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Dimer order with striped correlations in the J;-J, Heisenberg model
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Ground-state energies for plaquette and dimer order id{h&, square-lattice spin-half Heisenberg model
are compared using series expansion methods. We find that these energies are remarkably close to each other
at intermediate values df,/J;, where the model is believed to have a quantum disordered ground state. They
join smoothly with those obtained from the Ising expansions for the two-sublatfiee stse atl,/J;~0.4,
suggesting a second-order transition from @&Nstate to a quantum disordered state, whereas they cross the
energy for the four-sublattice ordered statelatl,~0.6 at a large angle, implying a first-order transition to
the four-sublattice magnetic state. The strongest evidence that the plaquette ptaseatzed in this model
comes from the analysis of the series for the singlet and triplet excitation spectra, which suggest an instability
in the plaquette phase. Thus our study supports the recent work of Kbady which presents a strong picture
for columnar dimer order in this model. We also discuss the striped nature of spin correlations in this phase,
with substantial resonance all along columns of dimg3§163-1829)06433-4

[. INTRODUCTION gap for triplet excitations but also a gapped low-energy sin-
glet which reflects the spontaneous symmetry breaking. This
There has been considerable study, over the last decads,clearly seen in the calculations. 44/J,=0.38 a second-
of the frustrated spig-square lattice Heisenberg antiferro- order transition occurs, with the energies oféNphase and
magnet (the “J;-J, antiferromagnet). These studies in- dimerized phase joining smoothly, and the energy gap and
clude exact diagonalizations on small systénfsspin-wave dimerization vanishing.
calculations’® series expansiorl€ and a field-theoretic It is the aim of this paper to further investigate, using
largeN expansior?. series methods, the competing possibilities of columnar
These studies, and others, have provided a substantidimerization versus plaquette order in the intermediate re-
body of evidence that the ground state of this system, in thgion of theJ,;-J, antiferromagnet. It is conceivable that both
region 0.4£J,/J,=0.6, has no long-range magnetic order occur, with a transition from one to the other. However, such
and has a gap to spin excitations. BgrrJ;<0.4 the model a transition, reflecting a change of symmetry, is expected to
has conventional antiferromagnetic éleorder whereas for be first order and not well suited to series methods. If both
J,1/J;=0.6 the system orders in a columnar, 0) phase. phases are locally stable the most direct way to compare
Whether this “intermediate phase” is a spatially homoge-them is by comparison of the ground-state energies. If one is
neous spin liquid, or whether it has some type of spontanednstable this should show up by the closing of an appropriate
ously broken symmetry leading to a more subtle type ofgap or by the divergence of an appropriate susceptibility. In
long-range order, has not been conclusively established. this paper we calculate the ground-state energy and the sin-
Zhitomirsky and Ued¥ have proposed a plaquette reso- glet and triplet excitation spectra by series expansions about
nating valence bontRVB) phase, which breaks translational a disconnected plaquette Hamiltonian. We also calculate the
symmetry along botlx andy axes, but preserves the symme- susceptibility for the dimer phase to break translational sym-
try of interchange of the two axes. The horizontal and verti-metry in the direction perpendicular to the dimers. This sus-
cal dimers resonate within a plaquette. An early serieseptibility will be large if there is substantial resonance in
study*! had investigated the relative stability of various spon-the dimer phase and will diverge if there is an instability to
taneously dimerized states and had concluded that a colurthe plaquette RVB phase.
nar dimerized phase was the most promising candidate for Combining the plaquette expansion results with the dimer
the intermediate region, in agreement with the lakgex-  expansions of Kotovet al,'2 a very interesting picture
pansions. Zhitomirsky and Uetfaclaim their plaquette emerges for the quantum disordered phase. We find that the
phase has a lower energy than this columnar dimer phasplaquette phase is unstable and hence is not the ground state
but we find this to be incorrect. for this model. The dimer phase, on the other hand, is stable.
Further support for the columnar dimer scenario comediowever, there is substantial resonance in the dimer phase.
from recent work of Kotowet al,? who combine an analytic The spin-spin correlations are not simply those of isolated
many-body theory with extended series and diagonalizatiodimers. Instead, the nearest-neighbor correlations are nearly
results to study the nature and stability of the excitations iridentical along the rungs and chains of dimer columns. In
the intermediate region. It is argued that where theelNe contrast, the correlations from one dimer column to the next
phase becomes unstable the system will develop not only are much weaker. The spin-gap phase appears separated
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from the Nel phase by a second-order transition, whereas it ” =% — A v,
is separated from the columnar phase by a first-order transi- Yo NP A4 T
tion. These results are in remarkable agreement with the RN RANE BEAS
largeN theories’ The existence of a quantum critical point % 7% \,T\' -
separating an antiferromagnetic phase and a quantum disor- AN AN I
dered phase with striped correlations in a microscopic model PN I N IS AN
makes this critical point a particularly interesting one. The - v 3 - Q
role of doping and its implications for highz materials de- Tﬁ\vt > \//T L
serves further attention. AN IEAN A

