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Extrinsic contributions to the ferromagnetic resonance response of ultrathin films
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We develop a theory of the extrinsic contributions to the ferromagnetic resonance linewidth and frequency
shift of ultrathin films. The basic mechanism is two magnon scattering by defects at surfaces and interfaces. In
the presence of dipolar couplings between spins in the film, one realizes short wavelength spin waves degen-
erate with the ferromagnetic resonari&@R) mode, provided the magnetization is parallel to the film sur-
faces. Defects on the surface or interface thus scatter the FMR mode into such short wavelength spin waves,
producing a dephasing contribution to the linewidth, and a frequency shift of the resonance field. The mecha-
nism described here is inoperative when the magnetization is perpendicular to the film.
[S0163-182609)03134-3

[. INTRODUCTION FMR mode, for ultrathin films of the ferromagnetic transition
metals. Defects in the surface, modeled below, scatter energy
There is currently great interest in the physical propertiesrom the uniform mode to these states, thus producing relax-
of ultrathin (very few atomic layerferromagnetic films, and ation of dephasing character. We find, in the analysis pre-
magnetic multilayers formed from such spins. While verysented here, a defect induced frequency shift as well.
considerable attention is devoted to transport properties in The notion that such a two magnon process controls the
such structures, because of applications to magnetic recor@xtrinsic linewidth is by no means new. Indeed, in a seminal
ing and data storage, in fact the microwave response of thegi@per several decades ago, Sparks, Loudon, and el
systems is of great interest as well. Studies of the ferromag¢eloped a picture such as this to explain the origin of the
netic resonancéFMR) spectrum are a rich source of infor- extrinsic linewidth in yttrium iron 'garr?elt s_pheres. .In their
mation on the unique anisotropies found in these matérfals, CaSe; the surface defects had their origin in the_ grit used to
and other physical properties as well. Furthermore, hybridDOI'_Sh _the surface._We argue here _that_ln ultrathin ferromag-
structures formed by depositing ferromagnetic films or mul-netic films, the Spin-wave d|§per5|on.|s such that th(_a two
tilayers on semiconducting substrates may form the basis fdpagnon mechanism is operative, provided the magnetization
high-frequency microwave devicés. IS parallel to the surface.

Rather little attention has been directed toward the origin Our attention is confined to films sufficiently thin so that
of the FMR linewidth in the ultrathin films. In bulk crystal- only a single spin-wave branch of acoustic character controls

line Fe, one observes an intrinsic contribution which variestshe magnetic response. In the ultrathin film limit, standing
: C : in waves with nonzero wave vectors perpendicular to the
linearly with the FMR frequenc§® That this should be the P perp

case is a prediction of the phenomenological Landau-Lifshita " surface, k{”=nm/d wheren#1 andd the film thick-
IS a predicli nep i g cau-LIst ess, are upshifted by exchange to high frequencies well
equations. If this contribution has its microscopic origin in

the coupling between spin motions, and the itinerant elecgbove those in the FMR range. It would be desirable to

trons in Ee. one mav arque the linear frequency de enden(?resent the theory in more general form, valid for films or
’ y arg ) ~quency gep a?bitrary thickness. Such an analysis will be very complex
follows from very general considerations in this low-

frequency redime. In the ultrathin films. the analvsis of I:MRindeed, so we confine our attention to the ultrathin film limit.
q 6 y regime. . ’ ysIs We note that in a recent pap€rvicMichael, Stiles, Chen,
datd® shows the presence of a linear term, often with slope

larer than that found in sinale-crvstal Fe. In addition eX_and Egelhoff presented a brief, qualitative discussion of a
9 9 Y ) '~ two magnon contribution to the linewidth based on the same

ephysical picture we employ as a basis. One finds no explicit
results in their paper beyond a general expression for the
scattering rate, however. Here we set forth a specific model
. . A of surface defects which may couple the FMR mode to the
m;tgig{ul:letralt:'?hfr{ggﬁgggngl\:lg Se’xt:)aesri?ge?l? tzeufr?ilflgm shor_t-wavele_n_gth spin_ waves. Within this framework, we
) " . ' provide explicit predictions for the dependence of the extrin-
mode is excited whose wave vectqrparallel to the surface  gic Jinewidth on the magnetic field at resonance, and for the
is zero. For a simple film with magnetizatidng parallel to  defect induced frequency shift as well.
the surface, the frequency of this moge the absence of Quite recently Hurben and Pattbpresented a theory of
anisotropy is y[H,(Ho,+47Mg)]Y? with y the gyromag- extrinsic contributions to the linewidth of ferromagnetic
netic ratio andM¢ the magnetization. We show below, as films, also based on two magnon scattering induced by de-
discussed by earlier authdtshat in the presence of dipolar fects. Their theory is valid in what one may call the thick-
couplings between spins, we have short wavelength spifilm limit, where the modes degenerate with the FMR mode
waves with wavelengtIkH2105 cm ! degenerate with the may be viewed as propagating, three-dimensional plane

“zero-frequency linewidth,” with evident origin in surface
or interface quality-®
In this paper, we develop a theory of the extrinsic line-

0163-1829/99/6(10)/739515)/$15.00 PRB 60 7395 ©1999 The American Physical Society



7396 RODRIGO ARIAS AND D. L. MILLS PRB 60

d d

mx,y(xuznt): J mX,y(X!ylZ;t)Fy- (1)

0

We shall Fourier transform these amplitudes:

my y(XaZ;t): L 2 my y(lZH ;t)e”zH'FH, 2
= X ' \/L_zd IZH )

H, M K whereL? is the area of the filmk =k,x+k,z, and similarly
5 for r). Note thatm, ,(—Kj)=m, ,(k)*.
/ Of interest in our discussion of the spin wave dispersion
/ in the film is the contribution to the spin-wave energy from
dipolar fields generated by the spin motions. This may be
z written
FIG. 1. Geometry of an ultrathin film of thicknesk The ap-
plied fieldH, and the main component of the magnetizafibpare 11
lined up with thez axis, in plane. The angléy is that between the Ho=— 2 JLZd

magnon wave vectdEH and thez axis.

M
3.

X ('Zn;t)-fe‘£\|'5|\ﬁ<d’(x,y,z;t)dx dydz (3)

waves unaffected by the presence of surfaces. Such a picture
is appropriate, say, for garnet films many microns in thick- ”
ness, but not for the ultrathin films that are the focus of thewhere the integration is over the volume of the film. In what
present paper. follows, we omit explicit reference to the time.

In Sec. Il, we discuss the nature of the spin-wave disper- We decompose the dipolar field into two contributions:
sion in ultrathin films, and then introduce the mechanism thaﬁgl) from bulk magnetic charges and a secdﬁﬁﬂ) from
forms the basis for our analysis. Through means of an equaurface magnetic charges. We consider each in turn. We may
tion of motion method, in Sec. Il we derive expressions foryrite
both the contribution to the linewidth and the frequency shift
of the FMR resonance, from the two magnon process. Sec- ﬁgl)(f): _V‘Dfxnl)(F)a (4)
tion IV is devoted to the development of a model of surface
defects and their contribution to the matrix elements whichwhere, noting—V-m behaves as an effective magnetic
control the two magnon mechanism. Section V presents outharge density, the magnetic potential is
formulas for the two magnon contribution to the linewidth
and frequency shift, and Sec. VI shows representative plots R
of the theoretically calculated extrinsic resonance linewidth dP(r)=— f
and frequency shifts, as well as concluding remarks.

