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Anisotropic dynamic model of forbidden reflections in x-ray diffraction
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A dynamic model of anisotropic x-ray diffraction is developed using two-wave approximation. A dispersion
surface equation is derived for the screw-axis and glide-plane forbidden reflections. Propagation and polariza-
tion phenomena of waves are discussed. The deductions show that all these forbidden reflections may be
excited except the 00l ( l 52n11) reflections for a 63 screw axis and the 00l ( l 56n13) reflections for 61 and
65 screw axes. The general methods are illustrated by their application to the rutile structure.
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I. INTRODUCTION

It is well known that the conditions limiting possibl
x-ray reflections are only satisfied when the equivalent p
tions in a crystal are assumed to be occupied by atoms
the same scattering amplitude. The interatomic interac
leads to small asphericity of atoms so that the scattering
plitudes of the crystallographically equivalent atoms are
the same. Hence, forbidden reflections can occur.1 It has
been known that one cause of forbidden reflections is
anisotropy of x-ray susceptibility of atoms in crystals.2 This
anisotropy is very small in the x-ray regime. In convention
x-ray diffraction theories susceptibility is supposed to
isotropic.3–5 But near x-ray absorption edges the absorpt
of x-ray beams depends on their polarization. In this case
anisotropy of susceptibility is essential.6–8 It is this small
anisotropy of susceptibility that gives rise to a series of
isotropic anomalous-scattering phenomena, such as
energy-dependent dichroism, birefringence, and forbidd
reflection diffraction.2,7,9 Kinematical theory of diffractions
has been developed to explain the intensity of the waves
the polarization phenomena in forbidden reflections.1 But a
characteristic feature of the kinematical theory is that it
nores multiwave scattering and, what is especially import
the interaction of the diffracted waves with the refracted o
It cannot provide information concerning the wave phase
propagation, which indicates the intrinsic mechanism
x-ray polarization.3,10,11

In our previous work, a ‘‘one-beam’’ equation was deve
oped for cases where only refracted waves are consider12

We found the two refracted waves in crystals are ellip
polarized with their major~minor! axes perpendicular to
each other. In the present paper our purpose is to show
general principles governing the anisotropic x-ray diffracti
by taking into account the interaction between the refrac
and diffracted waves in crystals. As anisotropic scatter
occurs, the x-ray susceptibility is a second-order ten
Starting from Maxwell equations, dynamic model is esta
lished. It is found that, in a forbidden reflection, the isotro
of the susceptibility is insignificant, which leads to very u
usual propagation and polarization phenomena. The pos
conditions for the experimental observation of the anisotro
PRB 600163-1829/99/60~10!/7266~5!/$15.00
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of susceptibility and application of this dynamic model a
also discussed.

II. TWO-WAVE APPROXIMATION
OF ANISOTROPY DIFFRACTION

It is well known that in nonmagnetic crystals with ze
electric conductivity, the reduced Maxwell’s equation can
written as

¹2D2
1

c2

]2D

]t2
52“3“3P, ~1!

whereD is electric displacement andP is induced polariza-
tion. For anisotropic x-ray optics, the electric susceptibility
a second-order tensorx̂. Then the electric fieldE is related
to the electric displacementD by D5( Î1x̂)E, whereÎ is the
unit matrix. Since the susceptibility componentsx i j are small
in the x-ray regime, the induced polarizationP can be written
as

P5D2E5@ Î2~ Î1x̂ !21#D.x̂D. ~2!

Based on this relation, the Maxwell equation has the gen
solutions

Dj5
1

K22K j•K j
(

n
K j3@K j3~ x̂ j 2nDn!#, ~3!

whereK is the vacuum vector,x̂n is the Fourier componen
of the tensor susceptibilityx̂, Dj and K j are the amplitude
and wave vector of thejth Bloch wave, respectively.3

In the case only the refracted and diffracted waves
taken into account, the dynamic theory of two-wave appro
mation has been well developed,1 where the electric suscep
tibility of crystals is defined as a scalar. For anisotropic x-r
optics in crystals, considering the tensor susceptibility,
wave equation of two-wave approximation has the form

2h0D02~ x̂0D0! [K0]2~ x̂ ḡDg! [K0]50, ~4!

