in the GWA corresponds therefore to tha
the random-phase approximation~RPA!. Qualitatively we
may regard the GWA as the Hartree-Fock approximation
with the bare interaction replaced with a screened one.
last term in Eq.~35! is referred to as the vertex correctio
which will be needed in calculating the spin-wave spectr

Theoretical development of the self-energy in condens
matter physics has been conventionally based on Feynm
diagrammatic expansion. In quantum electrodynam
where this approach was first introduced, such an expan
is well justified by the fact that the expansion parameter
scribing the coupling of the electromagnetic field to the el
trons is small, in the sense that a perturbation expans
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leads to a convergent result. In condensed-matter phy
the expansion parameter is the Coulomb potential which
no means can be regarded as ‘‘small.’’ Nevertheless
Feynman diagrammatic approach has been used rout
without much justification which has led to many fundame
tal problems. It is known, for example, that a straightforwa
expansion of the self-energy in powers of the screened C
lomb interactionW yields negative spectral functions, whic
are unphysical.18,19 Another fundamental problem is doub
counting. When summing two or more sets of diagrams
infinite order, the lower-order diagrams~second-order! are
usually double counted simply from the fact that the num
of second-order diagrams is very limited so that they
bound to be included in both sets. Furthermore, there is
prescription which sets of diagrams that should be summ
So far, the choice of diagrams is based on physical intuit

The problems associated with the Feynman diagramm
approach discussed in the previous paragraph do not see
arise in the Schwinger approach. In the latter, the basic qu
tity is the response function which is directly related
dG21/dw as in Eq.~48!. This is in contrast to the diagram
matic approach where the~screened! Coulomb interaction is
regarded as an expansion parameter for the self-energy.
reasonable to expect that the self-energy expressed in t
of the response function, which is a physical quantity, wo
yield physically sensible results such as positive defin
spectra. While we have no proof, we might argue that if
calculate the self-energy at different time steps, i.e., we
gard the perturbing potentialf as static at a given time step
the self-energyS in the GWA certainly has the correct an
lytic properties. We are, however, interested in the chang
S with respect tof. The fact thatS has the correct analytic
properties for allf corresponding to different time step
does not necessarily guarantee that its variation with res
to f ~the vertex! has the correct analytic properties as we
Nevertheless it is reasonable to expect that this is the ca

A further advantage is that the problem with doub
counting does not arise since the formulation is not based
diagrammatic expansion in the first place. Even if we
interpret the integral equation for the response function in
Schwinger approach in terms of diagrams, there is still
double counting. Furthermore, the approach provides a
tematic way of improving the self-energy at least theore
cally.

It is also possible to use the Schwinger approach to
velop a perturbation expansion in powers of the scree
interactionW which would then be equivalent to the conve
tional diagrammatic approach. Thus it is important to n
that we should always solve for theresponse functionor
dG21/dw and use this in the self-energy expression in E
~34!, i.e., we do not wish to make a term-by-term expans
in powers ofW since such an expansion is known to gi
unphysical results.

In our definition of the Green’s function in Eq.~25!, the
ensemble average is taken with respect to theinteracting
system but without the external fieldf. This is different
from the conventional definition in the interaction pictu
where the ensemble average is taken with respect to the
interacting system without the Coulomb interaction. In re
time,t→ i t , and for zero temperature, our definition does n
make any assumption about the so-called adiabatic con
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tion where a noninteracting ground state is adiabatically c
nected to the interacting one by means of a slow switching
the Coulomb interaction fromt56` to t50. It has been
pointed out that such an assumption may not be valid.20

C. Magnetic response

Let an interacting many-electron system be perturbed b
time-dependent external field as in Eq.~17! which includes a
magnetic field. We work now with real time. To first order
f̂ the solution to the time-development operator in Eq.~22!
is

Û~ t,t0!512 i E
t0

t

dt8f̂D~ t8!. ~36!

