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Thermodynamics of the quantum easy-plane antiferromagnet on the triangular lattice
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The classicalXXZ triangular-lattice antiferromagnet shows both an Ising and a Berezinskii-Kosterlitz-
Thouless transition, related to the chirality and the in-plane spin components, respectively. In this paper the
quantum effects on the thermodynamic quantities are evaluated by means of the pure-quantum self-consistent
harmonic approximation, which allows one to deal with any spin value through classical Monte Carlo simu-
lations. We present data for the internal energy, the specific heat, the static spin correlation functions, and the
in-plane correlation length for different values of the spin and of the exchange anisotropy. The quantum
transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical
and numerical estimates.@S0163-1829~99!04234-4#
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A renewed interest has recently focused on triangular
tiferromagnets~TAF’s!.1 Indeed, they turned out to describ
the magnetic behavior of several real compounds such as
example, the stacked antiferromagnet NaTiO2,

2 the organic
superconductors of the familyk2(BEDT2TTF)2X,3 and
the K/Si~111!:B interface.4

In this paper we investigate the thermodynamic proper
of the quantumXXZ Heisenberg antiferromagnet on the t
angular lattice, defined by the following Hamiltonian:

Ĥ5
J

2 (
i,d

~Ŝi
xŜi1d

x 1Ŝi
yŜi1d

y 1l Ŝi
zŜi1d

z !, ~1!

where J is the positive~antiferromagnetic! exchange con-
stant, and (Ŝi

x ,Ŝi
y ,Ŝi

z) are the spin operators sitting on th
sites i of a triangular lattice. They satisfySU(2) commuta-
tion relations and belong to the spin-S representationuŜi

2u
5S(S11). The interaction is restricted to nearest neighb
andd runs over their relative displacements. The planar ch
acter of the system is due to the presence of the anisot
lP@0,1), energetically favoring configurations with th
spins lying in thexy plane~easy plane!. For l50 the spin
components on thez axis do not appear in the Hamiltonia
and the model is known asXX0 or quantumXY.

The minimum energy configuration of the classical cou
terpart of the Hamiltonian~1! for every value oflP@0,1#
consists of coplanar spins forming62p/3 angles between
nearest neighbors and this leads to aA33A3 periodic Néel
state. In contrast to the isotropic case, where the plan
which the 2p/3 structure lies can take any direction in th
spin space, in theXXZ model such structure must take pla
in the easy plane. As a result, in the planar TAF the frus
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tion causes an additional discrete twofold degeneracy of
classical ground state, which is due to the chirality~or helic-
ity!, defined as the sign of rotation of the spins along
sides of each elementary triangle. The resulting degene
corresponds to the group SO(2)3Z2. As the Mermin-
Wagner theorem only states that the sublattice magnetiza
must vanish at any nonzero temperature, long-range o
can occur as far as the chirality is concerned, and an Is
like phase transition is indeed observed,5 in addition to the
usual Berezinskii-Kosterlitz-Thouless~BKT! critical behav-
ior associated with the rotation symmetry in thexy plane.

In the quantum case the situation is far less clear. In f
unlike the antiferromagnet on the square lattice where th
is a general consensus about the ordered nature of the gr
state even forS51/2, in the frustrated cases the lack of exa
analytical results is accompanied by difficulties in applyi
stochastic numerical methods, as their reliability is stron
limited by the well-known sign problem. Indeed only ve
recently a systematic size scaling of the order parameter
of the spin gap has been performed using a new quan
Monte Carlo technique,6 confirming the existence of Ne´el
long-range order in the ground state as also suggested b
symmetry properties of the first excited states, evidenced
Bernuet al.7

An even less clear situation is that concerning the fin
temperature behavior. In fact an early numerical work,8 lim-
ited to lattice sizes up to 27 sites, indicated for theS
51/2 XX0 model a phase diagram similar to the classi
one, in contrast with the high-temperature expansion p
duced by Fujiki and Betts9 where no evidence for a phas
transition was found. For theXXZ Hamiltonian, Momoi and
Suzuki,10 applying an effective field theory, conjectured th
the chiral phase transition should persist for every value
7299 ©1999 The American Physical Society
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lP@0,1), as in the classical case, and were able to estim
the transition temperature forl50, obtaining a value very
close to that found in Ref. 8. Recently Suzuki a
Matsubara,11 using a quantum transfer Monte Carlo meth
to study clusters up to 24 sites, have claimed instead
absence of the chiral order at any finite temperature fol
>0.6.

