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Quasicoherent nucleation mode in two-phase nanomagnets
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Magnetization processes in advanced magnetic nanostructures are investigated. For the case of spherical soft
or semihard grains surrounded by a very hard matrix abulging nucleation mode is discovered. The bulging
mode exhibits the radial angular symmetry of the coherent mode, but it is incoherent due to its radial variation.
The radial dependence of the bulging mode is obtained by solving a spherical Bessel equation which is subject
to appropriate boundary conditions. In contrast to the coherent mode, the bulging mode yields a nucleation-
field coercivity which depends on the exchange stiffness and on the size of the grain. There is a critical grain
radius 7.869AA/m0Ms

2 above which the bulging mode is replaced by a modified curling mode. The nucleation
modes realized in nanostructures affect the demagnetizing-field corrections necessary to account for the exter-
nal shape of magnetic samples. Since strong but short-range exchange and weak but long-range magnetostatic
interactions compete on nanostructural length scales, the sample-shape dependence of the hysteresis loops
cannot be mapped onto a purely magnetostatic demagnetizing factor.@S0163-1829~99!01734-8#
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I. INTRODUCTION

Nanostructured magnets are of great interest in theore
physics, solid-state science, and advanced technologica
eas such as permanent magnetism and magn
recording.1–6 From a practical point of view, the number o
pure compounds meeting specific magnetic requiremen
limited, but the magnetic performance of two-phase str
tures may be better than that of the single-phase magn
This refers in particular to the energy product (BH)max,
which describes the amount of magnetostatic energy st
by a permanent magnet.1 An enhancement of the maximum
energy products beyond those of hard-magnetic phases
as SmCo5 and PtFe is possible by exchange coupling na
structured soft regions having a high magnetization, such
Fe65Co35, to a highly anisotropic and coercive hard matr
On this basis, room-temperature energy products as hig
about 400 kJ/m3 ~50 MG Oe! have recently been obtained
iron-rich two-phase Pt-Fe thin films.5 This energy product is
close to energy products of the present record-ho
Nd2Fe14B and clearly exceeds energy products achieved
single-phase PtFe films. Taking into account the compa
tively poor performance of the starting material PtFe, t
result is a clear confirmation of the theoretical prediction1 of
enhanced energy products in suitable nanostructures.

A key theoretical problem in micromagnetism is to calc
late the hysteresis loops of two-phase materials from
magnet’s morphology, that is from its microstructure a
nanostructure. Hard-magnetic hysteresis is associated
low-temperature anisotropy-energy minima,2,6 as opposed,
e.g., to metastabilities in the vicinity of the critical point7 and
processes involving variable electric fields in soft magne8

For ideally aligned two-phase magnets analytic express
for extrinsic properties such as the energy product (BH)max
have been obtained as a function of the spatial distributio
the first anisotropy constantK1(r ).1 In particular, when the
radius of the soft regions is smaller than the domain w
width of the hard phase, then the calculation reduces to
consideration of the volume-averaged anisotropy cons
PRB 600163-1829/99/60~10!/7359~7!/$15.00
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^K1&. In the case of PtFe, this regime corresponds to s
inclusions smaller than about 8 nm, and TEM micrograp
show indeed that many soft grains are much smaller than
nm.5 However, there are also soft grains~and clusters of soft
grains! larger than 20 nm. These extended soft regions h
a disproportionally strong influence on the hysteresis lo
but cannot be described in terms of^K1& exclusively.9

Magnetization processes in inhomogeneous magnets
generally very complicated.8,10 Often it is possible to use
approximations to investigate the physics of magnetizat
processes~see, e.g., Refs. 2,6,9,11–13!, but quantitative re-
sults are usually obtained from numerical calculations.14–18

By comparison, analytic approaches have been limited
few simple, mostly homogeneous geometries.1,10,13,15–17,19–25

The determination of the local magnetization configu
tion M (r ) starts from the well-known micromagnetic energ
functional

E5E FA
~¹M !2

Ms
2 2K1~r !

