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Adiabatic quantum approach to optical line shapes in the condensed phase

H. J. Bakker
FOM–Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 26 January 1999!

It is shown that absorption line shapes in the condensed phase can be well described with an adiabatic
quantum model. This model reproduces the results of other line-shape models and includes spectral-diffusion
and motional-narrowing effects. The motional narrowing is described in a purely quantum-mechanical manner
and is found to result from the delocalized character of the wave functions of the low-frequency modes to
which the optically active mode is coupled. In many line-shape models it is assumed that an increase in the rate
of spectral diffusion automatically leads to motional narrowing of the absorption line. However, this assump-
tion is no longer correct if the low-frequency motion is affected by a change in the quantum state of the
high-frequency mode. It is demonstrated that this quantum effect can easily be accounted for in the adiabatic
quantum model and that this effect leads to different dependencies of motional narrowing and spectral diffu-
sion on the low-frequency motion.@S0163-1829~99!01134-0#
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I. INTRODUCTION

In the condensed phase, absorption lines of hi
frequency modes are predominantly broadened as a resu
the interactions with low-frequency degrees of freedo
These interactions do not lead to an energy transfer to
low-frequency modes but to a~stochastic! modulation of the
transition frequency of the high-frequency mode. Hen
these interactions are denoted as quasielastic interact
The broadening that results from these interactions is o
referred to as pure dephasing. Pure dephasing has been
ied and described for many different physical systems an
often modeled with semiclassical approaches in which
low-frequency mode is explicitly described in a classic
manner.1–5 In these models the frequency fluctuations of t
high-frequency mode are calculated in a molecular-dynam
simulations using a potential-energy term that accounts
the interaction between the high- and low-frequen
modes.4,5 With increasing temperature the amplitudes
most modes will increase, leading to a stronger freque
modulation. As a result, a broadening of the absorption
shape with temperature is expected. However, in the
1940s it was found in nuclear-magnetic-resonance~NMR!
studies that for some inhomogeneous systems the line s
actually becamenarrowerwith increasing temperature.6,7 To
understand this narrowing it is important to realize that
absorption line shape is not only determined by the f
quency distribution that results from the quasielastic inter
tions with the low-frequency degrees of freedom, but also
the dynamicsof the frequency modulation. This dynamic
can result both from an exchange of the excitation betw
different sites or from a change in the surroundings of
excited oscillator. The frequency fluctuations will lead to
averaging of the oscillator frequencies over the spectral
tribution so that all oscillators effectively acquire the cent
frequency of this distribution. As a result, the observed
sorption line will become narrower than the spectral dis
bution. This effect is denoted as motional narrowing.

Several line-shape models were developed that acc
for the effect of motional narrowing.8–15 These models al-
PRB 600163-1829/99/60~10!/7258~8!/$15.00
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ways contain a spectral distribution function and a charac
istic spectral modulation process, often characterized b
coupling or a correlation time constant for the frequency
the oscillator. In some models, like the exchange model9,10

the spectral distribution peaks at a few well-defin
frequencies9–12 whereas in other models the spectral dist
bution is assumed to be Gaussian.13–15 In the so-called
Gauss-Markov stochastic modulation model the fluctuati
form a Gaussian process and the autocorrelation functio
the detuning decays exponentially~Markov approximation!
with time constanttc . When tc decreases, which corre
sponds to an increased rate of spectral modulation, the lin
absorption spectrum evolves from a broad Gaussian t
much narrower Lorentzian. This model has been widely
plied to describe the line shapes obtained in different opt
spectroscopic experiments.16–20

In modeling the absorption line shape it is often assum
that the excitation of the high-frequency mode does not
fect the low-frequency motion. The independence of the lo
frequency motion on the quantum state of the high-freque
mode is referred to as zero back reaction~ZBR!. Almost all
line-shape models and molecular-dynamics simulations
the optical line shape assume ZBR. This assumption
even used in some recent advanced molecular-dynam
simulations in which the low-frequency motion leads
strong nonadiabatic changes of the quantum state of
high-frequency mode.21–23 An important consequence of as
suming ZBR is that an increase of the rate of frequen
fluctuation always leads to a motional narrowing effect.
the limit that the frequency fluctuation becomes infinite
fast, the linewidth becomes equal to zero.

