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Computation of the magnetic domain structure in bulk permalloy
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By means of three-dimensional micromagnetic finite element modeling, the Landau structure of the magne-
tization is calculated as a minimum energy arrangement in a rectangular permalloy(blaok<500 nm
X250 nm. On the surface, so-called Blecaps are observed. The transition between the two major domains in
the prism is found to be given by an asymmetrical Bloch Wdlibert-LaBonte wajl The result indicates an
asymmetrical shape of the closure domains at the surfaces. Adaptive mesh refinement strategies are employed
to raise the accuracy of the calculation. It is shown that the mesh refinement is capable to reduce discretization
errors significantly[S0163-182809)07733-4

[. INTRODUCTION butions, the resulting magnetization represents a compromise
between the minimization of the single components. At zero
After more than fifty years since the time when the basicsexternal field the total energy is the sum of the exchange
of continuum micromagnetism have been developed bgnergy, the magnetocrystalline anisotropy energy and the
Brown' 3 this field still poses many unsolved problems. Themagnetostatic self-energy of the sample. To reduce the ex-
underlying set of coupled nonlinear equations allows analytichange energy, a homogeneous magnetization is desirable
cal solutions only in the case of strong simplifications whichwhile the reduction of the stray field energy enfavors the
are therefore usually an idealized model whose transferabiformation of magnetic vortices. Moreover, the anisotropy en-
ity on reality is often doubtful. In recent times, since power-€rgy is lowered if the magnetic moments align parallel to the
ful computers allow large-scale calculations it has becom@&asy axis. Which one of these energy terms prevails depends
possible to investigate complex but nevertheless fundament@n the intrinsic material parameters, the geometry and the
micromagnetic processes. The finite element metlkdeM)  Size of the sample.
has shown to be an efficient and flexible fodlfor this
purpose. _ o _ II. SINGLE-DOMAIN AND MULTIDOMAIN
The first numerical calculations in this field of physics ARRANGEMENT
have been performed by Hubért,aBonte? and Brown'®
Since then many groups of researchers have developed pro- If the magnetic material is sufficiently soft, i.eQ<1,
grams to simulate complex magnetization processes in sofQ=K/Ky, K=magnetocrystalline anisotropy constalid
and hard magnetic materials. Although amongst the scientifie= J§/2,u0) the effect of the anisotropy is negligible and the
community a consensus on the numerical method to be usedsulting arrangement is determined by the exchange energy
has not yet been found and the results from different groupand the stray field energy of the system. The result from the
differ partly very strongly"! there is a tendency to expand competition between these two energy terms mainly depends
the calculations on increasingly complex problems such asn the size of the considered sample. For a very small ferro-
large-scale soft magnetic samples. Most of the calculationmagnetic particle the exchange term is the dominant energy
are usually restricted on small samples with a size that igontribution and a homogeneousingle-domain arrange-
hardly accessible for experimental investigations. Thereforanent is energetically favored. Increasing the size of the par-
the effort to enlarge the samples on which the simulation igicle, the stray field energy of a homogeneous arrangement
performed is required to bring the theoretical results into thebecomes too large as compared with the gain of exchange
vicinity of experimental verification or falsification in order energy resulting from a homogeneous arrangement. There-
to achieve a convincing proof of the correctness of the calfore, above a certain critical size of the sample the magneti-
culation. zation is subdivided into different domains because this sub-
Besides numerical details, there are two fundamental apdivision of the magnetization reduces the stray field energy
proaches for micromagnetic calculations. One way consistand simultaneously maintains the homogeneity in extended
in the integration of the equation of motion of the magneticregions. The evolution from a single-domain particle to a
moments described by the Gilbert equatfériThe other multidomain particle with increasing size can be attributed to
method, which is used in our calculation, makes use of theéhe scale dependence of the exchange energy dénaihjle
fact that the equilibrium configuration of the magnetizationthe anisotropy energy density and the stray field energy den-
in magnetic particles has the property to minimize the magsity for a given distribution of the magnetic moments does
netic Gibbs free energy of the systénm constraint that has not depend on the size of the particle, the exchange energy
to be observed in both methods is the preservation of theensity is reduced with increasing size.
magnitude|Jg| of the spontaneous polarizatialj over the Analytical calculations have provided useful estimates for
whole sample. the critical size of hard magnetic sphericgdarticles as well
As the total energy consists of different competing contri-as for particles of prolate spheroid shadfyed very coarse

0163-1829/99/6(10)/736613)/$15.00 PRB 60 7366 ©1999 The American Physical Society



PRB 60 COMPUTATION OF THE MAGNETIC DOMAIN . .. 7367

Néel”® describes the typical domain wall occurring in thin
films: a rotation within the plane around an axis perpendicu-
lar to the film.

