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Computation of the magnetic domain structure in bulk permalloy

Riccardo Hertel and Helmut Kronmu¨ller
Max-Planck-Institut fu¨r Metallforschung, Postfach 80 06 65, D-70506 Stuttgart, Germany
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By means of three-dimensional micromagnetic finite element modeling, the Landau structure of the magne-
tization is calculated as a minimum energy arrangement in a rectangular permalloy block~1 mm3500 nm
3250 nm!. On the surface, so-called Ne´el caps are observed. The transition between the two major domains in
the prism is found to be given by an asymmetrical Bloch wall~Hubert-LaBonte wall!. The result indicates an
asymmetrical shape of the closure domains at the surfaces. Adaptive mesh refinement strategies are employed
to raise the accuracy of the calculation. It is shown that the mesh refinement is capable to reduce discretization
errors significantly.@S0163-1829~99!07733-4#
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I. INTRODUCTION

After more than fifty years since the time when the bas
of continuum micromagnetism have been developed
Brown1–3 this field still poses many unsolved problems. T
underlying set of coupled nonlinear equations allows anal
cal solutions only in the case of strong simplifications wh
are therefore usually an idealized model whose transfera
ity on reality is often doubtful. In recent times, since powe
ful computers allow large-scale calculations it has beco
possible to investigate complex but nevertheless fundame
micromagnetic processes. The finite element method~FEM!
has shown to be an efficient and flexible tool4–7 for this
purpose.

The first numerical calculations in this field of physi
have been performed by Hubert,8 LaBonte,9 and Brown.10

Since then many groups of researchers have developed
grams to simulate complex magnetization processes in
and hard magnetic materials. Although amongst the scien
community a consensus on the numerical method to be u
has not yet been found and the results from different gro
differ partly very strongly,11 there is a tendency to expan
the calculations on increasingly complex problems such
large-scale soft magnetic samples. Most of the calculati
are usually restricted on small samples with a size tha
hardly accessible for experimental investigations. Theref
the effort to enlarge the samples on which the simulation
performed is required to bring the theoretical results into
vicinity of experimental verification or falsification in orde
to achieve a convincing proof of the correctness of the c
culation.

Besides numerical details, there are two fundamental
proaches for micromagnetic calculations. One way cons
in the integration of the equation of motion of the magne
moments described by the Gilbert equation.12 The other
method, which is used in our calculation, makes use of
fact that the equilibrium configuration of the magnetizati
in magnetic particles has the property to minimize the m
netic Gibbs free energy of the system.3 A constraint that has
to be observed in both methods is the preservation of
magnitudeuJsu of the spontaneous polarizationJs over the
whole sample.

As the total energy consists of different competing con
PRB 600163-1829/99/60~10!/7366~13!/$15.00
s
y

i-

il-
-
e
tal

ro-
ft
c
ed
s

s
s

is
e,
is
e

l-

p-
ts

e

-

e

-

butions, the resulting magnetization represents a comprom
between the minimization of the single components. At z
external field the total energy is the sum of the exchan
energy, the magnetocrystalline anisotropy energy and
magnetostatic self-energy of the sample. To reduce the
change energy, a homogeneous magnetization is desir
while the reduction of the stray field energy enfavors t
formation of magnetic vortices. Moreover, the anisotropy e
ergy is lowered if the magnetic moments align parallel to
easy axis. Which one of these energy terms prevails depe
on the intrinsic material parameters, the geometry and
size of the sample.

II. SINGLE-DOMAIN AND MULTIDOMAIN
ARRANGEMENT

If the magnetic material is sufficiently soft, i.e.,Q!1,
~Q5K/Kd , K5magnetocrystalline anisotropy constant,Kd

5Js
2/2m0! the effect of the anisotropy is negligible and th

resulting arrangement is determined by the exchange en
and the stray field energy of the system. The result from
competition between these two energy terms mainly depe
on the size of the considered sample. For a very small fe
magnetic particle the exchange term is the dominant ene
contribution and a homogeneous~single-domain! arrange-
ment is energetically favored. Increasing the size of the p
ticle, the stray field energy of a homogeneous arrangem
becomes too large as compared with the gain of excha
energy resulting from a homogeneous arrangement. Th
fore, above a certain critical size of the sample the magn
zation is subdivided into different domains because this s
division of the magnetization reduces the stray field ene
and simultaneously maintains the homogeneity in exten
regions. The evolution from a single-domain particle to
multidomain particle with increasing size can be attributed
the scale dependence of the exchange energy density.4 While
the anisotropy energy density and the stray field energy d
sity for a given distribution of the magnetic moments do
not depend on the size of the particle, the exchange en
density is reduced with increasing size.

Analytical calculations have provided useful estimates
the critical size of hard magnetic spherical13 particles as well
as for particles of prolate spheroid shape.14 A very coarse
7366 ©1999 The American Physical Society
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PRB 60 7367COMPUTATION OF THE MAGNETIC DOMAIN . . .
estimate can be derived from the simple consideration
the critical size of a sample must be at least larger than
domain wall width in order to obtain different domains in th
first place. Recent computations by Raveet al.15 have deter-
mined the single-domain limit of ferromagnetic cubes.

III. THE LANDAU STRUCTURE

One of the most well-defined problems in micromagnet
is the distribution of the magnetization in a rectangular s
magnetic block. Nevertheless, a detailed analysis of the m
netic structure in such a sample is still missing.