There are also line-shape models that do not assume Z
In, for instance, the Brownian oscillator model it is assum
that the excitation of the high-frequency mode results in
change of the equilibrium position of the harmonic low
frequency motion.24–26 Also in some recent classica
molecular-dynamics simulations27,28 the change of the inter
molecular interactions due to the excitation of the hig
frequency mode is incorporated. Hence in this treatment
low-frequency motion is allowed to be different for th
7258 ©1999 The American Physical Society
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PRB 60 7259ADIABATIC QUANTUM APPROACH TO OPTICAL LINE . . .
ground and excited state of the high-frequency mode.
important consequence of not assuming ZBR is that an
crease in the rate of the frequency fluctuations may only l
to a partial narrowing of the absorption line or even no n
rowing at all, depending on the precise character of the lo
frequency motion in the ground and excited state of the hi
frequency mode. For instance, in case the low-freque
modes in the ground and excited state of the high-freque
mode are formed by two displaced harmonic oscillators,
increase of the oscillation frequency of the low-frequen
mode will lead to a more rapid spectral modulation but h
no effect at all on the absorption linewidth.

The intermediate situation of partial narrowing is rath
difficult to model since it requires a distinction between fr
quency fluctuations that lead to an averaging over the s
tral distribution and thus to a narrowing effect and frequen
fluctuations that do not lead to a narrowing of the absorpt
line. In this paper we will show that such a distinction a
thus a correct description of partial motional narrowing c
easily be obtained when both the high-frequency mode
the low-frequency mode are quantum mechanically
scribed using an adiabatic model. This model has been
cesfully used to describe the broadening of the O-H stre
ing vibration due to hydrogen bonding.29–31 However,
motional narrowing and spectral diffusion have never be
discussed before in the context of this model. It will
shown that the adiabatic quantum model includes both th
effects and can be quite generally applied to describe op
line shapes in the condensed phase.

This paper is organized as follows. In Sec. II the adiaba
quantum model is presented. The results obtained with
model for two different types of spectral distributions a
presented in Sec. III. In Sec. IV these results are discus
and compared to the results of other line-shape models
nally, Sec. V brings the conclusions.

II. THEORETICAL MODEL

We consider a set of high-energy degrees of freedom
electronic excitations, molecular vibrations, and opti
phonons with coordinates$R% and a manifold of low-
frequency states like acoustic phonons and translational
grees of freedom with coordinates$ l %. The Schro¨dinger
equation of this system has the following form:

H(
R

\2

2mR
¹R

21(
l

\2

2ml
¹ l

21Vh~$R%!1Vl~$ l %!

1Vhl~$R%,$ l %!J C~$R%,$ l %!5EC~$R%,$ l %!,

~2.1!

with mR andml the mass of the quasiparticles in the coor
natesR and l, respectively.

This Schro¨dinger equation can be simplified using a
adiabatic approach in which the~high-frequency! motion in
coordinates$R% can be separated from the motion of t
~low-frequency! degrees of freedom with coordinates$ l %.
This is a good approximation if the motion in the hig
frequency coordinate is much faster than that in the lo
frequency coordinate. Then the wave functionC can be
n
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written as c($R%;$ l %)f($ l %) ~Born-Oppenheimer approxi
mation!. The functionc($R%;$ l %) represents the wave func
tion in the high-frequency coordinates that depends pa
metrically on the low-frequency coordinates$ l %. This type of
adiabatic treatment is well known and can be found in ma
textbooks.32 The adiabatic treatment forms a good appro
mation if the terms¹$ l %c($R%;$ l %) and ¹$ l %

2 c($R%;$ l %) are
negligible, that is when the character of the high-frequen
wave functionsc($R%;$ l %) do not strongly change as a func
tion of the low-frequency coordinatel.

In the following, only a single high-frequency coordina
R and a single low-frequency coordinatel will be considered.
For each high-energy statec i(R; l ) there exists a manifold o
functions f ia( l ) that are the solutions of the following
simple one-dimensional Schro¨dinger equation:

S \2

2ml

]2

] l 2
1Vl~ l !1Ei~ l !D f ia~ l !5Eiaf ia~ l !. ~2.2!

The state of the system is given by( i ,aCiac i(R; l )f ia( l ).
The time dependence~modulation! of the transition fre-
quency results from the fact that many low-frequency sta
f ia( l ) of different energy will be thermally occupied leadin
to quantum interference effects. The phase relation betw
f1a will affect the quantum interference of the transitio
from the f1a states to a particularf2a state and thus the
transfer of population to this state. The initial phase relat
of each oscillator in the system will be different and th
each single oscillator will have a different time-depende
absorption spectrum. In the following, we will only addre
the ensemble- and time-averaged linear absorption spect
but the treatment can easily be extended to describe no
ear optical experiments like spectral-hole burning a
photon-echo spectroscopy in which the time dependenc
the absorption spectrum of an individual oscillator can
measured.