=

d3rr
I3

—V'-m(r’)
_r’|

1 oJm
1. SPIN-WAVE DISPERSION IN ULTRATHIN =—f — —:((x’,z’)dx’dy’dz’. (5)
FERROMAGNETIC FILMS; RELATION [r=r'[ ax
WITH TWO MAGNON MECHANISM Thus

Our discussion will be directed toward an ultrathin ferro- . e
magnetic film, such as that illustrated in Fig. 1. The magne- > | > el o
nagnete 1. ¢ ) NANE” p(F)=— —= > kxmx(k||)fﬁdx dy'dz'.
tization Mg lies in the plane, parallel to the dc magnetic field yL-<d K| [r—r’|
H,. We consider a spin wave which propagates in the plane (6)

of the film, with wave vectok; which makes the anglé  The integral in Eq(6) is readily evaluated. In the thin-film

with H, andM. As mentioned in Sec. |, the thicknegof  limit kd<1, the contribution to the dipole fieltaveraged
the film is sufficiently thin that we need be concerned withover the film thicknessfrom bulk magnetic charges is then
only the low-lying acoustical spin-wave branch. The found to be
standing-wave modes are shifted upward by exchange in
such thin films sufficiently that they play no role in the con- (1), > _ 2 o AR
siderations that follow, as noted above. hg(r)=— J%d % Kjd sin ¢ m, (ky) eI

To describe the spin waves, we write the magnetization in I
the form M(F,t)zMsijr m(r,t) when a mode is excited, x(sin¢,;“§<+cos¢|zui). 7
where m(r,t) =m,(r,t)x+my(r,t)y. Since only the low- ] ) . o
|y|ng acoustical branch is of interest, we may phrase th@f central |mp0rtance to what follows is the linear variation
discussion entirely in terms of the transverse magnetizationf h{*) with wave vector in Eq(7). The fact that we have
components, averaged over the film profile. Thus we conshort-wavelength modes degenerate with the FMR mode in
sider the ultrathin film follows from this result.
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The second contribution to the dipolar field and its con-whereH=2K,/M.d. Note Hy is here positive when thg
tribution to the spin-wave energy arises from fields generatedirection is a hard axis.

by surface magnetic Charges_ In a ferromagneﬁ it the Of course, in ultrathin ﬁlms, an additional source of
outward surface normal, them M is an effective magnetic uniaxial anisotropy normal to the surface has origin in alter-
surface charge density. Thus, when the spin wave is excite@tion of interlayer spacings. If, for example, the film is

Ker grown on a substrate whose lattice constant is larger than the
we have the surface charge giensﬁyny(k”)e Il on the

- ) bulk crystal form of the ultrathin film, there will be a de-
upper surface, ane- my(kj)e™I""l on the lower. In the thin-  crease of interlayer spacing. Such effects just provide a
film limit kjd<1, the dominant contribution to the dipole sypplement tdH,

field from this source has the form

4o .
=23 [1-

) my( kH)e'kH a (8

where we retain the contribution linear ﬁ" When these
fields are inserted into Eq3) and the resulting integration

When all these terms are combined, we have a Hamil-
tonian which may be written

= oM. E {Hx(kpmy (kpmy (k)

carried out, the contribution to the spin-wave excitation en-
ergy of the ultrathin film, in the notation introduced here, haswhere

the form

kd . .
HdZZWZ ( —%)m;(k”)my(k)

K|

+ 772 kd sm2¢ka (kH)mX(kH) 9
K

There are, of course, other contributions to the spin-wave

energy. These are
(8 The Zeeman energy:

H,= —Hovaz(x,z)dx dy dz

= —HMV

2(%,2)

Ho
2M¢ v
+mi(x,2)]dx dy dz (10)

where V is the volume of the film. The constant term is

discarded, leaving

Ho . . R .
> [m (Kpmy(Kp +m (kpmy(kp1, (1)

HZ:ZMS -

when we use the variables introduced above.
(b) The exchange energy:

o= [ [9m2+ [V 21dx dy d
X_Mg V[ My my]xyz

>, DKM (Kpymy(Kp) +m (Kpmy(K))1,

2MS K

(12

where the exchange stiffnessis=2A/Mq.
(c) The surface anisotropy energy:

_ Kg 2 1 * 0 "
HA—M—g fsmy(X,Z)dX dz= _ZMSHS%‘ my(kl\)my(kH)’
(13

+Hy(k||)m;(kH)my(k||)}n (14
H(Kj) = Ho+2M kyd sir? g, + DK, (15)

and
Hy(K)=Bo+Hs—27M Jkjd+ Dkf, (16)

whereB,=H,+4m7Mjq.

It should be remarked that we could include other forms
of anisotropy in our model Hamiltonian, such as the fourfold
in plane anisotropy. This would complicate various formulas

considerably, ifI:|O is not applied parallel to the easy axis.
We shall assume, in the interest of simplicity, thd{ is
along the easy axis. Then the influence of the fourfold an-
isotropy is then simply to repladd, by H,+H,, whereH,
is the effective in plane anisotropy field. If the fiell, is
applied along the hard axis, amtl, is sufficiently large for
the magnetization to align along the hard axis, tl&nis
replaced by H,—H,) everywhere.

If (— ) is the gyromagnetic ratio, then in our model, the
spin-wave frequency is given by

Q(kp) =y Hx(kpHy (kY2 (17)

Now we may discuss the basis for the two magnon scattering
process that is the central mechanism explored in the present
paper, and which was discussed as well in Ref. 10.

First, in an FMR experiment, the mode with wave vector

IZH=0 is excited. Its frequency is given by the well-known
expression

QFM:'Y\/HO(H0+HS+47TMS) (18

for a film with magnetization parallel to the surface.

Consider the wave-vector dependence of the spin wave
dispersion relation in Eq17). We keep terms through those
quadratic in the wave vector, noting that for the metallic
films of interest the contribution of the dipolar energy qua-
dratic in the wave vector is small. Thus

Q2(kp)=Q2y—2my*Mckyd(H,—[B, +Hglsir )

+)/2(BO+ HS+ HO)DkH . (19)
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sidual “zero-field” linewidth is argued to correlate with in-
terface qualit We shall see here that the mechanism we
explore has a more complex variation with applied dc field,
or FMR frequency.

The spin-wave dispersion relation just quoted is valid

when the magnetization an‘ﬁlo both lie in the plane of the
film, and are parallel to each other. If the magnetization is
tipped out of the plane, the phase space within which the

negative slope occurs decreases, and eventu(ly) in-

creases witHZH for all values of the wave vector. Then the

mechanism examined here is rendered inoperative. This is
: noted in Ref. 10, and in fact in this paper, data are presented
k" k, which show that the FMR linewidth indeed decreases mark-

! edly asM, is tipped out of the plane.
FIG. 2. Graphical representation of the scattering process froma One may examine the nature of the spin-wave dispersion
uniform mode to a mode degenerate with it, of wave ve&for  relation for the case wherd, is applied out of the plane.

which can occur if sifigy <Ho/(Hs+By). SupposeH, makes the angles,; with the plane of the film.

S Then the magnetization will be canted out of plane, at the
In the ultrathin film limit, we see from Eq(19) that the angle ¢y, . Given ¢y, one findsgy, by solving
dipolar energy generates a term in the dispersion relation

linear in the wave vector. As noted some time ago by Erick- (Ho+47My)

son and Mills for a range of propagation angles the initial Sin( ppy— ) = —5|n(2¢M) (21)

slope is negative. Furthermore, these authors discussed cir- 2H,

cumstances where the negative slope can actually dr|ve
2(kH) negative, producing an instability of the uniformly

ferromagnetic state. What is important here is that exchange

leads to the positive term quadratic in wave vector, and thusQ2(K)) = Q& (b, du) —27y*Mkd

at finite wave vectors, we have modes degenerate with the

The spin-wave dispersion relation then assumes the form

uniform FMR mode. We encounter the negative slope, and *{[cog' gy —siP by COSZQS'ZHJ[HOCOSQSH_ $m)
tmhgzefivr\lliﬁinwave-vector modes degenerate with the FMR —(Hs+47TMS)Sin2¢M]—Sin2¢|ZH
H, X[Hocos ¢y — ¢pp) + (Hs+4mMg)cog2y) 1}
sinf ¢ < B+ H. (20) +y?DK2{2H, CoS by — dy) + (Hs+4mMy)
Some numbers are of interest. Typically, if we have Fe films X (1=3sirf )}, (22

in mind, FMR measurements employ dc fielth<B,.