From an energetical point of view, these two wall types
have strongly different attributes. A Bloch wall has a vanish-
ing stray field energy, at least inside the bulk material. Only
where the Bloch wall intersects the surface, magnetic surface
charges occur. On the other hand, aeNwall is free of

FIG.'l. _Schematic iIIustratiQn of the Landau structure of thegface charges but leads to volume char@igm+0, m
magnetization in a soft magnetic rectangular block. :Js/|Js| is the reduced magnetizationTherefore, it de-

pends on the ratio of the surface to the volume of the sample

estimate can be derived from the simple consideration thafich one of these wall types is energetically favored. The
the critical size of a sample must be at least larger than thgnsition from Nel walls to Bloch walls with increasing

domain wall width in order to obtain different domains in the layer thickness has been derived analytically byeRfeand
first place. Recent computations by Rateal”® have deter-  13s peen shown numerically, e.g., by Raroktet al?*

mined the single-domain limit of ferromagnetic cubes. Thickness effects on the magnetic structure in elongated Per-
malloy particles have been investigated numerically by Koe-
Ill. THE LANDAU STRUCTURE hler and Fredkirf® The characteristic extension of Bloch

] o _ walls sg=mJA/K and Nel walls Sy=m\2uAlJ? (A
One of the most well-defined problems in mlcromagnetlcs:exchange constanin bulk materials has been derived ana-
is the distribution of the magnetization in a rectangular soff tically by Kronmidler.2® Although the extension of N

magnetic block. Nevertheless, a detailed analysis of the magf; |5 depends quite strongly on the layer thickRéssese

netic structure in such a sample is still missing. _estimates are helpful to distinguish an observed wall type as
The first description of the magnetization in an iron whis- o valuesd and 8y may be very different.

ker was given about sixty years ago by Landau and Lifshitz g, the Nel wall and the Bloch wall represent strongly

who derived the four-domain pattern illustrated in Fig. 1 aSsimplified models for the actual arrangement of the magne-

an equilibrium arrangement in the case of zero external field;; ation in domain walls. Generally, the most probable case
This pattern has been observed in several experiments, €.g, 5 \a|| transition is a mixed form of both a’Kewall and
using the Bitter powder technigdéand according to energy a Bloch wall.

considerat_ions the formation of this structure can be under— A precise analysis of the domain walls and surfaces of the
stood easily: the nearly solenoidal structure of the magnetip ynqay pattern reveals that the structure is far more compli-
zation combined with the mostly homogeneous regions is aateq than one would expect from the simple arrangement on
optimal arrangement. The Landau structure represents an el qer length scale. For example, the magnetization turns in
fective solution of the problem of the minimization of both plane at the surface in order to avoid magnetic poles. The

the exchange e“‘?lf9¥ ar;]d the stray f'ellld energ%/. - Neel walls at the surface may cause a loss of symmetry
However, details in the domain walls and the effects on hich ‘i the simplest case, results in a magnetic vortex on

the surface usually have to be neglected in analytical consids sige and a 180° ewall on the other side of the central
erations. Correspondingly, to justify this assumption, th€y,main walll® The Neel walls only occur as a surface effect,

Lar)dau structure Is usually analyzed only in the case that_ thﬁlside the block the transition between the domains is mostly
typical extension of the sample exceeds the characteristigjocpy_jike. A detailed discussion on these peculiarities will

length scale of the domain wall widthg and &y signifi- 4 given in Sec. VIL.
cantly. A brief discussion on these length scales is given
below.
V. ALGORITHM

IV. DOMAIN WALLS . . . . .
From a numerical point of view, the major problem in the

The study on domain walls, i.e., the region between magaccurate calculation of the Landau structure consists in the
netic domains, is still a very active field of research. Asfact that on one hand one has to perform the calculation on a
pointed out in the textbook of Ahardfliand by Arrott and  sufficiently large sample compared with the characteristic
Templeton'? the calculation of the magnetization in bulk length scales’g,dy in order to obtain the pattern at all, on
materials has not really been solved yet. However, simplifiedhe other hand one should be able to resolve details such as
models, either analytical or numerical ones, have provided avall transitions with sufficient accuracy. Only in recent
broad knowledge about domain wadfs. times, since adaptive mesh refinement techniques for two-

Between the domains the magnetization changes its ordimensional2D) (Refs. 28 and 2Pand especially 3DRefs.
entation continuously as it may not vanish due to the con30 and 31 micromagnetic calculations have been developed,
straint|Jg| = const, provided that the magnetic sample is sin4it has become possible to calculate the magnetization of
gly connected and Feldtkeller singularifitsare excluded. large-scale soft magnetic particles reliably. Formerly, the ex-
The first approach in the understanding of domain walls wasmination had to be restricted on certain regions by means of
given by Bloci? who found a continuous torsion of the mag- idealized models. The previously mentioned calculation of
netization around an axis perpendicular to the domain wall athe transition from Nel walls to (asymmetricgl Bloch
a possible transition mode. The other basic model derived bwalls?* e.g., was performed considering infinite stri&D
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mesh with 3D magnetic momentaVith this model, finite-
size effects like the formation of the closure domain structure
cannot be observed. On the other hand, magnetic domain
structures could hitherto only be modelled in very thin plate-
lets (=20-60 nm (Refs. 32—-3%because of the required dis-
cretization which cannot be achieved for bigger values of the
volume of the sample. At these thicknesses Bloch walls do
not occur.

In this paper we present a three-dimensional calculation
of the Landau structure with an asymmetrical Bloch-wall
transition between the two major domains without making
use of any simplifying assumption. Even though modern

computers and an improved algorithm are emploved. this FIG. 2. The micromagnetic calculation is performed on a Per-
P P 9 ployed, malloy block of the size 500 nm250 nmx1 um. The easy axis is

calculation has only been possible using adaptive meShIn9riented parallel to the long edge. The coordinate axes are chosen
methods. parallel to the edges: the, y, andz axes are parallel to the me-
dium, the short and the long edge, respectively. The origin of the
A. Discretization coordinate frame is set at the center of the block. On the right side,

To calculate its total energy, the system is first discretizedhe _sphencal coordinate and ¢ used to represent the local polar-
Ization are sketched.

into tetrahedral elements. This is performed using a De-
launay triangulation algorithfi which—in order to obtain a
high number of elements with mostly uniform size—is com-
bined with a longest-edge bisection metHdd®

By doing so, the volume of the samplg is subdivided
into N elements with the volumeg,,:

nates contain} and ¢ only in terms of trigonometric expres-
sions, the singularities of the polar coordinate systems have
no effect on them.

