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Thermodynamics of the quantum easy-plane antiferromagnet on the triangular lattice
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The classicalXXZ triangular-lattice antiferromagnet shows both an Ising and a Berezinskii-Kosterlitz-
Thouless transition, related to the chirality and the in-plane spin components, respectively. In this paper the
guantum effects on the thermodynamic quantities are evaluated by means of the pure-quantum self-consistent
harmonic approximation, which allows one to deal with any spin value through classical Monte Carlo simu-
lations. We present data for the internal energy, the specific heat, the static spin correlation functions, and the
in-plane correlation length for different values of the spin and of the exchange anisotropy. The quantum
transition temperatures turn out to be smaller the smaller the spin, and agree with the few available theoretical
and numerical estimategS0163-18209)04234-4

A renewed interest has recently focused on triangular antion causes an additional discrete twofold degeneracy of the
tiferromagnet{TAF’s). Indeed, they turned out to describe classical ground state, which is due to the chiraldy helic-
the magnetic behavior of several real compounds such as, fity), defined as the sign of rotation of the spins along the
example, the stacked antiferromagnet NaJiGhe organic  sides of each elementary triangle. The resulting degeneracy
superconductors of the family—(BEDT-TTF),X.* and  corresponds to the group SO(2YF,. As the Mermin-
the K/Si(111):B interface’ Wagner theorem only states that the sublattice magnetization
In this paper we investigate the thermodynamic propertiegnyst vanish at any nonzero temperature, long-range order
of the quantumXXZ Heisenberg antiferromagnet on the tri- can occur as far as the chirality is concerned, and an Ising-
angular lattice, defined by the following Hamiltonian: like phase transition is indeed obsenveit, addition to the
usual Berezinskii-Kosterlitz-Thouleg8KT) critical behav-
~J A an an ior associated with the rotation symmetry in thg plane.
H=5 % (SSat S qt A SSLa), 1) In the quantum case the situation is far less clear. In fact,
' unlike the antiferromagnet on the square lattice where there
is a general consensus about the ordered nature of the ground
X Ay Az . o state even fo6=1/2, in the frustrated cases the lack of exact
sjcant_, and s'. SS) are the spin op_erators sitting on the analytical results is accompanied by difficulties in applying
sitesi of a triangular lattice. They safis§U(2) commuta- g chastic numerical methods, as their reliability is strongly
tion relations and belong to the spBepresentatiodS’|  imited by the well-known sign problem. Indeed only very
=$(S+1). The interaction is restricted to nearest neighborgecently a systematic size scaling of the order parameter and
andd runs over their relative displacements. The planar charof the spin gap has been performed using a new quantum
acter of the system is due to the presence of the anisotropyonte Carlo techniqu@,confirming the existence of Né
N e[0,1), energetically favoring configurations with the long-range order in the ground state as also suggested by the
spins lying in thexy plane(easy plang For A\=0 the spin  symmetry properties of the first excited states, evidenced by
components on the axis do not appear in the Hamiltonian Bernuet al’
and the model is known a$X0 or quantumxY. An even less clear situation is that concerning the finite-
The minimum energy configuration of the classical coun-temperature behavior. In fact an early numerical woiiky-
terpart of the Hamiltoniar{1) for every value ofA €[0,1]  ited to lattice sizes up to 27 sites, indicated for tBe
consists of coplanar spins forming2x/3 angles between =1/2 XX0 model a phase diagram similar to the classical
nearest neighbors and this leads tq&x /3 periodic Nel  one, in contrast with the high-temperature expansion pro-
state. In contrast to the isotropic case, where the plane iduced by Fuijiki and Betfswhere no evidence for a phase
which the 27/3 structure lies can take any direction in the transition was found. For th&XZ Hamiltonian, Momoi and
spin space, in th&XXZ model such structure must take place Suzukil® applying an effective field theory, conjectured that
in the easy plane. As a result, in the planar TAF the frustrathe chiral phase transition should persist for every value of