.; A L( | . \*

II. SERIES EXPANSIONS AND RESULTS
FIG. 1. The generalized,-J, Heisenberg model with plaquette
We study the Hamiltonian structure, the couplingd,, J,, xJ;, andxJ, indicated by thick
solid bonds, thick dashed bonds, thin solid bonds, and thin dashed
H :\31% S-S +‘]2,\%N S-S, (1) bonds, respectively.

where the first sum runs over the nearest neighbor and th@nd the summations are over intraplaquette nearest-neighbor
second over the second-nearest neighbor spin pairs of tH®nds(A), intraplaquette second nearest-neighbor b@Bgis
square lattice. We denote the ratio of couplings yas interplaquette nearest-neighbor bondS), interplaquette
=J,/J;. The linked-cluster expansion method has been presecond-nearest-neighbor bond3), shown in Fig. 1. With
viously reviewed in several articléd;*®and will not be re-  this Hamiltonian, one can carry out an expansion in powers
peated here. To carry out the series expansion about thef A, and atA=1 one recovers the original Hamiltonian
disconnected-plaquette state for this system, we take the ifm Eqg. (1). Thus, although we expand about a particular
teractions denoted by the thick solid and dashed bonds istate, i.e., a plaquette state, our results\atl describe

Fig. 1 as the unperturbed Hamiltonian, and the rest of theéhe original system without broken symmetries, provided
interactions as a perturbation. That iS, we define the fO“OW'nO intervening singu|arity is present_ Such perturbation ex-

ing Hamiltonian: pansions about an unperturbed plaquette Hamiltonian have
H=Hq+H,, @) been uieed previously to study Heisenberg models for
CaV,0,.
where the unperturbed Hamiltoniati§) and perturbation It is instructive to consider the states of an isolated
(Hy) are plaquette. There are two singlet states, one with energy
(—2+y/2)J; and the other with energy—(3y/2)J,. The
Ho=J; 2 S-S+J, Z S-S, former is the ground state fgr<1 and corresponds to pair
(ii)eA (ii)eB singlets resonating between the vertical and horizontal bonds
of the plaquette. It is even underd2 rotation. The latter is
Hy=\J; z S-S+\J; E S-S, 3) the ground statg foy>1 and is odq under &/2 rotation.
(ijyeC (iiyeD The wave functions for these two singlet states are
1 + + + - - - -+ + - -+
w=gglC e C D C D20 D))
VIZR + - + + -+ -+ + -
() g
=5l _)+(1 D) @
1r,+ + + - - - -+
n=dlC ) -C O+ C0-C )
- = + - + + -+

-(ED-( ©

where O—O means these two spins form a singlet. There are three triplet states, one with energyyf2)J; and a
degenerate pair with energy-§//2)J, ; like the singlets, these have a level crossing-atl. Under an/2 rotation the former
is odd, while the latter two are even and odd, respectively. Finally there is a quintuplet state \dP)d;, which is even
under amr/2 rotation. Fory<<1/2 andy>2 the first excited state of the plaquette is a triplet, while forly2:2 it is the other
singlet. These states and corresponding energies are shown in Fig. 2. The eigenstatethefunperturbed Hamiltonian, are
direct products of these plaquette states.
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FIG. 3. The ground-state energy per dit¢/NJ, as function of
J,1J;, obtained from the Ising expansidnériangle points con-
nected by dotted lindsthe columnar dimer expansidis(open
square points connected by dashed)lird the plaquette expan-

) ) ) ) sion (full circle points connected by solid line
To derive the plaquette expansions we identify each

plaquette as a 16 state quantum object, and these lie at th§e second-order resultat A=1) is Eo/NJ;=—0.485,

sites of a square lattice with spacing,2wherea is the  rather than—0.63. We note that if the second-order coeffi-
original lattice spacing. Interactions between plaquettes Corxjent were four times larger then the resulting energy would
nect first- and second-neighbor sites on this new lattice. Thge — 629 86.

cluster data is thus identical to that used by us previdusly We have also derived series, to ordé, for the singlet
derive Ising expansions for this model. Because there are 16,4 triplet excitation energied (K, k), Ai(ky,k,) using
states at each cluster site, the vector space grows very rapidlfe method of Gelfand and taking as unperturbed eigen-

with the number of sites and thus limits the maximum attainfynctions the corresponding plaquette states. The low order
able order for plaquette expansions to considerably less thag,ms ford,/J,=0.5 are given by

can be achieved for dimer or Ising expansions.