With the datad and ¢ for the magnetization at the verti-
ces, the energy of an element is calculated in the most direct
N way by means of linear interpolation. In the following we
> V=V, (1)  restrict ourselves on the calculation of the energy contribu-

n=1 tion of one element. According to ER) the energy of the

] ~whole sample is straightforward.
The total energy,; of the sample is the sum of the energies

of all elements, ) )
B. Magnetocrystalline anisotropy energy

N .
The anisotropy energy of an element
Eror= J edv=>, | edV, 2
Vo n=1 Jv,
where En= fvnearplv= anK sir adV. (5
€= €ant Cex Estray (3 (a=angle betweed, and the easy axiss calculated inter-

: . , polating the energy densitg,=K sir a linearly over the
is the sum of the local energy _denSItles of the an.'SOtr.OpyVOlume of the element. For a given direction of the easy axis
exchange, and demagnetizing field. The task consists in the

; In the element, we have= a(¥,¢). Hence, we can assign
calculation of the.energyvnedVof the N elements. to each nodé of the element the anisotropy energy density
At each vertexi of the elements in the sample the local ¢ = — sir? o,=K si? o(9; ,¢;). The energy density inside

magnetization is defined by the polar andleand the azi- he element is approximated by a spatially linear function

muth anglee (see Fig. 2 B
sind; cosg; 2
(Jg)i=J5| sind; sing; | 4 €l X) =Bl X)= 2, & ar'(X) (®)
Ccos; i=1

Using this representation, the magnetization at each node carsing the normalized set of linear shape functioné) of
be modified easily by an unconstrained variationdaind.  the elemenn with

The constrainfJ¢ = const is automatically fulfilled in this

way. Generally, using polar coordinates can be problematic ni(x)=¢8; (i,j=1,...,9 (7)
due to the poles at the and thez axis. For instance, the

modulo 27 ambiguity of the numerical value of the polar (x; is the location of the nodp. By doing so, the integration
coordinates for a given direction may cause serious problemsf Eq. (5) can be performed easify/:

if the angles are interpolated over an element. In order to

avoid the use of subsidiary coordinate frarfesnly the

Cartesian components of the polarization are used for the En= f e, dV= f B dV=
calculation of each energy term. Since the Cartesian coordi- Vi Vn

4
Zl ei,an Vn/4- (8)
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C. Exchange energy

1
e r_ 2
A different interpolation technique is required to calculate W(B") 20 J i Space(B Jo)"dV. (12

the exchange ener
g 9 represents an upper bound for the stray field energy, where

B’ is an arbitrary solenoidal field. The minimum of the func-

ng:f eexdv=f AL(Vmy)?+(Vmy)2+(Vm,)?]dV. tional W is equal to the stray field energy, and is given if
Vn Vn '=B, i.e.,
9

The terme,, cannot be interpolated linearly over the element Estray=W(B)<W(B"). (13
as it contains spatial derivatives of the magnetization whichThis relation holds for any solenoidal fiel8’=V XA.
are not defined at the vertices. Therefore we approximate thidence, minimizingW with respect to theédiscretized mag-
exchange energy by the assumption that the gradientsetic vector potentiah yields the correct stray field energy
amy /%, with k,I=x,y,z are constant within the element. and the corresponding magnetic induction. Introducing the
Using the linear shape functiong' and the well-known nu- new variablesA, ,Ay ,A, at each nodal point, the functional
merical differentiation technique of the finite element W is calculated by means of the FEM. With this approxima-
method®” %8 the corresponding differentiations and the inte-tion B’ is a piecewise constant function of the valuég;(at
gral kernel in Eq.(9) are elaborated. As with this approxi- the nodes. The kernel of the integral in E412) can be split
mation the exchange energy density is spatially constanip in three energy density contributions. WiB1 = const
within the element, the integration in E@) becomes trivial. ~ within each element, the integration Bf 2/2u, over an el-
ement is trivial. The same holds for the teﬂ;’dz,uo which,

D. Stray field energy by virtue of|Jg = const is spatially constant. The energy den-
. sity from the mixed term { B’ -J./u) is interpolated lin-
Generally, the stray field energy term early over the element in analogy to the anisotropy term.