The absorption line is given by an electric-dipole tran
tion between the occupiedc1(aC1af1a and the set
c2(bf2b . For the ensemble- and/or time-averaged abso
tion spectrum the phase relations of thef1a states will aver-
age out so that the shape of this line is only determined
the thermal occupation of these states and the cross sec
of the transitions from these states to the manifold off2b
states:

W'(
a,b

uC1au2u^c2f2buRuc1f1a&u2

5u^c2uRuc1&u2(
a,b

uC1au2u^f2buf1a&u2 . ~2.3!

It follows from this expression that the broadening is giv
by the matrix elementŝf2buf1a&, representing the projec
tion of each statef2b on the complete set$f1a%. The shape
and width of the distribution of transition frequencies th
depends on the difference betweenf2b and f1a , which is
determined by the difference between the potentialsE2( l )
andE1( l ). If these potentials strongly differ, the transition
between the manifolds$f2b% and$f1a% are accompanied by
the emission or absorption of a large number of ene
quanta in the low-frequency coordinates$ l %.
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7260 PRB 60H. J. BAKKER
III. RESULTS

In this section the adiabatic model of the previous sect
is used to calculate the characteristics of the motional n
rowing and spectral diffusion for two model systems.

A. Peaked spectral distribution

As described in the introduction, an absorption line sha
is determined by a spectral-distribution function and the r
and character of the frequency modulation within this dis
bution. For some systems the spectral distribution peaks
few distinct frequencies. Examples of these can be foun
studies on optical phonons, molecular vibrations9,10 and
proton-spin resonances~NMR!.11,12

The optical line shape of a doubly peaked spectral dis
bution can be modeled using the potentialsE1 and E2 pre-
sented in Fig. 1. It should be noted here that the energies
shapes of these potentials are chosen arbitrarily and are
meant to describe a specific system. If there would be
dynamics~motion! in the potentialsE1 andE2, the possible
transitions betweenE1 and E2 lead to a doubly-peaked ab
sorption line shape for the high-frequency mode. The f
quency of the high-frequency mode is determined by

FIG. 1. Potential-energy curves used to calculate the absorp
line shape for a doubly peaked spectral distribution. Also shown
the lowest nine vibrational wave functions calculated using a m
of 50 amu (1 amu51.660 54310227 kg). ~a! V154.2l 6221l 2;
~b! V254.2l 6221l 222.8@ l /u l u#@12e22u l u#, with the potential en-
ergy in cm21 and the coordinatel in 10210 m.
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vertical displacement in energy ofE1 andE2. In order for the
adiabatic treatment to be valid, this energy difference sho
be large compared to the spacing of the low-frequency lev
and the height of the barriers in the potentialsE1 and E2.
Since we are only interested in the shape of the spectra
energy difference ofE1 and E2 is not specified but it is
assumed that this energy difference is large enough for
adiabatic treatment to be valid.

The Schro¨dinger equation for the low-frequency mod
@Eq. ~2.2!# is solved using the Numerov method. In a typic
calculation of the optical line shape, the lowest 250 vib
tional levels are calculated for both potentialsE1 and E2.
The optical linewidth starting from the levels in potentialE1
is calculated using Eq.~2.3!. These levels are assumed to
thermally occupied following a Boltzmann distribution.