FIG. 2. The energies of an isolated plaquette as function of
The notation presents tt&value and effect ofr/2 rotation() for
each state.

We have computed the ground-state enegyto order\,’ Ag(ky,ky)/J3=1—301\?/1440+ 137\°/86 400

for fixed values of the coupling ratip. The series are ana- " 3

lyzed using integrated differential approximahtsvaluated 217" cod k) cosky)/172 800

at A=1 to give the ground-state energy of the original +(—5A2/16— 89 3/9600 cog k,)
Hamiltonian. The estimates with error bars representing con-

fidence limits, are shown in Fig. 3. For comparison we also +cogky) /2, @)

show previous results obtained from Ising expansicarsd ) 5
dimer expansion¥ We find that, in the intermediate region, ~At(Kx.ky)/J;=1—3691\“/30 240+ (—2\/3+11\%/720)

the ground-state energy for both plaquette and dimer phases

are very close to each other and cannot be used to distinguish x[cosky) + cogky) 172

between them. The dimer expans,ion yields slightly lower —)\2[cos(2kx)+cog(2ky)]/1zo

energies near the transition to the eg@hase. We do not 5

draw any conclusions from this. + (N/3—5\“/96)cog k,)cog ky)
Zhitomirsky and Ued® have claimed that the ground-state —\?[cog 2k,)cog k)

energy from a second-order plaquette expansionds3 (at

y=0.5, much lower than the dimer expansion result +cogk,)cog 2k,)]/90

—0.492. This result appears incorrect. 85/J,=3 the +7\? cos 2k,) cos 2k, )/360. @)

ground-state energy is given by
The full series are available on request. We first consider the

4Ey/NJ,= — 7/4— 277\2/1440-0.001 35% 3 triplet excitations. Figure 4 showA(k,,k,) along high-
symmetry directions in the Brillouin zone for=0.5 and
—0.021060 9.~ 0.000 319 58K° various coupling ratioy. For A <0.6 the series are well con-

_ 6 7 8 verged and direct summation and integrated differential ap-
0.00580643"~0.001822 688"+ O(1"). proximants give essentially identical results. We find that the
(6) minimum gap occurs g0, 0) for J,/J;=0.55 and moves to
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FIG. 4. Plot of the triplet excitation spectruti(k,,k,) along FIG. 5. Plot of the singlet excitation spectrusi{k, ,k,) along

high-symmetry cuts through the Brillouin zone for the system with high-symmetry cuts through the Brillouin zone for the system with
coupling ratiosy=0, 0.3, 0.5, 0.7, andl = 0.5[shown in the figure  coupling ratiosy=0, 0.3, 0.5, 0.7 and = 0.5 [shown in the figure
from the top to the bottom &tr,), respectively; the lines are the  from the top to the bottom, respectivéglyhe lines are the estimates
estimates by direct sum to the series, and the points with error ba#y direct sum to the series, and the points with error bar are the
are the estimates of the integrated differential approximants to th@stimates of the integrated differential approximants to the series.
series.
and \ could be very interesting from the point of view of

(wr, 0) for J,/3,=0.55. Next we seek to locate the critical quantum phase transitions, but may not be easy to determine
point A, where the triplet gap vanishes. This is done usingby numerical methods. Some possible scenarios are shown in
Dlog Padeapproximants to the gap series at the appropriatéig. 7. One possibility is that the plaquette phase, for all
(k«,ky). In practice this works well when the minimum gap J»/J;, has an instability to some magnetic phase and the
lies at (0, 0. For J,=0 we find a critical point at\,  dimerized phase exists only very closeXe-1 inside the
=0.555(10). We can compare this result with recent work ofmagnetic phases. A second possibility is that the plaquette-
Koga et al*® who obtain\,=0.112 from a modified spin- Neel critical line meets the Ned-dimer critical line at some
wave theory and.=0.54 from a fourth-order plagquette ex- multicritical point at a value o8,/J; around 0.5, after which
pansion. The critical point increases with increasing At there is a first-order transition between the plaquette and the
y=0.5, at the approximate center of the intermediate phase,
we find\;=0.897). This result has some uncertainty but, if L L L
accurate, means that the plaquette phase becomes unstat r ]
before the full Hamiltonian X=1) is reached. The associ- 1~ H -
ated critical exponent describing the vanishing of the triplet - i
gap is about 0.7 fod, /J;<0.4, suggesting that the transition i
lies in the universality class of the classicka+ 3 Heisenberg
model. On the other hand, fd,/J;=0.4 the exponent is 0.8 - % 7
about 0.4. This supports the existence of an intermediate
phase lying in a different universality class. <