1 .
Eqray= — Ef He- JodV= %f Hng (10 2. Vector potential
(sample (all space The calculation of the demagnetizing field and the stray
_ o L field energy by means of minimization 9¥ yields a vector
(Hs=demagnetizing fieldis the most cumbersome part of potential A, discretized at each node. While the stray field

any micromagnetic calculation. While the first integral in Eq. . . L )
(18; is over t%e magnetic region, the second integgral is eqx_and the stray field energy for a given distribution of magnetic

tended over all of space. The complexity of the stray fieldmoments is unique, the vector potenthlis not. Only the

term arises from its nonlocal nature. The demagnetizing fiel&OI?no'da}l par't oh, from V.Vh'Ch t.he.lnd!JCtIOIBZVXA. IS
H, at the locatiorr is given by derived, is unique for a given distribution of magnetic mo-

ments. The irrotational part & does not have any physical

, , meaning(gauge invariange The numerically obtained dis-

f (r=r)v-JJ(r’) dv’ cretized vector potential generally consists of both a solenoi-
! Ir=r'® dal and an irrotational part. This vector potential is not

1
4o

Hs(r):

, gauged in order to allow for an unconstrained minimization
3§ (r—r )n'Jde, (11  of the functionalw. The question may arise how the irrota-
vofr=r'? ' tional part ofA is determined. As it is not used in the calcu-
lation of the energy, its value depends on the initial condi-
wheren denotes the normal vector of the surface &ndthe  tions and on the path the minimization routine takes on its
surface of the sample. Inserting this expression into(EQ.  way towards an energetic minimum. This imponderability of
leads to a twofold volume integral which requires an impracthe resulting vector field may seem unsatisfactory. However,
ticably high computational effort. A common approach tothe relevant solenoidal part @f is not affected by the am-
overcome this difficulty is the employment of Fourier trans-biguities of the calculated vector potential.
forms such as FFT to reduce the calculation onto local vari-
ables. The use of FFT demands a discretization on a regular 3. Exterior region
grid. However, an essential feature of the calculation pre-

Sef“ed in this paper 1s ‘h‘? appl|cat|on of an adaptive rnethtended over thevholespace. This “open boundary” prob-
refinement technique yielding irregular positions of the noda . . .
em is treated using spatial transforms for the external

points which is required to obtain the necessary accuracy. iorf by means of which the unbounded exterior region is

. . regi
;?;Cies' S:;;her method for the evaluation of the stray fIeldrrnapped on a finite area which is discretized and in which the

calculation of the stray field is performed. By doing so, free
boundary conditions for the vector potential are used. An
efficient and seemingly more rigorous method to treat this
First, one may substitute.,gHs=(B—Js) in Eq. (10), open boundary problem is the use of boundary elenfénts,
whereB is the magnetic induction. Instead of calculatiBg which we consider to implement in the algorithm in a future
directly, one has the possibility to vary an arbitrary solenoi-version. The method of integrating over both the magnetic
dal fieldB’ until it is approximately equal t8. Accordingto  region and the exterior region for the calculation of the de-
Brown®** the functional magnetizing field and its energy requires a high number of

It has already been stressed that the integral in(E).is

1. Brown’s upper bound
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elements and of unknowns. It is, however, by far more conpy means of the differend®—J. If B is essentially equal to
venient than the direct evaluation of the integral in Bd).  J, as is the case for demagnetizing factors close to zero, a
The calculation of the demagnetizing field used in Ourvery high accuracy is required in the calculation Bfin
calculations is based on a program developed by Schirefl. order to obtain a correct value for the energy. The accuracy
in the calculation of the magnetic structure, which is calcu-

E. Sum of all terms lated by means of the coupling & andJ, however, is not

influenced by this effect.

Y The correctness of the anisotropy energy calculation can

and (), . The equilibrium configuration of the magnetiza- be tested easily by setting a homogeneous and fixed distri-

S . R . tion of the magnetization enclosing different angles with
tion is calculated by means of direct minimization with re- bution of the magnetization enclosing different angles

. . . the easy axis and comparing the result with the analytical
spect to these variables. For this purpose a commercial coly; y paring vt

jugate gradient method especially developed for large-scal alue. Using a suitable inhomogeneous arrangement, the
jugate gra P y P 9 Same can be done to test the exchange energy calculation.
problems is employetf

. 4 . .__.. The exchange energy is influenced more sensitively by the
Note t_hat with this algorithm the spontan.eous.poIfir|zat|ondiscretizatiog_ Howe%};r, these effects are reduced substan-

Js Is de.f'”‘?d only at the nodes. Only for V|sgallzat|0n pur'tially by adaptive mesh refinement if the size of the discreti-

poses it will be |'nterpollated on a regulgr gr.|d. In. order tOzation cells drops below the exchange length where the mag-

reduce computational time anql cumulative _dlscrenzatlo_n ert atization is strongly inhomogeneous.

rors, the energy of the system is calculated in any case in the

most direct way instead of interpolating the magnetization

within the element and deriving the energy from it. This VI. APPLICATION

latter method has been used by Cheral® and is undoubt-

edly a useful assumption. However, the interpolation of thema\/glvétgti;glt?or?l?r?rgh?;cttgigi?:rlIlglr:)ucrl? g;sér&gtn()g_oi ;he
Cartesian components ol violates the constraintJg| %1011 J/m, K =500 J/nf, J.—1.07) is investigated. These

=const and leads to higher computational costs for the sec- . . P :
ond order terms, i.e., the anisotropy and the stray field, With[’n"’lte“"jll pgrameter; yieQ=10"", i.e., a magnetically very
out necessarily yielding a higher accuracy. soft m{:lterl'al. The size and geometry of the sample is illus-
trated in Fig. 2.
_ The computational region is discretized into about 95 000
F. Tests of the algorithm elements, approximately 83000 of them are located inside