In this context where, at least up to now, quantum num
cal methods cannot give satisfactory answers, thepure-
quantum self-consistent harmonic approximation12

~PQSCHA! can provide an effective instrument to inves
gate the thermodynamics of quantum spin systems, as fa
their ground state is ordered. The method is based on
path-integral formulation of quantum statistical mechani
and has been successfully applied recently to a variety
unfrustrated spin models, both one13 and two
dimensional.14,15

By the PQSCHA the evaluation of thermal averages in
quantum model can be reduced to the calculation
classical-like averages over a Boltzmann distribution defi
by an effective Hamiltonian, which contains the contributi
of the pure-quantum part of the fluctuations~approximated
within a self-consistent harmonic scheme! in its renormal-
ized interaction parameters, which are temperature and
dependent. As a consequence one can get accurate resu
the quantum spin system using classical computational m
ods, like the transfer matrix in the one-dimensional case
classical Monte Carlo~MC! simulations in the two-dimen
sional one.

The first step of the derivation of the effective Ham
tonian for the easy-plane TAF is to apply the unitary tra
formation which defines a spatially varying coordinate s
tem pointing along the local Ne´el direction, namely,

Û5expS 2p

3
i (
iPB

Ŝi
z2

2p

3
i (
iPC

Ŝi
zD , ~2!

whereB andC label two of the three sublattices. Unlike i
the bipartite lattices where the corresponding transforma
maps the antiferromagnet into a model with an in-plane
romagnetic exchange and an antiferromagnetic coup
along thez axis, thus allowing the demonstration of the Lie
Mattis theorem16 and computability with standard quantu
Monte Carlo methods, in the triangular case the transform
Hamiltonian shows an extra currentlike term17 which con-
tains the effects of the frustration, whose form is quite sim
lar to the chiral order parameter,5 i.e., the physical quantity
undergoing the order-disorder phase transition present in
classical model for every value ofl,1.

From now on the derivation follows the same lines
ready described in Refs. 13 and 15. A point worth be
recalled is the use of the Villain transformation18 in order to
represent the spin operators in terms of canonically co
gated variables, which is a necessary step in the derivatio
the effective Hamiltonian. As is well known, this spin-bos
transformation preserves the commutation rules but negl
the so-called kinematic interaction due to the limited sp
trum of Sz, thus giving a better description when the syste
has a good easy-plane character and the spin states with
fluctuations ofSz are less relevant to the thermodynamics.
the square lattice case15 such an approximation scheme tur
te
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out to be reliable up to some valuelM,1 of l (lM50.58 in
the extreme quantum caseS51/2), when the mapping with
the Villain transformation breaks down and a different sp
boson transformation is needed. However, it provides ac
rate results for the critical temperatures even forl50.5; a
similar behavior is also found in the case of the quant
TAF. Finally we remind that Weyl ordering, which is inhe
ent to the PQSCHA, naturally leads to define an effect
classical spin length asS̃5S11/2 and thus to set the natura
energy scalee5JS̃2. Therefore in the following we use th
reduced temperaturet5kBT/JS̃2.

In the case of the easy-plane TAF the effective Ham
tonian has the formHeff5H̄1G(t), whereG(t) is an addi-
tive uniform term, formally identical to that obtained for th
square lattice, which is unessential in the calculation of
thermal averages, while

H̄5
e

2
j eff(

i,d
~si

xsi1d
x 1si

ysi1d
y 1leff si

zsi1d
z !, ~3!

where (si
x ,si

y ,si
z) are unit vectors, i.e., classical spins. With

the PQSCHA quantum effects are embodied in the temp
ture and spin dependence of the renormalized interaction
rameters

j eff~ t,S,l!5S 12
1

2
D'D 2

e2Di/2, ~4!

leff~ t,S,l!5lS 12
1

2
D'D 21

eDi/2, ~5!

with

D'5~2S̃N!21( k

bk

ak
L~ f k!, ~6!