Mz
2

Ms
22m0M•H2

m0

2
Hd~r !•M Gdr.

~1!

Here Ms5uM (r )u is the spontaneous magnetization,K1(r )
denotes the first uniaxial anisotropy constant,A is the ex-
change stiffness, andH is the applied magnetic field. Not
that Eq. ~1! describes a generally random mixture of ha
and soft phases but assumes that the crystallites have a
monc axis. Physically realized magnetization configuratio
M (r ) correspond to local or global energy minima, and t
hysteresis loop is obtained by tracing the magnetization c
figuration as a function of the external fieldH. A key prob-
lem is that the magnetostatic self-interaction fieldHd(r ) is a
nonlocal functional ofM (r ), which makes it necessary t
determineHd self-consistently. The analysis of the proble
shows that it is, in general, not possible to interpretHd(r ) as
a local modification of the external field.

An important class of magnetic-reversal phenomena
nucleationprocesses, which are defined as localized or
tended ~delocalized! instabilities of a metastable energ
7359 ©1999 The American Physical Society
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minimum.6,9,10,19,20,22 The reverse magnetic fieldHN at
which nucleation occurs is known as the nucleation fie
H52HNez . In the simplest case, nucleation occurs at
fully aligned state, whereM5Msez , and leads to complete
magnetic reversal. This corresponds to rectangular hyste
loops whose coercivity is equal toHN . Note, however, that
the behavior of the magnet after nucleation goes beyond
scope of nucleation theory, and in practice processes suc
domain-wall pinning may inhibit complete reversal.

For some structural models it is possible to obtain ex
nucleation fields and nucleation modes. In structurally hom
geneous ellipsoids of revolution having an easy magnet
tion axis ~unit vector ez) parallel to the axis of revolution
there are two exact eigenmodes of interest.10,19,20If the ellip-
soid’s radiusR is smaller than a coherence radiusRcoh, then
the dominating exchange interaction yields coherent~uni-
form! nucleation@Fig. 1~a!#. For radii larger thanRcoh mag-
netostatic interactions give rise to curling@Fig. 1~b!#. For
spheres and long cylinders~magnetized needles! one obtains
Rcoh55.099AA/m0Ms

2 and Rcoh53.682AA/m0Ms
2, respec-

tively. As a consequence,Rcoh'10 nm for a wide range o
materials~see also Sec. III C!. Note that the nucleation prob
lem is not related to the frequently considered existence
equilibrium domains: hysteresis loops are nonequilibri
phenomena, whereas quantities such as the critical sin
domain radiusRSD@Rcoh refer to equilibrium and describe
for example, the virgin state after therm
demagnetization.

6,25

For coherent rotation one obtains the Stoner-Wohlfa
relation

HN5
2K1

m0Ms
1

1

2
~123D !Ms , ~2!

whereas the curling nucleation field is~see, e.g., Ref. 10!

HN5
2K1

m0Ms
1

c~D !A

m0MsR
22DMs . ~3!

In these equations,K1 is the first uniaxial anisotropy con
stant, and the factorc equals 8.666 for spheres (D5 1

3 ) and
6.780 for long cylinders (D50). In a sense, Eqs.~2! and~3!
epitomize the progress in analytic micromagnetics after
seminal domain-wall calculations by Bloch and Landau. I
worthwhile noting that coherent rotation and curling are
only nucleation modes in not-too-elongated homogeneou
lipsoids of revolution.10 Localized modes, where the nucle

FIG. 1. Free-surface nucleation modes:~a! coherent rotation,
and~b! curling. The figure shows thex andy magnetization devia-
tions in thex-yplane for a sphere~top view on the equatorial plane!.
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ation process occurs in a small subvolume of the magne
unfavorable from the point of view of exchange energ
whereas the buckling mode can be excluded for aspect ra
smaller than 4.6.

This paper consists of two parts. In Sec. II we repor
novel nucleation mode, denoted here asbulging, and in Sec.
III we interpret this mode in terms of demagnetizing-fie
contributions.