Then settingH; aside for the moment, the value kif of the where

modes degenerate with the FMR frequency

ngMsd/D. For Fe,D=2.056><1O*9l Gent, so for a film  QFy(du,dm) =y’ [Ho COS by~ b

30-A thick, we havek=10" cm™~. Macroscopic theory, .

such as that used here, is adequate to describe such modes. ~(Hot4mMg)sirt gy J[Ho oS by — )
After the FMR mode is excited, defects on the surface +(He+47M)cog2dy)]. (23)

scatter theI2H=0 FMR modes into the finite wave-vector

states just described, in a manner similar to the mechanisiBupposeH,, is applied perpendicular to the film, s¢,
described in Ref. 8. We illustrate the scattering process sche= /2, There are then two cases to considerH|f<(Hg
matically, in Fig. 2, with the dispersion relation in E49) in ~ +47M,), we have ¢, <w/2, i.e., the magnetization is
mind. In this paper, we develop the theory of this two mag-canted at the angléﬁ,,=sin*1[H0/(Hs+47-rMs)], and the dis-

non scattering, with attention to specific models of matrixpersion relation of spin-wave modes of E82) simplifies to
elements which control the scattering. As we shall see in Sec.

[ll, and mentioned above, these scatterings introduce a fre-

20\ — 2 c 2
quency shift of the mode as well. Q5 (k) =Qem(m/2,hy) + ¥ (Hs+4mMy)

In earlier analyses of FMR linewidth data in ultrathin 2
films, data at a small number of frequencies is fitted to a X(2mMgkd smzqskHJr Dk )[ m) }
functional form which contains a term linear in frequency, sTaTNs
and a zero-frequency residual linewidth. The linear term is (24

assumed to be the contribution from damping of the spin

motion within the body of the film, as described by thelf Hy,>(Hs+47My), thengy, = =/2, and the film is magne-
Landau-Lifshitz equation, though the slope is found often tatized normal to its surface, and the dispersion relation be-
be larger than that appropriate to the bulk material. The recomes
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Q2(K) = Q& (ml2,m12) + 2y’ [Ho— (Hs+ 4mM) ] 2H, (k)M =0

X[ M gkyd+ DK?]. (25) 2(kH) 2’

Notice that in both configurations corresponding to Egs. 0k
(24) and (25) both terms linear irk; have positive coeffi- Sy kK, Q)=—"—— (31)
cients, so there are no finite wave-vector modes degenerate
with the ferromagnetic resonance mode. In what follows, our ) )
attention will be focused on the case whétg and M, are Siy (K, ) ==S),(kj . Q), (32
parallel to the film surfaces, and to each other.

and
Ill. DERIVATION OF EXPRESSIONS FOR LINEWIDTH i PH KM
AND FREQUENCY SHIFTS INDUCED BY SURFACE Sk, Q)= 5 - > (33
AND INTERFACE DEFECTS Q4(k)—Q

In this section, our attention is confined to the case WhereHereQ(kH) is the spin-wave dispersion relation given in Egs.

H, and M are both parallel to the film surface, and to each(17) and(19).
other We shall treat the Hamiltonian in E¢l4) as a Our task is next to introduce the two magnon scattering
quantum-mechanical, zero-order spin Hamiltonian, withterms into the Hamiltonian, and examine their influence on

mX’y(IZH) regarded as an operator, am;'y(lzu) replaced by the structure oBaB(IZH_,Q). When this task is completed, we
its Hermitian adjointm; (k). By adapting the continuum shall obtain expressions for both the lifetime and frequency

a shift produced by these processes.
theory developed else\_/vh eto _the present problem, one In this section, we introduce the most general two magnon
deduces the commutation relation

scattering term into the Hamiltonian, and then we analyze its
contents. We begin with

[y my (KD T=1 oM 5, i (26

where u, is the magnetic moment of a magnetic ion in the V2=§ 2 mI(Eﬁ)Vxx(EH' ,lzn)mx(IZH)
film (uo= — y#). The remaining operators commute among kK|
themselves.

Our approach will be to examine the equation of motion + 2 m, (k||)ny(kH ka)my(kll)
for the response functions Ky K

. 0( 1 "~ WA »”
Sap(Kj 1) =i —— 7 (Im, (k) ,b), m/;(k” 01), (27) ts 2 my (KD Vyy (K[ kpmy (k). (34)

R
where the operators are in the Heisenberg representation, gation 1v will be devoted to the construction of models for

and B range overx andy, and 6(t) is the Heaviside step g iface and interface defects. That discussion will lead to

function, equal to unity fot>0 and zero when<0. iy . >, -
Of interest is the Fourier transform explicit forms for the matrllx elemenfdaﬂ(k” k). For the
moment, we address the issue of generating formal expres-
sions for the two magnon contribution to the linewidth.

SaB(IZ” ,Q)=f SaB(IZ” el dt, (28 In the presence of such scattering, we need to examine
- response functions more general than those in(Eq. Thus
These functions, when considered as a function of frequenc‘ﬁ)’e consider

), have poles whelf) equals the spin-wave frequencies in ot
the system. In the presence of damping or scattering, the op(K) K =i —— (t) —([m(k,t),mE (K0 ]).  (35)
poles shift off the real axis. The imaginary part of the fre- I fi R

guency is the linewidth, or inverse lifetime of the mode.

One begins with the equation of motion When scattering processes such as those in(#j.are in-

troduced, wave vector is no longer conserved, so
9 ) A ) S.s(K; K ;t) has nonzero off diagonal matrix elements in
17— Sap(ky )= S(t)([mg (ky),m, (k1) wave vector. We define the Fourier transform of
SaB(IZ” ,IZH’ ;t) as in Eq.(28).
o(t) - - We begin by generating equations of motion for these
+i—=([[m, (ki ,t),H],m? (k;,00]). ’ .
h ([Tma(ky, 1), H] sk ) response functions. When we calculatem,(k; ,t)/dt], we
add phenomenological damping as described by the Landau-
(29 oo b i . ;
Lifshitz equation to the terms generated by the spin Hamil-
A short calculation of the Fourier transforms defined in Eq.tonian.
(28) for the perfect film described by the Hamiltonian in Eq.  We then find the following set of equations 8, and
(14) provides the following expressions: Syx:
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; C RO A (B T k- In a related problem whose formal structure is very simi-
2S5k K 20 = AHy (RS kD) lar to that explored here, Huang and Maraddtlimave uti-
o o lized a projection operator method to obtain a closed equa-
= YM2 V(KT KD S(K] K 10) tion for S,z(K;,Q), in the limit where the amplitude of the

Ky roughness associated with the random defects may be as-
sumed small. In essence, the averaged propagators obey a
Dyson equation with a self-energy of matrix form. The self-
energy matrix is quadratic in the two magnon matrix ele-
ments. In our case we find, after a straightforward applica-

tion of this procedure, that t@ﬁ(ﬁu ,{)) obey

+YMs2 V(K KDSyu(K] ki), (36)
k""

VHX(E‘|)SXX(E||,E“,;Q)'f'iQSyx(E”,'ZH,;Q) R _ -
(043K, Q) 1Sk, Q) +[— yHy (k)

:YMsfSM’_yMSkZﬁ Vi Ky k) Sl Kf ki 5 2) +3yy(K| ) ISk, Q) =0, (41)
and
—yM D, VoK, KNSy (KK Q). (37) - . .
! kzl AR5 K [ YHL(K) + Sk ) IS (K Q)
We have introduced —[1Q-3,(k . Q) ISxK . Q) =—yMg, (42
~ - - . where the matrix®,(k , Q) may be written in the form
Yy (K= YHy (K —ig 2, (38) (ky () may

272
where g=G/yM; and G is the Gilbert damping constant, S k)= eYNMSe N (K KD,
which appears in the Landau-Lifshitz equation of motion. To & [Ysz(kﬂ’)Hy(kﬂ’)—Qz]

place Egs.(36) and (37) in the form given, we have em- " (43)
ployed identities imposed on the matrix elements in B4)

by the requirement that the Hamiltonian be Hermitian. Forwhere

example,evaﬁ(aku,kﬁ)=V§B(—kH,—kﬁ), and V. (ki k) o 2 (R o
=Vol — K}, —K)). Nyx(Kj 5 KJ) = YHy (KD V(K KD 124 yHG KD Vi (kg KD

The two functionsS, (k| kj ;©2) andS,y(kj ,kj ;€2) obey —20 Im[V,(K| ’*‘,‘,)ny(lz” 'IZII\/)]’ (44)
equations rather similar in structure to E¢36) and(37). In
the interest of brevity, we omit displaying their explicit form.