The first description of the magnetization in an iron wh
ker was given about sixty years ago by Landau and Lifshi16

who derived the four-domain pattern illustrated in Fig. 1
an equilibrium arrangement in the case of zero external fi
This pattern has been observed in several experiments,
using the Bitter powder technique,17 and according to energ
considerations the formation of this structure can be und
stood easily: the nearly solenoidal structure of the magn
zation combined with the mostly homogeneous regions is
optimal arrangement. The Landau structure represents a
fective solution of the problem of the minimization of bo
the exchange energy and the stray field energy.

However, details in the domain walls and the effects
the surface usually have to be neglected in analytical con
erations. Correspondingly, to justify this assumption,
Landau structure is usually analyzed only in the case that
typical extension of the sample exceeds the character
length scale of the domain wall widthdB and dN signifi-
cantly. A brief discussion on these length scales is giv
below.

IV. DOMAIN WALLS

The study on domain walls, i.e., the region between m
netic domains, is still a very active field of research.
pointed out in the textbook of Aharoni18 and by Arrott and
Templeton,19 the calculation of the magnetization in bu
materials has not really been solved yet. However, simpli
models, either analytical or numerical ones, have provide
broad knowledge about domain walls.20

Between the domains the magnetization changes its
entation continuously as it may not vanish due to the c
straint uJsu5const, provided that the magnetic sample is s
gly connected and Feldtkeller singularities21 are excluded.
The first approach in the understanding of domain walls w
given by Bloch22 who found a continuous torsion of the ma
netization around an axis perpendicular to the domain wa
a possible transition mode. The other basic model derived

FIG. 1. Schematic illustration of the Landau structure of t
magnetization in a soft magnetic rectangular block.
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Néel23 describes the typical domain wall occurring in th
films: a rotation within the plane around an axis perpendi
lar to the film.

From an energetical point of view, these two wall typ
have strongly different attributes. A Bloch wall has a vanis
ing stray field energy, at least inside the bulk material. O
where the Bloch wall intersects the surface, magnetic surf
charges occur. On the other hand, a Ne´el wall is free of
surface charges but leads to volume charges~div mÞ0, m
5Js /uJsu is the reduced magnetization!. Therefore, it de-
pends on the ratio of the surface to the volume of the sam
which one of these wall types is energetically favored. T
transition from Ne´el walls to Bloch walls with increasing
layer thickness has been derived analytically by Ne´el23 and
has been shown numerically, e.g., by Ramsto¨ck et al.24

Thickness effects on the magnetic structure in elongated
malloy particles have been investigated numerically by K
hler and Fredkin.25 The characteristic extension of Bloc
walls dB5pAA/K and Néel walls dN5pA2m0A/Js

2 ~A
5exchange constant! in bulk materials has been derived an
lytically by Kronmüller.26 Although the extension of Ne´el
walls depends quite strongly on the layer thickness27 these
estimates are helpful to distinguish an observed wall type
the valuesdB anddN may be very different.

Both the Néel wall and the Bloch wall represent strong
simplified models for the actual arrangement of the mag
tization in domain walls. Generally, the most probable ca
for a wall transition is a mixed form of both a Ne´el wall and
a Bloch wall.

A precise analysis of the domain walls and surfaces of
Landau pattern reveals that the structure is far more com
cated than one would expect from the simple arrangemen
a larger length scale. For example, the magnetization turn
plane at the surface in order to avoid magnetic poles. T
Néel walls at the surface may cause a loss of symme
which, in the simplest case, results in a magnetic vortex
one side and a 180° Ne´el wall on the other side of the centra
domain wall.19 The Néel walls only occur as a surface effec
inside the block the transition between the domains is mo
Bloch-like. A detailed discussion on these peculiarities w
be given in Sec. VII.

V. ALGORITHM

From a numerical point of view, the major problem in th
accurate calculation of the Landau structure consists in
fact that on one hand one has to perform the calculation o
sufficiently large sample compared with the characteris
length scalesdB ,dN in order to obtain the pattern at all, o
the other hand one should be able to resolve details suc
wall transitions with sufficient accuracy. Only in rece
times, since adaptive mesh refinement techniques for t
dimensional~2D! ~Refs. 28 and 29! and especially 3D~Refs.
30 and 31! micromagnetic calculations have been develop
it has become possible to calculate the magnetization
large-scale soft magnetic particles reliably. Formerly, the
amination had to be restricted on certain regions by mean
idealized models. The previously mentioned calculation
the transition from Ne´el walls to ~asymmetrical! Bloch
walls,24 e.g., was performed considering infinite strips~2D
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7368 PRB 60RICCARDO HERTEL AND HELMUT KRONMÜLLER
mesh with 3D magnetic moments!. With this model, finite-
size effects like the formation of the closure domain struct
cannot be observed. On the other hand, magnetic dom
structures could hitherto only be modelled in very thin pla
lets ~.20–60 nm! ~Refs. 32–34! because of the required dis
cretization which cannot be achieved for bigger values of
volume of the sample. At these thicknesses Bloch walls
not occur.

In this paper we present a three-dimensional calcula
of the Landau structure with an asymmetrical Bloch-w
transition between the two major domains without mak
use of any simplifying assumption. Even though mode
computers and an improved algorithm are employed,
calculation has only been possible using adaptive mes
methods.