where J is the positive(antiferromagnetic exchange con-
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A €[0,1), as in the classical case, and were able to estimataut to be reliable up to some valag, <1 of A (\y=0.58 in
the transition temperature for=0, obtaining a value very the extreme quantum ca&e=1/2), when the mapping with
close to that found in Ref. 8. Recently Suzuki andthe Villain transformation breaks down and a different spin-
Matsubard?! using a quantum transfer Monte Carlo methodboson transformation is needed. However, it provides accu-
to study clusters up to 24 sites, have claimed instead theate results for the critical temperatures even Xer0.5; a
absence of the chiral order at any finite temperaturexfor similar behavior is also found in the case of the quantum
=0.6. TAF. Finally we remind that Weyl ordering, which is inher-
In this context where, at least up to now, quantum numerient to the PQSCHA, naturally leads to define an effective

cal methods cannot give satisfactory answers, pee-  classical spin length &8= S+ 1/2 and thus to set the natural

quantum  self-consistent harmonic  approximatfon energy scalee=JS2. Therefore in the following we use the
(PQSCHA can provide an effective instrument to investi- ~5
gduced temperatutte=kgT/JS".

gate the thermodynamics of quantum spin systems, as far & . .
their ground state is ordered. The method is based on the " the case of the easy-plane TAF the effective Hamil-
path-integral formulation of quantum statistical mechanicstonian has the formts=H+ G(t), whereG(t) is an addi-

and has been Successfu”y app“ed recenﬂy to a Variety d:ive uniform term, forma”y identical to that obtained for the
unfrustrated spin models, both dAe and two square lattice, which is unessential in the calculation of the

dimensionalt41® thermal averages, while

By the PQSCHA the evaluation of thermal averages in the
quantum model can be reduced to the calculation of ng- XX 4+ 6VSY 4\ o 7S 3
classical-like averages over a Boltzmann distribution defined ZIGﬁ% (SiSsat SiSTat Nett SiSisa), ®

by an effective Hamiltonian, which contains the contribution X .y oz ) ) . . o

of the pure-quantum part of the fluctuatiofepproximated where & ,s/ ,s;) are unit vectors, i.e., class_lcal_spms. Within
within a self-consistent harmonic scheie its renormal-  the PQSCHA quantum effects are embodied in the tempera-
ized interaction parameters, which are temperature and spii'® and spin dependence of the renormalized interaction pa-
dependent. As a consequence one can get accurate results'8Aeters

the quantum spin system using classical computational meth- 1 2

ods, like the transfer matrix in the one-dimensional case and jor(t,SN) = ( 1— _DL> e D2, (4)
classical Monte CarldMC) simulations in the two-dimen- 2

sional one.

The first step of the derivation of the effective Hamil-
tonian for the easy-plane TAF is to apply the unitary trans-
formation which defines a spatially varying coordinate sys- .
tem pointing along the local N direction, namely, wit

- by
) 2 .y 2 . _ -
u:eXp(_f:iEB Slz_?”izc g, @ D, =(25N) X oL, (6)

1 -1
xeﬁ(t,s,x):x(l— EDL) elI?, (5)

whereB and C label two of the three sublattices. Unlike in DH=(~SN)*12 (11— yk)%ﬁ(fk)’ 7
the bipartite lattices where the corresponding transformation by
maps the antiferromagnet into a model with an in-plane fers,
romagnetic exchange and an antiferromagnetic coupling
along thez axis, thus allowing the demonstration of the Lieb- —— T
Mattis theoren® and computability with standard quantum -
Monte Carlo methods, in the triangular case the transformed r
Hamiltonian shows an extra currentlike téfnwhich con- —05
tains the effects of the frustration, whose form is quite simi-
lar to the chiral order paramet&i,e., the physical quantity
undergoing the order-disorder phase transition present in the
classical model for every value af<1. -1

From now on the derivation follows the same lines al- -
ready described in Refs. 13 and 15. A point worth being I
recalled is the use of the Villain transformatt8in order to
represent the spin operators in terms of canonically conju- ol 1 &

. . . . h . —-1.5 [ 0.5 1—

gated variables, which is a necessary step in the derivation of I R BRI B B
the effective Hamiltonian. As is well known, this spin-boson 0 0.2 0.4 0.6 08 1
transformation preserves the commutation rules but neglects t

the so-called kinematic interaction due to the limited spec- FiG. 1. Temperature and spin dependence of the internal energy
trum of S, thus giving a better description when the SysteMper spin forn=0 and (from the top curve S=1/2, 1, 3/2, 5/2, 5,

has a good easy-plane character and the spin states with largigg«. Solid circles are classical MC data. In the inset the deriva-
fluctuations ofS” are less relevant to the thermodynamics. Intive of the effective exchange constant is plotted vsth the same

the square lattice caSesuch an approximation scheme turns convention on the lines.