In Fig. 2 absorption spectra are presented calculate
four different temperatures. At 1 K only the lowest states in
the potentialE1 will be occupied. These states mainly ha
transition probability to the two lowest states inE2 that are
well localized in either one of the two wells. Hence the a
sorption spectrum consists of two narrow peaks. If the te
perature is increased to 10 K, higher states will get occup
that have transition probability to more delocalized states
E2. This will lead to a broadening of the two peaks in th
absorption spectrum. If the temperature is further increa
to 100 K, most of the occupied states inE1 have transition
probability to delocalized states inE2. This delocalization
leads to an averaging of the energies of the two wells ofE2
and thus the absorption will now peak at the average
quency of the two lines at low temperature. However,
wave functions just above the barrier inE2 will still strongly
differ from the thermally occupied wave functions inE1 so
that the transition will still be broad. If the temperature b
comes very high, e.g., 1000 K, most of the thermally occ
pied states ofE1 are well above the barrier separating t
two wells and have transition probability to similar states
E2. These high-energy states are not too strongly influen
anymore by the asymmetry in the potential and thus beco
quite similar to the corresponding states inE1. Hence the
resulting absorption line will be narrow. The narrowing
the transition with increasing vibrational quantum number
illustrated in Fig. 3~a!. The temperature dependence of t
overall absorption can be obtained by summing over
thermally occupied vibrational states. In Fig. 3~b! the overall
width of the absorption is shown as a function of tempe
ture, clearly illustrating the motional-narrowing effect. A
low temperatures, the linewidth shows a capricious dep
dence on temperature due to the fact that only a limited nu
ber of low-frequency quantum states is occupied. At h
temperatures, many states are occupied leading to a ne
classical behavior of the low-frequency mode and a smo
decrease of the linewidth with temperature. Also shown
Fig. 3~b! is the linewidth in the inhomogeneous limit~infinite
mass!. For an infinitely large mass, the kinetic energy te
(\2/2ml)(]

2/] l 2) in Eq. ~2.2! becomes negligible compare
to the potential energy and the wave function becomes c
pletely localized at the position where the energy of the le
equals the potential energy. In this limit the absorption li
will be given by the energy differences between the pot
tials E2 andE1 over the thermally occupied range ofE1. In
this inhomogeneous limit there is no exchange between
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FIG. 2. Absorption spectra at four different temperatures calculated using the potentials of Fig. 1 using a mass of 50 am
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ferent positionsl and thus no fluctuation of the transitio
frequency. The inhomogeneous line width increases w
temperature because the thermally occupied range of the
tential E1 and thus the range of energy differences withE2
becomes larger. Hence it is clear that the motional narrow
shown in Fig. 3~b! is not the result of a decrease in the wid
of the spectral distribution but really the result of a mo
rapid fluctuation within this distribution. It is interesting t
note that the absorption linewidth can never really narr
down to zero because the adiabatic description will no lon
be valid if the motion inl becomes infinitely fast. If the
motion in l becomes very fast, it is no longer possible
separate the time scales of the high- and low-frequency
tion. As a result, the ground and excited state of the hi
frequency mode are no longer decoupled which me
that there will be population relaxation out of the excit
state to the ground state. This population relaxation w
lead to a nonzero absorption linewidth, even if the motio
narrowing would lead to a complete vanishing of the lin
width.

In the conventional description of motional narrowing f
a system with a peaked spectral distribution,9–12 the absorp-
tion spectrum is described with a few coupled different
equations that each describe the time evolution of the po
ization at one of the discrete frequencies of the spectral
tribution. The motional narrowing results from an increase
the coupling of these equations with temperature. In the a
h
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l
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batic quantum description the narrowing results from an
crease in the delocalization and the energy of the therm
occupied wave functions. Apparently the adiabatic freque
fluctuation that leads to motional narrowing is contained
the character of the wave functions, which can be underst
in the following way. The delocalization of the wave fun
tion over l represents the evolution from a particular tran
tion frequency~given by the difference betweenE1 andE2 at
a particular value ofl ) to another frequency. This change
transition frequency is accompanied by a complement
change in the kinetic energy inl. The fact that the wave
function has the same energy at alll means that the sum o
the energy in the high-frequency coordinateR and the kinetic
energy inl does not change in this process, as is expected
an adiabatic interaction. With increasing temperature, hig
energy states get occupied that have a larger kinetic enel
which implies that the different regions of the potentialsE1

andE2 are sampled more rapidly so that the structures of
potentials are more and more averaged out in the wave fu
tions. As a result, the wave functions of the low-frequen
mode inE1 and E2 will become more similar and the ab
sorption line becomes narrower. The increase in similarity
the wave functions inE1 and E2 implies that the low-
frequency motion becomes increasingly independent on
quantum state of the high-frequency resonance: the low-
the high-frequency mode become increasingly decoupled
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7262 PRB 60H. J. BAKKER
In addition to motional narrowing, there will be
spectral-diffusion process that results from the quantum
terference of the occupied states inE1. This interference re-
sults in an ongoing change of the upper states inE2 that are
optically coupled to the occupied states inE1. However,
since there is no phase relation between the upper stat
E2, this quantum interference doesnot lead to a transfer of
the polarization from one frequency to anotherwith phase
conservationfor the polarization. As a result, the quantu
interference will not contribute to the motional narrowing