A. Discretization

To calculate its total energy, the system is first discretiz
into tetrahedral elements. This is performed using a D
launay triangulation algorithm35 which—in order to obtain a
high number of elements with mostly uniform size—is co
bined with a longest-edge bisection method.31,36

By doing so, the volume of the sampleV0 is subdivided
into N elements with the volumesVn :

(
n51

N

Vn5V0 . ~1!

The total energyEtot of the sample is the sum of the energi
of all elements,

Etot5E
V0

edV5 (
n51

N E
Vn

edV, ~2!

where

e5ean1eex1estray ~3!

is the sum of the local energy densities of the anisotro
exchange, and demagnetizing field. The task consists in
calculation of the energy*Vn

edV of the N elements.
At each vertexi of the elements in the sample the loc

magnetization is defined by the polar angleq and the azi-
muth anglew ~see Fig. 2!:

~Js! i5JsS sinq i cosw i

sinq i sinw i

cosq i

D . ~4!

Using this representation, the magnetization at each node
be modified easily by an unconstrained variation ofq andw.
The constraintuJsu5const is automatically fulfilled in this
way. Generally, using polar coordinates can be problem
due to the poles at thex and thez axis. For instance, the
modulo 2p ambiguity of the numerical value of the pola
coordinates for a given direction may cause serious probl
if the angles are interpolated over an element. In orde
avoid the use of subsidiary coordinate frames,33 only the
Cartesian components of the polarization are used for
calculation of each energy term. Since the Cartesian coo
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nates containq andw only in terms of trigonometric expres
sions, the singularities of the polar coordinate systems h
no effect on them.

With the dataq andw for the magnetization at the verti
ces, the energy of an element is calculated in the most di
way by means of linear interpolation. In the following w
restrict ourselves on the calculation of the energy contri
tion of one element. According to Eq.~2! the energy of the
whole sample is straightforward.

B. Magnetocrystalline anisotropy energy

The anisotropy energy of an element

Ean
n 5E

Vn

eandV5E
Vn

K sin2 adV. ~5!

~a5angle betweenJs and the easy axis! is calculated inter-
polating the energy densityean5K sin2 a linearly over the
volume of the element. For a given direction of the easy a
in the element, we havea5a(q,w). Hence, we can assig
to each nodei of the element the anisotropy energy dens
ei ,an5K sin2 ai5K sin2 a(qi ,wi). The energy density inside
the element is approximated by a spatially linear funct
ẽan:

ean~x!.ẽan~x!5(
i 51

4

ei ,anh i
n~x! ~6!

using the normalized set of linear shape functionsh i(x) of
the elementn with

h i~xj !5d i j ~ i , j 51, . . . ,4! ~7!

~xj is the location of the nodej!. By doing so, the integration
of Eq. ~5! can be performed easily:37

Ean
n 5E

Vn

eandV.E
Vn

ẽandV5S (
i 51

4

ei ,anDVnY4. ~8!

FIG. 2. The micromagnetic calculation is performed on a P
malloy block of the size 500 nm3250 nm31 mm. The easy axis is
oriented parallel to the long edge. The coordinate axes are ch
parallel to the edges: thex, y, and z axes are parallel to the me
dium, the short and the long edge, respectively. The origin of
coordinate frame is set at the center of the block. On the right s
the spherical coordinatesq andw used to represent the local pola
ization are sketched.
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PRB 60 7369COMPUTATION OF THE MAGNETIC DOMAIN . . .
C. Exchange energy

A different interpolation technique is required to calcula
the exchange energy

Eex
n 5E

Vn

eexdV5E
Vn

A@~“mx!
21~“my!21~“mz!

2#dV.

~9!

The termeex cannot be interpolated linearly over the eleme
as it contains spatial derivatives of the magnetization wh
are not defined at the vertices. Therefore we approximate
exchange energy by the assumption that the gradi
]mk /]xl with k,l 5x,y,z are constant within the elemen
Using the linear shape functionsh i

n and the well-known nu-
merical differentiation technique of the finite eleme
method,37,38 the corresponding differentiations and the in
gral kernel in Eq.~9! are elaborated. As with this approx
mation the exchange energy density is spatially cons
within the element, the integration in Eq.~9! becomes trivial.

D. Stray field energy

Generally, the stray field energy term

Estray52
1

2 E~sample!
Hs•JsdV5

m0

2 E
~all space!

Hs
2dV ~10!

~Hs5demagnetizing field! is the most cumbersome part o
any micromagnetic calculation. While the first integral in E
~10! is over the magnetic region, the second integral is
tended over all of space. The complexity of the stray fi
term arises from its nonlocal nature. The demagnetizing fi
Hs at the locationr is given by

Hs~r !52
1

4pm0
F E

V8

~r2r 8!“•Js~r 8!

ur2r 8u3 dV8

1 R
F8

~r2r 8!n•Js

ur2r 8u3
dF8G , ~11!

wheren denotes the normal vector of the surface andF is the
surface of the sample. Inserting this expression into Eq.~10!
leads to a twofold volume integral which requires an impr
ticably high computational effort. A common approach
overcome this difficulty is the employment of Fourier tran
forms such as FFT to reduce the calculation onto local v
ables. The use of FFT demands a discretization on a reg
grid. However, an essential feature of the calculation p
sented in this paper is the application of an adaptive m
refinement technique yielding irregular positions of the no
points which is required to obtain the necessary accura
Hence, another method for the evaluation of the stray fi
term is used.