We have performed several tests on the vector potentidhe sample, the rest is used for the calculation of the demag-
routine for different geometries. These tests consist in calcuretizing field outside. The average extension of the elements
lating the stray field energy for a fixed homogeneous magwithin the sample is about 16 nm, the maximum distance
netization. No influence of the initial configuration Afon  found between two nodes of an element within the sample is
the resulting energy and induction was found: Using a ran4l nm. Having the exchange lengfiy/ m=6 nm, this dis-
dom initial vector potential yields the same results as a hoeretization is not expected to be sufficient to resolve the
mogeneous one but requires longer computational time. Theagnetic structure everywhere reliably. Thereforeagos-
computed results for homogeneous magnetization parallel tgriori adaptive mesh refinement technique is used to raise
the x, y, andz axis can be compared with analytical calcu- the accuracy of the calculation, see Sec. VIIC.
lations of demagnetizing factof3.With increasing discreti-
zation density fthe theoretical values are generally ap- VII. RESULTS
proached very nicely.

The calculation of the demagnetizing field and its energy The starting conditions of the magnetization are chosen
is most likely to be the source of possible errors in micro-far from an equilibrium state in order to obtain demagnetized
magnetic computations. Analytical proofs only exist for thestates that do not depend strongly on the initial configuration.
case of homogeneously magnetized sampl&ar the geom-  Three homogeneous starting conditidnsagnetization par-
etry used in the calculation presented here, the demagnetiailel to thex, y, andz axis) are used for the calculation. By
ing factors ar& N,=0.2939,N,=0.5629, andN,=0.1431.  doing so, two different patterns are obtained. The initializa-
The numerically obtained demagnetizing factors differ be-tion parallel to they axis yields the expected Landau pattern
tween 0.3% folN, to 13% forN, from the analytical values. illustrated in Fig. 3.

We attribute this to the low discretization of the exterior In the other cases a seven-doméidiamond™) pattern
region. Most of the elements are located in the magneticshown in Fig. 4 results. This diamond pattern has been re-
region as flux closure patterns are expected. While for magported, e.g., by Van Den Besg al*® and represents a meta-
netization states with high remanence the accuracy of thstable state. The total energy of this configuration is in our
calculation of the stray field in the exterior region is decisive,case about 24% higher than the Landau pattern shown in Fig.
the stray field nearly vanishes outside the sample for flux3.

closure structures and a comparatively low accuracy in the The seven domain pattern and the Landau pattern have
exterior region is sufficient in this case. been found by Fredkin and Koehtéf®by means ofb initio

Recently we found that the vector potential method maymicromagnetic calculations on Permalloy particles. The
lead to erroneous results concerning the stray field energy ffresent paper focusses on the topology of the Landau struc-
the demagnetizing factors are very small. This is the case iture which is supposed to be the energetical ground state of
thin platelets. The stray field energy is calculated in our cas¢éhe system. The diamond pattern is analyzed elsewere.

Summing up all energy terms, we obtain the total energ
of the system as a function of the set of variabtgs ¢;,
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FIG. 5. Magnetization pattern at the surface of the Permalloy
block (plane A in Fig. 8. Left: projection of the vector field on the
surface. Right: Gray scale representation ofzttemponent of the
magnetization.

180° Neel wall. This effect resulting from the ¢ walls at
the surface has been discussed elsewlete.

FIG. 3. 3D representation of the calculated Landau structure

with four domains.

A. Canting of the central domain wall

Another striking peculiarity of the magnetization as com-

In addition to the clearly recognizable domain structurepared with the idealized pattern in Fig. 1 is the asymmetrical
according to Fig. 1 some additional distinct features of theshape of the closure domains shown in Fig. 5. The central
pattern in Fig. 3 can be found. First of all, the asymmetry ofdomain wall appears to be canted with respect to the edge of
the magnetization at the surface with regard to an inversiothe sample. The angle between one domain wall of the clo-
at the center is evident. On the upper junction of the domairsure domain and the central domain wall is disparate for the
walls a magnetic vortex occurs while the lower junction is atwo adjacent domain walls of the closure domain. The asym-

metrical shape of the closure domains can be recognized
clearly on the simulated Kerr image on the right side.

To analyze the magnetic structure more precisely we take
a look at the magnetization inside the sample. The Figs. 6
and 7 show the projection of the magnetization on cross
sections through the middle of the sample and on the rear
side, respectively. The position of these cuts through the
sample are described in Fig. 8. Remarkably, the asymmetry
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FIG. 4. 3D representation of the magnetization of the metastable FIG. 6. Projection of the magnetization on the cross section B

seven-domain ‘“diamond” structure.

through the middle of the sample, see Fig. 8.
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144 :;j:::: M planez=0. The two major domains are separated by an asymmetri-
1t bt il cal Bloch wall(Hubert-LaBonte wall
I EE R AR
TS
rees odenbaal 41 netic domain walls. The magnetization on a cut through the
: by . Lo
] e boenppp 44 middle of the sample across the plane0 (plane D in Fig.
A et b b b B g 8) is illustrated in Fig. 9. It shows that the transition between

the two major magnetic domains is given by an asymmetrical
Bloch wall. This wall type has been found independently by
Hubert and LaBont&? Using 2D calculations, the Hubert-