Di5~S̃N!21( k~12gk!
ak

bk
L~ f k!, ~7!

where

FIG. 1. Temperature and spin dependence of the internal en
per spin forl50 and~from the top curve! S51/2, 1, 3/2, 5/2, 5,
and`. Solid circles are classical MC data. In the inset the deri
tive of the effective exchange constant is plotted vst with the same
convention on the lines.



r
t
-
an
si

eg

H
rm
th
re
int

is

nor-
op-

ve
of
at-
g

il-
u-

-

ing

HA

g
the

at
th
th

-

cor-
e

or

ed

PRB 60 7301THERMODYNAMICS OF THE QUANTUM EASY-PLANE . . .
ak
25

z

2
~12 1

2 D'!e2Di/2~112leff gk!, ~8!

bk
25

z

2
j eff~12gk!, ~9!

f k5akbk /(2S̃t), L(x)5cothx2x21 is the Langevin func-
tion, gk5z21(dcos(k•d), z56 is the coordination numbe
of the lattice, andk is a wave vector varying in the firs
Brillouin zone.D'(S,l,t) andDi(S,l,t) represent the pure
quantum square fluctuations of the out-of-plane and in-pl
components of the spins, respectively. They are decrea
functions of temperature and spin, vanishing fort→` and
S→`, i.e., when the quantum part of the fluctuations is n
ligible with respect to the classical one.

From the above equations, we can infer that the PQSC
approach is valid under the condition that second-order te
in (D')2 can be neglected. One can take the criterion that
renormalization effects of quantum fluctuations must not
duce much more than, say, 50% the effective exchange
gral. Such a strong renormalization only occurs forS51/2
and t&0.2, while for higher spin values the PQSCHA
reliable at any temperature.

FIG. 2. Temperature and spin dependence of the specific he
theXX0 model. Circles are the classical MC data obtained from
mean-squared fluctuations of the energy while the solid line is
numerical derivative of the energy curve.

FIG. 3. Specific heat for theXXZ model withl50.5 as a func-
tion of the temperature. Open squares,S51; solid squares,S
55/2; solid circles,S5` ~classical!. The inset displays the tem
perature dependence ofleff for l50.5 andS51/2, 1, 3/2, 5/2, 5,
with the same convention on the lines of Fig. 1.
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In the XX0 model, leff5l50 and all the information
about the quantum system is hence contained in the re
malization of the energy scale. In this case the critical pr
erties of the quantum system at a temperaturet are essen-
tially those of its classical counterpart at the effecti
temperatureteff5t/ j eff(t,S), and we have used the results
classical Monte Carlo simulations recently obtained for l
tice sizes up toN512031205 to calculate the correspondin
quantum observables.

Indicating the classical averages with the effective Ham
tonian aŝ •••&eff , the internal energy per spin can be calc
lated as

e~ t,S,l!5
^Ĥ&
Ne

5^H̄&eff1
z

2
l D' , ~10!

whereD' can be expressed asD' , Eq. ~6!, with an extra
factor gk in the summand. Forl50 the above equation re
duces to

e~ t,S!5 j eff~ t ! ecl~ teff!, ~11!

ecl(t) being the internal energy per spin of the correspond
classical system. In Fig. 1e(t,S) is plotted for various values
of the spin in the range of temperatures where the PQSC
is expected to give reliable results.

The energy curves flatten and increase with decreasinS
due to the increased quantum fluctuations. As said before

in
e
e

FIG. 4. Temperature and spin dependence of the magnetic
relation length in theXX0 model. Circles and the solid line ar
classical MC data.

FIG. 5. In-plane normalized spin-spin correlation function f
the XXZ model withl50.5, t50.27, andS51/2 ~open triangles!,
S51 ~open squares!, S55/2 ~solid squares!, S55 ~solid triangles!,
and S5` ~solid circles!. Lines are best fits against the expect
high-temperature (S51/2 and S51) and low-temperature (S
>5/2) asymptotical decay of the correlation functions.
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TABLE I. Chiral and BKT critical temperatures forl50 andl50.5 and for some values of the spi
length S. The classical values are taken from Ref. 5. The reported errors only represent the sta
uncertainty of the MC data.

S 1/2 1 3/2 5/2 5 `

tc(S,0) 0.193~2! 0.273~3! 0.319~3! 0.364~4! 0.396~5! 0.412~5!

tBKT(S,0) 0.1875~5! 0.265~1! 0.310~1! 0.352~1! 0.386~1! 0.402~2!

tc(S,0.5) 0.185~4! 0.267~4! 0.312~5! 0.355~5! 0.385~5! 0.400~5!

tBKT(S,0.5) 0.180~1! 0.260~1! 0.304~2! 0.346~2! 0.376~2! 0.391~2!
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S51/2 curve is reported only in the valid temperature ran
As a matter of fact the extrapolation to lowest temperatu
gives the self-consistent spin-wave ground-state energy.
difference from the most refined estimates17 can be mainly
attributed to 1/S2 constant contributions coming from th
Villain transformation19 and to the use of the low couplin
approximation~LCA!.12 This term is not significant forS
>1.

