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Polaron density matrix and effective mass at finite temperature
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We calculate the density matrix elements of the polaron using Feynman’s variational method. The density
matrix is diagonalized, and the eigenvalues and eigenfunctions are derived. These results and the calculated
density matrix are used to evaluate the root-mean-square~rms! displacementsRb and the effective mass~EM!
m* for various values of coupling strengths between electron and medium and of the temperature. We find that
EM is related to the rms displacement. The temperature dependence of the EM is in qualitative agreement with
experiment.@S0163-1829~99!08333-2#
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I. INTRODUCTION

The concept of the polaron was first introduced
Landau1 and subsequently developed by Fro¨hlich.2,3 Exten-
sive reviews on this subject are now available.4–9 The po-
laron is an electron moving in a polar or ionic cystal togeth
with the self-induced polarization of the lattice. Seve
methods exist for calculating the effective mass~EM! of the
polaron. In the past, most works on polarons were devote
calculating the ground-state energy and the effective mas
the polaron at zero temperature. Analytical results are av
able for these properties only for the limit of small and lar
values of electron-phonon coupling strengths.10–16 The
theory of Tyablikov17 can prove results for both the wea
coupling as well as strong-coupling limits, but the meth
cannot resolve intermediate coupling behavior. Feynma
celebrated path integral18,19 theory of the polaron20 provides
an excellent interpolation between the small and la
electron-phonon coupling strengths. Recently,21 the polaron
spectrumE(k) has been extracted using a diagramma
Monte Carlo~MC! method from the asymptotic decay of th
Green’s function.

Different definitions and approximations lead to differe
dependences of the EM of the polaron on temperature. S
theories7,22–24 predict that the EM of the polaron increas
with increasing temperature, while other theories10,25–27lead
to an EM that decreases with increasing temperature.

In the present paper we calculate the EM of the pola
from the density matrix at various temperatures which sho
that the EM decreases with increasing temperature. In
work the qualitative behavior of the effective mass is in a
cordance with the experimental behavior.28 To our knowl-
edge this is the first evaluation of the temperature dep
dence of the EM for the polaron from the density matrix.

We have shown that the diagonalization of the dens
matrix yields eigenvalues and eigenvectors.29 In this paper,
we first calculate the density matrix of the polaron and th
use this density matrix to calculate the eigenstates of
polaron. From the values of eigenfunctions and eigenval
we calculate various properties of the polaron including
EM and the root-mean-square~rms! displacement~correla-
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tion length!. The EM found here obeys the definition

1

m*
5

]2EPt

]Pt
2 U

Pt50

, ~1.1!

where Pt is the total momentum of the electron plus th
deformation created by it which moves along with it. Th
definition differs from the one used by Saitoh25 in which a
fictitious driving force acting on the electron was introduc
in the action functional and the effective mass was calcula
from the acceleration rate against the force.

The paper is organized as follows. We derive the expr
sion for a density matrix of the polaron in Sec. II. We ca
culate the mean-square displacement in imaginary time
effective mass for various values of coupling constants~a!
and b in Sec. III. This paper ends with a conclusion
Sec. IV.

II. POLARON DENSITY MATRIX

Let us begin with the Fro¨lich Hamiltonian2,3 for an elec-
tron in a polar crystal. We take all the optical phonons
have the same frequency and be equal tov. The Frölich
Hamiltonian is

H5
P2

2m
1(

k
\vkak

†ak1
1

AV
(

k
@c~k!exp~ ik•r !ak1H.c.#.

~2.1!

Hereak
† andak are the operators which create and annihil

a phonon with wave vectork and energy\vk , P and r are
electron momentum and position operators,m is its band
mass, andV is the volume of the system. The couplin
strength between electron and phonon is expressed as

c~k!5
c

k
, ~2.2!

where

c52 i\v~\/2mv!1/4~4pa!1/2,
7245 ©1999 The American Physical Society
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anda is the coupling strength of the electron-phonon int
action. The dimensionless Fro¨lich coupling constant is given
by

a5
1

2 S 1

e`
2

1

e0
D e2

\v S 2mv

\ D 1/2

,

where 2e is the electron charge, ande` and e0 are high
frequency and static dielectric constants.

