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Green'’s function formalism for calculating spin-wave spectra
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We propose a formalism for calculatirep initio spin-wave spectra which is based on the many-body
temperature Green’s function. The main quantity to be calculated is the linear magnetic susceptibility from
which all magnetic excitations involving the creation of an additional spin in the system can formally be
obtained. The Schwinger functional derivative technique is employed in calculating the self-energy. The
approach avoids both the assumption of local spihsisenberg modgland the use of #ocal exchange and
correlation interactiorilocal-density approximation Starting from the GW approximation we obtain a Bethe-
Salpeter equation for the kernel describing the interaction between electrons in both spin channels. However,
this kernel exhibits anonlocalscreened interactiofS0163-182@09)08933-X]

[. INTRODUCTION correspond to the true eigenstate of a spin excitation.
Spin-wave spectra can also be calculated using time-

Collective spin excitations in solids are involved in many dependent density-functional theoffDFT). In the early
physical phenomenaThe energy scale of spin excitations is works, severe approximations were made regarding the en-
typically of the order of tens of meV. Spin excitations could ergy bands, wave functions, and the electron-electron
therefore be coupled to excitations around the Fermi surfacénteraction’*! Only recently, full calculations for Fe, Ni,
Many physical phenomena lie in this low-energy regime.and Cr were made by SavrasthiThe spin-wave spectra are
Transport and thermal phenomena such as the electronic spehtained from the magnetic susceptibility thus avoiding map-
cific heat and electrical and thermal resistivity are among th@ing to the Heisenberg Hamiltonian. The calculations suc-
most well-known ones. Due to thermal excitations of spincessfully reproduced the spin-wave spectra of Fe but for Ni
waves at low temperature the magnetization in a ferromagnesignificant deviation from experiment is observed. In TDFT
obeys the Bloch law~T%2 Spin-wave excitations are also the response function is given exactly, so that discrepancy
observable in the specific heat wher@ ¥ term appears in  with experiment is mainly due to the approximate exchange-
addition to theT® term due to phonon excitations. The dis- correlation functional. The local and orbital-independent na-
covery of high-temperature superconductivity has also enture of the local-density approximatidhDA) or its refine-
hanced the interest in spin excitations. There is compellingnents appears to be the major source of the problem. Indeed,
evidence to believe that spin excitations are involved in suas Will be shown later, the interaction between electrons re-
perconductivity. Like in conventional BCSBardeen- sponsible for the correlations determining the spectra is very
Cooper-Schrieffartheory where the phonons mediate attrac-nonlocal.
tive interaction between electron pairs, it is proposed that The purpose of this paper is to present a method to be
spin fluctuations are the mediator of attractive interaction inused for practiahb initio calculations of the linear magnetic
the high-temperature superconductivity. susceptibility. The approach is based on the Matsubara

There have been many works in the field of spin excita-Green’s function and the Schwinger functional derivative
tions or spin waves, starting from the early work of Heisen-technique. The main advantage is the possibility of having a
berg whose model has been very successful in explaningonlocal interaction which comes out naturally from the for-
many phenomena involving spin fluctuations. First-malism, in contrast to the LDA where a local exchange-
principles calculations have also been performed by a numeorrelation kernel is employed for describing the interaction
ber of authors. These are often based on frozen-spin afetween the electrons. Starting from the self-energy in the
proach where the excitation energy is calculated by assumingW approximatiofGWA), to be described later, we obtain
a certain spin-spiral configuratién/ The system is usually a Bethe-Salpeter equation for the nonlocal kernel describing
mapped to the Heisenberg model and the exchange pararthe interaction between electrons in both spin channels.
eterJ is then obtained from realistic band-structure calcula-
tions. This approach is restricted to static spin excitations. It
is well known that the discrepancy with experiment can be Il. THEORY
quite large. Three sources of errors are evident in this ap-
proach. The first is the use of the local-density approxima-
tion (LDA) in calculating the total energy. The second is the We summarize some basic properties of the Matsubara
assumption of local spins inherent in the Heisenberg modeBGreen’s function in this section. More details may be found
and the third is that the assumed spin configuration may ndh standard textbooks on many-body thebty?