1. Brown’s upper bound

First, one may substitutem0Hs5(B2Js) in Eq. ~10!,
whereB is the magnetic induction. Instead of calculatingB
directly, one has the possibility to vary an arbitrary solen
dal fieldB8 until it is approximately equal toB. According to
Brown39,40 the functional
t
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W~B8!5
1

2m0
E

~all space!
~B82Js!

2dV. ~12!

represents an upper bound for the stray field energy, wh
B8 is an arbitrary solenoidal field. The minimum of the fun
tional W is equal to the stray field energy, and is given
B85B, i.e.,

Estray5W~B!<W~B8!. ~13!

This relation holds for any solenoidal fieldB85“3A.
Hence, minimizingW with respect to the~discretized! mag-
netic vector potentialA yields the correct stray field energ
and the corresponding magnetic induction. Introducing
new variablesAx ,Ay ,Az at each nodal point, the functiona
W is calculated by means of the FEM. With this approxim
tion B8 is a piecewise constant function of the values (A) i at
the nodesi. The kernel of the integral in Eq.~12! can be split
up in three energy density contributions. WithB85const
within each element, the integration ofB82/2m0 over an el-
ement is trivial. The same holds for the termJs

2/2m0 which,
by virtue of uJsu5const is spatially constant. The energy de
sity from the mixed term (2B8•Js /m0) is interpolated lin-
early over the element in analogy to the anisotropy term

2. Vector potential

The calculation of the demagnetizing field and the st
field energy by means of minimization ofW yields a vector
potentialA, discretized at each node. While the stray fie
and the stray field energy for a given distribution of magne
moments is unique, the vector potentialA is not. Only the
solenoidal part ofA, from which the inductionB5“3A is
derived, is unique for a given distribution of magnetic m
ments. The irrotational part ofA does not have any physica
meaning~gauge invariance!. The numerically obtained dis
cretized vector potential generally consists of both a solen
dal and an irrotational part. This vector potential is n
gauged in order to allow for an unconstrained minimizati
of the functionalW. The question may arise how the irrota
tional part ofA is determined. As it is not used in the calc
lation of the energy, its value depends on the initial con
tions and on the path the minimization routine takes on
way towards an energetic minimum. This imponderability
the resulting vector field may seem unsatisfactory. Howev
the relevant solenoidal part ofA is not affected by the am
biguities of the calculated vector potential.

3. Exterior region

It has already been stressed that the integral in Eq.~12! is
extended over thewholespace. This ‘‘open boundary’’ prob
lem is treated using spatial transforms for the exter
region41 by means of which the unbounded exterior region
mapped on a finite area which is discretized and in which
calculation of the stray field is performed. By doing so, fr
boundary conditions for the vector potential are used.
efficient and seemingly more rigorous method to treat t
open boundary problem is the use of boundary elemen42

which we consider to implement in the algorithm in a futu
version. The method of integrating over both the magne
region and the exterior region for the calculation of the d
magnetizing field and its energy requires a high number
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7370 PRB 60RICCARDO HERTEL AND HELMUT KRONMÜLLER
elements and of unknowns. It is, however, by far more c
venient than the direct evaluation of the integral in Eq.~10!.

The calculation of the demagnetizing field used in o
calculations is based on a program developed by Schrefl43

E. Sum of all terms

Summing up all energy terms, we obtain the total ene
of the system as a function of the set of variablesq i , w i ,
and (A) i . The equilibrium configuration of the magnetiz
tion is calculated by means of direct minimization with r
spect to these variables. For this purpose a commercial
jugate gradient method especially developed for large-s
problems is employed.44

Note that with this algorithm the spontaneous polarizat
Js is defined only at the nodes. Only for visualization pu
poses it will be interpolated on a regular grid. In order
reduce computational time and cumulative discretization
rors, the energy of the system is calculated in any case in
most direct way instead of interpolating the magnetizat
within the element and deriving the energy from it. Th
latter method has been used by Chenet al.5 and is undoubt-
edly a useful assumption. However, the interpolation of
Cartesian components ofJs violates the constraintuJsu
5const and leads to higher computational costs for the
ond order terms, i.e., the anisotropy and the stray field, w
out necessarily yielding a higher accuracy.

F. Tests of the algorithm

We have performed several tests on the vector poten
routine for different geometries. These tests consist in ca
lating the stray field energy for a fixed homogeneous m
netization. No influence of the initial configuration ofA on
the resulting energy and induction was found: Using a r
dom initial vector potential yields the same results as a
mogeneous one but requires longer computational time.
computed results for homogeneous magnetization paralle
the x, y, andz axis can be compared with analytical calc
lations of demagnetizing factors.45 With increasing discreti-
zation density the theoretical values are generally
proached very nicely.

The calculation of the demagnetizing field and its ene
is most likely to be the source of possible errors in mic
magnetic computations. Analytical proofs only exist for t
case of homogeneously magnetized samples.45 For the geom-
etry used in the calculation presented here, the demagn
ing factors are45 Nx50.2939,Ny50.5629, andNz50.1431.
The numerically obtained demagnetizing factors differ b
tween 0.3% forNx to 13% forNz from the analytical values
We attribute this to the low discretization of the exteri
region. Most of the elements are located in the magn
region as flux closure patterns are expected. While for m
netization states with high remanence the accuracy of
calculation of the stray field in the exterior region is decisiv
the stray field nearly vanishes outside the sample for
closure structures and a comparatively low accuracy in
exterior region is sufficient in this case.