of the domain pattern vanishes in the center of the samplbaBonte wall has been reported in other pagér§.Our 3D
(Fig. 6) while on the rear side the central domain wall is modeling is in agreement with these results.
again skew, however, canted in the opposite direction com- Symmetrical Bloch walls do not occur in magnetically
pared with the front side shown in Fig. 5. Repetitions of thesoft material. A symmetrical Bloch wall, as illustrated sche-
calculation have yielded different positions of the swirls andmatically in Fig. 10, would lead to an out-of-plane magneti-
a canting of the central domain wall in both directions, i.e.,zation at the surface. In soft magnetic materials such surface
left and right on the front side. These different results arepoles of the magnetization are avoided by the formation of
assigned to slightly different starting conditions. In order toso-called Nel caps, i.e., an alignment of the magnetic mo-
avoid the formation of metastable, unrealistic arrangementgents parallel to the surface. This behavior is known as
of high symmetry, a homogeneous starting condition is alBrown’s pole avoidance principf. Therefore, one has a
ways perturbed randomly in our calculations prior to themostly Neel-like transition between the domains on the sur-
minimization. The magnitude of this perturbation is typically face while inside the sample the Bloch part of this domain
about+0.5° for bothd; and¢; at each nodé The breaking wall prevails. As the Bloch wall at the center converts into a
of symmetry in different directions but in qualitatively equal Neel wall near the surface, the magnetization is sheared on
manner indicates that this effect is not due to numerical arone side with respect to the center of the Bloch Waff
tifacts or a consequence of the discrete numerical represefrhis shearing, in our case to the left side, can be seen in Fig.
tation. As the patterns are basically the same and can bg On the other hand, the ‘Mklike magnetization on the
transformed into each other by means of simple symmetryower side of Fig. 9 can be regarded as the far tail of the
operations, only one arrangement needs to be reported.  closure domain on the lower side of Fig. 5. Hence, the shear-
ing of the magnetization near the surface gives rise to the
B. Bulk effects asymmetrical shape of the closure domains.

To understand the reason for the skewness of the central The different cuts through the sample in Fig. 11 show
domain wall it is helpful to study the topology of the mag- how the magnetization inside evolves from the center to the
upper end of the block in Fig. 3. The Hubert-LaBonte wall
transforms continuously to a nearly homogeneous arrange-
ment. The dashed circle in the cross section E shows the
magnetization in the proximity of the swifl(vortex) in Fig.

FIG. 7. Magnetization pattern on the rear side of the sample
plane C in Fig. 8.

T+ T+ T

FIG. 8. Position of the cross sections shown in the subsequent FIG. 10. Schematic representation of a symmetrical Bloch wall.
figures. The locations of the planes arey’ 125 nm, B:y=0, C: As the Bloch wall intersects the surface of the sample, magnetic
y=-—125nm, D: z=0, E: z=250nm, F:z=300nm, G:z surface poles with high stray field energy occur. In soft magnetic
=350nm, and H:z=450nm. The viewpoint onto the cross- material this is avoided by an alignment of the magnetic moments
sections is located outside the sample on the posjtiaedz axes,  parallel to the surface, which leads to an asymmetrical Bloch wall
respectively. as shown in Fig. 9.
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S nent of the magnetization in the cross sections of Fig. 11.
FIG. 11. Magnetization inside the sample on different planes

with z=const(see Fig. 8 The asymmetrical Bloch wall evolves o . . .
continuously into a nearly homogeneous closure domain. the other swirl is oriented into the sample. This can be seen

in the series of cross-sections along planexefconst, cf.

5. Due to the asymmetry of the Hubert-LaBonte wall, theFig. 13. The position of these cross sections is sketched in
swirl is evidently displaced from the center of the sample. InFig. 14. In the cross section near the center of the sample
the case of very thin layers, where the domains are separatéBig. 13 (J)] the Bloch liné®>3can be seen clearly, starting
by Neel walls, the closure domains have a symmetricalfrom one swirl in the lower left end ending in the other swirl
shape®®®* Hence, the asymmetry can be assigned to then the upper right. The Bloch line is not located on a plane
Hubert-LaBonte wall. with x= const. The flux is carried from the lower swirl which

The arrangement of the magnetization in the cross sectiots displaced from the center in negative directiorxaiver to
F resembles to an asymmetricafe{leNall.20 However, it  the line sketched in Fig. 18)) (at x>0) towards the upper
should be stressed that rather than a transition from one typawirl, which is again displaced towards negative values. of
of 180° walls to another, the transition shown in Fig. 11Figures 131) and 13(K) show how the magnetization tends
represents a series of cuts through different domains. A graip align parallel to the edges of the sample in order to avoid
scale representation of the component of the magnetizatiosurface poles. This leads to different configurations of the
perpendicular to these cuts is shown in the series of Fig. 12nagnetization in the eight corners of the sampl&everal

A corresponding series of cuts on the lower half of thedifferent combinations of arrangements in the corners are
block (not shown yields in the same way a displaced swirl possible, but the analysis of these details lies outside the
on the lower rear side of Fig. 3. Both vortices are displacedscope of this paper.
in the same direction{x). While the swirl on the upper Despite the formation of N& caps the perpendicular
side shows a perpendicular magnetization directed out of theomponent of the magnetization does not vanish completely
sample, the perpendicular magnetization in the vortex core cft the surface. As illustrated in Fig. 15 the perpendicular
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FIG. 13. Magnetization on the planes-const shown in Fig.
14. The approximate position of the Bloch line is the gray shaded
area in J, which indicates the region whemngis close to zero. The
gray scaling represents the valuemi.