A. Basic relations
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The Matsubara or temperature Green'’s function is defined’he field operator satisfies the Heisenberg equation of mo-

by the following 2<2 matrix: tion
- _ 7 a7t J ~ ~ A
gaﬁ(lvz) <7[(//a(1) ‘!fﬁ(z)]) (1) 3_7_%(”'):['(0:‘%("7)]- (13)
Here, 1=(r,7), @ andB denote the spin, and the symHol)
means grand canonical ensemble average: From Eq.(13) we can easily derive the equation of motion
for the Green’s function:
(0)=Trps0] @ ;
and L—T—Vf/z—u}gaﬁ(rr,rw)
R | ”, _ ", B
pO_ZO exq_ﬂKo), Zo—TreXFx—ﬂKo), (3) _l_j d3r//j0 dT//Z7 May(rT,r”T")gyﬁ(r“T”,r,T,)
~ ~ ~ 1
KO:HO_,LLN, =7 =. (4) =—5aﬁ5(r—l”)5(7—7'). (14)
kgT

i ! , " i The mass operatod is defined by
The field operators are defined in tirmodified Heisenberg

preture: f d3r”jﬁdr”2 Mo (F71"7") G (1,1 7'
O(7) = expKor)O exp( —Ko7) (5) °
so that => J d3r”v(r—r”)gffgw(rr,r’r’,r”r,r” ),
Y
Jal1 7) = eXp(Ko7) (1) eXp —K7) 6) (15
o NS . whereG® is the two-particle Green’s function defined as
(1 7)=exp(Ko7) o (r)exp( —Kor). )

Note thaty! (r ) is not the adjoint of},(r r) whenr is real
If 7is interpreted as a complex variable, it may be analyti-
cally continued to a pure imaginary valae=it. The result-

ing expression)’(r,it) is then the true adjoint ofs,(r,it)

ggzgw(l,z,s,z»z(—1>2<T¢a<1>%<3>%<4>¢E<2>>-( 5
1

B. The Schwinger functional derivative technique

and is formally identical with the usual Heisenberg picture . W& Will now use Schwinger’s functional derivative tech-
nique to calculate the self-energy. Since we are also inter-

g Y 515
apart from the substitution (K.O for Ho. . ested in magnetic response, we introduce\arying exter-
In the Matsubara formulation, the Fourier transforms are, ) field which includes a magnetic field. This external field
defined by functions as a mathematical trick, similar to the principle of
8 virtual work in classical mechanics, and it will be set to zero
(i V“):f dre"g(7), (8) at the end. The coupling to the orbital motion is not
0 considered®

1 i . rr)=¢(r7)-o, 17)
g(T)=—2 e IV”Tg(IVn), (9) d’( ) QD( ) (
B where
where v, denotes the Matsubara frequency for fermion 1
propagators. For bosons we usg as a convention. o(rr)= QDo(fT)yEQMBB(fT) , (18
(2n+1)m
V= (10) 10 0 1
B 0’0: y G'X: y
0 1 10
2n
wn=7- (11 , 0 —i , (1 0
o= o) T=lo 1) (19
The Matsubara formulation is almost identical to the zero
temperature one except: For a m-dependent perturbation, it is suitable to work in
« Integral overr runs from 0 tog. the interactior(Dirac) representation where the effects of the
o For every diagram of orden, we have the factor external field are considered eprICItIy in contrast to the
(—1)" instead ofi" as in the zero-temperature case. Heisenberg representation where the effects of the external
« The retarded Green’s function is obtained by analyticfield are contained implicitly in the field operators. The Dirac
continuation: operator is defined by

GR(v)=G(iv,—v+id). (12) Op(7)=expKor) Oexp —Ko7). (20)
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The 7-development operator which describes the dynamics 512[; (1,2,3,4
of the wave function satisfies ” .
5 o _ (=12 B 0u(Dio (31,4 U(2))
— o U7, 70) = pp(T)U(T, 7o) (21) (S)

with the formal solution (30

It is also possible to define the Green’s function in Exp)
U(r.70)=Texg — ffd "o 29 without the denominatofS). In this case, the Hartree poten-
(7.70) XF{ ™ ¢ol7 )} 22 tial arising from the denominator corresponding to the first

. term in Eq.(29) has to be considered explicitly.
Since U consists of pairs of fermion operators, it can be Defining the self-energ} without the Hartree field as
commuted with a field operator without change of sign. The
relationship between the operators in the Heisenberg and 251, =Mop(1,2) = 8,56(1-2)Viy(1) (31

Dirac representations is given b A A
P g y and using Eq(14) with K, replaced withK we obtairt’