We assume now that the defects responsible for the scabbyyl
tering are arranged on the surface in a random manner. We
average all quantities over an ensemble of realizations of
random defects. When this is done, the correlation function N - I I
Sag(EH ,Eﬁ :Q)) becomes diagonal in wave vector. The aver- Niey(kj oK) = yHy (KD Vi ki KD Vi (K[ K
aging process restores translational invariance, on the aver- ~ oy -, - -,
age. If we denote this averaging process by angular brackets, T yHXCKDVyy (KK Viy(Ky 1K)

Ky K = YRy (KD Vg (KT K12+ Y (KD V(KT K[

—2Q Im[ Vo (KI KV, (KT K, (45)

then — 14V (Ky KDV (K K
(Sap(K| K[ 192))= 85, ki (Sap(Ky Ky 1)) — Vi (Ky KDV, (KT KDY, (46)
=4 "Z\i_“ﬁ( ki Q). (39 and
For any particular film, we may write Ny E” ,IZ"")= Ny EH "Z\,I,)*' (47)
Sap(Ky K| ;Q):alzu,ﬁﬁgaﬁ(lz\\;Q)+ASaE(EII'|2H’ ), We have employed the identity, required by Hermiticity,

(40) Vaa(IZH ,IZH,)* :Vaa(izﬁ 7|2||) . .
whereAS, 4(kj k[ :Q) owes its existence to the specific ar-__ It 1S a simple matter to solve forS,(k;,(2) and

rangements of defects on the film under consideration. Syx(IZ” Q1) from Eqgs.(41) and(42). Thus

)= 'yMs['yHy(lz”)_Eyy(EH,Q)]
[y (KD — 2o K QI (KD = 2 4y (K Q) T+ [1Q + 3y (K, ) I Q =3, (K, )]

Sk, Q (48)
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We may generate expressions f§f, and S,y in a similar  After considerable algebra, we find the numeer()t),lZ"") in
manner. Since the full form of these propagators is not regg. (500 may be expressed in terms of a positive definite
quired for what follows, we omit quoting their form in the quantity:
interest of brevity.

We can simplify a number of features in E48). Since N(OK) = 1?|(Bo+Hg)Vyx(OK[) +HoVy (OK])
we assume the influence of the two magnon scattering on . .
various quantities is small, save in the near vicinity of the +i[Ho(Bo+Hg) 1M Vyy (0K)) — Vi, (0K]) ]2
spin-wave pole in the denominator, we may ignore (53)
Eyy(IZ” ,Q) in the numerator. Also, we may replaEtg,(IZH)

in the numerator by simplyiy(IZH), setting aside the contri-
bution from the damping.

As noted above, the imaginary part B{0,Q2) controls the
two magnon contribution to the linewidth. The real part of

Finally, our derivation of Eqs(41) and (42) retains only 2(0,Q2) provides us with the defect induced fr'eque'ncy shift
terms in the equation of motion quadratic in the matrix ele-Of the resonance mode. If we keep only the imaginary part

V(K kD). Th h d the f i th for the moment, and assume the Lorentzian which appears
mentsV, (K .Kj). Thus when we expand the factors in the .. e replaced by a suitably weighted Dirac delta function,

denominator, we may discard products such ashen e have our final form for the spin-wave propagator:

2Ky, Q) 2y (K, €2), which are fourth order. It is meaning-

ful to retain such terms only if the individual self-energy Y2 [He+B,y]Mq

matrix elementsS.,5(k;,Q) are each calculated complete  Sx(Kj=0.)=———— —

through fourth order. QFn— Q7 =17g0[Bot Hot Ho) 'F(54)
With these approximations, we may write

— . with

Sx(Kj,€2) 2
7T S W Wi

y?H, (k)M FEmE N(OKi) [ (k{)—Q]. (55)

= K"
2k 2_; o o % '
Ok = Q7= Tyg QL H (k) +Hy (k) ] =2 (ke 2) This concludes our formal derivation of the two magnon
(49 scattering contribution to the linewidth. The influence of the
frequency shift will be discussed below. Our next task, ad-
dressed in Sec. 1V, is to make models of surface and inter-
2MEN(E, E face defects, and their contribution to the matrix elements
S (K, 0)=> 7 as~( I P , 50)  Vap(K|.K[). This will lead us to find expressions for the
K y?Hy(k[Hy(K[) —Q? linewidth, and frequency shift.

where

whereQZ(IZH) is the spin-wave dispersion relation defined in |1v. MODEL OF SURFACE AND INTERFACE DEFECTS,
Eqg. (19, and AND THEIR CONTRIBUTION TO TWO MAGNON
MATRIX ELEMENTS

NCKy ki) = YR Nyy (kK + yHy (R Nk k) In this section, we present a model of defects on the film
— 20 Im[N (IZ IZ’)]. (51) surface, or at an interface, and examine their contribution to
xyUR(| 8 the matrix element for two magnon scattering. As noted ear-
lier, in their very brief discussion, the authors of Ref. 10
eprovided no estimate of the magnitude of the matrix ele-
fents, and their relation to the morphology of specific sur-
. = B . face features. Because of this, they gave no assessment, even
The expression for the quantity(k;,kj) is lengthy, and is 4 ajitative, of the specific predictions of this mechanism. In
derived readily from Eqst44)—(47). our view, a central issue is the magnitude and field depen-

N

Our interest is in the FMR mode, with wave vectgr  dence of the two magnon scattering contributions. For this,
=0. Thus we seEH=O everywhere. Furthermore, in the cal- explicit models are required. o
culation ofN(|2H ’Eﬂ’)’ the factors OﬂX(E”)' gy(EH) may be We may expect island formation in the ultrathin films, and
set toH,(0) andH,(0), since for the wave vector regime of glso de_pressmns in the surface as well. We note that in a very
interest, the finite wave-vector corrections are quantitatively"t€resting synchrotron study of interface roughness, Idzerda

small: they play a crucial role in the denominator of E), and his colleagues have quantified the length scale of the
“magnetic roughness” present in ultrathin filnh$.

of course, since they are responsible for rendering finite ,

wave-vector spin waves degenerate with the FMR mode. We assume that_ on the surface we have defects both in the
Then we have form of bumps or islands, and also we have depressions or
pits. The size of these structures will be supposed small com-

2 pared to the wavelength of both spin waves involved in the
Y 1Bo T HsIMs _ two magnon scattering event. Thus when deriving their con-
QEM—QZ—ing[BOJr He+Ho]—2(0,Q) tribution to the matrix element, we may assume the spin-

(520  wave amplitudes are constant in their vicinity. We also as-

The real part OE(IZH ,Q)) contains information about the two
magnon scattering induced frequency shift of the spin wavi
and the imaginary part their contribution to the linewidth.