Assume that the external field is switched on at timet050.
Note thatCD(0)5CS(0)5C. The Dirac state at timet is

uCD~ t !&5uC&2 i E
0

t

dt8f̂D~ t8!uC& ~37!

and the expectation value of an operator in this state rea

^CD~ t !uÔD~ t !uCD~ t !&

5^CuÔuC&2 i E
0

t

dt8^Cu@ÔD~ t !,f̂D~ t8!#uC&.

~38!

Following convention, we replace the operators in the Di
representation by the operators in the Heisenberg repres
tion since the Dirac representation is equivalent to
Heisenberg representation without the external field. Thu
is understood that the Heisenberg operators are defined

low with respect to the fullunperturbedHamiltonianK̂0. We
are interested in the spin density response, i.e.,

Ô~ t !→ŝ~r t !5(
ab

ĉa
†~r t !sW abĉb~r t !. ~39!

Thus

d^ŝ~r t !&5E d3r 8E
0

t

dt8 Rr~r t,r 8t8!•wW ~r 8t8!, ~40!

where we have defined the retarded response function

Rr~r t,r 8t8![2 i Tr$r̂@ŝ~r t !,ŝ~r 8t8!#%u~ t2t8!. ~41!

The dot product refers to the primed coordinate. The M
subara response function is defined as

R~rt,r 8t8!52Tr$r̂T @ŝ~rt!ŝ~r 8t8!#%. ~42!

By inserting a complete set of states in between the s
operators, it is well known13,14 that the two response func
tions share exactly the same spectral functionSr :

Rr~r ,r 8,v!5E
2`

`

dv8
Sr~r ,r 8,v8!

v2v81 id
, ~43!
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R~r ,r 8; ivn!5E
2`

`

dv8
Sr~r ,r 8,v8!

ivn2v8
, ~44!

where21

Sr~r ,r 8,v![Z0
21(

jk
e2b(Ej 2mN)~12e2bv!^ j uŝ~r !uk&

3^kuŝ~r 8!u j &d~v2Ek1Ej !. ~45!

D. RPA magnetic response

The charge and magnetict-ordered response function
defined by

Ri j ~1,2![
d^ŝ i~1!&
dw j~2!

, ~46!

where i , j 50,x,y,z. The external scalar field corresponds
j 50 andj 5x,y,z to the magnetic fields. The spin density
given by22

^ŝ i~1!&5(
ab

sba
i Gab~1,11!. ~47!

It is convenient from now on to use a convention wherea
repeated index or variable implies a summation or integ
tion provided the index or variable does not appear on
other side of the equation. We write the sum explicitly when
necessary. From Eq.~32! we obtain

dGmn
21~1,2!

dw j~3!
52smn

j d~122!d~123!2dmnd~122!
dVH~1!

dw j~3!

2
dSmn~1,2!

dw j~3!
~48!

so that using the identity in Eq.~33!,

dGab~1,2!

dw j~3!
5Gam~1,4!e j ,mn

21 ~4,3!Gnb~4,2!

1Gam~1,4!
dSmn~4,5!

dw j~3!
Gnb~5,2!, ~49!

where we have defined

e j ,ab
21 ~1,2![Fsab

j d~122!1sab
0 dVH~1!

dw j~2! G . ~50!

We note thate j ,ab
21 (1,2) acts as a spin-flip centra forj 5x,y.

From Eqs.~46!, ~47!, and ~49! the exact expression for th
response function reads

Ri j ~1,2!5sba
i Gam~1,4!Fd~425!e j ,mn

21 ~4,2!

1
dSmn~4,5!

dw j~2! GGnb~5,11!. ~51!

Diagrammatically, the response function consists of a clo
electron-hole diagram~bubble! with a spin-flip centra at one
end and an electron-hole diagram with the nonlocal ver
inserted. In the simplest possible model, where the inte
-
e

d

x
c-

tion between electron-hole pairs is taken to be a constanU
~see, e.g., Ref. 23! and free propagators are used, t
transverse response function exhibits a pole wh
@12Ux0„q,v(q)…#50, wherex0 is the Pauli susceptibility.
This pole corresponds to a spin-wave excitation. For
charge response, we can go beyond the usual RPA exp
sion and include also the vertex contribution using t
present formalism.