O(7)=U(0,7) Op(7)U(7,0). (23 ) P
3(12=—| —+t1— | 8,30(1=2) =, 5(1)5(1-2
As evident from Eqs(20) and(23) operators and states in all Gap(1:2) dry L ’“) 5O )~ bap(1) 8 )
representations are defined to coinciderat0.
Defining —2,5(1,2) = 8,50(1—2)Vy(1). (32
o In contrast to the Hartree term the external field is not diag-
S=U(B,0), (24 onal in spin space. Finally using the identity
the Green’s function can be rewritten in terms of the field s L . 9G 5g 8¢t 5G 5G 1
operators in the Dirac representation: ¢>(g 9)=G- d> 50 G=0— 56 ==G 50 g
(TSP04(1) 5(2)) =
Gup(1,2)=— Yoa - Vos , (25)  we extract theexactexpressions
(8)
8G,5(4,2)
where the ensemble average is taken with respeléibtdhe 2ap(1,2)= E d3d4v(1-3)Ga,(1, 4)W’
many- bodyK but without the external fieldp, i.e., K= KO (34
+ .
ield i - i 8G.5(1,2 SVy(1
The external field in the Dirac representation takes the B S(1-2)8, 8(1-3)+ H(1)
form 5¢0(3) 5¢0(3)
- ~ 52a[3(1:2)
— 3 7 -
o= [ & Girm)- e S @9

3 It is interesting to note that only a change in the electric field
2 &% Y, (1 7) op(r 1) dpp(ro),  (26) @ has to be considered when calculating the electron self-
energy. Keeping only the first term in E@5) we obtain the
where exchange contribution to the self-energy and including the
next term generates the well-known GWA;. Since
. i 1-6Vy/dgg is the inverse dielectric functiore™, the
%B(”):Z Pi(r7)0qp. @7 GwA is then given byS =GW where W is the screened
Coulomb interactionV=ve 1. Thus the GWA takes into
Consider a change in the Dirag upon an infinitesmal account only the change in the Hartree potential. The re-
change in the external fielé. We first note that sponse function in the GWA corresponds therefore to that in
the random-phase approximatidRPA). Qualitatively we
L may regard the GWA as the Hartree-Fock approximation but
—7[&}'[,(3)] (28  with the bare interaction replaced with a screened one. The
5¢i(3) last term in Eq.(35) is referred to as the vertex correction
and which will be needed in calculating the spin-wave spectra.
Theoretical development of the self-energy in condensed-
8G,p(1,2) : . matter physi_cs has bee_n conventionally based on Feynm_an’s
WZE 0, 1Ga5(1,2G,,(3,3") diagrammatic expansion. In quantum electrodynamics,
[ bz where this approach was first introduced, such an expansion
(Zg (1,2,3,3)}, (29)  is well justified by the fact that the expansion parameter de-
aBny .y . . .
scribing the coupling of the electromagnetic field to the elec-
whereG® is defined in Eq(16) and can also be written as trons is small, in the sense that a perturbation expansion
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leads to a convergent result. In condensed-matter physicipn where a noninteracting ground state is adiabatically con-
the expansion parameter is the Coulomb potential which byected to the interacting one by means of a slow switching of
no means can be regarded as “small.” Nevertheless th#éhe Coulomb interaction fromi==*c to t=0. It has been
Feynman diagrammatic approach has been used routinefpinted out that such an assumption may not be Vlid.
without much justification which has led to many fundamen-

tal problems. It is known, for example, that a straightforward C. Magnetic response

expansion of_the se_lf-energy in powers of the sc_:reened _Cou- Let an interacting many-electron system be perturbed by a
lomb interaction/V yields negative spectral functions, which time-dependent external field as in E47) which includes a

are unphysicajl?*lg Anot_her fundamental problem !S double magnetic field. We work now with real time. To first order in
counting. When summing two or more sets of diagrams to- _ . .
infinite order, the lower-order diagranisecond-orderare ¢ the solution to the time-development operator in E2p)
usually double counted simply from the fact that the numbefS

of second-order diagrams is very limited so that they are A )

bound to be included in both sets. Furthermore, there is no U(t,to)=1—if dt’&D(t’). (36)
prescription which sets of diagrams that should be summed. to

So far, the choice of diagrams is based on physical 'ntu't'on.Assume that the external field is switched on at tirgre 0.