Su(kj=0,0)=
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sume all bumps are identical, with the same orientationj) andm;(x)=0 outside the nominal film. Thus;(x) van-

throughout the film, and similarly for pits. Of course, this jshes within the bump. The terms in the dipolar energy of the
will not be the case in practice. In the end, one may accounf i oie film of quadratic order imﬁ(i) are then

for the influences of variations in size, topology, and orien-
tation by replacing parameters which refer to the linear di- 1 ..
mensions of a surface defect by suitable ensemble averages. HBI - Ef dvm-Hp(m)
P— : \Y
There are three contributions to the matrix element we
consider: that from the perturbation to the Zeeman term, that 1 o
from the perturbation to the dipolar energy, and finally that =-— Ef dvVm-Hp(my)
associated with the surface anisotropy. We consider each in v
turn. 1 o
__E f—dvrﬂ)'HD(mf)

A. Zeeman perturbation

As presented already in E¢LO), the change in Zeeman 1 -
energy due to the presence of a single bump is given by -3 21: Vfdvmf'HD(mb)
1 e s
AH,==—— dVImZ(x,2) +m(x,2)], (56) —=> > f~dV”L'HD(mJb), (61)
2Ms Vp 245 ] Vlb

with V,, the volume of the bump. Since the transverse mag
netization associated with spin waves will not vary signifi-
cantly over the region of the bump, if it is indeed small
compared to the wavelength of the spin waves, the energy
a collection of bumps is approximated as

with I:ID representing the demagnetizing fields of the differ-
ent magnetization configurations considered. The first term

fuadratic inmy(x) was already considered in the zeroth-
order Hamiltonian appropriate to the perfectly smooth film.
The second and third term are equal by virtue of the reci-
H procity theorent* and combined can be written as
b_ j_ ''o 2,2 2,2
AHz=3) AHL= 50 Vo 3 [mix) +mi(x))], (57)
S

- y o _ HE=—2 fjdvﬁL-HD(mf)
wherex; is the position of bump. Using the representation IV
of the magnetization in terms of Fourier components given in

Eq. (2), one obtains =—Vp>, m(x))-Hp(mg;x)). (62)
i
H, V L - .
AH?ZZI\/(I) L—; 2 Sb(k”’—k||)[mx+(kﬁ)mx(ku) The second term of E¢62) has been written with the ap-
s K K| proximation once again that the size of the bump is small

with respect to the length scale of the variation of the spin

+m;(k\\/)my(k\\)]' (58)  wave field orrﬁ(i), i.e., the integral is easily approximated
where we have defined the following structure factor for theSince the integrands are almost constant. The field appearing
array of bumps in Eq. (62) is evaluated just outside the film, at the position
of the bump, and it isto lowest order irk;d)
- 1 -
()= 2 eI, (59) I 1 .
J HD(mf;XJ'y:d/Z):\/_Td Z elkH-XiZ'ﬂ(kHd)
By similar arguments the change in the Zeeman energy due L5d
to “pits” or ellipsoidal depressions is x[myuz”)—iRQmX(EH)](Q—iRH),
H, V L . _
AHP=— 2|\/(|) L—dp aZ Sp(kH’ —kH)[m;(k”’)mx(k”) ) 3
S = kK| i.e., the termH will be of order kd), therefore it will be
. R neglected from the final analysis. We shall see, for example,
+my (kj)my(kp], (60)  that the final term in Eq(61) dominates in the limitkd

<1.
Now we turn to the fourth term in Eq61), for the case
i=j, i.e., the “self-energy” terms:

with Sp(ﬁ”) an equivalent structure factor for pits.

B. Dipolar perturbation

First, we consider the change in the dipolar energy due to Hgbj: _ }f _ dvﬁ‘{)- HD(VF'L)- (64)
the presence of bumps on the surface of the film. We write 2Vl
the magnetization approximately aél(x)=Msz+m(x), In principle here one should calculate the energy due to a

with m(x) =m,(x)x+m,(x)y the transverse component as- yniform magnetization within the bump. This is a difficult
sociated with the presence of the spin waves. Now we writgask, even for a structure of simple shape. We shall assume
m(x) =m¢(x)+2;m}(x), with m{,(x)=0 outside the bump we may introduce appropriate demagnetizing factysand



PRB 60 EXTRINSIC CONTRIBUTIONS TO THE ... 7403

N, for the structure. This will provide us with a contribution film, which makes a large difference since the field inside the
that is correct, to within factors of order unity. We shall fjim is approximatelw:lD(rﬁf;ij):—47rmy(>zj)§/, ie.,
appreciate later that this approximation will not influence our

final result. Thus .. 1 2 s TN
Hp(ms ;X ,y=d/2)=— ——= el Xidmm,(k))y.
Sbj 1 200 2,0 ol Y m lZ” y( H)y

HJ =§Vb[Nme(xj)+Nymy(xj)]. (65 (71

Note thatN, andN, are less than # (Ny+N,+N,=4). Thus the interaction term for pits becomes approximately
Finally we address the terms which couple different

: V R R . .
bumps, i.e., the terms of the type HIE§>:_4WL_dD 2 Sp(kﬁ—k”)m;(kﬁ)my(ku), (72)
I
i _ H (i R o
Ho fvibdanb Ho (M) (66) with SP(q)=(1/L)=;e "9 the structure factor of pits.

i ) N ] The treatment of the coupling terms between pits is simi-
The field of the bump(j) at the position of the bumii)  |ar as for bumps. Only the self-terms are important in the
corresponds to that of a magnetic charge dipole within ougnd, and it is easy to see that they are exactly the same as for
approximation schemign the case of a semispherical bump pymps. Thus we approximate the self-terms by
of radiusR the dipole isp=(2m/3)R®m(x;)]. This field is
weak in comparison with the self-field of bump) ( then it
will be neglected.

Now we can summarize the results for bumps. The domi-
nant dipolar contribution comes from terms like those of Eq.
(65). Then, the main contribution of bumps to the change in
dipolar energy is approximately Finally, adding all terms, the change in dipolar energy due to

pits can be written as

2Ld ~=

1V Ll - -
AHE"=3 Td &, S kDN, (K my(K)
1+

+Nymy (kmy (k). (73)

1 - -
AHB:EVbEj: [N,m2(x)) + Nym2(x1)]. 67) L, - -
. . . . AHB=35 Ld 2 SP(kj —kpPINxm, (Kj)ymy(k))
Using a Fourier representation of the quantities involved, the Kj K|

change in dipolar energy becomes - .
— (87— Ny)my (kj)my(kp]. (74)

AHBZEE > Sb(IZﬁ—IZ”)[NXm*(IZ”’)mX(IZ”)
2Ld |ZH 'Eﬁ X C. Magnetic surface anisotropy perturbation
. R In the ultrathin films of interest, surface anisotropy can be
+Nymy (kpmy(kp], (68) very strong. Variation in the direction of the anisotropy axis

over the surface of a defect will lead to two magnon scatter-

br O )
whereS*(kj —k;) is the structure factor introduced above. . "»¢ emphasized by HeinridhWe consider this contribu-
Now we consider the case of “pits” or depressions. ;i . here

These will prove to have a different contribution to the di-
polar energy, as will be seen in the following.
First, the magnetization is written as

As far as surface magnetic anisotropy is concerned there
is no difference between an “upward bump” or a “depres-
sion” of the same shape, so we will talk about defects, with
both types in mind.
m(X)=m(X)+ > rﬁ{j(i), (69) The change in surface anisotropy energy associated with

] the presence of a defect is given by

where m(x)=0 outside the nominal film, andh),(x)=0 K K
outside the pit, and als,(x) = —m¢(x) in the region of the AHA=—52J dgM(x)-n(x)]?— —;J,dswﬁ(i),
pit, so that we have an empty region there. Notice that we Mg/s Mg/s

have used superposition of magnetization configurations (75
with overlap at the region of the pit.