here
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FIG. 2. Temperature and spin dependence of the s_pecific heat in FIG. 4. Temperature and spin dependence of the magnetic cor-
the XX0 model. Circles are the classical MC data obtained from therelation length in thexX0 model. Circles and the solid line are

mean-squared fluctuations of the energy while the solid line is th%lassical MC data
numerical derivative of the energy curve. '

In the XX0 model,A¢s=A=0 and all the information
z. D2 about the quantum system is hence contained in the renor-
2(1 2D )e (142N i), (®) malization of the energy scale. In this case the critical prop-
erties of the quantum system at a temperatusge essen-
tially those of its classical counterpart at the effective
9) temperature 4=t/ (t,S), and we have used the results of
classical Monte Carlo simulations recently obtained for lat-
tice sizes up tdN=120x 12 to calculate the corresponding
f=ab,/(25t), L£(x)=cothx—x ! is the Langevin func- duantum observables. _ _ .
tion, y,=z 'S4cosk-d), z=6 is the coordination number I_nd|cat|ng the claselcal averages with the_ effective Hamil-
of the lattice, andk is a wave vector varying in the first tonian as(-- )y, the internal energy per spin can be calcu-
Brillouin zone.D, (S,\,t) andD(S,\,t) represent the pure- lated as
guantum square fluctuations of the out-of-plane and in-plane (ﬂ) i
components of the spins, respectively. They are decreasing _ VY -z
functions of temperature and spin, vanishing fes~ and e(t.Sh) = Ne =(Hert 2 AD (10

S— o, i.e., when the quantum part of the fluctuations is neg- .
ligible with respect toqthe classpical one. gwhereDL can be expressed &, , Eq. (6), with an extra

From the above equations, we can infer that the PQSCH/éaCtor ¥k In the summand. Fok =0 the above equation re-

approach is valid under the condition that second-order term uces to
in(D,)? ean_be neglected. One can take the criterion that the e(t,5) = j or(t) eq(terr), (11)
renormalization effects of quantum fluctuations must not re-
duce much more than, say, 50% the effective exchange inte,(t) being the internal energy per spin of the corresponding
gral. Such a strong renormalization only occurs ¢ 1/2  classical system. In Fig. é(t,S) is plotted for various values
and t=<0.2, while for higher spin values the PQSCHA is of the spin in the range of temperatures where the PQSCHA
reliable at any temperature. is expected to give reliable results.

The energy curves flatten and increase with decreaSing

2 2.
bkzzjeﬁ(l_'}’k)1

L L L L due to the increased quantum fluctuations. As said before the
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FIG. 5. In-plane normalized spin-spin correlation function for
FIG. 3. Specific heat for th¥XZ model withA=0.5 as a func- the XXZ model withA =0.5, t=0.27, andS= 1/2 (open triangles
tion of the temperature. Open squaré&ss1; solid squaresS S=1 (open squargsS=5/2 (solid squares S=5 (solid triangle$,
=5/2; solid circles,S=o (classical. The inset displays the tem- and S=« (solid circles. Lines are best fits against the expected
perature dependence kf; for A\=0.5 andS=1/2, 1, 3/2, 5/2, 5, high-temperature $=1/2 and S=1) and low-temperature
with the same convention on the lines of Fig. 1. =5/2) asymptotical decay of the correlation functions.



7302 LUCA CAPRIOTTI et al. PRB 60

TABLE I. Chiral and BKT critical temperatures for=0 and\ =0.5 and for some values of the spin
length S The classical values are taken from Ref. 5. The reported errors only represent the statistical
uncertainty of the MC data.