II. MAGNETIZATION BULGING

In homogeneous, single-phase magnets there are only
modes, namely coherent rotation and curling, but this is
necessarily the case in two-phase nanostructures. Here
deal with comparatively large soft or semihard inclusion
which have a disproportionally strong influence on the co
civity of real magnets. We disregard extremely small soft~or
semihard! regions, which are ideally exchange-coupled
the hard matrix and yield a micromagnetically homogene
material characterized by a volume-averaged anisotropy c
stant^K&.1 In this ‘‘plateau’’ or ‘‘virtual crystal’’ regime, the
nucleation modes are delocalized, that is they exte
throughout the magnet. For ellipsoidal magnet shapes
corresponding nucleation mode is a curling-like but in ge
eral perturbed by demagnetizing-field inhomogeneities.
comparison, extended soft regions give rise to difficult-
treat localizedmodes.9 As a model, we consider a semiha
or soft ferromagnetic sphere of magnetizationMs , sur-
rounded by and exchange-coupled to a very hard sur
layer of fixed magnetizationMsez . This case is not only
scientifically interesting but also of practical interest in tw
phase nanomagnetism, because soft regions are often em
ded in a more or less aligned hard matrix.

A. Boundary conditions

The calculations leading to Eqs.~1! and ~2! are based on
the assumption of free-surface boundary conditionsn•¹M
50. In two-phase structures, such as magnetic multilaye1

and composite oxide particles,26 the exchange coupling
modifies the boundary conditions at the interfaces. Star
from the boundary-condition analysis by Skomski and Co1

it is straightforward to show that the general interface bou
ary conditions involvingA then reduce to clamped bounda
conditionsM5Msez . Physically, this means that the nucl
ation mode remains localized in the soft phase~compare Sec.
III A !. Furthermore, a very hard shell suppresses microm
netic surface modes such as the ones considered by Suh
Bertram.17

B. Angular dependence

To calculate the nucleation fields we start from t
method summarized in Ref. 10. Essentially, one must w
down the differential equation for the perpendicular mag
tization modem(r )5M (r )2Msez and find the eigenmode
m(r ) of that equation. Here we consider two modes: curlin
type modes, where10

m~r !5m~r ,u!~cosfey2sinfex! ~4a!

and a ‘‘quasicoherent’’ or ‘‘purely radial’’ mode
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m~r !5m~r !em , ~4b!

whereez•em50. In both cases, the magnitude of the mode
given bym(r )5um(r )u.

To prove that Eqs.~4a! and ~4b! are exact nucleation
modes, rather than trial functions, we have to show that t
are eigenfunctions of the corresponding differential eq
tions. This includes the calculation of the radial eigenfun
tionsm(r ). As outlined in Ref. 10, the differential equation
are obtained by minimizing the total magnetic energy Eq.~1!
with respect to the small quantitym(r ). For the curling and
radial modes we obtain

2A¹2m12K1m1m0HMsm2
m0

3
Ms

2m50 ~5a!

and

2A¹2m12K1m1m0HMsm50, ~5b!

respectively. Aside from the different boundary condition
and aside from minor variations in the representation,
~5a! is a well-known expression.10,20The magnetostatic term
2m0mMs

2/3 reflects the flux-closure clearly visible in Fig
1~b!.

Equation~5b! is a generalization of the coherent-rotatio
limit 2K1m1m0HMsm50. An interesting feature of Eq
~5b! is the absence of magnetostatic self-interaction ter
For coherent rotation, that is form(r )5m0 , the argument is
trivial: since the magnetostatic energy of a homogeneou
magnetized sphere is independent of the magnetization d
tion, it can be incorporated into a physically unimporta
zero-field energy~compare Sec. 9.2.1 in Ref. 10!. To analyze
the magnetostatic energy of an arbitrary quasicoherent
figuration m(r )5m(r ) we divide the spherical magnet int
infinitesimally small shells characterized bymi5m(r i). The
total magnetostatic self-interaction energyEms then decom-
poses into interactions between pairs of shells,Ems
5( i . jEms( i , j ). Taking into account that the magnetizatio
of the shells depend onr only, but not onu and f, and
utilizing the angular symmetry of the dipolar interaction w
find that Ems( i , j )50 for any pair of shells, and therefor
Ems50.

