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Extrinsic contributions to the ferromagnetic resonance response of ultrathin films

Rodrigo Arias and D. L. Mills
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 5 May 1999!

We develop a theory of the extrinsic contributions to the ferromagnetic resonance linewidth and frequency
shift of ultrathin films. The basic mechanism is two magnon scattering by defects at surfaces and interfaces. In
the presence of dipolar couplings between spins in the film, one realizes short wavelength spin waves degen-
erate with the ferromagnetic resonance~FMR! mode, provided the magnetization is parallel to the film sur-
faces. Defects on the surface or interface thus scatter the FMR mode into such short wavelength spin waves,
producing a dephasing contribution to the linewidth, and a frequency shift of the resonance field. The mecha-
nism described here is inoperative when the magnetization is perpendicular to the film.
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I. INTRODUCTION

There is currently great interest in the physical proper
of ultrathin ~very few atomic layer! ferromagnetic films, and
magnetic multilayers formed from such spins. While ve
considerable attention is devoted to transport propertie
such structures, because of applications to magnetic rec
ing and data storage, in fact the microwave response of th
systems is of great interest as well. Studies of the ferrom
netic resonance~FMR! spectrum are a rich source of info
mation on the unique anisotropies found in these material1,2

and other physical properties as well. Furthermore, hyb
structures formed by depositing ferromagnetic films or m
tilayers on semiconducting substrates may form the basis
high-frequency microwave devices.3

Rather little attention has been directed toward the ori
of the FMR linewidth in the ultrathin films. In bulk crystal
line Fe, one observes an intrinsic contribution which var
linearly with the FMR frequency.4,5 That this should be the
case is a prediction of the phenomenological Landau-Lifs
equations. If this contribution has its microscopic origin
the coupling between spin motions, and the itinerant e
trons in Fe, one may argue the linear frequency depende
follows from very general considerations in this low
frequency regime. In the ultrathin films, the analysis of FM
data1,6 shows the presence of a linear term, often with slo
larger than that found in single-crystal Fe. In addition, e
trapolation to zero frequency yields a rather substan
‘‘zero-frequency linewidth,’’ with evident origin in surface
or interface quality.1,6

In this paper, we develop a theory of the extrinsic lin
width of ultrathin ferromagnetic films, based on the follow
ing picture. In the idealized FMR experiment, a unifor
mode is excited whose wave vectorkW i parallel to the surface
is zero. For a simple film with magnetizationMW s parallel to
the surface, the frequency of this mode~in the absence o
anisotropy! is g@Ho(Ho14pMs)#1/2, with g the gyromag-
netic ratio andMs the magnetization. We show below, a
discussed by earlier authors,7 that in the presence of dipola
couplings between spins, we have short wavelength s
waves with wavelengthki.105 cm21 degenerate with the
PRB 600163-1829/99/60~10!/7395~15!/$15.00
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FMR mode, for ultrathin films of the ferromagnetic transitio
metals. Defects in the surface, modeled below, scatter en
from the uniform mode to these states, thus producing re
ation of dephasing character. We find, in the analysis p
sented here, a defect induced frequency shift as well.

The notion that such a two magnon process controls
extrinsic linewidth is by no means new. Indeed, in a semi
paper several decades ago, Sparks, Loudon, and Kittel8 de-
veloped a picture such as this to explain the origin of
extrinsic linewidth in yttrium iron garnet spheres. In the
case, the surface defects had their origin in the grit use
polish the surface. We argue here that in ultrathin ferrom
netic films, the spin-wave dispersion is such that the t
magnon mechanism is operative, provided the magnetiza
is parallel to the surface.

Our attention is confined to films sufficiently thin so th
only a single spin-wave branch of acoustic character cont
the magnetic response. In the ultrathin film limit, standi
spin waves with nonzero wave vectors perpendicular to
film surface,k'

(n)5np/d wherenÞ1 andd the film thick-
ness, are upshifted by exchange to high frequencies
above those in the FMR range. It would be desirable
present the theory in more general form, valid for films
arbitrary thickness. Such an analysis will be very comp
indeed, so we confine our attention to the ultrathin film lim

We note that in a recent paper,10 McMichael, Stiles, Chen,
and Egelhoff presented a brief, qualitative discussion o
two magnon contribution to the linewidth based on the sa
physical picture we employ as a basis. One finds no exp
results in their paper beyond a general expression for
scattering rate, however. Here we set forth a specific mo
of surface defects which may couple the FMR mode to
short-wavelength spin waves. Within this framework, w
provide explicit predictions for the dependence of the extr
sic linewidth on the magnetic field at resonance, and for
defect induced frequency shift as well.

Quite recently Hurben and Patton9 presented a theory o
extrinsic contributions to the linewidth of ferromagnet
films, also based on two magnon scattering induced by
fects. Their theory is valid in what one may call the thic
film limit, where the modes degenerate with the FMR mo
may be viewed as propagating, three-dimensional pl
7395 ©1999 The American Physical Society
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7396 PRB 60RODRIGO ARIAS AND D. L. MILLS
waves unaffected by the presence of surfaces. Such a pi
is appropriate, say, for garnet films many microns in thic
ness, but not for the ultrathin films that are the focus of
present paper.

In Sec. II, we discuss the nature of the spin-wave disp
sion in ultrathin films, and then introduce the mechanism t
forms the basis for our analysis. Through means of an eq
tion of motion method, in Sec. III we derive expressions
both the contribution to the linewidth and the frequency sh
of the FMR resonance, from the two magnon process. S
tion IV is devoted to the development of a model of surfa
defects and their contribution to the matrix elements wh
control the two magnon mechanism. Section V presents
formulas for the two magnon contribution to the linewid
and frequency shift, and Sec. VI shows representative p
of the theoretically calculated extrinsic resonance linewi
and frequency shifts, as well as concluding remarks.

II. SPIN-WAVE DISPERSION IN ULTRATHIN
FERROMAGNETIC FILMS; RELATION

WITH TWO MAGNON MECHANISM

Our discussion will be directed toward an ultrathin ferr
magnetic film, such as that illustrated in Fig. 1. The mag
tizationMW s lies in the plane, parallel to the dc magnetic fie
HW o . We consider a spin wave which propagates in the pl
of the film, with wave vectorkW i which makes the anglefkW i

with HW o andMW s . As mentioned in Sec. I, the thicknessd of
the film is sufficiently thin that we need be concerned w
only the low-lying acoustical spin-wave branch. Th
standing-wave modes are shifted upward by exchange
such thin films sufficiently that they play no role in the co
siderations that follow, as noted above.

To describe the spin waves, we write the magnetization
the form MW (rW,t)5Msẑ1mW (rW,t) when a mode is excited
where mW (rW,t)5mx(rW,t) x̂1my(rW,t) ŷ. Since only the low-
lying acoustical branch is of interest, we may phrase
discussion entirely in terms of the transverse magnetiza
components, averaged over the film profile. Thus we c
sider

FIG. 1. Geometry of an ultrathin film of thicknessd. The ap-

plied fieldHW o and the main component of the magnetizationMW s are
lined up with thez axis, in plane. The anglefkW i

is that between the

magnon wave vectorkW i and thez axis.
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mx,y~x,z,t !5E
0

d

mx,y~x,y,z;t !
dy

d
. ~1!

We shall Fourier transform these amplitudes:

mx,y~x,z;t !5
1

AL2d
(
kW i

mx,y~kW i ;t !eikW i•rW i, ~2!

whereL2 is the area of the film,kW i5kxx̂1kzẑ, and similarly
for rW i . Note thatmx,y(2kW i)5mx,y(kW i)* .

Of interest in our discussion of the spin wave dispers
in the film is the contribution to the spin-wave energy fro
dipolar fields generated by the spin motions. This may
written

Hd52
1

2

1

AL2d

3(
kW i

mW ~kW i ;t !•E eikW i•rW ihW (d)~x,y,z;t !dx dy dz, ~3!

where the integration is over the volume of the film. In wh
follows, we omit explicit reference to the time.

We decompose the dipolar field into two contribution
hW d

(1) from bulk magnetic charges and a secondhW d
(2) from

surface magnetic charges. We consider each in turn. We
write

hW d
(1)~rW !52¹FM

(1)~rW !, ~4!

where, noting2¹•mW behaves as an effective magne
charge density, the magnetic potential is

FM
(1)~rW !52E d3r 8

urW2rW8u
¹8•mW ~rW8!

52E 1

urW2rW8u

]mx

]x8
~x8,z8!dx8dy8dz8. ~5!

Thus

FM
(1)~rW !52

i

AL2d
(
kW i

kxmx~kW i!E eikW i•rW8

urW2rW8u
dx8dy8dz8.