2hgDg2~ x̂gD0! [Kg]2~ x̂0Dg! [Kg]50, ~5!
7266 ©1999 The American Physical Society
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where

h j5
K j

22K2

2K j
2

~6!

is a small wave-vector correction associated with x-ray
fraction. (x̂0D0)[K0] is the perpendicular component ofx̂0D0

with respect to the wave-propagating directionK0 . The
other vectors in Eqs.~4! and~5! have similar meanings. Fo
convenience, we define that

D05S D1

D2 cosu

D2 sinu
D , Dg5S Dg1

2Dg2 cosu

Dg2 sinu
D , ~7!

whereD0 andDg are the electric displacements of refract
beam and reflected beam.D2 , Dg2 are the components pa
allel to the incident plane andD1 , Dg1 the vertical compo-
nents. The mutual positions of these vectors are show
Fig. 1.

III. DISPERSION SURFACE AND POLARIZATION

Starting from Eqs.~4! and ~5!, we can get the dispersio
surface equation of any specific reflection. In present pa
we mainly discuss ‘‘forbidden’’ reflections as defined by k
nematical theory.1

Usually the anisotropy ofx̂ is very small in most cases
Perfect results can be obtained by conventional dyna
theory if we considerx̂ as a scalar. So it is convenient
write

x̂5x i Î1x̂a, ~8!

FIG. 1. The mutual positions ofD0 andDg .
-
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where Î is the unit matrix,x i represents the large isotrop
part of the susceptibility, andx̂a is a small correction related
to anisotropic diffraction.

Let us turn to Eqs.~4! and~5!; the Fourier componentsx̂0

and x̂g are defined as

x̂ j5
1

VEV
x̂ exp~2p igj•r !dV ~9!

when j 50, x̂05(1/V) *Vx̂dV. x̂0 has the same symmetry a
x̂. Similar to that in the conventional theory, we takex̂0 as a
scalarx0 . When j Þ0, especially in a screw-axis or glide
plane forbidden reflection, the symmetry properties of
tensor susceptibility are very unusual. In these reflectio
the isotropic part of the tensorx̂g disappears because of th
symmetry of the space group. The effect of the anisotro
part of susceptibility that still remains in such a forbidd
reflection becomes significant. And all components of
tensor x̂g are determined by at most two independe
parameters.1 The results have been given by Dmitrienko~see
Table I!.

The tensors listed in Table I have a common form

x̂g5S x11 x12 x13

x21 2x11 x23

x13 x23 0
D . ~10!

Hereafter the two-waves approximation will be investigat
using this common form. Inserting into Eqs.~4! and ~5!,
omitting the tedious calculation, we can get the followin
equations:

TABLE I. The components of the tensor susceptibilityx̂g and
indices l for anisotropic x-ray reflections (n50, 61, 62, . . . ;

other components ofx̂g : x2252x11; x3350; x125x21; x13

5x31; x235x32).

Screw axis or
glide plane x11 x12 x13 x23 l

21 0 0 F1 F2 2n11
31 F1 7 iF 1 F2 6 iF 2 3n61
32 F1 6 iF 1 F2 7 iF 2 3n61
41 0 0 F1 6 iF 1 4n61
41 F1 F2 0 0 4n12
42 F1 F2 0 0 2n11
43 0 0 F1 7 iF 1 4n61
43 F1 F2 0 0 4n12
61 0 0 F1 6 iF 1 6n61
61 F1 6 iF 1 0 0 6n62
61 0 0 0 0 6n13
62 F1 6 iF 1 0 0 3n61
63 0 0 0 0 2n11
64 F1 7 iF 1 0 0 3n61
65 0 0 F1 7 iF 1 6n61
65 F1 7 iF 1 0 0 6n62
65 0 0 0 0 6n13
c 0 F1 F2 0 2n11
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~2h02x0!D12x11* Dg11~x12* cosu2x13* sinu!Dg250,
~11!

~2h02x0!D22~x12* cosu1x13* sinu!Dg12x11* cos2 uDg2

50, ~12!
a
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2x11D12~x12cosu1x13sinu!D21~2hg2x0!Dg150,
~13!