The prob_lems ass_omated Wlt_h the Feynman d|agrammat|RIote thatW¥ ,(0)=W¥(0)=W. The Dirac state at timeis
approach discussed in the previous paragraph do not seem to

arise in the Schwinger approach. In the latter, the basic quan- ¢

tity is the response function which is directly related to |\PD(t)>=|\If>—iJ dt’ ¢p(t")| V) 37
8G 1 6¢ as in Eq.(48). This is in contrast to the diagram- 0

matic approach where t.k(ecreene)jCoqumb Interactionis onq the expectation value of an operator in this state reads
regarded as an expansion parameter for the self-energy. It Iis
reasonable to expect that the self-energy expressed in terms

of the response function, which is a physical quantity, would (Wp(H)|Op()|¥p (1))

yield physically sensible results such as positive definite . t . R

spectra. While we have no proof, we might argue that if we =<\If|O|\If>—if dt’(¥|[Op(t),dp(t")]|W).
calculate the self-energy at different time steps, i.e., we re- 0

gard the perturbing potentigl as static at a given time step, (39

the self-energy. in the GWA certainly has the correct ana- ) . . _
lytic properties. We are, however, interested in the change drollowing convention, we replace the operators in the Dirac

3 with respect tog. The fact tha®, has the correct analytic representation by the operators in the Heisenberg representa-

properties for all¢ corresponding to different time steps fon since the Dirac representation is equivalent to the
does not necessarily guarantee that its variation with respe£l€iSe€nberg representation without the external field. Thus it
to ¢ (the vertex has the correct analytic properties as well. 'S understood that the Heisenberg operators are defined be-
Nevertheless it is reasonable to expect that this is the casdow with respect to the fulinperturbedHamiltonianK,. We

A further advantage is that the problem with doubleare interested in the spin density response, i.e.,
counting does not arise since the formulation is not based on
diagrammatic expansion in the first place. Even if we do
interpret the integral equation for the response function in the
Schwinger approach in terms of diagrams, there is still no
double counting. Furthermore, the approach provides a systhus
tematic way of improving the self-energy at least theoreti- t
cally. - _ 3.7 = PErN Ziergr

I%/is also possible to use the Schwinger approach to de- 5<U(rt)>_j d*r Jodt R o(r't’), (40
velop a perturbation expansion in powers of the screened
interaction) which would then be equivalent to the conven- Where we have defined the retarded response function
tional diagrammatic approach. Thus it is important to note L ~
thatlwe should always solve for thesponse functioror R(rt,r't")=—i Tr{p[o(rt),o(r't")]}6(t—t"). (41
8G~ /8¢ and use this in the self-energy expression in Eq. _ _
(3g4), i.e(f we do not wish to make a terrgny-by-?erm expansignThe dot product refers_ to _the p_nmed coordinate. The Mat-
in powers of ¥V’ since such an expansion is known to give SUPara response function is defined as
unphysical results. A -

In our definition of the Green’s function in E¢R5), the R(rrr'r)==TpT[o(rr)a(r' )]} (42
ensemble average is taken with respect to ititeracting

é(t)—>&(rt)=§‘,ﬁ Pt optlg(rt). (39

By inserting a complete set of states in between the spin

system but without the external field. This is different operators, it is well knowt4 that the two response func-
from the conventional definition in the interaction picture tions share exactly the same spectral funcn

where the ensemble average is taken with respect to the non-
interacting system without the Coulomb interaction. In real . S
time, 7—it, and for zero temperature, our definition does not R(r,r', w)= f do'———~, (43)
make any assumption about the so-called adiabatic connec- — w—w'+id
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o S(rr, o) tion between electron-hole pairs is taken to be a condfant
R(r,r’;imn)zf do/—————, (44)  (see, e.g., Ref. 23and free propagators are used, the
- lo,~ transverse response function exhibits a pole when
wheré! [1-Uxo(g,0(q))]=0, wherey, is the Pauli susceptibility.

This pole corresponds to a spin-wave excitation. For the
charge response, we can go beyond the usual RPA expres-

S(rr'w)=Z, le e METEN(1—e o) (jla(r)[k) sion and include also the vertex contribution using the
: present formalism.
X(k|o(r")]j)8(w—Ey+ E)). (45) Let us investigate the consequences of neglecting the last
vertex term; i.e., focus on

D. RPA magnetic response ' A

The charge and magneticordered response function is Rij(1,2)=0,00u(1,3)| 0),,8(3~2)
defined by
S 0 Vul®)l, s 52
Rij(l,2)= 5'—(2), (46) J
] The problem is to evaluate &(n)/d¢; since

wherei,j=0xX,y,z. The external scalar field corresponds toV(3)=v(3—4){(n(4)).
j=0 andj =x,y,z to the magnetic fields. The spin density is

given by s(n(1)y 8

0Tsa(1,1°

5012) ~ (@)L enTsel 1)
o'(1)=2 o, 1,1%). 4
(0'(1))=2, opudap(LL) (47) 86,11

It is convenient from now on to use a convention whare 9¢i(2)
repeated index or variable implies a summation or integra- 5g£1(3 4)
tion provided the index or variable does not appear on the = -G, (1,3—~ Gpy(4,17)