B. Broad, structureless spectral distribution

For many systems, the spectral distribution is not pea
at a few well-defined frequencies but is broad and structu
less. Such a spectral distribution can be obtained using
tentials with different oscillatory modulations, as illustrat
in Fig. 4. In Fig. 5 the absorption line shape that results fr
these potentials is presented as a function of vibratio
quantum number and as a function of temperature. In
5~a! it is seen that at low vibrational quantum numbers
width of the absorption line strongly changes as a function

FIG. 3. Absorption linewidth for the transition between the p
tentials of Fig. 1 as a function of vibrational quantum number~a!
and as a function of temperature~b!, calculated for a mass of 50
amu. Also shown in~b! is the inhomogeneous linewidth that corr
sponds to the energy difference between the potentials over
thermally occupied range of the potential of Fig. 1~a!.
-

in

d
e-
o-

al
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e
f

vibrational quantum number because the energy of the st
is within the range of the modulation of the potential-ener
curves. At higher energies, the linewidth is observed to
crease with increasing vibrational quantum number. With
creasing temperature the occupation of these higher en
states that have narrower linewidths will increase which
sults in a narrowing of the absorption linewidth with tem
perature, as shown in Fig. 5~b!.

In Fig. 6 the width of the absorption is presented as
function of temperature for different displacements of t
position of the minimum ofE2 with respect to that ofE1. It
is clear from this figure that the motional-narrowing effe
decreases with increasing displacement. For large displ
ments the linewidth even increases with temperature. T
increase of the linewidth with temperature results from t
effects. In the first place, for a nonzero displacement,
spectral range of transition frequencies fromE1 to E2 will
strongly increase with increasing degree of excitation in
potentialE1. At large displacements and high temperatu
the spectral width due to the displacement will domina
over the spectral width that results from the difference in

he

FIG. 4. Potential-energy curves used to calculate the absorp
line shape for a broad continuous spectral distribution. Also sho
are the lowest 11 vibrational wave functions assuming a mass o
amu. ~a! V15500l 2130@sin(7.5l )1cos(12.5l )#; ~b! V25500l 2

130@sin(5l)1cos(7.5l )2sin(15l )#, with the potential energy in
cm21 and the coordinatel in 10210 m.
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modulation of the potentials. In this limit the linewidth has
@coth(\vl/2kT)#1/2 dependence on temperature~with \v l the
frequency spacing in the harmonic potentials!, as has been
found previously in other line-shape models that describe

FIG. 5. Absorption linewidth of the transition between the p
tentials of Fig. 4 as a function of vibrational quantum number~a!
and as a function of temperature~b!, calculated for a mass of 50
amu. Also shown in~b! is the inhomogeneous linewidth that corr
sponds to the energy difference between the potentials over
thermally occupied range of the potential of Fig. 4~a!.

FIG. 6. Absorption linewidth as a function of temperature f
six different displacements of the minima of the potentials of Fig
e

transition between two displaced~unmodulated! parabola.30

Second, if the potentialsE1 andE2 are displaced, there ca
be no complete motional-narrowing effect since there can
no averaging out of a difference in equilibrium positio
Hence, even at very high degrees of excitation, the w
functions inE1 will remain different from those inE2. This
means that in case of a displacement there will always b
residual linewidth, even if the rate of spectral diffusio
would be infinitely fast, e.g., when the mass of the quasip
ticle in l becomes equal to zero. This residual linewidth
determined by the displacement of the potentials. App
ently, there can only be a complete motional-narrowing
fect if the overall shapes of the potentialsE1 and E2 are
exactly thesame. Hence in a quantum-mechanical picture,
which the motion inl can differ for different quantum state
of the high-frequency mode, an increase in the rate of sp
tral diffusion does not necessarily lead to motional narro
ing.