Recently we found that the vector potential method m
lead to erroneous results concerning the stray field energ
the demagnetizing factors are very small. This is the cas
thin platelets. The stray field energy is calculated in our c
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by means of the differenceB2J. If B is essentially equal to
J, as is the case for demagnetizing factors close to zer
very high accuracy is required in the calculation ofB in
order to obtain a correct value for the energy. The accur
in the calculation of the magnetic structure, which is calc
lated by means of the coupling ofB andJ, however, is not
influenced by this effect.

The correctness of the anisotropy energy calculation
be tested easily by setting a homogeneous and fixed di
bution of the magnetization enclosing different angles w
the easy axis and comparing the result with the analyt
value. Using a suitable inhomogeneous arrangement,
same can be done to test the exchange energy calcula
The exchange energy is influenced more sensitively by
discretization. However, these effects are reduced subs
tially by adaptive mesh refinement if the size of the discre
zation cells drops below the exchange length where the m
netization is strongly inhomogeneous.

VI. APPLICATION

With this algorithm the equilibrium distribution of the
magnetization in a rectangular block of Ni80Fe20 ~A51.3
310211J/m, K5500 J/m3, Js51.0 T! is investigated. These
material parameters yieldQ.1023, i.e., a magnetically very
soft material. The size and geometry of the sample is ill
trated in Fig. 2.

The computational region is discretized into about 95 0
elements, approximately 83 000 of them are located ins
the sample, the rest is used for the calculation of the dem
netizing field outside. The average extension of the eleme
within the sample is about 16 nm, the maximum distan
found between two nodes of an element within the sampl
41 nm. Having the exchange lengthdN/p.6 nm, this dis-
cretization is not expected to be sufficient to resolve
magnetic structure everywhere reliably. Therefore, ana pos-
teriori adaptive mesh refinement technique is used to ra
the accuracy of the calculation, see Sec. VII C.

VII. RESULTS

The starting conditions of the magnetization are cho
far from an equilibrium state in order to obtain demagnetiz
states that do not depend strongly on the initial configurati
Three homogeneous starting conditions~magnetization par-
allel to thex, y, andz axis! are used for the calculation. B
doing so, two different patterns are obtained. The initializ
tion parallel to they axis yields the expected Landau patte
illustrated in Fig. 3.

In the other cases a seven-domain~‘‘diamond’’ ! pattern
shown in Fig. 4 results. This diamond pattern has been
ported, e.g., by Van Den Berget al.46 and represents a meta
stable state. The total energy of this configuration is in o
case about 24% higher than the Landau pattern shown in
3.

The seven domain pattern and the Landau pattern h
been found by Fredkin and Koehler47,48by means ofab initio
micromagnetic calculations on Permalloy particles. T
present paper focusses on the topology of the Landau s
ture which is supposed to be the energetical ground stat
the system. The diamond pattern is analyzed elsewhere.49
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PRB 60 7371COMPUTATION OF THE MAGNETIC DOMAIN . . .
In addition to the clearly recognizable domain structu
according to Fig. 1 some additional distinct features of
pattern in Fig. 3 can be found. First of all, the asymmetry
the magnetization at the surface with regard to an invers
at the center is evident. On the upper junction of the dom
walls a magnetic vortex occurs while the lower junction is

FIG. 3. 3D representation of the calculated Landau struc
with four domains.

FIG. 4. 3D representation of the magnetization of the metast
seven-domain ‘‘diamond’’ structure.
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180° Néel wall. This effect resulting from the Ne´el walls at
the surface has been discussed elsewhere.19,34

A. Canting of the central domain wall

Another striking peculiarity of the magnetization as com
pared with the idealized pattern in Fig. 1 is the asymmetri
shape of the closure domains shown in Fig. 5. The cen
domain wall appears to be canted with respect to the edg
the sample. The angle between one domain wall of the
sure domain and the central domain wall is disparate for
two adjacent domain walls of the closure domain. The asy
metrical shape of the closure domains can be recogn
clearly on the simulated Kerr image on the right side.

To analyze the magnetic structure more precisely we t
a look at the magnetization inside the sample. The Figs
and 7 show the projection of the magnetization on cr
sections through the middle of the sample and on the
side, respectively. The position of these cuts through
sample are described in Fig. 8. Remarkably, the asymm

e

le

FIG. 5. Magnetization pattern at the surface of the Perma
block ~plane A in Fig. 8!. Left: projection of the vector field on the
surface. Right: Gray scale representation of thez component of the
magnetization.

FIG. 6. Projection of the magnetization on the cross section
through the middle of the sample, see Fig. 8.
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of the domain pattern vanishes in the center of the sam
~Fig. 6! while on the rear side the central domain wall
again skew, however, canted in the opposite direction c
pared with the front side shown in Fig. 5. Repetitions of t
calculation have yielded different positions of the swirls a
a canting of the central domain wall in both directions, i.
left and right on the front side. These different results
assigned to slightly different starting conditions. In order
avoid the formation of metastable, unrealistic arrangeme
of high symmetry, a homogeneous starting condition is
ways perturbed randomly in our calculations prior to t
minimization. The magnitude of this perturbation is typica
about60.5° for bothq i andw i at each nodei. The breaking
of symmetry in different directions but in qualitatively equ
manner indicates that this effect is not due to numerical
tifacts or a consequence of the discrete numerical repre
tation. As the patterns are basically the same and can
transformed into each other by means of simple symm
operations, only one arrangement needs to be reported.