other side of the equatioWe write the sum explicitly when 9¢i(2)

necessary. From E@32) we obtain j
=G, (1,3 6(3-4)| 6(3-2)0y,,

012 __ 8(1-2)8(1-3)—5,,8(1— 2)5\/ HD
5¢(3) T ¢i(3) o Vu(3) .
Ukﬂm 2(417)
EE) - SVu(3)
. s :g%(l,s)[5(3—2)a;ﬂ+a§’,,—5 ” 57| Gnn(317).
so that using the identity in E¢33), ¢i(2)
53
5Gap(1,2) (53
5¢;(3) =Gau(14¢, ;w(4 39,542 Rearranging the equation yields
0% ,,(4,9) < (4)> i
O LA =5 "3 0s(5:2, (49 [8(1-4)=PU1Iv(3-4)]5 " =P!(12, (54
i
where we have defined where we have defined the polarlzatlon
€j.ap(L2=|0lpd(1=2) + opp H((2>) (50) Pup(1.2=00,(190),G,5(2,17), (55)
We note that; »4(1,2) acts as a spin-flip centra fpe=x,y. PI(1,2=P)(12. (56)
From Eqs.(46),.(47), and (49) the exact expression for the If G is diagonal in spin space théh
response function reads
i Pl=0, R 5n) —=0
le(lvz): o-lﬂaz (1 4)|: 5(4 5)61 ,uv(4 2) 0] 5@1
0% ,,(4,5 if j=xy and G,5=G,a0u5- (57)
R G (5,1, 51 ’ b Faalap
5¢,(2) G,p5(5,17) (51

Consequently, the diagonal Hartree contribution elpiﬁ
Diagrammatically, the response function consists of a closedanishes forj=x,y. We may define the charge dielectric
electron-hole diagrartbubble with a spin-flip centra at one function as

end and an electron-hole diagram with the nonlocal vertex

inserted. In the simplest possible model, where the interac- €(1,2=56(1-2)—P%1,3v(3-2). (58
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Note that?° means charge polarization rather than zeroth- 1 1 4 1
order polarization. Thus from E52) % ZQ %j
3 = 34 + 3
Rij(1,29= a'ﬁa{P a1, 2+P° s(LIV(3—4)R;(4,2)}, 9 2 5 2
(59

FIG. 1. Feynman diagrams for the vertex in Eg6). The solid
line represents the Green’s function, the wiggly line the screened

) —1 j
Roj(1,29 =€ H(1,3P(3.2). (60 interaction)V, and the small circle; *

For charge-density response we have the usual RPA result:
52&,3(1'2) _ 5gaﬁ(112)

Roo(1,2=P%1,2+P1,3v(3—4)Roy4,2). (61) 5¢;(3)  5¢;(3) Wmi2)
Schematically, = —W(l,Z)QM(lA){ € W(4 3G,4(4.2
Roo=(1+Rov)P°=(1—PO%) PO (62) 53 ,,(4,5
o¢;(3)

which implies o . . .
This is an integral equation for the vertex which can be

solved as follows:

€ 1=1+Ryv. (63
We have used the fact that the response function is symmet- {6440,50(4=1)5(5-2)
ric. _ _ _ . 53 (45
It is worthwhile to digress and discuss briefly the well- + (1,26, (1,49G,5(5,2}—2 =
known GWA from the point of view of the Schwinger func- o¢;(3)
tional derivative technique. The GWA can be readily ob- = —W(1,20,, (L)€ L,(4,3G,4(4.2. 67)
ap % v

tained by insertingdG /8¢ in Eq. (48) into Eq. (34),
neglecting the last vertex termiVy/d¢; is obtained by
solving the RPA equation in E¢54). The GWA self-energy
may thus be regarded as arising from the response of the
Hartree potential to an external perturbation. As emphasized
in Sec. II B, it is not necessary to employ diagrammatic ex-

Defining

(1,23,4=05,,8,50(3—1)8(4—2)

aﬁ nv

pansion of the self-energy. Rather, the self-energy can be +WM1,2G0,(1,36,5(4,2), (68
expressed in terms of the response function which is a physi-
cal quantity. It is always possible to translate the Schwinger 10 ,5(1,23)=G (LA e W(4 3G,4(4,2), (69)

approach to the Feynman approach in order to find the cor-
responding diagrams when necessary.
Consider now the vertex contributiaf®/8¢,. From Eq. N op(1,23)=-W(1,211; ,45(1,23), (70
(35 we have
the vertex is given bydiagrammatically in Fig. 1L