Figure 5 shows the singlet excitation energy(k,ky) \
along high-symmetry directions in the Brillouin zone for 0.6 - } 7]
=0.5 and the same coupling ratigsas Fig. 4. Again the
series are well converged and direct summation and inte-
grated differential approximants give essentially identical re-

0.4 - § -

sults. We find that the minimum gap occurs(@f 0 for all
J,1J;. We have also noted that far,/J;=0.5, the triplet T T
excitation and the singlet excitation have the same gap at 0 0.2 0.4 0.6 0.8
=0, but at\ =0.5, the singlet gap is considerable larger than J./]
. . . . 2 1
the triplet gap. This probably means that the triplet gap will
close before the singlet gap &f/J,=0.5. The critical point FIG. 6. Phase diagram for generalizédJ, Heisenberg model

obtained by the Dlog Padepproximant to the singlet gap is with plaquette structure, as determined from the plaquette expan-
also generally slightly larger than that obtained from the trip-sions. The full(open points with error bars and a solidotted line
let gap aroundl,/J;=0.5 (see Fig. 6. to guide the eye indicate the line where tBg)) triplet (single) gap

The full phase diagram in the parameter spacddfl;  vanishes.
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1 D Qi,j:(_l)i+jsiz,j- (11
The other is the dimerization susceptibility with the operator
Qi

Qii=S'S+1,—5,'S+1 (12

P which breaks the symmetry of interchangexondy axes.

We have computed series to ordet for the antiferromag-
netic susceptibility and to ordex* for the dimerization sus-
ceptibility. The series have been analyzed by Dlog ‘Pade
approximants. The series for the antiferromagnetic suscepti-
bility shows the same critical pointsvithin error bar$ as
those obtained from the triplet gap fdy/J,;=<0.4. The series

for the dimerization susceptibility is very irregular, and does
not yield useful results. For example, fdg/J,=0.5, the
series is

®)

Xa=629/90+ 101\ /300+ 2.009 764 X 2—0.269 6293
+0.43852%*+O(\°). (13

For completeness, we also compute the susceptibility for
the dimer phase to become unstable to the plaquette phase
from an expansion about isolated columnar dirtfely add-

13 ing the following field term:

©
0 v 1 AthiZj(—l)Js,,--s,,-H, (14

FIG. 7. Some possible topologies for the phase diagram in th

0

N o is the Nel ph ‘< the col h ) Svhich breaks the translational symmetry in the direction per-
y plane. HereN is the Nel phaseC is the columnar phas@ is - o gicyjar to the dimers. The series has been computed up to
the dimer phase, an@ is the disordered Plaquette phase with no 7 . - .
. order\’ (note that\ here is the parameter of dimerizatjon
long-range order. Note that some of the phase boundaries such as : - . o
An analysis of the series shows that this susceptibility

those between Plaquette and dimer and between dimer and colurﬁ- | 1 f 1373 dth itical
nar phases could be first order, whereas the others could be seco comes very large as— 1, for all J,/J; and the criticali,

order.M is a possible multicritical point, where several critical lines Wwhere the Susceptibil_ity_ appears to diverge, _approa_ches unity
meet. from above as),/J, is increased to 0.5. This implies that

there are staggered bond correlations in the direction perpen-
dimer phases. A third possibility is that the plaquettee dicular to the dimers, which extend over a substantial range.