B. Bulk effects

To understand the reason for the skewness of the ce
domain wall it is helpful to study the topology of the ma

FIG. 7. Magnetization pattern on the rear side of the sam
plane C in Fig. 8.

FIG. 8. Position of the cross sections shown in the subseq
figures. The locations of the planes are A:y5125 nm, B:y50, C:
y52125 nm, D: z50, E: z5250 nm, F: z5300 nm, G: z
5350 nm, and H:z5450 nm. The viewpoint onto the cross
sections is located outside the sample on the positivey andz axes,
respectively.
le
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netic domain walls. The magnetization on a cut through
middle of the sample across the planez50 ~plane D in Fig.
8! is illustrated in Fig. 9. It shows that the transition betwe
the two major magnetic domains is given by an asymmetr
Bloch wall. This wall type has been found independently
Hubert and LaBonte.8,9 Using 2D calculations, the Hubert
LaBonte wall has been reported in other papers.24,50 Our 3D
modeling is in agreement with these results.

Symmetrical Bloch walls do not occur in magnetical
soft material. A symmetrical Bloch wall, as illustrated sch
matically in Fig. 10, would lead to an out-of-plane magne
zation at the surface. In soft magnetic materials such sur
poles of the magnetization are avoided by the formation
so-called Ne´el caps, i.e., an alignment of the magnetic m
ments parallel to the surface. This behavior is known
Brown’s pole avoidance principle.51 Therefore, one has a
mostly Néel-like transition between the domains on the s
face while inside the sample the Bloch part of this dom
wall prevails. As the Bloch wall at the center converts into
Néel wall near the surface, the magnetization is sheared
one side with respect to the center of the Bloch wall.19,20

This shearing, in our case to the left side, can be seen in
9. On the other hand, the Ne´el-like magnetization on the
lower side of Fig. 9 can be regarded as the far tail of
closure domain on the lower side of Fig. 5. Hence, the she
ing of the magnetization near the surface gives rise to
asymmetrical shape of the closure domains.

The different cuts through the sample in Fig. 11 sho
how the magnetization inside evolves from the center to
upper end of the block in Fig. 3. The Hubert-LaBonte w
transforms continuously to a nearly homogeneous arran
ment. The dashed circle in the cross section E shows
magnetization in the proximity of the swirl52 ~vortex! in Fig.

,

nt

FIG. 9. Magnetization inside the sample on a cut through
planez50. The two major domains are separated by an asymm
cal Bloch wall ~Hubert-LaBonte wall!.

FIG. 10. Schematic representation of a symmetrical Bloch w
As the Bloch wall intersects the surface of the sample, magn
surface poles with high stray field energy occur. In soft magne
material this is avoided by an alignment of the magnetic mome
parallel to the surface, which leads to an asymmetrical Bloch w
as shown in Fig. 9.
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5. Due to the asymmetry of the Hubert-LaBonte wall, t
swirl is evidently displaced from the center of the sample.
the case of very thin layers, where the domains are separ
by Néel walls, the closure domains have a symmetri
shape.32,34 Hence, the asymmetry can be assigned to
Hubert-LaBonte wall.

The arrangement of the magnetization in the cross sec
F resembles to an asymmetrical Ne´el wall.20 However, it
should be stressed that rather than a transition from one
of 180° walls to another, the transition shown in Fig.
represents a series of cuts through different domains. A g
scale representation of the component of the magnetiza
perpendicular to these cuts is shown in the series of Fig.

A corresponding series of cuts on the lower half of t
block ~not shown! yields in the same way a displaced sw
on the lower rear side of Fig. 3. Both vortices are displac
in the same direction (2x). While the swirl on the upper
side shows a perpendicular magnetization directed out of
sample, the perpendicular magnetization in the vortex cor

FIG. 11. Magnetization inside the sample on different plan
with z5const ~see Fig. 8!. The asymmetrical Bloch wall evolve
continuously into a nearly homogeneous closure domain.
n
ted
l
e

n

pe

ay
on
2.

d

e
of

the other swirl is oriented into the sample. This can be s
in the series of cross-sections along planes ofx5const, cf.
Fig. 13. The position of these cross sections is sketche
Fig. 14. In the cross section near the center of the sam
@Fig. 13 ~J!# the Bloch line20,53 can be seen clearly, startin
from one swirl in the lower left end ending in the other sw
on the upper right. The Bloch line is not located on a pla
with x5const. The flux is carried from the lower swirl whic
is displaced from the center in negative direction ofx over to
the line sketched in Fig. 13~J! ~at x.0! towards the upper
swirl, which is again displaced towards negative values ox.
Figures 13~I! and 13~K! show how the magnetization tend
to align parallel to the edges of the sample in order to av
surface poles. This leads to different configurations of
magnetization in the eight corners of the sample.52 Several
different combinations of arrangements in the corners
possible, but the analysis of these details lies outside
scope of this paper.

Despite the formation of Ne´el caps the perpendicula
component of the magnetization does not vanish comple
at the surface. As illustrated in Fig. 15 the perpendicu

s

FIG. 12. Gray scale representation of the perpendicular com
nent of the magnetization in the cross sections of Fig. 11.
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component shows a characteristic pattern at the surf
However, except for the swirl and the corners, the magnit
of this out-of-plane magnetization is very small~about 10%
of Js!.