Using our decomposition Gﬁ(i) one obtains an expres-
sion analogous to E¢61) for the dipolar energy quadratic in

rﬁ(i). The interaction term becomes

whereﬁ(i) is the normal to the surface of the defect at point

X, andS is the projection of the surfacgof the defect in the
x-z plane.
Writing the magnetization as

o T Fip () = ) A (e X (X)) 2
=3 J i Aot =¥y 8- otk ) =N 1| S| i), 79
(70 :

Here the difference with the bumps, apart from the sign ofwith rﬁ(i)il\7|eq(>2), it immediately satisfies the condition
m,, is that the demagnetizing field is evaluated inside theV?(x)=M2 if Mo(X)2=M2, whereM4(x) is the equilib-
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rium magnetization configuration. In our cadd eq()Z) VAR )= Vy4 N+ H o+ d Y
~Mz. Using Eq.(76), the terms to second order m(x) in ol K s ”)_MsLd MstHot g (fi=T2)Hs
Eq. (75) become q
X SP(kf —ky) + NyMS—HO+H(fX—fz)HS}
K N e A s K PN
AHA=—§f dSn(x) - m(x)1%~ —zf dSTECOM?(x) L
MZJs Mg/s XSp(kH'—kH) , (81
Ks N
v gdsmi(x). (77 vy d
S Vyy(k” ,k”)zm NXMS+H0+ H(fy_fz_l)HS

Assuming the variation af(x) is small within the region of o
the defect, thermm(x) can be taken out of the integrals as XS (kj —kp—| (BT=Ny)Ms+H,
rﬁ(ij), Whereil- is the position of thegth defect. Also, we d
assume the defect has symmetry such fraSn(x)n,(x) — = (fy= - DH, PR K|, 82)
=0. Then this energy becomes

where we have considered that bumps and pits have the same
j SyKs ) - ) - volume, ie., Vp=V,=Vy, and we have definedn
AHA:W{UX_fz]mx(xi)+[fy_fz_ LImy(x))}- =V4/Sy, i.e.,his a measure of the height of the defects.
S (79) Consider the order of magnitude of the various contribu-
tions to Egs(81) and(82). Roughly speakingM, H,, and
H, are comparable in magnitude. For Fe, for instance,
47M¢=21 kG, and|H4 will be in the range of 10 kG in
typical cases. Indeed, the fact that in zero applied field, one
1 R realizes ultrathin films with magnetization perpendicular to
fa::J dsr, (79 the surface showfH,| can exceed #Mj.
S If all the fields are indeed comparable in magnitude, the
o factor ofd/h which multipliesH; in Egs.(81) and(82) sug-
whereS; is the basal surface area of the defect, ifes; f, gests that surface anisotropy provides the dominant contribu-
+ fZ:Sd/gd, with S4 the defect's surface area. tion to the matrix element. If, for example, we have a film
For what follows, it is important to note that if the topol- 20-A thick, we may expeati/h~5 to 10 for a typical de-
ogy of the defects is such that theand z directions in the ~ fect. _ _ _
surface are equivalent, theip=f, and the term irmf((ij) Thus, in what follows, we retain only the surfacg anisot-
vanishes. Thus if the defect is a hemisphere with circulafOPY terms, to approximatéy, andVyy by the very simple
footprint, or a square with sides or diagonals parallel toxthe forms

andz axes, we have no term 'rn;f(ij). Thus a smooth bump —
should be elliptical, or an island should be a rectangle rather , (Er K ):Sst
than a square for this term to be nonvanishing. This term will X ML
play a key role in controlling the field dependence of the two (83
magnon contribution to the linewidth.

We now sum over the array of bumps and pits, and us&"d
the Fourier representation for the magnetization components

We have introduced the geometrical factors

(Fx—= T[S (K] — k) + SP(K] — k)]

to find . > SqHs bt o 1
Vyylkj k)= (fy= Fam DIS (K = k) + SP(kj =Ky .
= 84
B Ssz . . ( )

AHA_ ZLd{[fx_fz]mx (k||)mx(k||)+[fy_fz_1]
s V. TWO MAGNON CONTRIBUTION TO LINEWIDTH
xcmy (KD my (KD Sy(K] —K)) + Sy (KT —K)1. AND FREQUENCY SHIFTS
(80) A. Linewidth

Our first task is to evaluate the matrix eIemN{O,*"") in
Eqg. (53). We do this utilizing the limiting forms given in
Egs. (83) and (84). We shall average the expression for

In this section we summarize the results obtained abovq\l(0 IZ”) over an array of randomly arranged defects. We

First, note that within the picture offered, the matrix 6|ememassume no correlation between the location of pits and

ny(Eﬁ ,Eu) vanishes. We are then left with,,(k/ ,k)) and  pumps, for simplicity. Thus if averages over configurations
Vyy(k”’ ,K|) which we write, recalling thaH ;=2K/(Md), are denoted by angular brackets,

D. Summary of results
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. N, 2y?H2pSy
(IS™P(ap?)= % (89 = BB+ Hor Hy LB HI(h— T2
H 1/2
2 ) } (90)

Bo+Hg

and +Ho(fy—f,—1)]2sin"

(SP(qpSP(qp*)=0, (86)

whereN,, andN,, are the number of pits and bumps on the
2
e B o sasaong . magnelzaton & sssumed to I n plne, 1. 0
P 9 gth <47Mg+Hg or equivalentlyH ,<B,+Hg

N(0K") is independent ok . We thus drop reference to this, gy subsequent discussion will be based on this form.
and we then find the simple result Notice that add,—0, in factl —0. That is, the two magnon
scattering contribution to the linewidth vanishes at zero field.
2 The reason is that ad,—0, the phase space available to
PL(Bo+Ho)(fx= ;) +Ho(fy—f,= )%, final state spin waves becomes vanishingly small, since one
(87) realizes the negative slope only for propagation directions
for which |sm(¢> )|<[H /(By+Hg Y2 Thus if the mecha-

wherep=Sy(N,+N,)/L? is the fraction of the surface cov- nism explored here is operational in the sample studied, the

ered by defects. The factor of 2 has its origin in the fact thaterm “zero-field linewidth’*2 used often is quite inappropri-

the film has an upper and a lower surface, each assumed ige.

have a similar defect distribution. We now need to link our quantity with the actual fer-
Notice, as remarked earlier, if the defects are round ofomagnetic resonance linewidth, as measured experimen-

square in charactef,=f, andV,, vanishes. In this cas&l  tally. Consider the response function in E§4). In the ex-

is proportional toH2. In such a picture, the two magnon periment, the frequenc is held fixed, and the dc field,

contribution to the linewidth will have a very strong depen-is varied, and swept through resonance. In essence, the factor

dence on the applied magnetic figtt,. In this case, only (2, in the denominator is swept through by varyingH, .

the component of magnetization associated with the spiff H —H(')+AH whereH(r) is the resonance field where

waves which is normal to the surface provides coupling forq _ _Q then whenAH is small, Q2,, — Q2= y2(H,+B,

the two magnon process. The ration(/m,)® is equal to +HS)AH. Thus the linewidthAH in Gauss is given by

H,/(Hs+B,) for these modes in the long-wavelength limit.

The strong field dependence present whgn=0 has its GO

origin in this feature of the spin-wave modes in a thin film. AH= — ™ L AH® (92)

So far as we know, there is little evidence for such a strong ¥*Mg ’

field dependence of the extrinsic linewidth. We argue, then,

that on average, the footprint of the defects on the surface iwhere AH@ =T/[y*(Hy+B,+Hy)], i.e., from Eq.(90),

either elongated or shortened, §g#f,. ThenV,,#0, and

When we evaluated the integral OVWH in Eq. (88), we
used thaH,<B,+Hs: in our case this is assured since the

2'}/2§H2

M2L2

we realize the much more modest field dependence displayed 2|.|§|O§j
in Eq. (87). AH®)= 2[(Bo+Hs)(fx_fz)
We now turn to Eq(55), and we find an explicit expres- 7D (Bo+HstHo)
sion forI'. The frequency in the Dirac delta function is 12
replaced by the ferromagnetic resonance frequefey; . +Hy(f,—f,—1)]%sin" ! —") (92)
Then we have ¢ (BotHg)'
2H 2p§, We now need to resort to a specific model of the shape of the
= 27D (By+ Ho+ H )[(Bo+ Ho(fy—f,) islands and pits, to evaluatg, f,, andf,. If we have a film
o' s o made from material whose crystal structure is cubic, we may
% 27 imagine the defects to be rectangles, with edges perpendicu-
Ho(fy_fz_l)]zf dkﬂf ddpy & lar to and parallel to the magnetization. We adopt this pic-
0 0 ture, and the dimensions of the model defect are illustrated in
X[k\\—kﬁc)(¢k )1, (88) Fig. 3. The rectangle has heigtar depth b, and sides with
I length a and c, respectively. Then for such an island, we
where havef,=1, f,=2b/a, f,=2b/c, andSy=ac, and Eq.(92)
becomes
5 27MA[Ho— (Bo+Hy)sir ¢y ]
kﬁ (¢kH)= (Bo+ He+ HO)D (89) 8H§b2pac 1
H@)= 2[(BO+HS+HO)—
For spin waves with propagation anglg, kﬁc)(qbku) is the 7D (Bo+HstHo) ¢
wave vector of the finite wave-vector spin-wave modes de- 2 H L2
generate with the ferromagnetic resonance mode. —(By+Hg)—| sin? —O) . (93
The integrals in Eq(88) are evaluated easily, to give a (Bot+Hg™
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sion of the linewidth, with pits and islands of rectangular

y X When the matrix elememl(o,ﬁ"") is treated as in our discus-
/ shape, we find

8H2b%pac
m(Bo+Hg+Hg)?D
< " —(BO+HS)ED Vo f it
aj Jo o ky—k(¢x)
(96)

a AH@=

1
{(Bo""Hs"'Ho)E

Z

FIG. 3. Geometry of a rectangular defect, with sideb, andc
in the x, y, andz directions, respectively. Wherekﬁc)(dngu) is defined in Eq(89).
o . . The integral in the magnitude & diverges logarithmi-
The expression in Eq93) assumes all defects to be identical ¢qly. We therefore introduce a maximum wave vedt ,
in size and topology. Our final step is to perform an averaggynose nature is discussed below. The integrals in (E6).