~6!

The integral in Eq.~6! is readily evaluated. In the thin-film
limit kid!1, the contribution to the dipole field~averaged
over the film thickness! from bulk magnetic charges is the
found to be

hW d
(1)~rW !52

2p

AL2d
(
kW i

kid sinfkW i
mx~kW i!e

ikW i•rW i

3~sinfkW i
x̂1cosfkW i

ẑ!. ~7!

Of central importance to what follows is the linear variatio
of hW d

(1) with wave vector in Eq.~7!. The fact that we have
short-wavelength modes degenerate with the FMR mod
the ultrathin film follows from this result.
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The second contribution to the dipolar field and its co
tribution to the spin-wave energy arises from fields genera
by surface magnetic charges. In a ferromagnet, ifn̂ is the
outward surface normal, thenn̂•MW is an effective magnetic
surface charge density. Thus, when the spin wave is exc
we have the surface charge density1my(kW i)e

ikW i•rW i on the
upper surface, and2my(kW i)e

ikW i•rW i on the lower. In the thin-
film limit kid!1, the dominant contribution to the dipol
field from this source has the form

hW d
(2)~rW !52

4p

AL2d
ŷ(

kW i

S 12
kid

2 Dmy~kW i!e
ikW i•rW i, ~8!

where we retain the contribution linear inkW i . When these
fields are inserted into Eq.~3! and the resulting integration
carried out, the contribution to the spin-wave excitation e
ergy of the ultrathin film, in the notation introduced here, h
the form

Hd52p(
kW i

S 12
kid

2 Dmy* ~kW i!my~kW i!

1p(
kW i

kid sin2fkW i
mx* ~kW i!mx~kW i!. ~9!

There are, of course, other contributions to the spin-w
energy. These are
~a! The Zeeman energy:

Hz52HoE
V
Mz~x,z!dx dy dz

52HoMsV1
Ho

2Ms
E

V
@mx

2~x,z!

1my
2~x,z!#dx dy dz, ~10!

where V is the volume of the film. The constant term
discarded, leaving

Hz5
Ho

2Ms
(
kW i

@mx* ~kW i!mx~kW i!1my* ~kW i!my~kW i!#, ~11!

when we use the variables introduced above.
~b! The exchange energy:

Hx5
A

Ms
2 EV

@ u¹mxu21u¹myu2#dx dy dz

5
1

2Ms
(
kW i

Dki
2@mx* ~kW i!mx~kW i!1my* ~kW i!my~kW i!#,

~12!

where the exchange stiffness isD52A/Ms .
~c! The surface anisotropy energy:

HA5
Ks

Ms
2 ES

my
2~x,z!dx dz5

1

2Ms
Hs(

kW i

my* ~kW i!my~kW i!,

~13!
-
d

d,

-
s

e

whereHs52Ks /Msd. Note Hs is here positive when they
direction is a hard axis.

Of course, in ultrathin films, an additional source
uniaxial anisotropy normal to the surface has origin in alt
ation of interlayer spacings. If, for example, the film
grown on a substrate whose lattice constant is larger than
bulk crystal form of the ultrathin film, there will be a de
crease of interlayer spacing. Such effects just provide
supplement toHs .

When all these terms are combined, we have a Ham
tonian which may be written

H5
1

2Ms
(
kW i

$Hx~kW i!mx* ~kW i!mx~kW i!

1Hy~kW i!my* ~kW i!my~kW i!%, ~14!

where

Hx~kW i!5Ho12pMskid sin2fkW i
1Dki

2 , ~15!

and

Hy~kW i!5Bo1Hs22pMskid1Dki
2 , ~16!

whereBo5Ho14pMs .
It should be remarked that we could include other for

of anisotropy in our model Hamiltonian, such as the fourfo
in plane anisotropy. This would complicate various formu
considerably, ifHW o is not applied parallel to the easy axi
We shall assume, in the interest of simplicity, thatHo is
along the easy axis. Then the influence of the fourfold
isotropy is then simply to replaceHo by Ho1Ha , whereHa
is the effective in plane anisotropy field. If the fieldHo is
applied along the hard axis, andHo is sufficiently large for
the magnetization to align along the hard axis, thenHo is
replaced by (Ho2Ha) everywhere.

If ( 2g) is the gyromagnetic ratio, then in our model, th
spin-wave frequency is given by

V~kW i!5g@Hx~kW i!Hy~kW i!#
1/2. ~17!

Now we may discuss the basis for the two magnon scatte
process that is the central mechanism explored in the pre
paper, and which was discussed as well in Ref. 10.

First, in an FMR experiment, the mode with wave vec
kW i50 is excited. Its frequency is given by the well-know
expression

VFM5gAHo~Ho1Hs14pMs! ~18!

for a film with magnetization parallel to the surface.
Consider the wave-vector dependence of the spin w

dispersion relation in Eq.~17!. We keep terms through thos
quadratic in the wave vector, noting that for the metal
films of interest the contribution of the dipolar energy qu
dratic in the wave vector is small. Thus

V2~kW i!5VFM
2 22pg2Mskid~Ho2@Bo1Hs#sin2fkW i

!

1g2~Bo1Hs1Ho!Dki
2 . ~19!
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In the ultrathin film limit, we see from Eq.~19! that the
dipolar energy generates a term in the dispersion rela
linear in the wave vector. As noted some time ago by Eric
son and Mills,7 for a range of propagation angles the initi
slope is negative. Furthermore, these authors discussed
cumstances where the negative slope can actually d
V2(kW i) negative, producing an instability of the uniform
ferromagnetic state. What is important here is that excha
leads to the positive term quadratic in wave vector, and t
at finite wave vectors, we have modes degenerate with
uniform FMR mode. We encounter the negative slope,
thus finite wave-vector modes degenerate with the F
mode when

sin2fkW i
,

Ho

Bo1Hs
. ~20!

Some numbers are of interest. Typically, if we have Fe fil
in mind, FMR measurements employ dc fieldsHo!Bo .
Then settingHs aside for the moment, the value ofki of the
modes degenerate with the FMR frequency iski
.2pMsd/D. For Fe,D52.531029 G cm2, so for a film
30-Å thick, we haveki.106 cm21. Macroscopic theory,
such as that used here, is adequate to describe such mo

After the FMR mode is excited, defects on the surfa
scatter thekW i50 FMR modes into the finite wave-vecto
states just described, in a manner similar to the mechan
described in Ref. 8. We illustrate the scattering process s
matically, in Fig. 2, with the dispersion relation in Eq.~19! in
mind. In this paper, we develop the theory of this two ma
non scattering, with attention to specific models of mat
elements which control the scattering. As we shall see in S
III, and mentioned above, these scatterings introduce a
quency shift of the mode as well.

In earlier analyses of FMR linewidth data in ultrath
films, data at a small number of frequencies is fitted to
functional form which contains a term linear in frequenc
and a zero-frequency residual linewidth. The linear term
assumed to be the contribution from damping of the s
motion within the body of the film, as described by th
Landau-Lifshitz equation, though the slope is found often
be larger than that appropriate to the bulk material. The

FIG. 2. Graphical representation of the scattering process fro
uniform mode to a mode degenerate with it, of wave vectorki* ,
which can occur if sin2 fkWi

,H0 /(Hs1B0).
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sidual ‘‘zero-field’’ linewidth is argued to correlate with in
terface quality.1 We shall see here that the mechanism
explore has a more complex variation with applied dc fie
or FMR frequency.

The spin-wave dispersion relation just quoted is va
when the magnetization andHW o both lie in the plane of the
film, and are parallel to each other. If the magnetization
tipped out of the plane, the phase space within which
negative slope occurs decreases, and eventuallyV(kW i) in-
creases withkW i for all values of the wave vector. Then th
mechanism examined here is rendered inoperative. Thi
noted in Ref. 10, and in fact in this paper, data are presen
which show that the FMR linewidth indeed decreases ma
edly asMW s is tipped out of the plane.

One may examine the nature of the spin-wave dispers
relation for the case whereHW o is applied out of the plane
SupposeHW o makes the anglefH with the plane of the film.
Then the magnetization will be canted out of plane, at
anglefM . GivenfH , one findsfM by solving

sin~fH2fM !5
~Hs14pMs!

2Ho
sin~2fM !. ~21!

The spin-wave dispersion relation then assumes the form

V2~kW i!5VFM
2 ~fH ,fM !22pg2Mskid

3$@cos2fM2sin2fM cos2fkW i
#@Ho cos~fH2fM !