X

component shows a characteristic pattern at the surface. F|C15_.hlS. Tlc();:olorgy c;:‘tthti perpt)en;d|(|:url1arnc10mnp9[_ne|:_t Z‘t tthtil sur-r
However, except for the swirl and the corners, the magnitud ace. the peak represents the out-ol-plane magnetizafion at the core

of this out-of-plane magnetization is very smédbout 10% of the swirl. At the corners the magnetization turns towards the
of 30) P 9 y 0 adjacent edgdf. Figs. 13(1), 13(K), 11 (H)] and the perpendicu-
s)-

lar component increases. A small Bloch-like contribution to the

central Nel wall at the surface can be recognized in the middle.
C. Effect of the mesh refinement

It has been mentioned previously that an adaptive mesHechnique’® This method is ar-type refinement method
ing method has been used for the calculation. As the visuawhich essentially shifts the nodal points towards inhomoge-
ization of a three-dimensional grid of irregular tetrahedralneous regions. As can be seen in Fig. 16 the nodal point
elements is problematic, only the mesh at the surface of th@ensity is higher where the domain walls are located. How-
sample is displayed in Fig. 16.

The adaptive mesh refinement is performed in a first step
increasing the discretization density in areas of inhomoge- %
neous magnetization by means of the “shrinking element”

FIG. 16. Refined mesh on the surface of the sample. The
adapted mesh has been generated using the “shrinking element”

FIG. 14. Position of the cross sections in Fig. 13. The crossechnique combined with &-type refinement! The regions of
section J is located at=25 nm. The planes are viewed at from the stronger inhomogeneities of the magnetization are recognized, see
positive X axis. Fig. 5. In these areas the density of nodal points is increased.
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~ FIG. 17. Changement of the mean energy density with increas- i 19, The maximum misalignment of magnetic moments in
ing mesh refinement. The total energy of the arrangement diminge finjte elements can be associated with the maximum error of the
ishes slightly with increasing discretization density. The mean engg|culation. This misalignmemt ¢ ., is reduced strongly by means
ergy density is expressed in reduced units, i.e., in unit&u, . of the adaptive mesh refinement.

ever, moving nodal points is not sufficient to resolve stronglycantly. In numerical micromagnetic calculations, discretiza-
inhomogeneous regions such as a magnetic swirl becausetian errors occur in the case that the magnetization at neigh-
big displacement of nodal points is likely to yield a strongly boring discretization points is strongly misaligned.
distorted mesh with ill-shaped elements. Therefore, anotheCorrespondingly, the maximum misalignment of the magne-
refinement strategy is employed in a second step. By meangation in an element of the mesh can be used as an indicator
of bisection of elements, nodal points are added specificallyor the quality of the mesh. The maximum misalignment of
in strongly inhomogeneous regions. This mesh refinementhagnetic moments in adjacent nodal points is lowered effec-
algorithm recognizes the insufficient discretization in thetively by means of the adaptive mesh refinement as illus-
swirl and adds new nodal points in this area. Iteratively, therated in Fig. 19.

mesh is modified and a new minimum energy arrangement is
calculated. The effect of this procedure on the total energy is
illustrated in Fig. 17. While the total energy decreases with
higher discretization density, the exchange energy rises, see
Fig. 18. A coarse discretization mesh tends to underestimate The total energy resulting from the numerical calculation
the exchange energy and leads to an overestimation of thean be compared with a simplified analytical wall model
stray field energy in this algorithm. In the mesh with the calculation using a method described in detail by Ahatfni.
highest number of elements, the maximum edge length of thaccording to this, the width\g of a one-dimensional 180°
elements within the refined region becomes small, betweeBloch wall in an infinite film with thicknessl obeys the
0.5 and 1.0 nm which is significantly below the exchangeequation

VIlIl. COMPARISON WITH WALL MODEL
CALCULATION

length.
Although after the refinement the magnetization does not A K, J2[2Ag d Ag
change visibly, the error of the calculation is reduced signifi- A—é(ﬂ— 1)= 7"‘ 2,“«0[ g In( 1+ 2AB> ~2Aa+d|
(14)

0.00770 v T T
Similarly, the Nel wall width Ay can be determined from
the equation

0.00760

)
'S
=
o
8 2
3 A Kiy Js |1 2Ay ( d
B —(V2-1)=—+—|z—— +—
g azV2mh=5t s e T M s,
B 0.00750 r E
5 A
[0 N
§ T oANtd| (15
g‘l 0.00740‘ g . 80° : )
s The energy per unit wall areg!®” is calculated according to
Q
s s00730 , . 180° wAMz 0 mAgK, wJ2 A§I (1 d )
’ 0 5000 10000 15000 Y8 = -1)+ + —In| 1+ —
additional elements 5 Ag 2 2po d 2AB(16)

FIG. 18. Mean exchange energy density expressed in reduced
units versus number of additional elements. for the Bloch wall and
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van and the domain wall widthag  are calculated assum-

ing an infinitely extended thin film, which is only a coarse
approximation in this case. If we assume that the central
domain wall consists in equal parts of both aeNeand a
Bloch-like component[Fig. 11 (D)], we may sety*
= v+ y8%)/2 and thus obtainb,,=0.03%bcdE/2u,,
which corresponds rather nicely to the calculated value. This
C agreement should not be interpreted as a proof of the result
because of the simplifications involved in the analytical cal-
culation. However, considering that the computed arrange-
ment of magnetic moments in the Landau structure is
strongly inhomogeneous over nearly the whole sample and
that the idealized structure sketched in Fig. 20 hardly de-
scribes the actual arrangement of the magnetization, the
comparison of the computed result with this simple wall
model calculation yields reasonable agreement. It is expected
to obtain a better agreement with analytical model calcula-
FIG. 20. Idealized wall structure used in the analytical calcula-tions for samples of bigger size, which however are currently
tion. The length of the edges ate=500nm,c=1um, andd precluded from numerical micromagnetic investigations due
=250 nm. to the high computational requirements.