IV. DISCUSSION

In many line-shape models like the exchange mode9,10

and the Gauss-Markov model there is only one fluctuat
process that governs both the spectral diffusion of the o
mum frequency at which an oscillator can be excited, and
transfer of the optically induced polarization from one fr
quency to another with phase and amplitude conservat
This conservation of phase and amplitude of the polariza
in going from one frequency to another is essential for g
ting a motional narrowing effect since only then an increa
in the rate of the frequency fluctuations will make the rate
phase accumulation of the polarization increasingly sim
to the average frequency of the frequency distribution.
there is no conservation of phase and amplitude, an incre
in the rate of the frequency fluctuations will lead to a mo
rapid decay of the polarization and thus to a broadening
stead of a narrowing effect. Also in the semiclassical lin
shape models, in which the frequency fluctuations are exp
itly calculated by means of a molecular-dynami
simulation,4,5 it is assumed that the frequency fluctuatio
leading to motional narrowing have exactly the same dyna
ics as the spectral diffusion. This means that in all the
descriptions ~exchange, Gauss-Markov and semiclassi
models! the absorption linewidth will become equal to ze
if the spectral diffusion becomes infinitely fast.

In the previous section it was shown that in the adiaba
quantum model the spectral diffusion and motional narro
ing have different origins. Spectral diffusion results from t
quantum interference of the occupied low-frequency sta
whereas motional narrowing is contained in the delocali
tion of the wave functions of these states. This delocalizat
can have a different dependence on the degree of excita
~temperature! of the low-frequency mode than the spectra
diffusion process. As a result, an increase in the rate of sp
tral diffusion does not automatically imply that the amou
of motional narrowing will increase. It was shown that
complete narrowing only occurs if the potentialsE1 andE2
have exactly the same overall shape. This means that f
complete narrowing the low-frequency motion shouldnot be
affected by the excitation of the high-frequency mode@zero
back reaction~ZBR!#, as is assumed to be the case in m

he
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7264 PRB 60H. J. BAKKER
line-shape models. Often the assumption of ZBR is based
the argument that the low-frequency mode behaves cla
cally. However, the fact that the motion of the low-frequen
mode behaves classically does not exclude the possib
that this motion changes upon excitation of the hig
frequency mode. The assumption of ZBR will in fact only
correct if the low-frequency motion is dominated by oth
interactions than the interaction with the high-frequen
mode or if the degree of excitation in the high-frequen
mode is very high. In the latter case it can be expected
the range ofl and the low-frequency motion will hardly b
affected by putting in another quantum in the high-frequen
mode. It should be realized here that this means that not
the low-frequency mode but also the high-frequency mo
should be in a classical limit. However, in most spect
scopic studies the number of quanta in the high-freque
mode will be small and thus it can be expected that in m
cases the low-frequency motion strongly depends on
quantum state of the high-frequency mode, even if the lo
frequency mode itself behaves classically. If this is the ca
the low-frequency motion in the ground and excited state
the high-frequency mode should be described independe
in order to obtain a correct description of the optical li
shape. Such an independent description is provided by
adiabatic model, irrespective whether the low-frequency m
tion is of quantum, classical, or intermediate character.

The ~multimode! Brownian oscillator model24–26is one of
the few line-shape models that does not assume ZBR. In
model the potentials of the low-frequency mode are form
by displaced parabola and the~classical! harmonic low-
frequency motion is damped due to stochastic interacti
with a bath. Since the parabola in the ground and exc
state have exactly the same shape, this model can ne
account for a change of frequency of the low-frequency
cillator upon excitation nor for anharmonic effects in t
low-frequency motion. In the adiabatic quantum model it
easy to use parabola with different curvatures for the gro
and excited state and to include anharmonic effects. An e
more important difference with the adiabatic quantum mo
is that it is assumed in the Brownian oscillator that the s
chastic interactions with the bath donot contribute to the
width of the spectral distribution and only affect the moti
in the low-frequency coordinate. Due to this assumption,
increase in temperature does not lead to an increase in
rate of the frequency fluctuations in the Brownian oscilla
model and thus there can be no motional narrowing of
absorption line with temperature in this model. In fact, in t
Brownian oscillator model an increase in temperature w
lead to a broadening of the line since the width of the sp
tral distribution increases following a@coth(\vl/2kT)#1/2 de-
pendence on temperature. In contrast, in the adiabatic q
tum model the stochastic interactions can contribute to
broadening of the absorption. This contribution is rep
sented by the difference in modulation of the potentialsE1
andE2. An increase in temperature leads to a motional n
rowing of the contribution of this difference in modulatio
leaving only the line broadening that results from the d
placement of the potentials. As a result, the absorption
can show a partial narrowing effect, as is shown in Fig.