2~Hs14pMs!sin2fM#2sin2fkW i

3@Ho cos~fH2fM !1~Hs14pMs!cos~2fM !#%

1g2Dki
2$2Ho cos~fH2fM !1~Hs14pMs!

3~123sin2fM !%, ~22!

where

VFM
2 ~fH ,fM !5g2@Ho cos~fH2fM !

2~Hs14pMs!sin2fM#@Ho cos~fH2fM !

1~Hs14pMs!cos~2fM !#. ~23!

SupposeHo is applied perpendicular to the film, sofH
5p/2. There are then two cases to consider. IfHo,(Hs
14pMs), we have fM,p/2, i.e., the magnetization is
canted at the anglefM

c 5sin21@Ho /(Hs14pMs)#, and the dis-
persion relation of spin-wave modes of Eq.~22! simplifies to

V2~kW i!5VFM
2 ~p/2,fM

c !1g2~Hs14pMs!

3~2pMskid sin2fkW i
1Dki

2!F12S Ho

Hs14pMs
D 2G .
~24!

If Ho.(Hs14pMs), thenfM5p/2, and the film is magne-
tized normal to its surface, and the dispersion relation
comes

a
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V2~kW i!5VFM
2 ~p/2,p/2!12g2@Ho2~Hs14pMs!#

3@pMskid1Dki
2#. ~25!

Notice that in both configurations corresponding to E
~24! and ~25! both terms linear inki have positive coeffi-
cients, so there are no finite wave-vector modes degene
with the ferromagnetic resonance mode. In what follows,
attention will be focused on the case whereHW o and MW s are
parallel to the film surfaces, and to each other.

III. DERIVATION OF EXPRESSIONS FOR LINEWIDTH
AND FREQUENCY SHIFTS INDUCED BY SURFACE

AND INTERFACE DEFECTS

In this section, our attention is confined to the case wh
HW o andMW s are both parallel to the film surface, and to ea
other. We shall treat the Hamiltonian in Eq.~14! as a
quantum-mechanical, zero-order spin Hamiltonian, w
mx,y(kW i) regarded as an operator, andmx,y* (kW i) replaced by

its Hermitian adjointmx,y
1 (kW i). By adapting the continuum

theory developed elsewhere11 to the present problem, on
deduces the commutation relation

@mx~kW i!,my
1~kW i8!#5 imoMsdkW i ,kW i8

, ~26!

wheremo is the magnetic moment of a magnetic ion in t
film (mo52g\). The remaining operators commute amo
themselves.

Our approach will be to examine the equation of moti
for the response functions

Sab~kW i ,t !5 i
u~ t !

\
^@ma~kW i ,t !,mb

1~kW i,0!#&, ~27!

where the operators are in the Heisenberg representatioa
and b range overx and y, and u(t) is the Heaviside step
function, equal to unity fort.0 and zero whent,0.

Of interest is the Fourier transform

Sab~kW i ,V!5E
2`

`

Sab~kW i ,t !eiVtdt. ~28!

These functions, when considered as a function of freque
V, have poles whenV equals the spin-wave frequencies
the system. In the presence of damping or scattering,
poles shift off the real axis. The imaginary part of the fr
quency is the linewidth, or inverse lifetime of the mode.

One begins with the equation of motion

i\
]

]t
Sab~kW i ,t !5d~ t !^@mb

1~kW i!,ma~kW i!#&

1 i
u~ t !

\
^@@ma~kW i ,t !,H#,mb

1~kW i,0!#&.

~29!

A short calculation of the Fourier transforms defined in E
~28! for the perfect film described by the Hamiltonian in E
~14! provides the following expressions:
.

ate
r

re

,

cy

e
-

.

Sxx
(0)~kW i ,V!5

g2Hy~kW i!Ms

V2~kW i!2V2
, ~30!

Syx
(0)~kW i ,V!5

igVMs

V2~kW i!2V2
, ~31!

Sxy
(0)~kW i ,V!52Syx

(0)~kW i ,V!, ~32!

and

Syy
(0)~kW i ,V!5

g2Hx~kW i!Ms

V2~kW i!2V2
. ~33!

HereV(kW i) is the spin-wave dispersion relation given in Eq
~17! and ~19!.

Our task is next to introduce the two magnon scatter
terms into the Hamiltonian, and examine their influence
the structure ofSab(kW i ,V). When this task is completed, w
shall obtain expressions for both the lifetime and frequen
shift produced by these processes.

In this section, we introduce the most general two magn
scattering term into the Hamiltonian, and then we analyze
contents. We begin with

V25
1

2 (
kW i ,kW i8

mx
1~kW i8!Vxx~kW i8 ,kW i!mx~kW i!

1 (
kW i ,kW i8

mx
1~kW i8!Vxy~kW i8 ,kW i!my~kW i!

1
1

2 (
kW i ,kW i8

my
1~kW i8!Vyy~kW i8 ,kW i!my~kW i!. ~34!

Section IV will be devoted to the construction of models f
surface and interface defects. That discussion will lead
explicit forms for the matrix elementsVab(kW i8 ,kW i). For the
moment, we address the issue of generating formal exp
sions for the two magnon contribution to the linewidth.

In the presence of such scattering, we need to exam
response functions more general than those in Eq.~27!. Thus
we consider

Sab~kW i ,kW i8 ;t !5 i
u~ t !

\
^@ma~kW i ,t !,mb

1~kW i8,0!#&. ~35!

When scattering processes such as those in Eq.~34! are in-
troduced, wave vector is no longer conserved,
Sab(kW i ,kW i8 ;t) has nonzero off diagonal matrix elements
wave vector. We define the Fourier transform
Sab(kW i ,kW i8 ;t) as in Eq.~28!.

We begin by generating equations of motion for the
response functions. When we calculate@dma(kW i ,t)/dt#, we
add phenomenological damping as described by the Lan
Lifshitz equation to the terms generated by the spin Ham
tonian.

We then find the following set of equations forSxx and
Syx :
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iVSxx~kW i ,kW i8 ;V!2gH̃y~kW i!Syx~kW i ,kW i8 ;V!

5gMs(
kW i9

Vxy* ~kW i9 ,kW i!Sxx~kW i9 ,kW i8 ;V!

1gMs(
kW i9

Vyy* ~kW i9 ,kW i!Syx~kW i9 ,kW i8 ;V!, ~36!

gH̃x~kW i!Sxx~kW i ,kW i8 ;V!1 iVSyx~kW i ,kW i8 ;V!

5gMsdkW i ,kW i8
2gMs(

kW i9
Vxx~kW i ,kW i9!Sxx~kW i9 ,kW i8 ;V!

2gMs(
kW i9

Vxy~kW i ,kW i9!Syx~kW i9 ,kW i8 ;V!. ~37!

We have introduced

gH̃x,y~kW i!5gHx,y~kW i!2 igV, ~38!

where g[G/gMs and G is the Gilbert damping constan
which appears in the Landau-Lifshitz equation of motion.
place Eqs.~36! and ~37! in the form given, we have em
ployed identities imposed on the matrix elements in Eq.~34!
by the requirement that the Hamiltonian be Hermitian. F
example, Vab(kW i ,kW i8)5Vab* (2kW i ,2kW i8), and Vaa(kW i8 ,kW i)

5Vaa(2kW i ,2kW i8).

The two functionsSyy(kW i ,kW i8 ;V) andSxy(kW i ,kW i8 ;V) obey
equations rather similar in structure to Eqs.~36! and~37!. In
the interest of brevity, we omit displaying their explicit form

We assume now that the defects responsible for the s
tering are arranged on the surface in a random manner.
average all quantities over an ensemble of realizations
random defects. When this is done, the correlation func
Sab(kW i ,kW i8 ;V) becomes diagonal in wave vector. The av
aging process restores translational invariance, on the a
age. If we denote this averaging process by angular brac
then

^Sab~kW i ,kW i8 ;V!&5dkW i ,kW i8
^Sab~kW i ,kW i ;V!&

[dkW i ,kW i8
S̄ab~kW i ;V!. ~39!

For any particular film, we may write

Sab~kW i ,kW i8 ;V!5dkW i ,kW i8
S̄ab~kW i ;V!1DSab~kW i ,kW i8 ;V!,

~40!

whereDSab(kW i ,kW i8 ;V) owes its existence to the specific a
rangements of defects on the film under consideration.
r

at-
e

of
n
-
er-
ts,

In a related problem whose formal structure is very sim
lar to that explored here, Huang and Maradudin12 have uti-
lized a projection operator method to obtain a closed eq
tion for S̄ab(kW i ,V), in the limit where the amplitude of the
roughness associated with the random defects may be
sumed small. In essence, the averaged propagators ob
Dyson equation with a self-energy of matrix form. The se
energy matrix is quadratic in the two magnon matrix e
ments. In our case we find, after a straightforward appli
tion of this procedure, that theS̄ab(kW i ,V) obey

@ iV1Syx~kW i ,V!#S̄xx~kW i ,V!1@2gH̃y~kW i!