~x12cosu2x13sinu!D12x11cos2uD21~2hg2x0!Dg2

50. ~14!

The determinant of this system, being zero,
D5U 2h02x0 0 2x11* x12* cosu2x13* sinu

0 2h02x0 2x12* cosu2x13* sinu 2x11* cos2 u

2x11 2x12cosu2x13sinu 2hg2x0 0

x12cosu2x13sinu 2x11cos2 u 0 2hg2x0

U50, ~15!
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gives the equation of dispersion surfaces in reciprocal sp
that has the form

X22BX1C50, ~16!

where

X5~2h02x0!~2hg2x0!, ~17!

B5ux11u2~cos4 u11!1ux12cosu2x13sinuu2

1ux12cosu1x13sinuu2, ~18!

C5ux11*
2 cos2 u1~x12

2 cos2 u2x13
2 sin2 u!u2. ~19!

From Eq.~16!, we have the solutions

X5
B6AB224C

2
~20!

and rewriting Eq.~20!, we get the dispersion surface equ
tions

~2h02x0!~2hg2x0!5
B6AB224C

2
. ~21!

It is clear that in Eq.~20!, B>0, C>0, andB224C>0. For
different forbidden reflectionsB andC have different values
The surfaces described by Eq.~21! are two-sheet surfaces o
revolution~a hyperbolic cylinder!. This equation tells us tha
two types of waves exist that are excited on the differ
dispersion surfaces when a beam is incident into a crys
Here, we call them ‘‘ordinary’’~o! and ‘‘extraordinary’’~e!
waves. In such cases the reflected wave owes to the an
ropy of susceptibility, though the form of the dispersion s
face equation is very similar to the conventional dynam
theory that considers the susceptibility as a scalar. Since
dispersion surface is known, following the steps in the we
developed conventional theory, we can get the solutions
K0 andKg which fully determine the refracted and reflect
waves.3

Other than in the conventional theory, where the incid
beam splits into two plane polarized waves known asp po-
larization ands polarization, two elliptic polarized wave
are generated by the incident beam. This is the basic prop
of an anisotropic reflection. It is known that, in fact, in th
conventional theory the two types of polarized waves
ce
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investigated separately. Here we can find the relation
them. The ‘‘ordinary’’ ~o! and ‘‘extraordinary’’ ~e! waves
can be determined by a single equation and these two w
propagate separately in the crystal.

Usually the isotropic part of susceptibility is much larg
than the anisotropic part. For simplicity, waves in the crys
could be treated as plane polarized waves. The conventi
dynamic theory is based on this approximation.3 And it could
also be supposed that in a common reflection it is difficult
observe the anisotropy ofx̂. But in a forbidden reflection,
the additional symmetry of the space group let the isotro
part of the susceptibility become insignificant. Many ne
properties appear due to the anisotropy of susceptibility.

Now we can discuss the properties of the reflection
details for some special cases. Whenx115x1250, such as in
21 , 41( l 54n61), 43( l 54n61), 61( l 56n61) or 65( l
56n61) reflection,B and C are very simple as given by
definitions~18! and ~19!, we get

B52ux13u2 sin2 u, ~22!

C5ux13u4 sin4 u. ~23!

Furthermore, due toB224C50, Eq. ~16! has one solution.
It is interesting to find that in such a forbidden reflectio
there is only one dispersion surface existing in recipro
space. Usually two separate waves, known as ‘‘ordinary’’~o!
and ‘‘extraordinary’’ ~e! waves, exist in crystals, which i
described above as well as in conventional theory. The
fractive indices of these two waves are generally not equa
each other, which gives rise to the birefringence of the cr
tal. But here, inserting theB andC given above into Eq.~21!,
we get

~2h02x0!~2hg2x0!5ux13u2 sin2 u. ~24!

It is an extreme case when two elliptic waves excited in
crystal equal to each other. It is the unique phenome
appearing in the anisotropic reflection. Only one ordina
wave exists in the crystal and the polarization of this wave
very unusual.

Because what we are interested in is the direction
phase ofD0 and Dg , hereafter we omit the factor (2hg
2x0) in Eqs.~12! and~13!, which is a constant for a respec
tive reflection, and rewrite these equations as
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Dg15x11D11~x12cosu1x13sinu!D2 , ~25!