C. Effect of the mesh refinement

It has been mentioned previously that an adaptive me
ing method has been used for the calculation. As the vis
ization of a three-dimensional grid of irregular tetrahed
elements is problematic, only the mesh at the surface of
sample is displayed in Fig. 16.

The adaptive mesh refinement is performed in a first s
increasing the discretization density in areas of inhomo
neous magnetization by means of the ‘‘shrinking eleme

FIG. 13. Magnetization on the planesx5const shown in Fig.
14. The approximate position of the Bloch line is the gray sha
area in J, which indicates the region wheremx is close to zero. The
gray scaling represents the value ofmx

2.

FIG. 14. Position of the cross sections in Fig. 13. The cr
section J is located atx525 nm. The planes are viewed at from th
positivex axis.
e.
e

h-
l-
l
e

p
-

’’

technique.31 This method is ar-type refinement method
which essentially shifts the nodal points towards inhomo
neous regions. As can be seen in Fig. 16 the nodal p
density is higher where the domain walls are located. Ho

d

s

FIG. 15. Topology of the perpendicular component at the s
face. The peak represents the out-of-plane magnetization at the
of the swirl. At the corners the magnetization turns towards
adjacent edges@cf. Figs. 13~I!, 13 ~K!, 11 ~H!# and the perpendicu-
lar component increases. A small Bloch-like contribution to t
central Néel wall at the surface can be recognized in the middle

FIG. 16. Refined mesh on the surface of the sample. T
adapted mesh has been generated using the ‘‘shrinking elem
technique combined with ah-type refinement.31 The regions of
stronger inhomogeneities of the magnetization are recognized
Fig. 5. In these areas the density of nodal points is increased.
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PRB 60 7375COMPUTATION OF THE MAGNETIC DOMAIN . . .
ever, moving nodal points is not sufficient to resolve stron
inhomogeneous regions such as a magnetic swirl becau
big displacement of nodal points is likely to yield a strong
distorted mesh with ill-shaped elements. Therefore, ano
refinement strategy is employed in a second step. By me
of bisection of elements, nodal points are added specific
in strongly inhomogeneous regions. This mesh refinem
algorithm recognizes the insufficient discretization in t
swirl and adds new nodal points in this area. Iteratively,
mesh is modified and a new minimum energy arrangeme
calculated. The effect of this procedure on the total energ
illustrated in Fig. 17. While the total energy decreases w
higher discretization density, the exchange energy rises,
Fig. 18. A coarse discretization mesh tends to underestim
the exchange energy and leads to an overestimation o
stray field energy in this algorithm. In the mesh with t
highest number of elements, the maximum edge length of
elements within the refined region becomes small, betw
0.5 and 1.0 nm which is significantly below the exchan
length.

Although after the refinement the magnetization does
change visibly, the error of the calculation is reduced sign

FIG. 17. Changement of the mean energy density with incre
ing mesh refinement. The total energy of the arrangement dim
ishes slightly with increasing discretization density. The mean
ergy density is expressed in reduced units, i.e., in units ofJs

2/2m0 .

FIG. 18. Mean exchange energy density expressed in red
units versus number of additional elements.
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cantly. In numerical micromagnetic calculations, discretiz
tion errors occur in the case that the magnetization at ne
boring discretization points is strongly misaligne
Correspondingly, the maximum misalignment of the mag
tization in an element of the mesh can be used as an indic
for the quality of the mesh. The maximum misalignment
magnetic moments in adjacent nodal points is lowered ef
tively by means of the adaptive mesh refinement as ill
trated in Fig. 19.

VIII. COMPARISON WITH WALL MODEL
CALCULATION

The total energy resulting from the numerical calculati
can be compared with a simplified analytical wall mod
calculation using a method described in detail by Aharon18

According to this, the widthDB of a one-dimensional 180°
Bloch wall in an infinite film with thicknessd obeys the
equation

A

DB
2 ~&21!5

K1

2
1

Js
2

2m0
F2DB

d
lnS 11

d

2DB
D2

DB

2DB1dG .
~14!

Similarly, the Néel wall width DN can be determined from
the equation

A

DN
2 ~&21!5

K1

2
1

Js
2

2m0
F1

2
2

2DN

d
lnS 11

d

2DN
D

1
DN

2DN1dG . ~15!

The energy per unit wall areag180° is calculated according to

gB
180°5

pA

DB
~&21!1

pDBK1

2
1

pJs
2

2m0

DB
2

d
lnS 11

d

2DB
D
~16!

for the Bloch wall and

s-
n-
-

ed

FIG. 19. The maximum misalignment of magnetic moments
the finite elements can be associated with the maximum error o
calculation. This misalignmentDwmax is reduced strongly by mean
of the adaptive mesh refinement.
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gN
180°5

pA

DN
~&21!1

pDNK1

2
11

pJs
2DN

4m0

3F12
2DN

d
lnS 11

d

2DN
D G ~17!

for the Néel wall. The material parametersJs , K1 , andA for
Permalloy given in Sec. VI are used, the thicknessd is 250
nm. Solving numerically the transcendental equations~14!
and ~15! yields DB59.12 nm andDN56.00 nm. With these
values one obtains from Eqs.~16! and ~17! gB

180°52.98
31023 J/m2 and gN

180°56.0231023 J/m2. For 90° Néel
walls we approximate

gN
90°.

1

2
gN

180°. ~18!