1Syy~kW i ,V!#S̄yx~kW i ,V!50, ~41!

and

@2gH̃x~kW i!1Sxx~kW i ,V!#S̄xx~kW i ,V!

2@ iV2Sxy~kW i ,V!#S̄yx~kW i ,V!52gMs , ~42!

where the matrixS(kW i ,V) may be written in the form

Sab~kW i ,V!5(
kW i9

g2Ms
2

@g2H̃x~kW i9!H̃y~kW i9!2V2#
Nab~kW i ,kW i9!,

~43!

where

Nxx~kW i ,kW i9!5gH̃y~kW i9!uVxx~kW i ,kW i9!u21gH̃x~kW i9!uVxy~kW i ,kW i9!u2

22V Im@Vxx* ~kW i ,kW i9!Vxy~kW i ,kW i9!#, ~44!

Nyy~kW i ,kW i9!5gH̃y~kW i9!uVxy~kW i9 ,kW i!u21gH̃x~kW i9!uVyy~kW i9 ,kW i!u2

22V Im@Vxy~kW i9 ,kW i!Vyy* ~kW i9 ,kW i!#, ~45!

Nxy~kW i ,kW i9!5gH̃y~kW i9!Vxx~kW i ,kW i9!Vxy~kW i9 ,kW i!

1gH̃x~kW i9!Vyy~kW i9 ,kW i!Vxy~kW i ,kW i9!

2 iV$Vxx~kW i ,kW i9!Vyy~kW i9 ,kW i!

2Vxy~kW i ,kW i9!Vxy~kW i9 ,kW i!%, ~46!

and

Nyx~kW i ,kW i9!5Nxy~kW i ,kW i9!* . ~47!

We have employed the identity, required by Hermiticit
Vaa(kW i ,kW i8)* 5Vaa(kW i8 ,kW i).

It is a simple matter to solve forS̄xx(kW i ,V) and
S̄yx(kW i ,V) from Eqs.~41! and ~42!. Thus
S̄xx~kW i ,V!5
gMs@gH̃y~kW i!2Syy~kW i ,V!#

@gH̃x~kW i!2Sxx~kW i ,V!#@gH̃y~kW i!2Syy~kW i ,V!#1@ iV1Syx~kW i ,V!#@ iV2Sxy~kW i ,V!#
. ~48!
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We may generate expressions forS̄yy and S̄xy in a similar
manner. Since the full form of these propagators is not
quired for what follows, we omit quoting their form in th
interest of brevity.

We can simplify a number of features in Eq.~48!. Since
we assume the influence of the two magnon scattering
various quantities is small, save in the near vicinity of t
spin-wave pole in the denominator, we may igno
Syy(kW i ,V) in the numerator. Also, we may replaceH̃y(kW i)
in the numerator by simplyHy(kW i), setting aside the contri
bution from the damping.

Finally, our derivation of Eqs.~41! and ~42! retains only
terms in the equation of motion quadratic in the matrix e
mentsVab(kW i ,kW i8). Thus when we expand the factors in th
denominator, we may discard products such
Sxx(kW i ,V)Syy(kW i ,V), which are fourth order. It is meaning
ful to retain such terms only if the individual self-energ
matrix elementsSab(kW i ,V) are each calculated comple
through fourth order.

With these approximations, we may write

S̄xx~kW i ,V!

5
g2Hy~kW i!Ms

V2~kW i!2V22 iggV@Hx~kW i!1Hy~kW i!#2S~kW i ,V!
,

~49!

where

S~kW i ,V![(
kW i9

g2Ms
2N~kW i ,kW i9!

g2H̃x~kW i9!H̃y~kW i9!2V2
, ~50!

whereV2(kW i) is the spin-wave dispersion relation defined
Eq. ~19!, and

N~kW i ,kW i8![gHx~kW i!Nyy~kW i ,kW i8!1gHy~kW i!Nxx~kW i ,kW i8!

22V Im@Nxy~kW i ,kW i8!#. ~51!

The real part ofS(kW i ,V) contains information about the tw
magnon scattering induced frequency shift of the spin wa
and the imaginary part their contribution to the linewidt
The expression for the quantityN(kW i ,kW i9) is lengthy, and is
derived readily from Eqs.~44!–~47!.

Our interest is in the FMR mode, with wave vectorkW i

50. Thus we setkW i50 everywhere. Furthermore, in the ca
culation ofN(kW i ,kW i9), the factors ofH̃x(kW i), H̃y(kW i) may be
set toHx(0) andHy(0), since for the wave vector regime o
interest, the finite wave-vector corrections are quantitativ
small; they play a crucial role in the denominator of Eq.~50!,
of course, since they are responsible for rendering fin
wave-vector spin waves degenerate with the FMR mode

Then we have

S̄xx~kW i50,V!5
g2@Bo1Hs#Ms

VFM
2 2V22 iggV@Bo1Hs1Ho#2S~0,V!

.

~52!
-

n

-

s

e,
.

ly

e

After considerable algebra, we find the numeratorN(0,kW i9) in
Eq. ~50! may be expressed in terms of a positive defin
quantity:

N~0,kW i9!5g2u~Bo1Hs!Vxx~0,kW i9!1HoVyy~0,kW i9!

1 i @Ho~Bo1Hs!#
1/2@Vxy~0,kW i9!2Vxy* ~0,kW i9!#u2.

~53!

As noted above, the imaginary part ofS(0,V) controls the
two magnon contribution to the linewidth. The real part
S(0,V) provides us with the defect induced frequency sh
of the resonance mode. If we keep only the imaginary p
for the moment, and assume the Lorentzian which appe
may be replaced by a suitably weighted Dirac delta functi
then we have our final form for the spin-wave propagato

S̄xx~kW i50,V!5
g2@Hs1Bo#Ms

VFM
2 2V22 iggV@Bo1Hs1Ho#2 iG

,

~54!

with

G[
pg2Ms

2

2VFM
(
kW9

N~0,kW i9!d@V~kW i9!2V#. ~55!

This concludes our formal derivation of the two magn
scattering contribution to the linewidth. The influence of t
frequency shift will be discussed below. Our next task, a
dressed in Sec. IV, is to make models of surface and in
face defects, and their contribution to the matrix eleme
Vab(kW i ,kW i8). This will lead us to find expressions for th
linewidth, and frequency shift.

IV. MODEL OF SURFACE AND INTERFACE DEFECTS,
AND THEIR CONTRIBUTION TO TWO MAGNON

MATRIX ELEMENTS

In this section, we present a model of defects on the fi
surface, or at an interface, and examine their contribution
the matrix element for two magnon scattering. As noted e
lier, in their very brief discussion, the authors of Ref. 1
provided no estimate of the magnitude of the matrix e
ments, and their relation to the morphology of specific s
face features. Because of this, they gave no assessment,
qualitative, of the specific predictions of this mechanism.
our view, a central issue is the magnitude and field dep
dence of the two magnon scattering contributions. For t
explicit models are required.

We may expect island formation in the ultrathin films, a
also depressions in the surface as well. We note that in a
interesting synchrotron study of interface roughness, Idze
and his colleagues have quantified the length scale of
‘‘magnetic roughness’’ present in ultrathin films.13

We assume that on the surface we have defects both in
form of bumps or islands, and also we have depression
pits. The size of these structures will be supposed small c
pared to the wavelength of both spin waves involved in
two magnon scattering event. Thus when deriving their c
tribution to the matrix element, we may assume the sp
wave amplitudes are constant in their vicinity. We also
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sume all bumps are identical, with the same orientat
throughout the film, and similarly for pits. Of course, th
will not be the case in practice. In the end, one may acco
for the influences of variations in size, topology, and orie
tation by replacing parameters which refer to the linear
mensions of a surface defect by suitable ensemble avera

There are three contributions to the matrix element
consider: that from the perturbation to the Zeeman term,
from the perturbation to the dipolar energy, and finally th
associated with the surface anisotropy. We consider eac
turn.