Let us investigate the consequences of neglecting the
vertex term; i.e., focus on

Ri j ~1,2!5sba
i Gam~1,3!Fsmn

j d~322!

1smn
0 dVH~3!

dw j~2! GGnb~3,11!. ~52!

The problem is to evaluate d^n&/dw j since
VH(3)5v(324)^n(4)&.

d^n~1!&
dw j~2!

5
d

dw j~2!
@sab

0 Gba~1,11!#

5
dGgg~1,11!

dw j~2!

52Ggl~1,3!
dGlh

21~3,4!

dw j~2!
Ghg~4,11!

5Ggl~1,3!d~324!Fd~322!slh
j

1slh
0 dVH~3!

dw j~2! GGhg~4,11!

5Ggl~1,3!Fd~322!slh
j 1slh

0 dVH~3!

dw j~2! GGhg~3,11!.

~53!

Rearranging the equation yields

@d~124!2P 0~1,3!v~324!#
d^n~4!&
dw j~2!

5P j~1,2!, ~54!

where we have defined the polarization

P ab
j ~1,2![Gag~1,2!sgh

j Ghb~2,11!, ~55!

P j~1,2![P aa
j ~1,2!. ~56!

If G is diagonal in spin space then24

P j50, R0 j[
d^n&
dw j

50

if j 5x,y and Gab5Gaadab . ~57!

Consequently, the diagonal Hartree contribution toe j ,ab
21

vanishes forj 5x,y. We may define the charge dielectr
function as

e~1,2![d~122!2P 0~1,3!v~322!. ~58!
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Note thatP 0 means charge polarization rather than zero
order polarization. Thus from Eq.~52!

Ri j ~1,2!5sba
i $P ab

j ~1,2!1P ab
0 ~1,3!v~324!R0 j~4,2!%,

~59!

R0 j~1,2!5e21~1,3!P j~3,2!. ~60!

For charge-density response we have the usual RPA res

R00~1,2!5P 0~1,2!1P 0~1,3!v~324!R00~4,2!. ~61!

Schematically,

R005~11R00v !P 05~12P 0v !21P 0 ~62!

which implies

e21511R00v. ~63!

We have used the fact that the response function is sym
ric.

It is worthwhile to digress and discuss briefly the we
known GWA from the point of view of the Schwinger func
tional derivative technique. The GWA can be readily o
tained by insertingdG21/dw in Eq. ~48! into Eq. ~34!,
neglecting the last vertex term.dVH /dw j is obtained by
solving the RPA equation in Eq.~54!. The GWA self-energy
may thus be regarded as arising from the response of
Hartree potential to an external perturbation. As emphas
in Sec. II B, it is not necessary to employ diagrammatic
pansion of the self-energy. Rather, the self-energy can
expressed in terms of the response function which is a ph
cal quantity. It is always possible to translate the Schwin
approach to the Feynman approach in order to find the
responding diagrams when necessary.

Consider now the vertex contributiondS/df0. From Eq.
~35! we have

dGab
21~1,2!

dw0~3!
52d~122!dabFd~123!1

dVH~1!

dw0~3! G
2

dSab~1,2!

dw0~3!

52d~122!dabe21~1,3!2
dSab~1,2!

dw0~3!
.

~64!

From Eq.~34! the self-energy without the last vertex term

Sab~1,2!52Gab~1,2!W~1,2! ~65!

which is the GW approximation~GWA!.25 It is necessary to
allow the Green’s function to have nondiagonal compone
in the spin space, for otherwise there would be no spin fl
tuations in thexy directions. We now take into account th
vertex within the GWA and only consider the change inG
for the moment.
-
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dSab~1,2!

dw j~3!
52

dGab~1,2!

dw j~3!
W~1,2!