Dg252~x12cosu2x13sinu!D11x11cos2 uD2 . ~26!

For x115x1250, Eqs.~25! and ~26! turn to

Dg15x13sinuD2 , ~27!

Dg25x13sinuD1 . ~28!

When the incident wave is plane polarized, the reflected
is also plane polarized. And the amplitude of the reflec
wave has the same order as incident one. Especially w
the incident wave isp polarized ors polarized, the polar-
ization state of the reflected wave will be changed.
p-polarized incident wave will give as-polarized reflected
one and vice versa. This conclusion is consistent with
kinematical model developed by Dmitrienko.1

If only a screw axis~or glide plan! is taken into account
the nonzero items ofx̂g are listed in Table I. Other symmetr
operations can lead to additional relationships betweenF1
andF2 or even make them vanish. It should be noted that
a 63 screw axis withl 52n11 and 61 , 65 screw axes with
l 56n13, the reflections remain forbidden because only
dipole interaction of x rays is taken into account in the d
veloping theory.1

To illustrate the developed model carefully, let us co
sider the 00l ( l 52n11) reflections in crystals with TiO2
~rutile! structure~the space group isD4h

4 , P42 /mnm). The
structure is shown in Fig. 2. From Table I one can obtain
tensor susceptibility taking into account both the screw a
42 and the glide planen @for 00l ( l 52n11) reflections there
is no difference betweenc and n glide planes#. It can be
found from Table I that due to the combined action of t
screw axis and the glide plane onlyx12Þ0. Thus we get

B52ux12u2 cos2 u, ~29!

C5ux12u4 cos4 u. ~30!

Similar to the case above, the dispersion surface equation
the form

FIG. 2. The rutile structure (s, oxygen;d, titanium!.
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as

~2h02x0!~2hg2x0!5ux12u2 cos2 u. ~31!

Only one dispersion surface has been obtained and no
fringence will be observed when only an ordinary dispers
exists in the crystal. We rewrite Eqs.~25! and ~26! as

Dg15x12cosuD2 , ~32!

Dg252x12cosuD1 . ~33!

From Eqs.~32! and~33!, it is very interesting to find that the
reflected one is also a plane polarized wave with the ve
perpendicular to that of the incident wave if the incide
wave is plane polarized. It is as though the incident wave
rotated by 90°.

Usually the anisotropy of susceptibility is hard to obser
because the anisotropic part ofx̂ is very small compared to
the isotropic part. It has been shown above in forbidden
flection that the reflected wave is only related to the ani
tropic part of x̂. If the environment of crystals is change
for example, by putting samples in an electric field, then
x̂eff will also change. Thus it may be possible by such
method to make the anisotropic part ofx̂ significant, thereby
enable diffractions owing to the anisotropy ofx̂ to be ob-
served.

IV. CONCLUSION

Starting from the Maxwell equations, dynamic model
forbidden reflections is established, where the susceptib
of crystals is considered as a second-order tensor. The m
properties of forbidden reflections are obtained.

~1! Similar to the conventional dynamic theory, two di
persion surfaces exist in the reciprocal space on which o
nary ~o! and extraordinary~e! waves are excited. Usually th
o and e waves propagate separately in the crystals and
totally elliptic polarized. But owing to the anisotropy ofx̂, in
some special case, we can only get one dispersion surfa

~2! Considering the tensor susceptibility, all the scre
axis and glide-plane forbidden reflections may be exci
except the 00l ( l 52n11) reflections for a 63 screw axis and
the 00l ( l 56n13) reflections for 61 and 65 screw axes.

~3! The polarization properties of forbidden reflections a
very unusual due to the different symmetry ofx̂. The trans-
formation of p polarization intos polarization and vice
versa are possible.

From this dynamic theory, we can suppose that crys
can act as efficient x-ray polarizers to change linearly po
ized radiation into an elliptical polarized one or vice versa12

In fact, highly polarized x rays have many applications
materials science, crystallography, chemistry, biology, e
The availability of highly polarized and tunable synchrotr
radiation has made anisotropic refraction and diffraction
attractive tool for a broad range of studies of these fields
both transmission and diffraction cases.11,13,14
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