A. Zeeman perturbation

As presented already in Eq.~10!, the change in Zeema
energy due to the presence of a single bump is given by

DHz5
Ho

2Ms
E

Vb

dV@mx
2~x,z!1my

2~x,z!#, ~56!

with Vb the volume of the bump. Since the transverse m
netization associated with spin waves will not vary sign
cantly over the region of the bump, if it is indeed sm
compared to the wavelength of the spin waves, the energ
a collection of bumps is approximated as

DHz
b5(

j
DHz

j 5
Ho

2Ms
Vb(

j
@mx

2~xW j !1my
2~xW j !#, ~57!

wherexW j is the position of bumpj. Using the representatio
of the magnetization in terms of Fourier components given
Eq. ~2!, one obtains

DHz
b5

Ho

2Ms

Vb

Ld (
kW i ,kW i8

Sb~kW i82kW i!@mx
1~kW i8!mx~kW i!

1my
1~kW i8!my~kW i!#, ~58!

where we have defined the following structure factor for
array of bumps

Sb~qW i!5
1

L (
j

e2 iqW i•xW j . ~59!

By similar arguments the change in the Zeeman energy
to ‘‘pits’’ or ellipsoidal depressions is

DHz
p52

Ho

2Ms

Vp

Ld (
kW i ,kW i8

Sp~kW i82kW i!@mx
1~kW i8!mx~kW i!

1my
1~kW i8!my~kW i!#, ~60!

with Sp(qW i) an equivalent structure factor for pits.

B. Dipolar perturbation

First, we consider the change in the dipolar energy du
the presence of bumps on the surface of the film. We w
the magnetization approximately asMW (xW )5Msẑ1mW (xW ),
with mW (xW )5mx(xW ) x̂1my(xW ) ŷ the transverse component a
sociated with the presence of the spin waves. Now we w
mW (xW )5mW f(xW )1( jmW b

j (xW ), with mW b
j (xW )50 outside the bump
n

nt
-
i-
es.
e
at
t
in

-

l
of

n

e

ue

to
e

te

~j! andmW f(xW )50 outside the nominal film. ThusmW f(xW ) van-
ishes within the bump. The terms in the dipolar energy of
whole film of quadratic order inmW (xW ) are then

HD
b 52

1

2EV
dVmW •HW D~mW !

52
1

2EV
dVmW f•HW D~mW f !

2
1

2 (
j
E

Vb
j
dVmW b

j
•HW D~mW f !

2
1

2 (
j
E

Vf

dVmW f•HW D~mW b
j !

2
1

2 (
i

(
j
E

Vb
i
dVmW b

i
•HW D~mW b

j !, ~61!

with HW D representing the demagnetizing fields of the diffe
ent magnetization configurations considered. The first te
quadratic inmW f(xW ) was already considered in the zerot
order Hamiltonian appropriate to the perfectly smooth fil
The second and third term are equal by virtue of the re
procity theorem,14 and combined can be written as

HD
Ib52(

j
E

Vb
j
dVmW b

j
•HW D~mW f !

.2Vb(
j

mW ~xW j !•HW D~mW f ;xW j !. ~62!

The second term of Eq.~62! has been written with the ap
proximation once again that the size of the bump is sm
with respect to the length scale of the variation of the s
wave field ormW (xW ), i.e., the integral is easily approximate
since the integrands are almost constant. The field appea
in Eq. ~62! is evaluated just outside the film, at the positio
of the bump, and it is~to lowest order inkid)

HW D~mW f ;xW j ,y5d/2!5
1

AL2d
(
kW i

eikW i•xW j2p~kid!

3@my~kW i!2 i k̂x
i mx~kW i!#~ ŷ2 i k̂ i!,

~63!

i.e., the termHD
Ib will be of order (kid), therefore it will be

neglected from the final analysis. We shall see, for exam
that the final term in Eq.~61! dominates in the limitkid
!1.

Now we turn to the fourth term in Eq.~61!, for the case
i 5 j , i.e., the ‘‘self-energy’’ terms:

HD
Sb j52

1

2EVb
j

dVmW b
j
•HW D~mW b

j !. ~64!

In principle here one should calculate the energy due t
uniform magnetization within the bump. This is a difficu
task, even for a structure of simple shape. We shall ass
we may introduce appropriate demagnetizing factorsNx and
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Ny for the structure. This will provide us with a contributio
that is correct, to within factors of order unity. We sha
appreciate later that this approximation will not influence o
final result. Thus

HD
Sb j5

1

2
Vb@Nxmx

2~xW j !1Nymy
2~xW j !#. ~65!

Note thatNx andNy are less than 4p (Nx1Ny1Nz54p).
Finally we address the terms which couple differe

bumps, i.e., the terms of the type

HD
i j 52E

Vb
i
dVmW b

i
•HW D~mW b

j !. ~66!

The field of the bump~j! at the position of the bump~i!
corresponds to that of a magnetic charge dipole within
approximation scheme@in the case of a semispherical bum
of radiusR the dipole ispW 5(2p/3)R3mW (xW j )#. This field is
weak in comparison with the self-field of bump (i ), then it
will be neglected.

Now we can summarize the results for bumps. The do
nant dipolar contribution comes from terms like those of E
~65!. Then, the main contribution of bumps to the change
dipolar energy is approximately

DHD
b 5

1

2
Vb(

j
@Nxmx

2~xW j !1Nymy
2~xW j !#. ~67!

Using a Fourier representation of the quantities involved,
change in dipolar energy becomes

DHD
b 5

1

2

Vb

Ld (
kW i ,kW i8

Sb~kW i82kW i!@Nxmx
1~kW i8!mx~kW i!

1Nymy
1~kW i8!my~kW i!#, ~68!

whereSb(kW i82kW i) is the structure factor introduced above
Now we consider the case of ‘‘pits’’ or depression

These will prove to have a different contribution to the d
polar energy, as will be seen in the following.

First, the magnetization is written as

mW ~xW !5mW f~xW !1(
j

mW p
j ~xW !, ~69!

where mW f(xW )50 outside the nominal film, andmW p
j (xW )50

outside the pit, and alsomW p
j (xW )52mW f(xW ) in the region of the

pit, so that we have an empty region there. Notice that
have used superposition of magnetization configurati
with overlap at the region of the pit.

Using our decomposition ofmW (xW ) one obtains an expres
sion analogous to Eq.~61! for the dipolar energy quadratic i
mW (xW ). The interaction term becomes

HD
Ip52(

j
E

Vp
j
dVmW p

j
•HW D~mW f !.Vp(

j
mW ~xW j !•HW D~mW f ;xW j !.

~70!

Here the difference with the bumps, apart from the sign
mW p, is that the demagnetizing field is evaluated inside
r

t

r

i-
.
n

e

.

e
s

f
e

film, which makes a large difference since the field inside
film is approximatelyHW D(mW f ;xW j ).24pmy(xW j ) ŷ, i.e.,

HW D~mW f ;xW j ,y5d/2!.2
1

AL2d
(
kW i

eikW i•xW j4pmy~kW i!ŷ.

~71!

Thus the interaction term for pits becomes approximately

HD
Ip.24p

Vp

Ld (
kW i ,kW i8

Sp~kW i82kW i!my
1~kW i8!my~kW i!, ~72!

with Sp(qW i)[(1/L)( je
2 iqW i•xW j the structure factor of pits.

The treatment of the coupling terms between pits is si
lar as for bumps. Only the self-terms are important in t
end, and it is easy to see that they are exactly the same a
bumps. Thus we approximate the self-terms by

DHD
Sp5

1

2

Vp

Ld (
kW i ,kW i8

Sp~kW i82kW i!@Nxmx
1~kW i8!mx~kW i!

1Nymy
1~kW i8!my~kW i!#. ~73!

Finally, adding all terms, the change in dipolar energy due
pits can be written as

DHD
p 5

1

2

Vp

Ld (
kW i ,kW i8

Sp~kW i82kW i!@Nxmx
1~kW i8!mx~kW i!

2~8p2Ny!my
1~kW i8!my~kW i!#. ~74!

C. Magnetic surface anisotropy perturbation

In the ultrathin films of interest, surface anisotropy can
very strong. Variation in the direction of the anisotropy ax
over the surface of a defect will lead to two magnon scat
ing, as emphasized by Heinrich.15 We consider this contribu-
tion here.

As far as surface magnetic anisotropy is concerned th
is no difference between an ‘‘upward bump’’ or a ‘‘depre
sion’’ of the same shape, so we will talk about defects, w
both types in mind.

The change in surface anisotropy energy associated
the presence of a defect is given by

DHA5
Ks

Ms
2ES

dS@MW ~xW !•n̂~xW !#22
Ks

Ms
2ES̄

dSMy
2~xW !,

~75!

wheren̂(xW ) is the normal to the surface of the defect at po
xW , andS̄ is the projection of the surfaceSof the defect in the
x-z plane.

Writing the magnetization as

MW ~xW !5MW eq~xW !A12S mW ~xW !