appropriate to an ensemble of defects, of diverse t0pologyyay pe evaluated analytically by first integrating on angle,
That is, on a typical surface, in our picture, we may haveg,q then ork; . We find

some defects witlt>a, and others wittc<a. We may ex-

pect the ratioc/a to fluctuate about unity in value. Upon 8H2b2%pac 1
expanding the angular bracket in E@3), and averaging AH(R2)= S 5 {(BoJr He+Hg)—
over this aspect of the defect topology, we find our final m(Bo+Hs+Hy)D ¢
form: 112 kﬁM) _ 1/2
—(Bo+Hg)=| {In —sif¢©
202 a Ko
8HZbp )
AH®)= 5| Ha+ (Bot HgtHg)? k(™) 112
mD(Bo+HstHo) + k—+COSZd)(C)> H (97)
(0}
a c
X <E> —1|+(Bo+ Hs)2< <a> —1” Here we have sf©=H,/(B,+H,) , and also we have de-

fined ky=27M d(By+HJ)/(By+Het+H,)D.

H 2 Finally, if we average over the topology of the defects, as
xsin | ——>—— 1. (99 we did when we were led from E¢93) to Eq.(94), we have
(Bo+Hg)Y?

. . o . @ 8HZb’p ) X
This expression can be further simplified by assuming that AHg’= >~ | Hot (Bt HstHy)
there is no anisotropy between both directions, ia/c) m(Bo+Hs+H,)D
=(cla). a c

Clearly, we have made a number of approximations and X <—> —1) +(Bot+ HS)Z( <—> —1”
model assumptions to reach our final form for the matrix ¢ a
elementN(0Kk{). These assumptions affect numerical pref- k(™ © 12
actors which enter Eq94), but do not influence the depen- X7ln k—o—sm2¢

dence ofAH® on the film parameters, nor do these affect

the magnitude oAH? to any great extent. It is clear, for kﬁM) 1z
i i +| 47— +cogp® : (99)
example, that if the surface defects are small in the sense Ko
described above, surface anisotropy is the dominant contri-
bution to the matrix element. The results displayed in Eq§4) and (98) are the final re-

sults of the paper. Our aim has been to obtain simple, ana-

lytic expressions for the two magnon contribution to the line-

width, and the frequency shift, to provide insight into the key
As noted in Sec. lll, the two magnon scatterings lead nophysical features of the surface defects which control these

only an extrinsic contribution to the linewidth, but also lead extrinsic contributions.

to a shift in the resonance field. We see this in Ep), What remains is to discuss the value of the cutoff wave

where the shift in resonance field follows if the real part ofvectorkﬁ'\") which appears in Eq98). We argue this is set

3 (kj,Q) is retained. When this is done, a discussion verydy the average width, or transverse length scale of the sur-

similar to that given above provides the following expressionface defects. Upon averaging over an array of defects, we

for the shift AH( for the resonance field: shall have(a)=(c). Thenk{"=1(a). The reason for this

choice is as follows. In our evaluation cN(O,IZH), we as-

1 (0000 sume, in essencéy(a)<1 for the spin waves involved in

—— SRVTEMI (95)  the final state of the two magnon process. From the numbers
y? (Bo+Hs+Hy) characteristic of the materials of interest, this is a reasonable

B. Defect induced shift in resonance field

AH®
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assumption, when the linewidth is analyzed. However, as we 45 ' ' ' ' - ' '
have seen, much shorter wavelengths enter the analysis of a0l
the frequency shift. A more complete account of the matrix
element will showN(0k;) will fall off when kj(a)>1. This 351
will ensure convergence of the integral. Sirkﬁé") appears 30l
only in the argument of a logarithm, a crude estimatkﬁM? g
will suffice. 328
g 20
VI. GENERAL COMMENTS AND DISCUSSION <115_
We begin with a review of the manner in which ferromag- 1ol
netic resonance linewidth data on ultrathin films have been
analyzed in the literaturk®'® 5
In the experiments just cited, FMR experiments are per-
formed with four frequencies at most, ranging from 9.5-73 % 5 10 15 2'? 25 30 35 40
GHz. The linewidth is found to increase with frequency, in a Ve [GHZ]

linear manner. Extrapolation of the data back to zero fre- ¢ 4 gyyringic resonance field linewidtH® as a function
quency yields a finite intercept referred to as the z'ero—flelq)f resonant frequencyveyr=Qeur/(27), for the following
IlneW|_dth, AH(Q). We note from_ Eq_.(91) that_ the Gllt_)ert choice of parameterst =—15 kG, 4mM.=21 kG, N=10 or
damping term in the Landau-Lifshitz equation provides a:a/cy—1-0.4,b=3 A , andp=0.3.
contribution linear in frequency. In the data analysis, the
constantG is determined from a fit to the slope of the line- )
width AH as a function of the FMR resonance frequency. Itfféquency window, and extrapolate to zero frequency, we
is assumed tha® determined by this means then provides aoPtain a “zero-field linewidth” of approximately 15 G. Of
measure of damping present throughout the body of the filmcourse, the actual extrinsic linewidth vanishes as the fre-
It is found thatG is very frequently larger in the ultrathin duency goes to zero, for the physical reasons discussed ear-
films than in bulk F€ This is reasonable, of course, since lier.
the electronic structure of such films surely differs from bulk ~ The slope ofAH®) vs vy in Fig. 4 is very close to 1
Fe. Finally AH(0) is argued to have its origin in surface G/GHz, if one approximates the curve by a straight line in
defects. the frequency region from 10—40 GHz. The slope provided
The view just summarized is problematical, given our re-by the bulk term in Eq(91) is 1.13 G/Ghz, if we assume
sult in Eq.(94). Quite clearly AH(®) depends on the external G=0.8x10® sec! as in bulk Fe. If we combine the two
magnetic fieldH,, and hence of)gyr. Thus, by fitting  mechanisms, we will find a slope of 2.13 G/GHz within this
only a few data points, it is difficult to separate the bulk scheme. The two curves in Fig. 1 of Ref. 6 with largest slope
damping, surely linear in the frequency, from the extrinsichave a slope of 2.5 G/GHz.
contribution with origin in surface defects. . We could fit the actual experimental slope in the data just
We illustrate this with a numerical calcu_la;non appropriate giscussed by a slightly different choice of parameters, of
to Fe. Here 4M =21 kG, andD=2.5X10"" G cnf. We  course. In view of our schematic model of surface defects,
have choseris to be —15 kG, which means the normal {0 yis seems of little value. The point we wish to emphasize is

the stzjr_face is an easy axis. Note, by the way, that in genergq oyirinsic, surface defect induced contribution to the line-
theHg in the prefactor of Eq(94) need not coincide in value  :iqih depends on FMR frequency in a manner which ob-

with the Hs appearing in the remaining factors in the expres-greq one's ability to separate intrinsic and defect induced

sion. The former has its origin in low-symmetry sites on th_econtributions to the linewidth.