C. Radial eigenfunctions

Rewriting Eq. ~5! in terms of spherical coordinates an
putting m(r ,u)5F(r )Qn(u) yields the radial equation

d2F

dr2 1
2

r

dF

dr
1S k22

n~n11!

r 2 DF50. ~6!

In the case of curling,n51 and

k252
2K11m0MsH2m0Ms

2/3

2A
, ~7a!

whereas the quasicoherent case is characterized byn50 and

k252
2K11m0MsH

2A
. ~7b!

The angular eigenfunctions areQ0(u)51 and Q1(u)
5sin(u), respectively. The solutions
s

y
-
-

,
.

s.

ly
c-

t

n-

of Eq. ~7! arespherical Bessel functions: F(r )5 j 0(kr).27 In
particular,j 0(x)5sin(x)/x describes purely radial modes an
j 1(x)5sin(x)/x22cos(x)/x describes curling-type modes.

The final step is to incorporate the boundary conditio
Free boundary condition correspond tod jn(kr)/dr50 at r
5R. Curling is realized forx5kR52.0816,10 corresponding
to point ~I! in Fig. 2. Puttingk52.0816/R into Eq. ~7a! then
reproduces the spherical limit (D5 1

3 ) of Eq. ~3!. It is impor-
tant to note that the field must be negative~reversed! to yield
the right sign ofk2. Other maxima, such as point~II ! in Fig.
2, also satisfy the boundary conditiond j1 /dx50. However,
the additional oscillations enhance the exchange energy,
respond to more negative fields, and have no physical me
ing in the context of nucleation~see p. 216 in Ref. 10!.

D. Bulging vs. coherent rotation

A trivial example of a purely radial mode is the cohere
mode, whered j0 /dx50. In terms of Eq.~7b!, the coherent
mode is reproduced byk50 and corresponds to point~III ! in
Fig. 2. This impliesj 0(kr)51 ~no radial variation!, and the
nucleation field is equal to 2K1 /m0Ms . Note that puttingk
50 satisfies the free boundary conditionsd jn /dx50 for any
value ofn, but only for n50 this corresponds to a nonzer
mode.

To realize clamped boundary conditions we have to
sure thatj n(kR)50, rather than (d jn /dx)ukR50 . This yields
two nucleation modes. Aside from a modified curling mo
~Sec. II E!, there is an incoherent mode chararacterized b
quasi-coherent~purely radial! angular dependence. In Fig. 2
this corresponds to point~V!. The novel mode, which we
will call bulging, is shown in Fig. 3~a!. It is characterized by
the nucleation field

HN5
2K1

m0Ms
12p2

A

m0MsR
2 . ~8!

Bulging processes in aspherical ellipsoids are more diffic
to calculate, because the abovementioned argument reg

FIG. 2. Spherical Bessel functions and their micromagnetic
terpretation.
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7362 PRB 60RALPH SKOMSKI, J. P. LIU, AND D. J. SELLMYER
ing the magnetostatic self-energy does not apply. Howe
from the qualitative behavior of ellipsoidal wave functio
we expect modes similar to Fig. 3~a!.

It is interesting to compare the bulging nucleation fie
with the coherent-rotation nucleation field~anisotropy field!
2K1 /m0Ms , which is obtained by puttingD5 1

3 in Eq. ~2!.
Unlike the coherent-rotation nucleation field, the bulgi
nucleation field depends on the size of the semihard or
inclusion: it is highest for small inclusions~Sec. III A!.