S 1/2 1 312 5/2 5 %
t.(S,0) 0.1932) 0.2733) 0.3193) 0.3644) 0.3965) 0.41235)
tgkr(S,0) 0.187%5) 0.2651) 0.3101) 0.3521) 0.3861) 0.4022)
t(S,0.5) 0.18%4) 0.2674) 0.3125) 0.3555) 0.3855) 0.4005)
tgkr(S,0.5) 0.1801) 0.26Q1) 0.3042) 0.3462) 0.3762) 0.3912)

S=1/2 curve is reported only in the valid temperature rangewherei andi+r belong to the same sublattice and
As a matter of fact the extrapolation to lowest temperatures 2
gives the self-consistent spin-wave ground-state energy. The G(r)= ( 1— EDL) e~ 1/2D ler (13)
difference from the most refined estimdtesan be mainly 2
attributed to 1%? constant contributions coming from the ith
Villain transformatioﬁlgzand to the use of the low coupling
CO . ) o B  a

ipfroxmatlon(LCA). This term is not significant foS D”(F)Z(SN)_lEk(l—e'k'r)b—tﬁ(fk)- (14)

Consistently with this picture the finite-sizeNE 120 G(r) being bounded and essentially constant for largie
x120) peak of the specific heig. 2), obtained by numeri- as(y|)11ptotig behavior of the correlat?/on functions in tﬁ? criti-
cal derivation of the internal energy, moves towards lowelcyj region is the same of the effective classical spin system.
temperatures and decreases in heighSatecreases. HOW- | particular, for\ =0, the correlation length can be simply
ever, since the quantum renormalizations are essentially Sizgund asg(t) = £4(ter). The result is reported in Fig. 4: as
independent, classical scaling with Side conserved and a expected in a BKT transition, it displays a divergence at a
logarithmic divergence of the specific heat, connected withemperaturetg; which decreases with decreasiSgas a
the Ising-like chirality phase transition, is therefore expectedesult of enhanced quantum fluctuations.
in the thermodynamic limit. By direct derivation of E€L.1) In Fig. 5 the in-plane normalized correlation functions
it is easily seen that, in order for the quantum specific heat t@(r) are reported fok = 0.5 and different values of the spin,
vanish in the zero-temperature limit, within our approxima-as a function of the distance at a fixed temperaturé
tion we must havel j.¢/dt—|ey(0)| ! ast—0, a condition =0.27. As expected, for low spin the quantum fluctuations
which is fulfilled for every value ofS as can be verified can be strong enough to drive the system in a disordered
analytically from the explicit expressions of the renormaliza-phase, i.e., with unbound vortices. Indeed the behavior of
tion parameters; this is shown in the inset of Fig. 1. C(r) shown in Fig. 5 changes drastically by decreasing the

For A #0 quantum effects cannot be embodied in a merespin, decaying exponentially f&#=1/2 andS=1 and as a
redefinition of the energy scale. In fact they are also conpower law forS>5/2.
tained in the temperature and spin-dependent renormaliza- Within the PQSCHA, the quantum renormalizations can-
tions of the easy-plane anisotropy(t,S,\) (sketched in  not modify the critical behavior of the effective classical
the inset of Fig. ® We have therefore calculated the physicalsystent’ so that both the chirality and the BKT critical tem-
properties of theXXZ model by performing a new set of peratures can be connected to their classical counterparts by
classical Monte Carlo simulations using the same algorithnthe self-consistent relation
and lattice sizes of Ref. 5. In particular, far=0.5 the spe-

cific heat behavior of the quantutXZ model, shown in tei(SN) it S (15
Fig. 3 forS=1, turns out to be quite similar to that observed t (et teri SIN)) JeiflLerits =),
for A=0.

Most papers in the literature are mainly concerned withwhich can be solved numerically. The obtained critical tem-

the chiral order-disorder transition, while tXXZ TAF also ~ Peratures fod =0 andA =0.5 are reported for various val-
supports another kind of phase transition. In fact, the classiv€S Of the spin in Table I. In th&=1/2 case, although our
cal syster displays as well a BKT critical behavior. For this theory begins to become unreliable when0.2, we notice
reason we have calculated the magnetic correlation lengtifiat for A=0 the extrapolated value for the chiral critical
which governs the decay of the in-plane correlation functiondémperaturef.=0.193, agrees remarkably well with those
in the high-temperature phase, whose expression within th@Ptained by the size scaling on the quantum Monte Carlo

PQSCHA reads data[t.=0.195(1)] and the effective field theory of Ref. 10
(t.=0.20).
C(N=S5 %8S +9, ,)=G(r) (s's’ ,+9's". et L.C. acknowledges S. Sorella for continuous and fruitful

(12 discussions.
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