The action corresponding to the Fro¨lich Hamiltonian@Eq.
~2.1!# is

S5
m

2\ E
0

b\

dtu ṙ ~ t !u22
ucu2

4p\2 E
0

b\

dtE
0

b\

ds
G~ ut2su!

ur ~ t !2r ~s!u
,

~2.3!

where

G~ ut2su!5
exp~ ut2suv!1exp$@b\2u~ t2s!u#v%

2 exp~b\v21!
.

~2.4!

For the above action@Eq. ~2.3!# the path integral has no
yet been evaluated exactly. Only approximate methods h
been applied. The density matrix for the polaron can be w
ten as

r~r ,r 8;b\!5E Dr ~ t !exp$2S@r ~ t !#%. ~2.5!

The density matrix also cannot be evaluated exac
therefore, the first cumulant approximation is used to eva
ate the density matrix.30 To evaluate the density matrix b
this approximation one has to choose a reference actionS0
for which the density matrixr0 can be evaluated exactly
The exact expression for the density matrix can be written

r~r ,r 8;b\!5r0~r ,r 8;b\!^exp~2@S2S0# !&S0
, ~2.6!

where

r0~r ,r 8;b\!5E Dr ~ t !exp$2S0~r @ t# !%. ~2.7!

The average on the right-hand side~RHS! of Eq. ~2.6! can
be expanded in cumulant, and ifS0@r (t)# is taken to be qua-
dratic, only the first two cumulants are nonzero. Feynma
variational approach is confined to the first cumulant, and
density matrix is given by

r~r ,r 8;b\!>r0~r ,r 8;b\!exp@2^S2S0&S0
#. ~2.8!

We choose the most general two-time quadratic actio31

in the present work. This action has parameters which
determined by minimizing the free energy. For the pres
work we take the trial action as

S05
m

2\ E
0

b\

dtu ṙ ~ t !u2

1
1

2~b\!2 E
0

b\

dtE
0

b\

dsg~ t2s!r ~ t !•r ~s!, ~2.9!

whereg has to fulfill the requirement
-

ve
t-

;
-

s

’s
e

re
t

E
0

b\

dt g~ t2s!50 for 0<t<b\.

The action S is translationally invariant, i.e.,g(t2b\)
5g(t) for any t within 0<t<b\. The kernelr0 is the sum
of all possible paths which connectr andr 8 in time b\. One
can regard this as a straight line betweenr and r 8 plus all
possible fluctuations around a straight line which vanishe
the end points. The fluctuations around the straight path
represented as a Fourier series. Therefore, the path ca
written as

r ~ t !5@r1~r 82r !t/b\#1b01 (
n51

`

@bn exp~ iVnt !

1bn
! exp~2 iVnt !#, ~2.10!

whereVn52pn/b\, and bn* is complex conjugate ofbn .
Thus the paths are labeled by the Fourier coefficientsbn and
the sum over paths can be reduced to an integration ove
coefficientsbn (5bn

r 1 ibn
i ) which satisfy the condition

r ~0!5r and r ~b\!5r 8.

By using Eq.~2.10! we haver0 in the form

r0~r 8,r ;b\!5T exp@2~r2r 8!2Q#. ~2.11!

where

T5F 1

2ple
2G3/2

)
n51

` F 4p2n2

gnle
214p2n2G3

, ~2.12!

le
25

b\2

m
,

Q5F m

2b\2 1 (
n51

`
gn

@4p2n21le
2gn#

G , ~2.13!

gn5
1

b\ E
0

b\

dtg~ t !exp~ iVnt !5g2n . ~2.14!

We now calculatê (S2S0)&S0
, where^X&S0

is defined by

^X&S0
5

*X exp~2S0!dr ~ t !

* exp~2S0!dr ~ t !
.

From Eqs.~2.3! and ~2.9! we get

2^~S2S0!&S0
5

ucu2

4p2\2 E
0

b\

dtE
0

b\

ds G~ ut2su!