sides of the model defects in our picture, while the latter in As a consequence, it is difficult to make a clear separation

the anisotropy experienced by spins on the flat portions 0E)etvveen bulk damping of Gilbert form, and the surface de-
the film surface. To calculatéa/c) and(c/a) we assume . o o
fect induced linewidth. The dominant source of the fre-

Rloihbaﬁﬁgnc are randomly distributed from 0 to the value quency dependence in the extrinsic linewidth is the

sin Y (H,/(B,+Hy))¥?] factor in Eq.(92). This has its ori-

Nb Nb [ a gin in the nature of the spin-wave dispersion curve as we

f daf dc| — have discussed, and is not influenced by details of the matrix

<E> :<§> _ 7’0 0 ¢/ _ (N+1) In(N) element. In this sense, our predicted field dependence is ro-
a C '

B M [y ~2(N-1) bust.
0 a o ¢ We have seen that in addition to providing an extrinsic

(99)  two magnon scattering to the linewidth, the presence of sur-

face and interface defects lead to a frequency shift of the

We letN=10, supposé=3 A, andp=0.3. These choices resonance field as well. In Fig. 5, we show the frequency
provide the result fo H®) presented in Fig. 4. In the fre- variation of the defect induced shift in resonance field. The
quency range from 10-40 GHz, we sA&i(® is roughly  calculations are performed for the same model of the defects
linear with vey r=Qryr/(27), though curvature is present used to generate Fig. 4. We see that the shift in resonance
clearly. If we approximateAH(®) by a straight line in this field is quite appreciable, and shows little frequency depen-
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120 , ' ' ' - - - absorption line, or its integrated strength. We note that val-
ues for the magnetizatiod ¢ are inferred from the integrated
oor ~__ ] strength of the FMR 1iné® so a correction to the standard
expression from two magnon scattering processes is poten-
g0l tially significant.
7 To address this issue, we need to explore a specific geom-
§ etry for the resonance measurement. We suppose the sample
= 6oy 1 is exposed to a plane polarized microwave field, applied par-
- allel to the film surface, and to thedirection in Fig. 1. The
< 40} 1 rate at which energy is absorbedH,), is then proportional
to Im[QS,,(0,Q)], WhereS(X(IZ”,Q) is given in Eq.(49).
o0t ] While the shift in resonance field and the linewidth are de-
duced from the structure of the denominator in Eg), the
0 , , , , , , , factor of %, in the numerator contributes a two magnon
0 5 10 15 2?GHZ] 25 30 35 40 scattering induced asymmetry in the lineshape, and correc-

VR tions to the integrated strength of the line. In what follows,

FIG. 5. Resonance field shiftH{?) as a function of resonant W€ write Eyy(OaQFM)I_Eng/).—i_izy); . .After a brief calcula-
frequencyveur=Qenr/(27), for the following choice of param- tion based on approximations similar to those used above,
eters:Hg=—15 kG, 4rM¢=21 kG,N=10 or(a/c)—1=0.4, b  we find
=3 A,p=0.3,andd=10 A .

R
Bo+Hs—3{/y
Bo+ Hst Ho

dence. The presence of this shift will limit one’s ability to a(Ho)=QeuMs
extract precise values of material parameters from FMR
resonance frequencies.

Of course, it will prove difficult to make a realistic model
of surface and interface defects, and then follow through to
the required matrix elements and a quantitatively rellablqnthis expressiorH, is the resonance field, addH the total

prediction of the resonance linewidth and_the frequency s.h'ftinewidth given in Eq.(91). To lowest order in the rough-
We propose the following procedure. Since our numerica ess

calculations show the extrinsic contribution to the linewidth
has a dependence omy,r Which is dominated by the 1 GO

sin"(H,/(B,+ Hg))¥?] factor in Eq.(94), for the purposes N ( FM
of fitting data, one may employ the simple expression ¥(BotHg) | ¥Ms

| Ho
Bo+Hs Bo+ Hs—zg';)/y)

where, in fact the field dependenfend hence the depen- f a(Ho)dHo=m{eyMs Bo+Hst+H,
dence ofl"¢,(H,) on vgyr] may be assumed weak and set (109
aside. Unless the film is very thin indeed, we suggest that the

bulk damping may be accounted for by using the Gilbertindependent of the parameter o
constantG=0.8x 10° sec %, for bulk Fe. Given a value of The integrated strength of the absorption line, and hence

T'ey(H,) for a particular film, the shift in resonance field is ©n€’s ability to extract values fdvls from this in our model
of the resonance experiment, is influenced by the factor of

(102

AH+X\(H,—H,) )
(AH)?+(H,—Ho)?)

+ 233) : (103

Upon integratingx(H,) over the absorption line, we find
AH® =T (Ho)sin*

, (100

kﬁ'\") _ 172 293,)/3/ in Eqg. (104). If we have Fe in mindB, is larger than
AH@ =T ¢,(Ho){ In ( " —Sln2¢(°)) 20 kG. The quantitys(¥/y is comparable in value to the
° shift in resonance field estimated above. Thus unkésss
k{™) © 1z such that we are in the near proximity of the spin reorienta-
et cog¢ (10D tion transition Hs=—B,), ={/y introduces a correction to

the integrated strength of the line at the level of one percent,
To employ Eq.(101), one needs a value fdaqﬁ’v'). Since this  within the framework of the picture of the defects used
enters only in the argument of the logarithm, a rough estiabove.
mate of(a) and(c) should suffice for this purpose. Thus the = The parameten introduces deviation from Lorentzian
parameterl’,(H,) may be extracted from linewidth data shape in the FMR line, through the asymmetric term which
without the need to resort to a specific model of the defectteminds one of the Fano line shape. Note th&0 even for
With this parameter in hand, the shift in the resonance frea perfect film wherex,,=0. Clearly, the presence of the two
guency induced by the defects may be estimated from Egnagnon scattering influences the valuenofand hence the
(101). degree of asymmetry present. However, we expeictlie in

We inquire about one further issue. This is the question ofhe range of 10? or somewhat smaller. Thus, once again,
whether the defect induced modifications in the responseithin the framework of the model offered here, the effect is
function have a significant effect in the shape of the FMRa very modest one.
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We conclude by reminding the reader that the two magwavelength modes degenerate with the FMR mode. If, how-
non mechanism described and analyzed here is operatier, M, is parallel to the step edges, the final-state spin
only when the magnetization is in plane. As we have seen ifyayes will propagate perpendicular to the step edges. Thus
Sec. Il, when the magnetization is normal to the film Sur-y,are should be an in-plane anisotropy of the FMR linewidth

faces, there are no short-wavelength spin waves degenerqtﬁ, a film grown on stepped surfaces, with a minimum real-
with the FMR mode. In Ref. 10, where the mechanism ex- - ' :
ed whenMg is parallel to the step edges. Here the linear

plored here is discussed briefly, as noted above, data is prbz-

sented which shows that the linewidth indeed decreasd§'™M IS Positive, there are no modes degenerate with the
markedly, as the magnetization is tipped out of plane. FMR mode, and the two magnon process will be quenched.

Of interest would be the study of the in plane anisotropyll_EXpe,rimhental studies of tfhe in'plfi‘lnﬁ anisotropyqu the FMR
of the FMR linewidth, for a film deposited on a stepped IN€Width on stepped surfaces will thus prove of interest.

surface. Consider an ideal stepped surface, where the pla-
teaus are perfectly flat, and the step edges straight, with no
kinks present. Th&H=O FMR mode may then scatter only

to short-wavelength final-state spin waves with wave vector The comments and suggestions of Professor B. Heinrich
perpendicular to the step edges. If the magnetizeit?kgnis have proved most valuable during the course of our research.
parallel to the film surfaces, but perpendicular to the stefrhis research was completed with support from the Army
edges, the final-state spin waves will have a negative coeffiResearch Office, under Contract No. CS0001028. That of
cient for the dipole induced linear term in the dispersionR.A. was supported partially by the Organization of Ameri-
relation. Thus for this geometry one will realize short- can States, as well.
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