52W~1,2!Gam~1,4!H e j ,mn
21 ~4,3!Gnb~4,2!

1
dSmn~4,5!

dw j~3!
Gnb~5,2!J . ~66!

This is an integral equation for the vertex which can
solved as follows:

$dmadnbd~421!d~522!

1W~1,2!Gam~1,4!Gnb~5,2!%
dSmn~4,5!

dw j~3!

52W~1,2!Gam~1,4!e j ,mn
21 ~4,3!Gnb~4,2!. ~67!

Defining

Dab,mn~1,2u3,4![dmadnbd~321!d~422!

1W~1,2!Gam~1,3!Gnb~4,2!, ~68!

P j ,ab~1,2u3![Gam~1,4!e j ,mn
21 ~4,3!Gnb~4,2!, ~69!

Nj ,ab~1,2u3![2W~1,2!P j ,ab~1,2u3!, ~70!

the vertex is given by~diagrammatically in Fig. 1!

L j ,ab~1,2u3![
dSab~1,2!

dw j~3!
5D ab,mn

21 ~1,2u4,5!Nj ,mn~4,5u3!.

~71!

When substituted into Eq.~51! this vertex correction results
in ladder diagrams.

Let us go further and consider theW term. The Bethe-
Salpeter equation for the screened interactionW is

W5v1vP 0W, ~72!

dW
dw

5v
dP 0

dw
W1vP 0

dW
dw

5~12vP 0!21v
dP 0

dw
W

5WdP 0

dw
W. ~73!

We therefore must evaluate

FIG. 1. Feynman diagrams for the vertex in Eq.~66!. The solid
line represents the Green’s function, the wiggly line the scree
interactionW, and the small circlee j

21 .
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FIG. 2. Feynman diagrams for the full verte
starting from the GWA. The solid line represen
the Green’s function, the wiggly line the screene
interactionW, and the small circlee j

21 .
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or
dP 0~1,2!

dw j~3!
5H dGgg~1,2!

dw j~3!
Ggg~2,11!1Ggg~1,2!

dGgg~2,11!

dw j~3! J
5$P j ,gg~1,2u3!

1Ggm~1,4!L j ,mn~4,5u3!Gng~5,2!%Ggg~2,11!

1Ggg~1,2!$P j ,gg~2,11u3!

1Ggm~2,4!L j ,mn~4,5u3!Gng~5,11!%. ~74!

We have used Eq.~49! in the second line. Thus the comple
‘‘denominator’’ D and ‘‘numerator’’N are

Dab,mn~1,2u4,5![dmadnbd~421!d~522!

1W~1,2!Gam~1,4!Gnb~5,2!

1Gab~1,2!W~1,6!Ggm~6,4!Gng~5,7!

3Ggg~7,61!W~7,2!1Gab~1,2!W~1,6!

3Ggg~6,7!Ggm~7,4!Gng~5,61!W~7,2!,

~75!

Nj ,ab~1,2u3![2W~1,2!P j ,ab~1,2u3!2Gab~1,2!W~1,4!

3$P j ,gg~4,5u3!Ggg~5,41!

1Ggg~4,5!P j ,gg~5,41u3!%W~5,2!. ~76!

In general we have to solve for the vertexL ~diagram-
matically in Fig. 2! and then calculate the response from E
~51!.

III. THE VERTEX EQUATION IN FREQUENCY SPACE

For practical calculations, it is suitable to transform t
vertex equation into Fourier space and to use basis funct
for the space variables. We define the vertex to be

Lab
j ~1,2,3!5

dSab~1,2!

dw j~3!
. ~77!
.

ns

After taking the functional derivative with respect tof we
assume that the Green’s function is now diagonal in s
space. From Eqs.~66! and ~50! we obtain

Lab
j ~1,2,3!52W~1,2!Gam~1,4!$e j ,mn

21 ~4,3!Gnb~4,2!

1Lmn
j ~4,5,3!Gnb~5,2!%

52W~1,2!Ga~1,4!$e j ,ab
21 ~4,3!Gb~4,2!