Ms
D 2

1mW ~xW !, ~76!

with mW (xW )'MW eq(xW ), it immediately satisfies the conditio
MW 2(xW )5Ms

2 if MW eq(xW )25Ms
2 , whereMW eq(xW ) is the equilib-
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rium magnetization configuration. In our caseMW eq(xW )
.Msẑ. Using Eq.~76!, the terms to second order inmW (xW ) in
Eq. ~75! become

DHA5
Ks

Ms
2ES

dS@ n̂~xW !•m̂~xW !#22
Ks

Ms
2ES

dSn̂z
2~xW !mW 2~xW !

2
Ks

Ms
2ES̄

dSmy
2~xW !. ~77!

Assuming the variation ofmW (xW ) is small within the region of
the defect, thenmW (xW ) can be taken out of the integrals a
mW (xW j ), wherexW j is the position of thej th defect. Also, we
assume the defect has symmetry such that*dSn̂x(xW )n̂y(xW )
50. Then this energy becomes

DHA
j 5

S̄dKs

Ms
2 $@ f x2 f z#mx

2~xW j !1@ f y2 f z21#my
2~xW j !%.

~78!

We have introduced the geometrical factors

f a5
1

S̄d
E dSn̂a

2 , ~79!

whereS̄d is the basal surface area of the defect, i.e.,f x1 f y

1 f z5Sd /S̄d , with Sd the defect’s surface area.
For what follows, it is important to note that if the topo

ogy of the defects is such that thex and z directions in the
surface are equivalent, thenf x5 f z and the term inmx

2(xW j )
vanishes. Thus if the defect is a hemisphere with circu
footprint, or a square with sides or diagonals parallel to thx

andz axes, we have no term inmx
2(xW j ). Thus a smooth bump

should be elliptical, or an island should be a rectangle ra
than a square for this term to be nonvanishing. This term
play a key role in controlling the field dependence of the t
magnon contribution to the linewidth.

We now sum over the array of bumps and pits, and
the Fourier representation for the magnetization compon
to find

DHA5
S̄dKs

Ms
2Ld

$@ f x2 f z#mx
1~kW i8!mx~kW i!1@ f y2 f z21#

3my
1~kW i8!my~kW i!%@Sb~kW i82kW i!1Sp~kW i82kW i!#.

~80!

D. Summary of results

In this section we summarize the results obtained abo
First, note that within the picture offered, the matrix eleme
Vxy(kW i8 ,kW i) vanishes. We are then left withVxx(kW i8 ,kW i) and

Vyy(kW i8 ,kW i) which we write, recalling thatHs52Ks /(Msd),
r

er
ll

e
ts

e.
t

Vxx~kW i8 ,kW i!5
Vd

MsLd H FNxMs1Ho1
d

h
~ f x2 f z!HsG

3Sb~kW i82kW i!1FNyMs2Ho1
d

h
~ f x2 f z!HsG

3Sp~kW i82kW i!J , ~81!

Vyy~kW i8 ,kW i!5
Vd

MsLd H FNxMs1Ho1
d

h
~ f y2 f z21!HsG

3Sb~kW i82kW i!2F ~8p2Ny!Ms1Ho

2
d

h
~ f y2 f z21!HsGSp~kW i82kW i!J , ~82!

where we have considered that bumps and pits have the s
volume, i.e., Vb5Vp5Vd , and we have definedh

[Vd /S̄d , i.e., h is a measure of the height of the defects
Consider the order of magnitude of the various contrib

tions to Eqs.~81! and~82!. Roughly speaking,Ms , Ho , and
Hs are comparable in magnitude. For Fe, for instan
4pMs.21 kG, anduHsu will be in the range of 10 kG in
typical cases. Indeed, the fact that in zero applied field,
realizes ultrathin films with magnetization perpendicular
the surface showsuHsu can exceed 4pMs .

If all the fields are indeed comparable in magnitude,
factor ofd/h which multipliesHs in Eqs.~81! and~82! sug-
gests that surface anisotropy provides the dominant contr
tion to the matrix element. If, for example, we have a fil
20-Å thick, we may expectd/h;5 to 10 for a typical de-
fect.

Thus, in what follows, we retain only the surface anis
ropy terms, to approximateVxx andVyy by the very simple
forms

Vxx~kW i8 ,kW i!5
S̄dHs

MsL
~ f x2 f z!@Sb~kW i82kW i!1Sp~kW i82kW i!#

~83!

and

Vyy~kW i8 ,kW i!5
S̄dHs

MsL
~ f y2 f z21!@Sb~kW i82kW i!1Sp~kW i82kW i!#.

~84!

V. TWO MAGNON CONTRIBUTION TO LINEWIDTH
AND FREQUENCY SHIFTS

A. Linewidth

Our first task is to evaluate the matrix elementN(0,kW i9) in
Eq. ~53!. We do this utilizing the limiting forms given in
Eqs. ~83! and ~84!. We shall average the expression f
N(0,kW9) over an array of randomly arranged defects. W
assume no correlation between the location of pits a
bumps, for simplicity. Thus if averages over configuratio
are denoted by angular brackets,
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^uSb,p~qW i!u2&5
Nb,p

L2
, ~85!

and

^Sb~qW i!S
p~qW i!* &50, ~86!

whereNb andNp are the number of pits and bumps, on t
surface areaL2. In our approximation where the size of th
surface defect is small compared to the magnon wavelen
N(0,kW9) is independent ofkW i9 . We thus drop reference to this
and we then find the simple result

N5
2g2S̄dHs

2

Ms
2L2

p@~Bo1Hs!~ f x2 f z!1Ho~ f y2 f z21!#2,

~87!

wherep[S̄d(Nb1Np)/L2 is the fraction of the surface cov
ered by defects. The factor of 2 has its origin in the fact t
the film has an upper and a lower surface, each assume
have a similar defect distribution.

Notice, as remarked earlier, if the defects are round
square in character,f x5 f z andVxx vanishes. In this case,N
is proportional toHo

2 . In such a picture, the two magno
contribution to the linewidth will have a very strong depe
dence on the applied magnetic fieldHo . In this case, only
the component of magnetization associated with the s
waves which is normal to the surface provides coupling
the two magnon process. The ratio (my /mx)

2 is equal to
Ho /(Hs1Bo) for these modes in the long-wavelength lim
The strong field dependence present whenVxx50 has its
origin in this feature of the spin-wave modes in a thin film
So far as we know, there is little evidence for such a stro
field dependence of the extrinsic linewidth. We argue, th
that on average, the footprint of the defects on the surfac
either elongated or shortened, sof xÞ f z . ThenVxxÞ0, and
we realize the much more modest field dependence displa
in Eq. ~87!.

We now turn to Eq.~55!, and we find an explicit expres
sion for G. The frequencyV in the Dirac delta function is
replaced by the ferromagnetic resonance frequencyVFM .
Then we have

G5
g2Hs

2pS̄d

2pD~Bo1Hs1Ho!
@~Bo1Hs!~ f x2 f z!

1Ho~ f y2 f z21!#2E
0

`

dki E
0

2p

dfki
d

3@ki2ki
(c)~fki

!#, ~88!

where

ki
(c)~fki

![
2pMsd@Ho2~Bo1Hs!sin2fki

#

~Bo1Hs1Ho!D
. ~89!

For spin waves with propagation anglefki
, ki

(c)(fki
) is the

wave vector of the finite wave-vector spin-wave modes
generate with the ferromagnetic resonance mode.

The integrals in Eq.~88! are evaluated easily, to give
th,

t
to

r

in
r

.
g
,
is

ed

-

G5
2g2Hs

2pS̄d

pD~Bo1Hs1Ho!
@~Bo1Hs!~ f x2 f z!

1Ho~ f y2 f z21!#2 sin21F S Ho

Bo1Hs
D 1/2G . ~90!

When we evaluated the integral overfkW i
in Eq. ~88!, we

used thatHo,Bo1Hs : in our case this is assured since t
main magnetization is assumed to lie in plane, i.e.,
,4pMs1Hs or equivalentlyHo,Bo1Hs .

Our subsequent discussion will be based on this fo
Notice that asHo→0, in factG→0. That is, the two magnon
scattering contribution to the linewidth vanishes at zero fie
The reason is that asHo→0, the phase space available
final state spin waves becomes vanishingly small, since
realizes the negative slope only for propagation directio
for which usin(fki

)u,@Ho /(Bo1Hs)#
1/2. Thus if the mecha-

nism explored here is operational in the sample studied,
term ‘‘zero-field linewidth’’1,2 used often is quite inappropri
ate.