3E d3k

2p2k2 ^exp$ ik•@r ~ t !2r ~s!#%&S0

1K 1

2~b\!2 E
0

b\

dtE
0

b\

dsg~ t2s!

3r ~ t !•r ~s!L
S0

. ~2.15!

Finally, we obtain



ion

al
ro
f

re
di
t

x

the

PRB 60 7247POLARON DENSITY MATRIX AND EFFECTIVE MASS . . .
2^~S2S0!&S0
5

2ucu2

4p2\2 E
0

b\

dtE
0

b\

ds G~ ut2su!

3E
0

`

dk
sin@k~r 82r !E#

k~r 82r !E
exp~2k2F !

1~r 82r !2G13H. ~2.16!

The propagator for polaron in the variational approximat
therefore reduces to

r~r 8,r ;b\!5T exp@2Q~r 82r !2#exp@2^~S2S0!&S0
#.

~2.17!

E, F, G, andH in Eq. ~2.16! are defined as

E5
t2s

b\
12le

2(
n51

`
gn cos@Vn~ t1s!/2#sin@Vn~ t2s!/2#

pn@4p2n21le
2gn#

,

~2.18a!

F52le
2(

n51

`
12cos@Vn~ t2s!#

@4p2n21le
2gn#

, ~2.18b!

G5 (
n51

`
4p2n2gn

@4p2n21le
2gn#2 , ~2.18c!

H5 (
n51

`
le

2gn

4p2n21le
2gn

. ~2.18d!

Minimizing the free energy, one gets

gn5
ucu2

12p3/2\2 E
0

b\

dtE
0

b\

ds

3
G~ ut2su!$12cos@Vn~ t2s!#%

F2le
2 (

n51

` 12cos@Vn~ t2s!#

4p2n21le
2gn

G 3/2. ~2.19!

We calculategn numerically for variousa andb values,
and then calculate free energy and effective mass.

III. RESULTS AND DISCUSSIONS

A. Density matrix of the polaron

In this section we first calculate self-consistently the v
ues ofg which represent the coupling between the elect
and the medium. Figure 1~a! shows the natural logarithm o
gn /n versusn for a57 and 3 atb50.25, and Fig. 1~b!
shows the same forb51. We can writegn5Ann, whereAn
is smoothly decreasing function ofn. From Figs. 1~a! and
~1b! it is clear that asb increases, i.e., as the temperatu
decreases, the coupling between the electron and the me
decreases, while the coupling between the electron and
medium increases with increasinga.

Using these values ofgn , we calculate the density matri
for the polaron for variousa andb. In the numerical calcu-
lation we adopt units such that\5v5m5kB51.

From Eqs.~2.16! and ~2.17! it is clear that the polaron
density matrixr(r ,r 8;b\) has the form
-
n

um
he

r~r ,r 8;b\!}expF2
~r2r 8!2

m G . ~3.1!

Herem is a constant and is related to the EM. We expand
density matrix in terms of Legendre polynomials as

r~r ,r 8;b\!5(
l

~2l 11!r l~r ,r 8,b\!

4prr 8
Pl~cosu!.

~3.2!

From Eq.~3.2! we get

r l~r .r 8;b\!52prr 8E
21

11

r~r ,r 8;b\!Pl~cosu!d~cosu!.

~3.3!

FIG. 1. Natural logarithm~basee! of the fully self-consistent
variational constants ln(gn /n) for ~a! a53 and a57 at b50.25
and ~b! a53 anda57 at b510.0. gn is in units of the inverse
length squared. It is an even function ofn, and it is defined here
only for integern. It is zero atn50.
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r l(r ,r 8;b\) is calculated at various values ofr andr 8 for a
particular value ofl. We plot the density matrix as a functio
of r andr 8 in Fig. 2~a!. The diagonal part of Fig. 2~a! is the
measure of partition function of the polaron. We obse
from Fig. 2~a! that asr and r 8 increase the density matri
decreases very rapidly, which is evident from Eq.~3.2!. In
Figs. 2~b! and 2~c! we plot the density matrix as a function o
ur2r 8u for various values ofa and b. From Fig. 2~b! it is
clear that asa increases~i.e., coupling between electron an
the medium increases! the density matrix tends towards thed
function, and also from Fig. 2~c! it is evident asb tends to