1Lab
j ~4,5,3!Gb~5,2!%

52W~1,2!Ga~1,4!$sab
j d~324!Gb~4,2!

1Lab
j ~4,5,3!Gb~5,2!%. ~78!

In the last line we have assumed thataÞb since this is the
case of interest. This equation should depend on relative t
only, not on absolute time. We therefore have

Lab
j ~1,2,3!5Lab

j ~1,2,3;t12t3 ,t32t2!

5
1

b2
e2 inm(t12t3)einn(t22t3)Lab

j ~1,2,3;nm ,nn!

5
1

b2
e2 inmt1einnt2Lab

j ~1,2,3;nm ,nn!. ~79!

We have sett350 in the last line since we can chooset3 as
a reference point. Similarly, we have

Ga~1,4!5
1

b
e2 inn(t12t4)Ga~1,4;nn!, ~80!

W~1,2!5
1

b
e2 ivm(t12t2)W~1,2;vm!, ~81!

SinceW is bosonic, the frequency is even as in Eq.~11!. At
this point we should keep in mind that repeated indices
variables are to be summed or integrated.

Using these Fourier expansions in Eq.~78!, multiplying
both sides by exp(inmt1) and exp(2innt2) and integrating
over t1 andt2 we obtain
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Lab
j ~1,2,3;nm ,nn!1

1

b
W~1,2;vk!Ga~1,4;nm2vk!

3Gb~5,2;nn2vk!Lab
j ~4,5,3;nm2vk ,nn2vk!

52
1

b
W~1,2;vk!Ga~1,3;nm2vk!sab

j Gb~3,2;nn2vk!.

~82!

The frequency dependence of the screened interactioW
makes the equation very difficult to solve. Much simplific
tion is achieved when we assumed thatW is static:

W~1,2;t12t2!'W~1,2!d~t12t2!, ~83!

where

W~1,2!5E dt W~1,2;t!. ~84!

With this static approximation, the vertexL depends only on
one frequency and the vertex equation becomes

@d~124!d~225!2W~1,2!Kab~12,45;vm!#Lab
j ~4,5,3;vm!

5
1

b
W~1,2!sab

j Kab~12,33;vm!, ~85!

where we have defined the kernelK as

Kab~12,45;vm!52
1

b
Ga~1,4;vm1nk!Gb~5,2;nk!.

~86!

Using a noninteracting Green’s function,

Ga~1,2;nm!5
ckna~1!ckna* ~2!

inm2«kna
, ~87!

the sum over frequencies in the kernel can be perform
analytically ~see, e.g., p. 272 of Ref. 13! which gives

Kab~12,45;vm!5ckna~1!ck8n8b
* ~2!ckna* ~4!ck8n8b~5!

3
f ~«kna!2 f ~«k8n8b!

ivm1«k8n8b2«kna

. ~88!

The problem is then to invert the expression in the brac
on the left-hand side of Eq.~85!. The space variable 3 is no
involved in the inversion and may therefore be fixed. T
vertex is expected to be short-range but nevertheless no
cal ~orbital dependent!. A suitable basis for this problem i
the LMTO ~linear muffin-tin orbital!26 basis. The Bloch
wave functions in the LMTO method is expanded as follow

ckna5xRLa
k bRL~kna!. ~89!

R labels the atoms in the unit cell. The basis functions h
the form

xRLa
k 5fRLa1ḟR8L8ahR8L8,RL~k!, ~90!

where ḟRLa is the energy derivative offRLa calculated at
some energy usually chosen to be the center gravity of
band. In the LMTO basis the kernelK is then given by
d

t

e
lo-

:

e

e

Kab~12,45;vm!5xR1L1a
k ~1!xR2L2b

k8* ~2!xR4L4a
k* ~4!xR5L5b

k8 ~5!

3bR1L1
~kna!bR2L2

* ~k8n8b!