E. Modified curling

The condition j 1(kR)50 yields a ‘‘clamped’’ curling
mode with a modified radial dependence@Fig. 3~b! and point
~IV ! in Fig. 2#. The corresponding nucleation field is

HN5
2K1

m0Ms
2

1

3
Ms140.382

A

m0MsR
2 . ~9!

The transition between bulging and clamped curling occ
at Rcoh57.869AA/m0Ms

2, which is somewhat larger than fo
free-surface nucleation.

For curling in long cylinders coated by a hard surfa
layer, the nucleation field is obtained from the first zero
the Bessel functionJ1(x), which occurs atx53.83171. The
result is

HN5
2K1

m0Ms
129.364

A

m0MsR
2 ~10!

as compared to Eq.~3! with c56.780 andD50 for uncoated
cylinders.

III. DISCUSSION

A. Applicability of the model

A difficult problem regarding the model considered in th
work is to what extent a spherical geometry is able to
proximate nanostructures encountered in practice. It is, h
ever, possible to discuss the effect of the present mode
sumptions on the hysteresis loop. The first point is t
nanostructures encountered in practice are often isotrop
only partly textured, so that theK1 term in Eq.~1! must be
replaced by a random anisotropy term~see, Ref. 6!. As a
consequence, the loop is no longer rectangular and nu
ation starts from an incompletely aligned magnetization c
figuration ~compare Ref. 22!. A similar effect is caused by

FIG. 3. Clamped nucleation modes:~a! bulging and~b! modified
curling. The figure shows thex and y magnetization deviations in
the x-y plane~top view on the equatorial plane!.
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demagnetizing-field inhomogeneities~Sec. III B!. This
means that the present model approximates real hyste
loops by rectangular loops whose width is given by t
nucleation field. The neglect of the real loop shape is imp
tant from a quantitative point of view, but it does not inva
date the qualitative features considered in this work.

A more subtle point is the assumption of a ‘‘very hard
shell, which leads to the clamped boundary conditions u
in Sec. II. The condition ‘‘very hard’’ means that the aniso
ropy field 2Kh /m0Ms of the hard phase must be much high
than the nucleation fieldHN . From Eq.~8! we see that this
condition breaks down for very small inclusions. Th
clamped boundary conditions, which yield well-localize
and easy-to-calculate nucleation modes, must then be
placed by general boundary conditions of the ty
Ah ]mh /]r 5As ]ms /]r ,1 where the respective indices refe
to the hard and soft regions. The point is that the nuclea
mode penetrates from the soft phase into the hard ph
when the exchange energy density, scaling asA/R2, is able
to compete against the anisotropy energy densityK1 .1 With
decreasing radiusR, this leads to aK1-dependent radial de
localization of the bulging mode until the delocalized^K1&
regime is reached. However, neither the plateau itself nor
approach to the plateau are of interest in the present con

B. Local magnetic fields

A popular explanation of demagnetizing factors of re
materials is in terms of nonuniform local stray fields caus
by morphological inhomogeneities and adding to the lo
anisotropy field 2K1(r )/m0Ms(r ). In homogeneous ellip-
soids of revolution magnetized along the axis of revoluti
the demagnetizing field is equal to2DMs , whereD5D i is
the demagnetizing factor. From elementary electrodynam
it follows in particular that D50 for long cylinders
~needles!, D5 1

3 for spheres, andD51 for oblate thin
films.28 More generally, in arbitrary ellipsoids the three e
genvalues of the demagnetizing tensor obeyDx1Dy1Dz
51, where the subscripts refer to the ellipsoid’s princip
axes. More generally, according to the Brown-Morri
theorem10 the magnetostatic self-energy of any homog
neously magnetized body of arbitrary shape can be writte

Ems52
1

2
m0M•E H~r !dr

5
m0

2
~DxMx

21DyM y
21DzMz

2!V, ~11!

where we obeyDx1Dy1Dz51. However, even in this sim
plified case the local magnetic field is inhomogeneous,
local fields are of great importance in real materials~see,
e.g., Refs. 14,18,24,29!.