ap(12) S(1—2)8,, 8(1—3)+ Vu(l)
Seo(3) T OB AT 500(3 0%,5(12)
#ol3) #ol3) A epl133)= L= =D (LB, (453).
82 ,5(1,2) P
. ap\ -+ (71)
0¢0(3)
(1.2 When substituted into Eq51) this vertex correction results
_ -1 ap i i
—8(1-2)8,5e (1,3 — ) in ladder diagrams.
?o(3) Let us go further and consider thé term. The Bethe-
(64) Salpeter equation for the screened interactivris
From Eq.(34) the self-energy without the last vertex term is W=v+vPoW, (72)
2.51,2=—-G,s(1,2W(1,2 65
5(1,2) A(1,2M(1,2) (65 v o o
which is the GW approximatiofGWA).? It is necessary to s " 5¢ VI se Y Ve
allow the Green’s function to have nondiagonal components 0
in the spin space, for otherwise there would be no spin fluc- =W5P W, (73)
tuations in thexy directions. We now take into account the S

vertex within the GWA and only consider the changegin
for the moment. We therefore must evaluate
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1 1 4 1
2 2 5 2
4 1 4 1 .
FIG. 2. Feynman diagrams for the full vertex
+ 3 + 3 starting from the GWA. The solid line represents
the Green'’s function, the wiggly line the screened
5 2 5 2

interactionV, and the small circlefj’l.

4 6 1

4 6 1
7 2 5 7 2

5

sP%1,2) { 8G,,(1,2)

5G.,.(2,1M) After taking the functional derivative with respect ébwe
- y'y'y(2|1+) + g'y'y(llz) i ]
o9;(3) o¢;i(3)

5¢:(3) assume that the Green’s function is now diagonal in spin
! space. From Eq<66) and (50) we obtain

={M.7(1.23) AL p(1,2,3=-WM12G,,(1D{e 1,(43G,4(42
+OulLDA1(483)6,,(5.2)G(2.17) +Al (4,536,452}
+G, (12T, (2.1]3) pr R
P22 = —WL2G.(14{€ 24(4,3G4(4,2
+gy,u(214)Aj,;/,V(4!a3)gvy(5!1+)} (74) '

+AL,5(4,53G,(5,2)}
We have used Ed49) in the second line. Thus the complete .
“denominator” D and “numerator”’ A/ are =-WM1,2G,(1,8{0},38(3—4)Gs(4,2

Dopopn(1,24,5=5,,08,50(4—1)5(5-2) T Aap(4.5.3G4(5.2)}. (78)

In the last line we have assumed that 8 since this is the
+W(1,2)G0,(1,9G,45(5,2 case of interest. This equation should depend on relative time
+Gap(1,2M1,6/G,,(6,4G,.(5,7) only, not on absolute time. We therefore have

X G, (7,6")WM(7,2)+ Gop(1,2IM(1,6) A g(1.239=A)4(1,2,3i1,— 73,73 )

X 7.4 V(7,2
Gl 0:DGn (19556 T2, = L etntn g AL (1.2 3, v,)
(75) 32 B

Ni.ap(128)= =ML, 05(1.33) ~ Gap(12MLA ~ e Al (1230 0. (79)
X{T1j ,,(4,53)G,,(5.4") p

We have set;=0 in the last line since we can choosgas
+G, (4511, (54352, (76 3 oRF

) a reference point. Similarly, we have
In general we have to solve for the vertdx (diagram-

matically in Fig. 2 and then calculate the response from Eq. 1 . (r1—72)
(51). Gu(1,4)= Ee MG (L4v,), (80

1
lIl. THE VERTEX EQUATION IN FREQUENCY SPACE W(1,2)= Ee*'wm(flffz)W(l,z;wm), (81)
For practical calculations, it is suitable to transform the
vertex equation into Fourier space and to use basis functio
for the space variables. We define the vertex to be

SinceW is bosonic, the frequency is even as in Efl). At
"Ris point we should keep in mind that repeated indices or
variables are to be summed or integrated.

Using these Fourier expansions in E@8), multiplying
62 4p5(1,2) both sides by exp¢,m) and expfiv,r) and integrating

Al (1,29 =—F "~ 7 -
apl ) 5¢;(3) 77 over r; and 7, we obtain
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1
B
X Gg(5,2;vn— i) AL, 5(4,5,3wm— oy, v— wy)

AL g(1,2,3w0m,v0) + 2ML,2i04) Gol 1,40 wy)

1
B

W(L,2i0K) Gal 1,30 w01) 07, 5G5(3,2;0— wy).