3bR4L4
* ~kna!bR5L5

~k8n8b!

3
f ~«kna!2 f ~«k8n8b!

ivm1«k8n8b2«kna

. ~91!

Thek dependence of the basis functions makes the inv
sion of the vertex equation very difficult to perform. In mo
cases, theḟRL term is much smaller than thefRL term and
we may neglect theḟRL term. Furthermore, we make a
onsite approximation whereR15R25R35R45R. With
these approximations, the kernel becomes

Kab~12,45;vm!5fRL1a~1!fRL2b* ~2!

3K ab
R ~L1L2 ,L4L5 ;vm!

3fRL4a* ~4!fRL5b~5!, ~92!

where

K ab
R ~L1L2 ,L4L5 ;vm!

5bRL1
~kna!bRL2

* ~k8n8b!bRL4
* ~kna!bRL5

~k8n8b!

3
f ~«kna!2 f ~«k8n8b!

ivm1«k8n8b2«kna

. ~93!

Although the k dependence of the basis function is n
glected, thek dependence of the eigenvalues and the eig
vectors are retained in the kernelK.

Using the above expression for the kernel in Eq.~85!,
multiplying both sides byfRLa* (1)fRL8b(2) and integrating
over space variables 1 and 2 we obtain for a givenvm , R
and space variable 3

@dLL4
dL8L5

2W ab
R ~LL8,L1L2!

3K ab
R ~L1L2 ,L4L5 ;vm!#Lab

jR ~L4L5,3;vm!

5Q ab
jR ~LL8,3;vm!, ~94!

where

Lab
jR ~LL8,3;vm!5fRLa* ~1!Lab

j ~1,2,3;vm!fRL8b~2!,
~95!

W ab
R ~L1L2 ,L3L4!5fRL1a* ~1!fRL2b~2!W~1,2!

3fRL3a~1!fRL4b* ~2!, ~96!

Q ab
jR ~LL8,3;vm!5sab

j W ab
R ~LL8,L1L2!

3K ab
R ~L1L2 ,L4L5 ;vm!

3fRL4a* ~3!fRL5b~3!. ~97!

Equation~94! is now readily used in practical calculation
and can be straightforwardly solved by inverting the expr
sion in the bracket on the left-hand side. When solving forL
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the relevant quantity on the right-hand side isWab . The
other quantities are not involved in the inversion proce
The problem is very similar to solving the Bethe-Salpe
equation in the T-matrix approach27 or in excitonic
problems.28,29

It is straightforward to calculate the Fourier component
the full response function in Eq.~51! by multiplying the
equation with exp@ivn(t12t2)# and integrating over
t5t12t2:

Ri j ~1,2;vn!52sba
i sab

j Kab~11,22;vn!

2sba
i Kab~11,45;vn!Lab

j ~4,5,2;vn!.

~98!

The q component of the response function is obtained
taking the matrix element

Ri j ~q,vn!5E d3r d3r 8

3exp~2 iq•r !Ri j ~r ,r 8;vn!exp~ iq•r 8!

52sba
i sab

j ^qufRL1afRL2b* &

3@K ab
R ~L1L2 ,L3L4 ;vn!

1T ab
R ~L1L2 ,L3L4 ;vn!#^fRL3a* fRL4buq&, ~99!

where

^qufRL1afRL2b* &5E d3r exp~2 iq•r !fRL1a~r !fRL2b* ~r !

~100!

and schematically

T5K@12WK#21WK. ~101!

The response function is then continued analytically to r
frequenciesvn→v1 id and the imaginary part gives th
spin-wave spectrum.

IV. SPIN WAVES

The energy needed to flip a spin of a particular electro
given by the exchange interaction. For a ferromagnet of
localized electrons, this means an interband transition o
electron into the corresponding exchange-shifted b
~Stoner excitations!. Thus the minimum energy necessary f
a spin flip is given by the energy separation between
upper edge of the majority spin band and the Fermi lev
However, there exists also a collective excitation state
which one spin is reversed, but only as an average over
whole solid. This so called spin wave can, similar to pla
mons, decay into single-particle excitations. Neutron scat
ing allows an experimental determination of the dispers
curve v(q), whereq is the difference between the incide
and scattered neutron wave vectors, respectively, andv is
the energy loss.