The model of Robertson and Yarwood33 is quite similar to
the Brownian oscillator model but does not include the d
on
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namic Stokes shift. As in the exchange model and the se
classical approaches, it is assumed in this model that
low-frequency motion isnot affected by the excitation of the
high-frequency mode~ZBR! and thus predicts a complet
narrowing of the absorption line if the spectral diffusion b
comes infinitely fast. However, this assumption is rath
strange since in view of the coupling used in this model,
excitation of the high-frequency mode in fact should lead
a change in the equilibrium position of the damped harmo
low-frequency motion.

The Gauss-Markov, the exchange and the semiclass
models on one hand and the Brownian oscillator model
the other hand represent two extremes with respect to
tional narrowing. In terms of the adiabatic quantum mod
the former models represent systems for which the poten
E1 andE2 have different modulations but exactly the sam
overall shape. In contrast, the Brownian oscillator represe
a system for which the modulation of the potentials is t
same but the overall shape of the potential differs. It is cl
that the adiabatic quantum model can reproduce both
treme cases but also the intermediate situation where an
crease in the rate of spectral diffusion leads to apartial nar-
rowing of the absorption line. In this case both th
modulations and the overall shapes of the potentialsE1 and
E2 differ. Up to now motional narrowing and spectral diffu
sion have not been discussed in the context of the adiab
quantum model. This is probably due to the fact that up
now this model has only been used in the specific case w
the potentials of the low-frequency mode are displaced
rabola without any modulation.29,30 For this specific choice
of potentials there will be no motional-narrowing effect.

Linear absorption spectra in the condensed phase are
ten very broad and structureless and thus form a very p
probe for the microscopic dynamics. Fortunately, nonlin
optical techniques like spectral-hole burning and phot
echo spectroscopy give much more information on the
croscopic dynamics since these techniques are far more
sitive to the differences in the time scales and spectral ran
of the spectral-diffusion and motional-narrowing process
These techniques are also capable of distinguishing
motional-narrowing and spectral-diffusion effects. A gre
advantage of the adiabatic quantum model is that it provi
an independent microscopic description of motion
narrowing and spectral-diffusion effects. Hence it is expec
that especially for the modeling of these nonlinear expe
ments the adiabatic quantum model will have significant
vantages over conventional approaches like the Ga
Markov and the Brownian oscillator model.

V. CONCLUSIONS

We presented an adiabatic quantum description for
broadening of optical line shapes that results from the qu
elastic interactions with lower frequency modes. In th
model the microscopic origins of motional narrowing a
spectral diffusion are different. Spectral diffusion resu
from the quantum interference of the wave function of t
low-frequency mode. This quantum interference leads t
modulation of the optimum transition frequency witho
phase conservation for the polarization. Hence this proc
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does not contribute to the motional narrowing. Instead,
motional narrowing results from the delocalized characte
the wave functions of the low-frequency mode. Due to t
delocalization, the differences in the shape and modula
of the potentials that describe the low-frequency motion
the ground and excited state of the high-frequency mode
averaged out, which leads to a narrowing of the absorp
line shape. It is shown that the calculation of the wave fu
tions of the low-frequency mode presents a simple a
straightforward method to account for motional narrowi
effects, that can be used for all possible shapes of the po
tials of the low-frequency mode.

In case the potentials have the same overall shape fo
ground and excited state of the high-frequency mode,
adiabatic quantum model will give the same results as li
shape models in which it is assumed that the frequency fl
tuations that lead to motional narrowing have exactly
same dynamics as the spectral diffusion of the optimum tr
sition frequency. However, this assumption is only correc
the excitation of the high-frequency mode does not lead
change in the overall shape of the potential that governs
low-frequency motion@assumption of zero back reactio
~ZBR!#. In many spectroscopic studies the degree of exc
tion in the high-frequency mode will be low which makes
in fact quite likely that the excitation of the high-frequen
mode leads to a change in the low-frequency motion, eve
ett
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the low-frequency mode itself behaves classically. Suc
change can easily be accounted for in the adiabatic quan
model by using different potentials for the low-frequen
motion in the ground and excited state of the high-freque
mode.

In conclusion, the adiabatic quantum model forms a qu
general approach to the description of optical line shape
the condensed phase. This model can reproduce the resu
other line-shape models and in addition can account for s
ations in which an increase of the rate of spectral diffus
leads to a partial motional-narrowing effect. It is expect
that the adiabatic quantum model will be of particular use
the modeling of nonlinear experiments that sensitively pro
the different characteristics of motional narrowing and sp
tral diffusion.
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