FIG. 2. ~a! Density matrix plotted as a function ofr and r 8 for
l 52, a53, andb50.25. ~b! r(r ,r 8;b\) as a function ofur2r 8u
for several valuesb at a53.0. ~c! r(r ,r 8;b\) as a function ofur
2r 8u for several valuesa at b510.0.
e

zero the density matrix tends towards thed function.

B. Eigenenergies of the polaron

For a particular value ofl, r l(r ,r 8;b\) is calculated at
various values ofr and r 8 in the form of a (M11)3(M
11) square matrix, whereM is the number of mesh with
spacingD between 0 andL with (4/3)pL35V being the size
of the system. Sethiaet al.29 have shown earlier that the nu
merical accuracy of the energies and wave function ca
lated fromr l(r ,r 8;b\) depends on the values ofL and D.
Since we use the complete density matrix, the param
b\/P defined in Ref. 29 does not appear in the present
culation. In the calculation, one should takeL large com-
pared tole andD should be as small as possible. After a fe
trials we chooseD50.075 andL510.0. The matrix is diago-
nalized using the house-holder method.32

The calculated energy levels@En,l # are fitted well by the
general equation

En,05Dn21Eb . ~3.4!

This is shown in Fig. 3 in which we plotEn,0 as a function
of n2 for a53 andb510.0. Similar behavior is found fo
other values ofa andb. The eigenstates found here are ide
tical to those of a particle in a box moving in a consta
attractive potential because of the translational invariance
the action@Eq. ~2.3!#. The valueEb represents the strength o
this potential and can be thought to represent the bind
energy of the electron with the local disturbance it has c
ated in the medium. The constantD in the above equation is
related to the effective massm* of the polaron. This is in
accordance with the definition given by Eq.~1.1!.

C. Effective mass

The shape of the eigenvectors again supports the con
tion that the electron behaves as if it is a free particle in a b
with effective massm* >m. This is due to the fact that the

FIG. 3. Energy eigenvalues of the polaron as a function
square of level number atl 50.
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electron drags along with it the disturbance it has create
the medium. Comparison of Eq.~3.4! with eigenvalues of a
particle in a box leads to the relation

m*

m
5

le
2~p/L !2

2bD
, ~3.5!

whereL is the radius of the sphere which we have used
truncate the elements of the density matrix. In principle, i
necessary to use a large size of the system. i.e.,L@le . We
have used for all our calculations a value ofL515.0, which
is much larger than anyle considered by us. The values o
m* andEb reported here are independent of the values oL.
Figure 4 shows the variation of the EM withb for a53 and
7. It is clear from Fig. 4 that the EM depends on the coupl
a. As a increases, the electron has to drag more deforma
and appears heavier.

To have a physical insight into the origin ofEb andm* ,
let us consider a simple action

Snlho5
1

2

m

\ E
0

b\

dtu ṙ ~ t !u21
mvnl

2

4b\2

3E
0

b\

dtE
0

b\

ds@r ~ t !2r ~s!#2, ~3.6!

characterizing a nonlocal harmonic oscillator. The dens
matrix for this action is well known,33

rnlho~r ,r 8;b\!5F m

2pb\2G3/2S vnlb\

2 sinh~ 1
2 vnlb\!

D 3

3expH 2
mvnl

4\
~r2r 8!2 coth~vnlb\/2!J .

~3.7!