(82

The frequency dependence of the screened interagtion
makes the equation very difficult to solve. Much simplifica-

tion is achieved when we assumed thétis static:
W(1,2;71— 1) =~W(1,2) 8( 71— 79), (83

where

W(1,2)=f drW(1,2;7). (84

With this static approximation, the vertéx depends only on
one frequency and the vertex equation becomes

[6(1—4)6(2—5)— W(1,2)IC,1B(12,45;wm)]ALB(4,5,3;wm)

1 .
= EW(l,Z)aLBICaB(lz,BS;wm), (85)
where we have defined the kerri€las
1
Kop(12,45wp) = — Ega(1,4;wm+ 1) Gp(5,2;vy).
(86)
Using a noninteracting Green'’s function,
(1) ¥ina(2)
G120 = e ) Vinel2) (87)
IVm~ €kna

the sum over frequencies in the kernel can be performe
analytically (see, e.g., p. 272 of Ref. 1@hich gives

Kap(12,450m) = Ynal 1) Y1 4(2) Yicna(4) Y p(5)

Xf(skna)_f(sk’n’ﬁ). 889)

ia)m+ 8k’n’ﬁ_8kna
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Kap(12,850m) = X5, o DX a2 XKL ol D)X 5(5)
Xbg,i (kna)bg | (k'n’B)

b | (kna)bgy (k'n’B)

f a_f rnt
o T(2kna) (Ekng)_

: (91
lwyn+ €k'n’' B~ €kna

Thek dependence of the basis functions makes the inver-
sion of the vertex equation very difficult to perform. In most

cases, thepg, term is much smaller than thég, term and

we may neglect thepg, term. Furthermore, we make an
onsite approximation wherdR;=R,=R3=R,=R. With
these approximations, the kernel becomes

Kap(12,45wr) = ¢’RL1a(1)¢§L23(2)
XK 5;;('.1'.2,'.4'_5 ; wm)
X ¢§L4a(4)¢RL55(5)a (92
where

Ka(Lilo,Lals; o)
=bgry, (kna)bg (k'n’B)bg  (kna)bg (k'n’B)

Xf(Skna)_f(Sk'n’ﬁ)_ (93)

iwm—""J‘k’n',B_'gknoz

Although the k dependence of the basis function is ne-
glected, thek dependence of the eigenvalues and the eigen-
vectors are retained in the kernél

Using the above expression for the kernel in E8p),
multiplying both sides by, (1) $r.5(2) and integrating
gver space variables 1 and 2 we obtain for a giugn, R
and space variable 3

[SiL, 8L~ Wis(LL' Lily)
XICRH(LaLo, Lals; 0m) JAIS(LyLs,3i0m)

=QIR(LL" 30m), (94)

The problem is then to invert the expression in the bracketvhere

on the left-hand side of E¢85). The space variable 3 is not

involved in the inversion and may therefore be fixed. The
vertex is expected to be short-range but nevertheless nonlo-

cal (orbital dependent A suitable basis for this problem is
the LMTO (linear muffin-tin orbita)?® basis. The Bloch
wave functions in the LMTO method is expanded as follows:

Ykna= XLaDri(KNQ). (89)

R labels the atoms in the unit cell. The basis functions have

the form

XRLa= ¢RLa+¢R’L’ahR’L’,RL(k)v (90)
where ¢, is the energy derivative o, calculated at
some energy usually chosen to be the center gravity of th
band. In the LMTO basis the kerngl is then given by

AR(LL 3i0m) = df oD AL 5(1,2,310m) drip(2),

(95
Wiag(Lila,Lala) = & (1) dri,p(2)M(1,2)
X briya() R p(2),  (96)
QUH(LL" Zjom) =0l W E4(LL" LiLy)
XK Rp(Lils,Lals; o)
X bhi,a(3rip(3). (9D

Equation(94) is now readily used in practical calculations
and can be straightforwardly solved by inverting the expres-
sion in the bracket on the left-hand side. When solvingXor
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the relevant quantity on the right-hand sideWg,;. The (TSo~(1)o*(2))
other quantities are not involved in the inversion process. R *Y(1,2=-— = , (102
The problem is very similar to solving the Bethe-Salpeter (S)
equation in the T-matrix approacii or in excitonic where
problems?8:29
It is straightforward to calculate the Fourier component of =o' +ieY. o= =iV (103

the full response function in Eq51) by multiplying the

equation with expw,(m—7)] and integrating over Following the same analysis leading to E45), the spectral
T=T17 Ta! functionS™ " =|ImR™ |/ is given by

- - = — g gl . i

Rij(1,.2,0n) Ufeaaaﬂ’caﬁ(ﬂ'zzwﬁ) S_+(I‘,I",w)zzalz e PE N (1—e Fo)(jlo(r)|K)

— 0o Cap(11,45) AL, 5(4,5,21,). Ik

(99 X(kla™(r")]j)6(o—E+Ej). (104

The q component of the response function is obtained byThe physical meaning of " (r) is that it increases the spin
taking the matrix element of an electron at by 1. The spin of the statek) must
therefore be larger by 1 than that of the stdes i.e., the
states|k) contain a spin-wave excitation. Thus a peak in
S™* may be identified with a spin-wave excitation.