The spin-wave excitation spectrum is given by the sp
tral function of the following spin-spin density correlatio
function:
s.
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R 21~1,2!52
^TŜŝ2~1!ŝ1~2!&

^Ŝ&
, ~102!

where

ŝ1[ŝx1 i ŝy, ŝ2[ŝx2 i ŝy. ~103!

Following the same analysis leading to Eq.~45!, the spectral
function S215uIm R21u/p is given by

S21~r ,r 8,v![Z0
21(

jk
e2b(Ej 2mN)~12e2bv!^ j uŝ2~r !uk&

3^kuŝ1~r 8!u j &d~v2Ek1Ej !. ~104!

The physical meaning ofŝ1(r ) is that it increases the spi
of an electron atr by 1. The spin of the statesuk& must
therefore be larger by 1 than that of the statesu j &, i.e., the
statesuk& contain a spin-wave excitation. Thus a peak
S21 may be identified with a spin-wave excitation.

The quantityR21 is related to the response function
The spin-density response is given by (ŝ i[ŝD

i )

d^ŝ i~1!&
dw j~2!

5
d

dw j~2!
@sba

i Gab~1,11!#

5
d

dw j~2!

^TŜŝ i~1!&

^Ŝ&

52
^TŜŝ i~1!ŝ j~2!&

^Ŝ&
1

^TŜŝ i~1!&^TŜŝ j~2!&

^Ŝ&2

52
^TŜs̃ i~1!s̃ j~2!&

^Ŝ&
, ~105!

where

s̃ i5ŝ i2^ŝ i&. ~106!

We can write

ŝ2ŝ15~ ŝx2 i ŝy!ŝx1~ ŝy1 i ŝx!ŝy. ~107!

Defining

d

dw1
[

d

dwx
1 i

d

dwy
, ~108!

d

dw2
[

d

dwx
2 i

d

dwy
, ~109!

the quantityR 21 can then be written as

R 21~1,2!5
d^ŝ2~1!&

dw1~2!
~110!

or schematically

R 215Rxx1Ryy1 i @Rxy2Ryx#. ~111!
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We have assumed that^ŝx&5^ŝy&50, i.e., the initial state
has no spin component along thex andy directions.

V. CONCLUDING REMARKS

In conclusion, we have presented a scheme for perfo
ing ab initio calculations of the linear magnetic susceptib
ity. The method is based on the Matsubara Green’s func
and the Schwinger functional derivative technique. The k
nel describing multiple-scattering events between electr
hole pairs is given by the solution to a Bethe-Salpeter eq
tion. The screened interactionW(rt,r 8t8) between electron
and hole propagators can be obtained, at least within RP30

We discuss the advantages of the Schwinger appro
over the conventional diagrammatic approach. For c
densed matter problems involving large or infinite system
the Schwinger approach seems to provide a natural wa
.

f-

ys

-

-
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r-
n-
a-

.
ch
-

s,
of

calculating the self-energy where the main quantity is
physical response function. It is reasonable to expect that
approach overcomes some of the problems associated
the straightforward expansion of the self-energy in powers
the screened interaction as is commonly done in the conv
tional diagrammatic approach. We would like to point o
also that our definition of the Green’s function in Eq.~25! for
zero temperature does not require the usual assumption a
adiabatic connection.

The results for the transverse susceptibility presented
Savrasov12 are very promising. However, the spin-wave d
persion curve for Ni deviates significantly at higher energi
compared to experimental data. The observed discrepan
were attributed to the LDA exchange-correlation interactio
Thus it is tempting to investigate if anonlocal interaction
can cure these problems. Application of the present form
ism to some transition metals is currently in progress.
en
by

re-

can
ace.
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