We now need to link our quantityG with the actual fer-
romagnetic resonance linewidth, as measured experim
tally. Consider the response function in Eq.~54!. In the ex-
periment, the frequencyV is held fixed, and the dc fieldHo
is varied, and swept through resonance. In essence, the f
VFM

2 in the denominator is swept throughV by varyingHo .
If Ho5Ho

(r )1DH where Ho
(r ) is the resonance field wher

VFM5V, then whenDH is small,VFM
2 2V25g2(Ho1Bo

1Hs)DH. Thus the linewidthDH in Gauss is given by

DH5
GVFM

g2Ms

1DH (2), ~91!

whereDH (2)5G/@g2(Ho1Bo1Hs)#, i.e., from Eq.~90!,

DH (2)5
2Hs

2pS̄d

pD~Bo1Hs1Ho!2
@~Bo1Hs!~ f x2 f z!

1Ho~ f y2 f z21!#2 sin21S Ho
1/2

~Bo1Hs!
1/2D . ~92!

We now need to resort to a specific model of the shape of
islands and pits, to evaluatef x , f y , andf z . If we have a film
made from material whose crystal structure is cubic, we m
imagine the defects to be rectangles, with edges perpend
lar to and parallel to the magnetization. We adopt this p
ture, and the dimensions of the model defect are illustrate
Fig. 3. The rectangle has height~or depth! b, and sides with
length a and c, respectively. Then for such an island, w
have f y51, f x52b/a, f z52b/c, andS̄d5ac, and Eq.~92!
becomes

DH (2)5
8Hs

2b2pac

pD~Bo1Hs1Ho!2 F ~Bo1Hs1Ho!
1

c

2~Bo1Hs!
1

aG2

sin21S Ho
1/2

~Bo1Hs!
1/2D . ~93!
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The expression in Eq.~93! assumes all defects to be identic
in size and topology. Our final step is to perform an avera
appropriate to an ensemble of defects, of diverse topolo
That is, on a typical surface, in our picture, we may ha
some defects withc.a, and others withc,a. We may ex-
pect the ratioc/a to fluctuate about unity in value. Upo
expanding the angular bracket in Eq.~93!, and averaging
over this aspect of the defect topology, we find our fin
form:

DH (2)5
8Hs

2b2p

pD~Bo1Hs1Ho!2 FHo
21~Bo1Hs1Ho!2

3S K a

cL 21D1~Bo1Hs!
2S K c

aL 21D G
3sin21S Ho

1/2

~Bo1Hs!
1/2D . ~94!

This expression can be further simplified by assuming t
there is no anisotropy between both directions, i.e.,^a/c&
5^c/a&.

Clearly, we have made a number of approximations a
model assumptions to reach our final form for the mat
elementN(0,kW i9). These assumptions affect numerical pr
actors which enter Eq.~94!, but do not influence the depen
dence ofDH (2) on the film parameters, nor do these affe
the magnitude ofDH (2) to any great extent. It is clear, fo
example, that if the surface defects are small in the se
described above, surface anisotropy is the dominant co
bution to the matrix element.

B. Defect induced shift in resonance field

As noted in Sec. III, the two magnon scatterings lead
only an extrinsic contribution to the linewidth, but also le
to a shift in the resonance field. We see this in Eq.~49!,
where the shift in resonance field follows if the real part
S(kW i ,V) is retained. When this is done, a discussion v
similar to that given above provides the following express
for the shiftDHR

(2) for the resonance field:

DHR
(2)5

1

g2

SR~0,VFM !

~Bo1Hs1Ho!
. ~95!

FIG. 3. Geometry of a rectangular defect, with sidesa, b, andc
in the x, y, andz directions, respectively.
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When the matrix elementN(0,kW i9) is treated as in our discus
sion of the linewidth, with pits and islands of rectangul
shape, we find

DHR
(2)5

8Hs
2b2pac

p2~Bo1Hs1Ho!2D
F ~Bo1Hs1Ho!

1

c

2~Bo1Hs!
1

aG2E
0

p/2

dfkW i E0

ki
(M ) dki

ki2ki
(c)~fkW i

!
,

~96!

whereki
(c)(fkW i

) is defined in Eq.~89!.

The integral in the magnitude ofki diverges logarithmi-
cally. We therefore introduce a maximum wave vectorki

(M ) ,
whose nature is discussed below. The integrals in Eq.~96!
may be evaluated analytically by first integrating on ang
and then onki . We find

DHR
(2)5

8Hs
2b2pac

p~Bo1Hs1Ho!2D
F ~Bo1Hs1Ho!

1

c

2~Bo1Hs!
1

aG2H lnF S ki
(M )

ko
2sin2f (c)D 1/2

1S ki
(M )

ko
1cos2f (c)D 1/2G J . ~97!

Here we have sin2f(c)[Ho /(Bo1Hs) , and also we have de
fined ko[2pMsd(Bo1Hs)/(Bo1Hs1Ho)D.

Finally, if we average over the topology of the defects,
we did when we were led from Eq.~93! to Eq.~94!, we have

DHR
(2)5

8Hs
2b2p

p~Bo1Hs1Ho!2D
FHo

21~Bo1Hs1Ho!2

3S K a

cL 21D1~Bo1Hs!
2S K c

aL 21D G
3H lnF S ki

(M )

ko
2sin2f (c)D 1/2

1S ki
(M )

ko
1cos2f (c)D 1/2G J . ~98!

The results displayed in Eqs.~94! and ~98! are the final re-
sults of the paper. Our aim has been to obtain simple, a
lytic expressions for the two magnon contribution to the lin
width, and the frequency shift, to provide insight into the k
physical features of the surface defects which control th
extrinsic contributions.

What remains is to discuss the value of the cutoff wa
vectorki

(M ) which appears in Eq.~98!. We argue this is se
by the average width, or transverse length scale of the
face defects. Upon averaging over an array of defects,
shall havê a&5^c&. Thenki

(M ).1/̂ a&. The reason for this

choice is as follows. In our evaluation ofN(0,kW i), we as-
sume, in essence,ki^a&!1 for the spin waves involved in
the final state of the two magnon process. From the numb
characteristic of the materials of interest, this is a reasona
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assumption, when the linewidth is analyzed. However, as
have seen, much shorter wavelengths enter the analys
the frequency shift. A more complete account of the ma
element will showN(0,kW i) will fall off when ki^a&@1. This
will ensure convergence of the integral. Sinceki

(M ) appears
only in the argument of a logarithm, a crude estimate ofki

(M )

will suffice.

VI. GENERAL COMMENTS AND DISCUSSION

We begin with a review of the manner in which ferroma
netic resonance linewidth data on ultrathin films have b
analyzed in the literature.1,6,16

In the experiments just cited, FMR experiments are p
formed with four frequencies at most, ranging from 9.5–
GHz. The linewidth is found to increase with frequency, in
linear manner. Extrapolation of the data back to zero f
quency yields a finite intercept referred to as the zero-fi
linewidth, DH(0). We note from Eq.~91! that the Gilbert
damping term in the Landau-Lifshitz equation provides
contribution linear in frequency. In the data analysis,
constantG is determined from a fit to the slope of the lin
width DH as a function of the FMR resonance frequency
is assumed thatG determined by this means then provides
measure of damping present throughout the body of the fi
It is found thatG is very frequently larger in the ultrathin
films than in bulk Fe.17 This is reasonable, of course, sin
the electronic structure of such films surely differs from bu
Fe. Finally DH(0) is argued to have its origin in surfac
defects.

The view just summarized is problematical, given our
sult in Eq.~94!. Quite clearly,DH (2) depends on the externa
magnetic fieldHo , and hence onVFMR . Thus, by fitting
only a few data points, it is difficult to separate the bu
damping, surely linear in the frequency, from the extrin
contribution with origin in surface defects.

We illustrate this with a numerical calculation appropria
to Fe. Here 4pMs521 kG, andD52.531029 G cm2. We
have chosenHs to be215 kG, which means the normal t
the surface is an easy axis. Note, by the way, that in gen
theHs

2 in the prefactor of Eq.~94! need not coincide in value
with theHs appearing in the remaining factors in the expre
sion. The former has its origin in low-symmetry sites on t
sides of the model defects in our picture, while the latter
the anisotropy experienced by spins on the flat portions
the film surface. To calculatêa/c& and ^c/a& we assume
both a and c are randomly distributed from 0 to the valu
N3b. Then

K c

aL 5 K a

cL 5

E
0

Nb

daE
0

Nb

dcS a

cD
E

0

Nb

daE
0

Nb

dc

5
~N11!

2~N21!
ln~N!.

~99!