The quantityR™* is related to the response functions.

The spin-density response is given hy € o))

Rij(q!wn):f d3r d3r’
Xexp(—iq-r)R;(r,r';w,)expliq-r’)

== O'I/gao']aB<Q| ¢RLla¢§ L2B>

. 8a'(1)) i Lp
X[ICaB(LlLZ!L3L4;wn) 5¢)](2) - 5(Pj(2)[a-ﬁagaﬁ( ’ )]
+T§ﬁ(|—1|—2-|—3|—4;wn)]<¢§L3a¢RL4B|q>v (99) 5 (T:S‘(Ari(l)>

where = 5¢,(2) (3‘)
: 1So'(1)61(2)) (TS’ (1) TSai(2
<Q|¢RL1Q¢§L2’3>ZJ d3r exp(—|q.r)¢RLla(r)¢§L2ﬁ(r) :_< o'( A)O'( ) +< o'( )>A<2 al(2))
(100 () (S)
and schematically _ (185'(1)51(2)) (105
T=K[1-WK]~WK. (102 (5)
here

w
The response function is then continued analytically to real
fre_quencieSwn—>w+i5 and the imaginary part gives the ;i:a_i_<a_i>' (106
spin-wave spectrum.
We can write
IV. SPIN WAVES

) ] ) . Sl oX_ iy "x_'_ "y_'_-"x "y.
The energy needed to flip a spin of a particular electron is o o =(0’~i0%)o+ (0 +ioo (107
given by the exchange interaction. For a ferromagnet of debefining
localized electrons, this means an interband transition of an
electron into the corresponding exchange-shifted band S 5 6
(Stoner excitations Thus the minimum energy necessary for n wiual Bt (108

P : S¢ S¢ S¢Y
a spin flip is given by the energy separation between the
upper edge of the majority spin band and the Fermi level.

However, there exists also a collective excitation state, in 6 o6 5 (109
which one spin is reversed, but only as an average over the S¢~ - P : 5S¢’
whole solid. This so called spin wave can, similar to plas-
mons, decay into single-particle excitations. Neutron scatterthe quantityR ~* can then be written as
ing allows an experimental determination of the dispersion A
curve w(q), whereq is the difference between the incident 8o (1))
i ' R T(12=——F—— (110
and scattered neutron wave vectors, respectively, @arig ' 5ot (2)

the energy loss.

The spin-wave excitation spectrum is given by the specor schematically
tral function of the following spin-spin density correlation
function: R ™ =Rux+ Ryyti[Rey— Ryxl- (111
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We have assumed th&d*)=(oY)=0, i.e., the initial state calculating the self-energy where the main quantity is the

has no spin component along tk@ndy directions. physical response function. It is reasonable to expect that the
approach overcomes some of the problems associated with

the straightforward expansion of the self-energy in powers of
the screened interaction as is commonly done in the conven-
In conclusion, we have presented a scheme for performtional diagrammatic approach. We would like to point out
ing ab initio calculations of the linear magnetic susceptibil- also that our definition of the Green’s function in EB5) for
ity. The method is based on the Matsubara Green’s functiogero temperature does not require the usual assumption about
and the Schwinger functional derivative technique. The keradiabatic connection.
nel describing multiple-scattering events between electron- The results for the transverse susceptibility presented by
hole pairs is given by the solution to a Bethe-Salpeter equaSavrasoV are very promising. However, the spin-wave dis-
tion. The screened interaction(r r,r’ 7’) between electron persion curve for Ni deviates significantly at higher energies,
and hole propagators can be obtained, at least within ®PA. compared to experimental data. The observed discrepancies
We discuss the advantages of the Schwinger approachere attributed to the LDA exchange-correlation interaction.
over the conventional diagrammatic approach. For conThus it is tempting to investigate if aonlocal interaction
densed matter problems involving large or infinite systemsecan cure these problems. Application of the present formal-
the Schwinger approach seems to provide a natural way aém to some transition metals is currently in progress.
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