An advantage of the present model is the absence of
homogeneous magnetostatic fields. In fact, the assump
that the soft inclusion and the hard shell have the same m
netization means that the~magnetostatic! demagnetizing
field before nucleation ishomogeneousthroughout the mag-
net. It is therefore not possible to ascribe the difference
tween Eqs.~2! and ~9! to any magnetostatic demagnetizin
field. The same is true for other ‘‘coated’’ ellipsoids such
the cylinders considered in Sec. II E.
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C. The role of exchange

Exchange interactions are well-known to dominate m
netostatic interactions on small length scales. On an ato
scale, the exchange field, which does not enter Maxwe
equations, is much larger than magnetostatic fields. F
relativistic scaling considerations23 it follows that magneto-
static interactions become important on a length scalel 0
5a0 /a57.252 Å in typical ferromagnetic solids, wherea0
50.5292 Å is the Bohr radius anda5 1

137 is Sommerfeld’s
fine structure constant.30 This indicates that both magneto
static and exchange interactions are important in magn
nanostructures. Furthermore, from an experimental poin
view it is difficult to separate magnetostatic and exchan
contributions. Both are quadratic in the spontaneous mag
tization Ms5uM u and have essentially the same temperat
dependence, so that they cannot be distinguished by
temperature-dependent measurement methods3,31 usually
employed to separateK1 contributions from magnetostati
contributions.

Figure 4 illustrates the competition between magnetost
self-interaction and exchange by a gedanken experimen
prolate ellipsoid~E! is made by adding two caps~C! to
sphere~S!. Of course, the two caps yield a magnetosta
demagnetizing-field contribution, which is obtained fro
Maxwell’s equations, but when the caps touch the sph
then there is also an exchange contribution associated
the required continuity of the magnetization.

D. Effective demagnetizing factors

A semiphenomenological way of discussing magnetic
versal is the Kronmu¨ller analysis31 based on the equation

HN5
2K1

m0Ms
2DeffMs , ~12!

whereDeff is effective demagnetizing factor.~In the sense of
Sec. III A, we assume that the nucleation-fieldHN is equal to
the coercivityHc). Comparing this equation with Eqs.~2!,
~3!, and~8!–~10! yields Deff as a function of the particle o
inclusion radius. Figure 5 shows the result for spherical m
nets. We see that the validity of the ‘‘magnetostatic’’ dema
netizing factorDeff5D51

3 is restricted to free-surface curlin
in macroscopic magnets (R@10 nm). In all other cases ther
is an exchange contribution toDeff . Equations~3! and ~8!
show that the exchange and magnetostatic contributions

FIG. 4. Limitations of the magnetostatic demagnetizing-field
proach. By a gedanken experiment, a prolate ellipsoid~E! is formed
from a sphere~S! and two caps~C!. The caps give rise to a Max
wellian contribution, but when they touch the sphere, there are
exchange contributions.
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of opposite sign, a phenomenon which is indeed observe
practice.3 Note also that, for coated spheres,Deff is negative
up to R0511.007AA/m0Ms

2 ~Fig. 5!. Below R0 , the ex-
change contribution overcompensates the magnetostatic
tribution to the effective demagnetizing factor.

E. Hysteresis-loop overskewing

An important demagnetizing phenomenon is the skew
~shearing! of hysteresis loops~Fig. 6!. The shearing proce
dure is used to realize demagnetizing-field correctio
which account for the nonzero sample-shape dependen
magnetizing fields encountered in open-circuit measu
ments. The procedure consists in considering skewed re
ence curvesM (H2DM ) rather thanM (H). However, the
experimental aspects of this procedure are by no me
trivial. For example, in Ref. 5 the complete neglect of t
demagnetizing factor (D50) gave rise to an unphysicall
low energy product of about 40 MG Oe, whereas puttingD
51, as appropriate for thin films, would yield an overske
ing of the hysteresis loop with an extrapolated energy pr
uct of more than 60 MG Oe~Fig. 6!. Similar difficulties are
encountered in other magnetic systems. By comparing
magnetization curves of Ni and Sm2Fe17N3 particles fixed in
epoxy resin the experimental demagnetizing factors areD i

50.14 andD'50.33,32 so thatD i12D'50.80 rather than
D i12D'51.