Neel-dimer and plaguette-columnar critical lines all meet atAn interesting question is, in the absence of the plaquette

some multicritical point. The numerically determined phasePhase as discussed earlier, what could these correlations rep-
diagram is particularly uncertain in the interesting region resent? At this stage it is useful to recall another calculation

0.5=J,/J,=0.6., where incommensurate correlations could?y Kotov et al.* Within the dimer expansion, they calcu-

also become important. lated two different dimer order parameters:
Lastly we have derived expansions for a number of gen- . B
eralized susceptibilities. These are defined by adding an ap- Dx=KS " S+1) ~(Si+1j - S+2)) (19
propriate field term and
Dy=0(S;-S+1))—(S;-S;+l (16)
sH-no, © y=1(8,°S 1) —(S;°S 2

where the elementary dimers connect spinsijatand i
+1,j. They found that for 0.4J,/J,;=<0.5, D, is nearly
zero, wheread, only goes to zero at the critical point.
) These results suggest that the dimer phase consists of
Xo=— i _ 9"Eo(h) (10) strongly correlated two-chain ladders, which are then weakly
Q N, o oh? - correlated from one ladder to next. This striped nature of
spin correlations in the dimer phase has not been noted be-
A divergence of any susceptibility signals an instability of fore and is clearly a very interesting result. The situation for
that phase with respect to the particular type of order incord,/J;=0.5 is again less clear. As discussed before, there are
porated iny. many possibilities for the phase diagram in that region and
We have computed two different susceptibilities from themuch longer series are needed to throw more light on the
plagquette expansion. One is the antiferromagr@teel) sus-  situation. Perhaps there is an interesting multicritical point in
ceptibility with the operatoQ); : that region of the phase diagram.

to the Hamiltonian and computing the susceptibility from
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ll. DISCUSSION the parameter space of our nonuniform Hamiltonian, the

laquette phase is first unstable to a magnetic phase, which
hen must give way to the columnar dimer phase. Similar
results for the instability of the staggered dimer phase were
§uggested before by Gelfand, Singh, and Hustwever,
the full phase diagram in th&,/J; and\ parameter space is
difficult to obtain reliably, especially near the transition to
the columnar phase. There are possibilities of some novel
Pulticritical points, which deserve further attention.

One of our most interesting results is the finding of striped

spin correlations in the dimer phase. In this phase, the

earest-neighbor spin correlations are nearly equal along the
rungs and along the chains of a two spin column and there

as\;:van?_ldczjat?hs Iotrhthe mter(rjnetoh?te phase.f both ol " are extended bond correlations along the chains. However,
e mn at the ground-state energy for both plaque eSpin correlations from one column to the next are much

and dimer phases are very similar, any difference Iylng%Neaker. In other words, the dimers are strongly resonating

within the error bars. From this result alone we cannot favoralong vertical columns. The existence of a quantum critical
one phase over the other.

h vsis of the sinalet and triolet itati ; oint separating an antiferromagnetic phase from such a
€ analysis of the singiet and lripiet excitation Spectra, \4nwym disordered phase with striped correlations is a very
suggests an instability in the plaquette phase. In particular, i

the disconnected plaquette expansions, Dlog’ Redeysis teresting feature of this model which deserves further at-
indicates that the gaps would vanish forless than unity. tention in the context of higft, materials.

The gap appears to close first for the triplets and then for the
singlets. This is the strongest evidence that the plaquette
phase isnot realized in this model. However, we should
mention here that the critical exponents associated with the We would like to thank Subir Sachdev and Oleg Sushkov
vanishing of the gaps are rather sm@atl 0.4) and the gap for many useful discussions. This work has been supported
closes not too far fromx equal to unity. Thus, with a rela- in part by a grant from the National Science Foundation
tively short series, this should be treated with some caution DMR-9616574 (R.R.P.S), the Gordon Godfrey Bequest
One could ask why the energy series appear to converge wdir Theoretical Physics at the University of New South
despite the instability. However, this is a well known featureWales, and by the Australian Research Cound@lW.,

of series expansions, that quantities having weak singulari€.J.H., and J.Q. The computation has been performed on
ties may continue to show reasonable values even if extrap&ilicon Graphics Power Challenge and Convex machines.

We have attempted to further elucidate the nature of th
intermediate, magnetically disordered, phase of the $pin-
J;-J, Heisenberg antiferromagnet on the square lattice. Thi
phase is believed to occur in the range03/J,<0.6. Our
approach has been to derive perturbation expangigmso
order\”) for the ground-state energy, singlet and triplet ex-
citation energies, and various susceptibilities, starting from
system of decoupled plaquettes=0) and extrapolating to
the homogeneous lattice. €1). We have also derived ex-
pansions about an unperturbed state of isolated column
dimers(“dimer phase”). Both of these have been proposed
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