2
)/1800_ A (V2—-1)+ TANK, ++ mIsAn IX. COMPARISON WITH EXPERIMENTAL DATA
N =
N

A 2 4,LLO

The most unexpected result of the presented calculation is
d the asymmetrical shape of the closure domains at the surface
1+ m) 17 of the sample. A report on this effect has not been found in
) the literature.
for the Neel wall. The material parameteds, K, andA for An experimental detection of the forecasted asymmetrical
Permalloy given in Sec. VI are used, the thickndds 250  domain structure is expected to be problematic for different
nm. Solving numerically the transcendental equatidh®  reasons. First, it should be kept in mind that the effect is very
and (15) yields Ag=9.12 nm andAy=6.00 nm. With these small though the canting of the central domain wall of about
values one obtains from Eq$16) and (17) yg*>=2.98  7° shown in Figs. 5 and 7 is clearly visible: The specimen
x1073J/n? and y;3%'=6.02x10"2J/nf. For 90° Nel used in experimental domain wall observations are usually

2Ay
X{l—Tm

walls we approximate significantly larger than the sample considered in this calcu-
lation. The displacement of the junction of the domains with

oo 1 1g0° respect to the center, which leads to the asymmetrical shape,
N TN (18) s in this calculation about 40 nm. This effect is due to the

asymmetrical structure of the Bloch wall which is expected
As a simplified model for the Landau structure of the mag-o depend only on the thickness of the film and not on the
netization we consider a geometry of the domain wall strucfinite size of a platelet. Provided that the core of the mag-
ture sketched in Fig. 20. Assuming 90° @lewalls at the netic vortex is shifted in a region within the width of the
borders of the closure domains and a 180° Bloch wall as thgentral domain wall the inclination angle of the domain wall
central domain wall the total energh, writes at the surface depends only on the distance of the two swirls.
1 As the characteristic size of the films observed in experi-
— 180° 90° 2 ments is typically of about 10@um, such a small displace-
Qi=d|(c—b)yg™ +byy 2v2+ 7 DK (19 ment wou?/dp Ieag to a very sgall tilting angle. Henpce, the
strong canting in our calculation must be attributed to the
< small size of the sample.
=0.0292;_—bcd (20 The asymmetry of the arrangement occurs only on the
Ho surfaces, and on the front side it is opposed to the asymmetry
The last term in Eq(19) accounts for the magnetization on the rear side. If a domain structure is investigated by
perpendicular to the easy axis in the closure domains. Themeans of transmission methods such as the Lorentz micros-
value of 0.0292 of the reduced mean energy density is of theopy the deflection pattern generally represents an integral
same order of magnitude as the computed result, see Fig. 1@ver the thickness of the film. Hence, the asymmetry on the
However, the result from the analytical calculation differs bysurfaces is expected to be averaged out in a Lorentz micros-
about 22% from the numerical result. This difference can becopy image. The displacement on opposite sides on the front
attributed to several simplifications used in the wall modeland on the rear would merely lead to a smearing out of the
calculation. For instance, finite-size effects such as surfacdomain wall image. Nevertheless, there seems to be a quali-
charges at the corners and the complex structure of the matgtive agreement with the structure predicted from our calcu-
netization in the vicinity of the swirls are neglected in the lation and experimental observation reported in the literature.
analytical model. Moreover, the energy per unit wall arealn thick soft magnetic films, magnetic domain walls are usu-

J2
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ally separated by the typical double-Y domain wall structure of a well-known and formerly unsolved problem in micro-

A careful observation of the domain patterns reported bynagnetics. The obtained result indicates that the idealized
Tsukahar¥ and Kawakatstr® or, e.g., by Harrison and Landau structure represents a rather coarse model of the ac-
Leaver’ suggests that a plane parallel to the film normaltual distribution of the magnetic moments inside the sample.
through the middle of the central domain wall is not a planeEven in this most simple magnetic domain pattern in a bulk
of symmetry. The 90° walls on opposite sides of thesOft magnetic sample the topology of the magnetization is
double-Y structure are parallel, respectively, but neighboringe@markably complex. Nevertheless, the computed total en-
90° walls seem to enclose a different angle with the centraf"dy Of the system is comparable to the result of an analytical
domain wall. Magneto-optical Kerr  spectroscopy calculation using a strongly simplified wall model. Bulk ef-

observation® of the domain structure in iron films suggest a fécts enfavor the formation of domain structures of lower
slight tilting of the central domain wall. symmetry compared with the domain structure in thin films.

The asymmetry of the central Bloch wall gives rise to a
distorted shape of the magnetic domains. Experimental ob-
servations suggest that the magnetic structure is qualitatively

The computation of the Landau structure in a soft mag4ransferable to soft magnetic samples of considerably larger
netic flat rectangular prism has provided a possible solutiosize than the geometry used in this calculation.
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