Consistently with this picture the finite-size (N5120
3120) peak of the specific heat~Fig. 2!, obtained by numeri-
cal derivation of the internal energy, moves towards low
temperatures and decreases in height asS decreases. How
ever, since the quantum renormalizations are essentially
independent, classical scaling with size5 is conserved and a
logarithmic divergence of the specific heat, connected w
the Ising-like chirality phase transition, is therefore expec
in the thermodynamic limit. By direct derivation of Eq.~11!
it is easily seen that, in order for the quantum specific hea
vanish in the zero-temperature limit, within our approxim
tion we must haved jeff /dt→uecl(0)u21 ast→0, a condition
which is fulfilled for every value ofS, as can be verified
analytically from the explicit expressions of the renormaliz
tion parameters; this is shown in the inset of Fig. 1.

For lÞ0 quantum effects cannot be embodied in a m
redefinition of the energy scale. In fact they are also c
tained in the temperature and spin-dependent renorma
tions of the easy-plane anisotropyleff(t,S,l) ~sketched in
the inset of Fig. 3!. We have therefore calculated the physic
properties of theXXZ model by performing a new set o
classical Monte Carlo simulations using the same algorit
and lattice sizes of Ref. 5. In particular, forl50.5 the spe-
cific heat behavior of the quantumXXZ model, shown in
Fig. 3 for S>1, turns out to be quite similar to that observ
for l50.

Most papers in the literature are mainly concerned w
the chiral order-disorder transition, while theXXZ TAF also
supports another kind of phase transition. In fact, the cla
cal system5 displays as well a BKT critical behavior. For th
reason we have calculated the magnetic correlation len
which governs the decay of the in-plane correlation functio
in the high-temperature phase, whose expression within
PQSCHA reads

C~r !5S̃22^Ŝi
xŜi1r

x 1Ŝi
yŜi1r

y &5G~r ! ^si
xsi1r

x 1si
ysi1r

y &eff ,
~12!
.
s
he

r

ize

h
d

to
-

-

e
-
a-

l

h

i-

th
s
he

wherei and i1r belong to the same sublattice and

G~r !5S 12
1

2
D'D 2

e2 1/2D i(r ) ~13!

with

D i~r !5~S̃N!21(k~12eik•r !
ak

bk
L~ f k!. ~14!

G(r ) being bounded and essentially constant for larger , the
asymptotic behavior of the correlation functions in the cr
cal region is the same of the effective classical spin syst
In particular, forl50, the correlation length can be simp
found asj(t)5jcl(teff). The result is reported in Fig. 4: a
expected in a BKT transition, it displays a divergence a
temperaturetBKT which decreases with decreasingS, as a
result of enhanced quantum fluctuations.

In Fig. 5 the in-plane normalized correlation function
C(r ) are reported forl50.5 and different values of the spin
as a function of the distancer at a fixed temperaturet
50.27. As expected, for low spin the quantum fluctuatio
can be strong enough to drive the system in a disorde
phase, i.e., with unbound vortices. Indeed the behavior
C(r ) shown in Fig. 5 changes drastically by decreasing
spin, decaying exponentially forS51/2 andS51 and as a
power law forS.5/2.

Within the PQSCHA, the quantum renormalizations ca
not modify the critical behavior of the effective classic
system,20 so that both the chirality and the BKT critical tem
peratures can be connected to their classical counterpar
the self-consistent relation

tcrit~S,l!

tcrit
cl
„leff~ tcrit ,S,l!…

5 j eff~ tcrit ,S,l!, ~15!

which can be solved numerically. The obtained critical te
peratures forl50 andl50.5 are reported for various val
ues of the spin in Table I. In theS51/2 case, although ou
theory begins to become unreliable whent&0.2, we notice
that for l50 the extrapolated value for the chiral critic
temperature,tc50.193, agrees remarkably well with thos
obtained by the size scaling on the quantum Monte Ca8

data@ tc50.195(1)# and the effective field theory of Ref. 1
(tc.0.20).

L.C. acknowledges S. Sorella for continuous and fruit
discussions.
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