As a simplified model for the Landau structure of the ma
netization we consider a geometry of the domain wall str
ture sketched in Fig. 20. Assuming 90° Ne´el walls at the
borders of the closure domains and a 180° Bloch wall as
central domain wall the total energyF tot writes

F tot5dF ~c2b!gB
180°1bgN

90°2&1
1

2
b2K1G ~19!

.0.0292
Js

2

2m0
bcd. ~20!

The last term in Eq.~19! accounts for the magnetizatio
perpendicular to the easy axis in the closure domains.
value of 0.0292 of the reduced mean energy density is of
same order of magnitude as the computed result, see Fig
However, the result from the analytical calculation differs
about 22% from the numerical result. This difference can
attributed to several simplifications used in the wall mo
calculation. For instance, finite-size effects such as sur
charges at the corners and the complex structure of the m
netization in the vicinity of the swirls are neglected in t
analytical model. Moreover, the energy per unit wall ar

FIG. 20. Idealized wall structure used in the analytical calcu
tion. The length of the edges areb5500 nm, c51 mm, and d
5250 nm.
-
-

e

e
e

17.

e
l
ce
g-

a

gB,N
180° and the domain wall widthsDB,N are calculated assum

ing an infinitely extended thin film, which is only a coars
approximation in this case. If we assume that the cen
domain wall consists in equal parts of both a Ne´el- and a
Bloch-like component@Fig. 11 ~D!#, we may setg180°

5(gB
180°1gN

180°)/2 and thus obtainF tot.0.033bcdJs
2/2m0 ,

which corresponds rather nicely to the calculated value. T
agreement should not be interpreted as a proof of the re
because of the simplifications involved in the analytical c
culation. However, considering that the computed arran
ment of magnetic moments in the Landau structure
strongly inhomogeneous over nearly the whole sample
that the idealized structure sketched in Fig. 20 hardly
scribes the actual arrangement of the magnetization,
comparison of the computed result with this simple w
model calculation yields reasonable agreement. It is expe
to obtain a better agreement with analytical model calcu
tions for samples of bigger size, which however are curren
precluded from numerical micromagnetic investigations d
to the high computational requirements.

IX. COMPARISON WITH EXPERIMENTAL DATA

The most unexpected result of the presented calculatio
the asymmetrical shape of the closure domains at the sur
of the sample. A report on this effect has not been found
the literature.

An experimental detection of the forecasted asymmetr
domain structure is expected to be problematic for differ
reasons. First, it should be kept in mind that the effect is v
small though the canting of the central domain wall of abo
7° shown in Figs. 5 and 7 is clearly visible: The specim
used in experimental domain wall observations are usu
significantly larger than the sample considered in this cal
lation. The displacement of the junction of the domains w
respect to the center, which leads to the asymmetrical sh
is in this calculation about 40 nm. This effect is due to t
asymmetrical structure of the Bloch wall which is expect
to depend only on the thickness of the film and not on
finite size of a platelet. Provided that the core of the ma
netic vortex is shifted in a region within the width of th
central domain wall the inclination angle of the domain w
at the surface depends only on the distance of the two sw
As the characteristic size of the films observed in expe
ments is typically of about 100mm, such a small displace
ment would lead to a very small tilting angle. Hence, t
strong canting in our calculation must be attributed to
small size of the sample.

The asymmetry of the arrangement occurs only on
surfaces, and on the front side it is opposed to the asymm
on the rear side. If a domain structure is investigated
means of transmission methods such as the Lorentz mic
copy the deflection pattern generally represents an inte
over the thickness of the film. Hence, the asymmetry on
surfaces is expected to be averaged out in a Lorentz mic
copy image. The displacement on opposite sides on the f
and on the rear would merely lead to a smearing out of
domain wall image. Nevertheless, there seems to be a q
tative agreement with the structure predicted from our cal
lation and experimental observation reported in the literatu
In thick soft magnetic films, magnetic domain walls are us

-



re
b

a
n
he
in
tr
y
a

ag
tio

-
zed

ac-
le.

ulk
is

en-
ical
f-
er
s.
a

ob-
vely
rger
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ally separated by the typical double-Y domain wall structu
A careful observation of the domain patterns reported
Tsukahara54 and Kawakatsu55,56 or, e.g., by Harrison and
Leaver57 suggests that a plane parallel to the film norm
through the middle of the central domain wall is not a pla
of symmetry. The 90° walls on opposite sides of t
double-Y structure are parallel, respectively, but neighbor
90° walls seem to enclose a different angle with the cen
domain wall. Magneto-optical Kerr spectroscop
observations58 of the domain structure in iron films suggest
slight tilting of the central domain wall.

X. CONCLUSION

The computation of the Landau structure in a soft m
netic flat rectangular prism has provided a possible solu
n

b1

A

T.
.
y

l
e

g
al

-
n

of a well-known and formerly unsolved problem in micro
magnetics. The obtained result indicates that the ideali
Landau structure represents a rather coarse model of the
tual distribution of the magnetic moments inside the samp
Even in this most simple magnetic domain pattern in a b
soft magnetic sample the topology of the magnetization
remarkably complex. Nevertheless, the computed total
ergy of the system is comparable to the result of an analyt
calculation using a strongly simplified wall model. Bulk e
fects enfavor the formation of domain structures of low
symmetry compared with the domain structure in thin film
The asymmetry of the central Bloch wall gives rise to
distorted shape of the magnetic domains. Experimental
servations suggest that the magnetic structure is qualitati
transferable to soft magnetic samples of considerably la
size than the geometry used in this calculation.
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