We let N510, supposeb53 Å , andp50.3. These choices
provide the result forDH (2) presented in Fig. 4. In the fre
quency range from 10–40 GHz, we seeDH (2) is roughly
linear with nFMR5VFMR /(2p), though curvature is presen
clearly. If we approximateDH (2) by a straight line in this
e
of

x

n

r-

-
d

e

t

.

-

ral

-

n
f

frequency window, and extrapolate to zero frequency,
obtain a ‘‘zero-field linewidth’’ of approximately 15 G. O
course, the actual extrinsic linewidth vanishes as the
quency goes to zero, for the physical reasons discussed
lier.

The slope ofDH (2) vs nFMR in Fig. 4 is very close to 1
G/GHz, if one approximates the curve by a straight line
the frequency region from 10–40 GHz. The slope provid
by the bulk term in Eq.~91! is 1.13 G/Ghz, if we assume
G50.83108 sec21 as in bulk Fe. If we combine the two
mechanisms, we will find a slope of 2.13 G/GHz within th
scheme. The two curves in Fig. 1 of Ref. 6 with largest slo
have a slope of 2.5 G/GHz.

We could fit the actual experimental slope in the data j
discussed by a slightly different choice of parameters,
course. In view of our schematic model of surface defe
this seems of little value. The point we wish to emphasize
the extrinsic, surface defect induced contribution to the lin
width depends on FMR frequency in a manner which o
scures one’s ability to separate intrinsic and defect indu
contributions to the linewidth.

As a consequence, it is difficult to make a clear separa
between bulk damping of Gilbert form, and the surface d
fect induced linewidth. The dominant source of the fr
quency dependence in the extrinsic linewidth is t
sin21@„Ho /(Bo1Hs)…

1/2# factor in Eq.~92!. This has its ori-
gin in the nature of the spin-wave dispersion curve as
have discussed, and is not influenced by details of the ma
element. In this sense, our predicted field dependence is
bust.

We have seen that in addition to providing an extrin
two magnon scattering to the linewidth, the presence of s
face and interface defects lead to a frequency shift of
resonance field as well. In Fig. 5, we show the frequen
variation of the defect induced shift in resonance field. T
calculations are performed for the same model of the def
used to generate Fig. 4. We see that the shift in resona
field is quite appreciable, and shows little frequency dep

FIG. 4. Extrinsic resonance field linewidthDH (2) as a function
of resonant frequencynFMR5VFMR /(2p), for the following
choice of parameters:Hs5215 kG, 4pMs521 kG, N510 or
^a/c&2150.4, b53 Å , andp50.3.
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7408 PRB 60RODRIGO ARIAS AND D. L. MILLS
dence. The presence of this shift will limit one’s ability
extract precise values of material parameters from F
resonance frequencies.

Of course, it will prove difficult to make a realistic mode
of surface and interface defects, and then follow through
the required matrix elements and a quantitatively relia
prediction of the resonance linewidth and the frequency sh
We propose the following procedure. Since our numeri
calculations show the extrinsic contribution to the linewid
has a dependence onnFMR which is dominated by the
sin21@„Ho /(Bo1Hs)…

1/2# factor in Eq.~94!, for the purposes
of fitting data, one may employ the simple expression

DH (2)5Gex~Ho!sin21FA Ho

Bo1Hs
G , ~100!

where, in fact the field dependence@and hence the depen
dence ofGex(Ho) on nFMR# may be assumed weak and s
aside. Unless the film is very thin indeed, we suggest that
bulk damping may be accounted for by using the Gilb
constantG50.83108 sec21, for bulk Fe. Given a value o
Gex(Ho) for a particular film, the shift in resonance field i

DHR
(2)5Gex~Ho!H lnF S ki

(M )

ko
2sin2f (c)D 1/2

1S ki
(M )

ko
1cos2f (c)D 1/2G J . ~101!

To employ Eq.~101!, one needs a value forki
(M ) . Since this

enters only in the argument of the logarithm, a rough e
mate of^a& and^c& should suffice for this purpose. Thus th
parameterGex(Ho) may be extracted from linewidth dat
without the need to resort to a specific model of the defe
With this parameter in hand, the shift in the resonance
quency induced by the defects may be estimated from
~101!.

We inquire about one further issue. This is the question
whether the defect induced modifications in the respo
function have a significant effect in the shape of the FM

FIG. 5. Resonance field shiftDHR
(2) as a function of resonan

frequencynFMR5VFMR /(2p), for the following choice of param-
eters:Hs5215 kG, 4pMs521 kG, N510 or ^a/c&2150.4, b
53 Å , p50.3, andd510 Å .
R
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absorption line, or its integrated strength. We note that v
ues for the magnetizationMs are inferred from the integrate
strength of the FMR line,18 so a correction to the standar
expression from two magnon scattering processes is po
tially significant.

To address this issue, we need to explore a specific ge
etry for the resonance measurement. We suppose the sa
is exposed to a plane polarized microwave field, applied p
allel to the film surface, and to thex direction in Fig. 1. The
rate at which energy is absorbed,a(Ho), is then proportional
to Im@VS̄xx(0,V)#, where S̄xx(kW i ,V) is given in Eq.~48!.
While the shift in resonance field and the linewidth are d
duced from the structure of the denominator in Eq.~48!, the
factor of Syy in the numerator contributes a two magno
scattering induced asymmetry in the lineshape, and cor
tions to the integrated strength of the line. In what follow
we write Syy(0,VFM)5Syy

(R)1 iSyy
(I ) . After a brief calcula-

tion based on approximations similar to those used abo
we find

a~Ho!5VFMMsS Bo1Hs2Syy
(R)/g

Bo1Hs1Ho
D

3S DH1l~Hr2Ho!

~DH !21~Hr2Ho!2D . ~102!

In this expression,Hr is the resonance field, andDH the total
linewidth given in Eq.~91!. To lowest order in the rough
ness,

l[
1

g~Bo1Hs!
S GVFM

gMs
1Syy

(I )D . ~103!

Upon integratinga(Ho) over the absorption line, we find

E a~Ho!dHo5pVFMMsS Bo1Hs2Syy
(R)/g

Bo1Hs1Ho
D ,

~104!

independent of the parameterl.
The integrated strength of the absorption line, and he

one’s ability to extract values forMs from this in our model
of the resonance experiment, is influenced by the facto
Syy

(R)/g in Eq. ~104!. If we have Fe in mind,Bo is larger than
20 kG. The quantitySyy

(R)/g is comparable in value to the
shift in resonance field estimated above. Thus unlessHs is
such that we are in the near proximity of the spin reorien
tion transition (Hs.2Bo), Syy

(R)/g introduces a correction to
the integrated strength of the line at the level of one perc
within the framework of the picture of the defects us
above.

The parameterl introduces deviation from Lorentzia
shape in the FMR line, through the asymmetric term wh
reminds one of the Fano line shape. Note thatlÞ0 even for
a perfect film whereSyy[0. Clearly, the presence of the tw
magnon scattering influences the value ofl, and hence the
degree of asymmetry present. However, we expectl to lie in
the range of 1022 or somewhat smaller. Thus, once aga
within the framework of the model offered here, the effect
a very modest one.
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We conclude by reminding the reader that the two m
non mechanism described and analyzed here is oper
only when the magnetization is in plane. As we have see
Sec. II, when the magnetization is normal to the film s
faces, there are no short-wavelength spin waves degen
with the FMR mode. In Ref. 10, where the mechanism
plored here is discussed briefly, as noted above, data is
sented which shows that the linewidth indeed decrea
markedly, as the magnetization is tipped out of plane.

Of interest would be the study of the in plane anisotro
of the FMR linewidth, for a film deposited on a stepp
surface. Consider an ideal stepped surface, where the
teaus are perfectly flat, and the step edges straight, with
kinks present. ThekW i50 FMR mode may then scatter on
to short-wavelength final-state spin waves with wave vec
perpendicular to the step edges. If the magnetizationMW s is
parallel to the film surfaces, but perpendicular to the s
edges, the final-state spin waves will have a negative co
cient for the dipole induced linear term in the dispersi
relation. Thus for this geometry one will realize sho
ff,
-
ive
in
-
ate
-
re-
es

y

la-
no

r

p
fi-

wavelength modes degenerate with the FMR mode. If, ho

ever, MW s is parallel to the step edges, the final-state s
waves will propagate perpendicular to the step edges. T
there should be an in-plane anisotropy of the FMR linewid
for a film grown on stepped surfaces, with a minimum re

ized whenMW s is parallel to the step edges. Here the line
term is positive, there are no modes degenerate with
FMR mode, and the two magnon process will be quench
Experimental studies of the in-plane anisotropy of the FM
linewidth on stepped surfaces will thus prove of interest.
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