A popular approach is to ascribe demagnetizing-field
regularities to inhomogeneous magnetic fields naturally
curring in real magnets. However, as discussed in Sec. II
magnetostatic fields are not the only consideration, and
Sec. III B we saw that there are no inhomogeneous field
the models considered here. On the other hand, in m
cases the nucleation field, and therefore the hysteresis l
depend on the exchange stiffnessA and on the particle radius
R. The relation between this dependence and the loop o
skewing is illustrated in Fig. 7. Essentially, the skewing co
sists in the replacement of an open-circuit nucleation fi
HN1 by a closed-circuit nucleation fieldHN2 . A comprehen-

-

so

FIG. 5. Effective demagnetizing factors as a function of t
sphere radius: Maxwell prediction~dotted line!, homogeneous
sphere~dashed line!, and coated sphere~solid line!. For very small
radii the assumption of an ideally hard sphere becomes unreal
The radius is measured in units ofAA/m0Ms

2.
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sive quantitative analysis of the differenceHN22HN1 goes
beyond the scope of this work and will be published el
where, but from Fig. 5 and from the nucleation fields p
sented in Sec. II we see that this difference cannot be
duced to a purely magnetostatic contribution.

It is instructive to compare our qualitative approach w
experimental procedures to circumvent the problem of ov
skewing. To obtain a reasonable (BH)max value, Liu et al.5

used an approximate deskewing procedure based on th
sumption of an infinite slopedM/dH5` atH5Hc ~Ref. 33!
and obtained (BH)max552.8 MG Oe forD50.48. The ap-
proximate character of this method is proven by a sim
counter-example: for an ensemble of independent parti
having a very broad distribution of coercivities one h
dM/dH.0 at H5Hc , independently of the strength of th
demagnetizing field. Summarizing, our approach gives

FIG. 6. Demagnetizing-field correction for a Fe/Pt film:~a! raw
data,~b! overskewing due toD51, and~c! infinite-slope method
(J5m0M ). Skewing corrections are of practical importance, b
cause they make it possible to compare the properties of magne
different shapes.
AX
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qualitative correct account of demagnetizing factors in na
magnets, although a quantitative interpretation of the dem
netizing behavior of real, disordered nanostructures rem
a challenge.

An alternative interpretation of the bulging demagnetiz
tion factor Eq.~9! is that the hard shell yields an effectiv
demagnetizing field contribution by exchange biasing
soft core. Although meaningful for the bulging mode, th
explanation cannot be generalized. For example, the cur
nucleation field Eq.~3! depends on the exchange stiffnessA,
but there is no phase or surface contribution that could
interpreted as a source of biasing.

IV. CONCLUSIONS

The nucleation of reversed domains in two-phase na
structures is qualitatively different from the situation encou
tered in structurally homogeneous ellipsoids of revolution.
two-phase magnets consisting of small soft-magnetic
semihard particles surrounded by hard-magnetic sh
nucleation is realized by a nucleation mode calledbulging.
Since the coupling between the soft and hard phases cre
a radial inhomogeneity of the magnetization, the bulgi
mode is incoherent but has the purely radial angular sym
try of the coherent mode. The corresponding effective
magnetizing factors are generally smaller than predic
from Maxwell’s equations, because both magnetostatic
exchange fields contribute to the demagnetizing behavio
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FIG. 7. Theoretical demagnetizing-field correction:~a! original
loop and~b! skewed loop~dashed line!. Since overskewing corre
sponds to an instability, a vertical solid line is used to show
physically reasonable rectangular-loop behavior. The nuclea
fields for the different sample shapes are discussed in the main
From those equations follows that exchange and magnetostatic
tributions are of opposite sign.
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