FIG. 4. Effective mass as a function ofb for a53 ~solid line!
anda57 ~dotted line!.
in

o
s

g
n

y

Diagonalization ofrnlho leads to the eigenspectrum of th
form of Eq. ~3.4!. One can understand the origin ofEb and
m* by rewriting the Eq.~3.7! as

rnlho~r ,r 8;b\!5F m̂

2pb\2G3/2

expF2bÊb2
m̂

2b\2 ~r2r 8!2G ,
~3.8!

where

m̂

m
5F1

2
vnlb\ cothS 1

2
vnlb\ D G3

~3.9!

and

Êb52
1

b
lnF b\vnl

sinh~b\vnl!
G3/2

~3.10!

for a nonlocal harmonic oscillator. Note that the actionS
given by Eq.~2.3! also characterizes a nonlocal harmon
oscillator with time~imaginary time! dependent spring con
stant. Because the system is translationally invariant, we
not find eigenvalues and eigenfunctions corresponding to
internal motion. The quantityÊb is in fact the contribution
due to the internal motion of the polaron.

D. Mean-square displacement

Physically interesting quantities like the mobility and d
fusion are intimately related to the mean-square displa
ment in real time. However, for imaginary timeb\, the
mean-square displacement is defined as

R2~b\![Rb
25^ur ~b\!2r ~0!u2&. ~3.11!

The averaging in Eq.~3.11! is with respect to the density
matrix r(r ,r 8:b\); i.e., we can writeRb

2 as

Rb
25

*r~r ,r 8;b\!~r2r 8!2dr dr 8
*r~r ,r 8;b\!dr dr 8

. ~3.12!

In Fig. 5 we plot Rb as a function ofb and a. These
trends are expected. Asb increases~i.e., temperature de
creases!, the polaron will be more and more confined; i.e
Rb decreases, while asa increases againRb decreases. Note
that for a particular value ofa, a largerb has a smallerRb .

Since the nature ofEn,l andcn(r ) found from the density
matrix suggests that the polaron behaves like a free par
with effective massm* , therefore the density matrixr
should be Gaussian, i.e.,

r~r ,r 8;b\!}expF2
~r2r 8!2

2le
2~m/m* !G . ~3.13!

Comparing Eq.~3.13! with Eq. ~3.1! shows thatm is related
to the EM as

m52le
2 m

m*
.

Therefore,Rb must be related to the effective mass as

Rb5leF m

m* G1/2

. ~3.14!
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The temperature dependence of the effective mass i
accordance qualitatively with the experimental behav
However, quantitatively there is some discrepancy betw
theory and experiment. This is attributed to the followi
three reasons: ~i! the acoustical phonon may play a rol
~ii ! Feynman’s polaron model is a continuum model, and~iii !
the structure of the medium has not been taken into acco

IV. CONCLUDING REMARKS

From the reported results it is clear that the polaron
haves almost like a free particle with effective massm* in a
constant potential well. The potential well created by t
electron in the medium leads to binding of the electron w
the local disturbance. The wave functions have the symm
of the translational invariance of the action of the system34

Because of this invariance we were not able to extract

FIG. 5. Root-mean-square displacement as a function ofb for
various values ofa.
in
r.
n

nt.

-

e

ry

e

eigenvalues and wave functions of the internal states th
self, i.e., the states representing the binding of the elec
with the local disturbance created by the electron itself. W
we got are values ofEb and m* which reflect the result o
the internal states. It is, however, possible to explicitly br
the symmetry by adding a potential energy term of the fo
1
2 xr2 to the action of Eq.~2.3! and consider the behavior i
the limit x→0.35

According to Sophn,36 the EM defined by Eq.~1.1! is
equivalent to

1

m*
5

^ur ~b\!2r ~0!u2&
3b\2 . ~4.1!

Based on the calculation and discussion of the present w
we recommend that Eq.~4.1! should be used for the defin
tion of the effective mass.

Saitoh25 has calculated the EM by introducing a fictitio
driving force f acting on the electron in the Hamiltonian
action and derived the effective mass from a term involv
f2 in the expression of the free energy. This led to the
lowing expression for the EM:

m

ms*
524(

n>1

1

4p2n21gnle
2 . ~4.2!

The valuems* calculated from this equation is signifi
cantly smaller than that of the present work. This can
understood from the fact that the external field acts only
the electron and accelerates it. The associated medium d
mation is not affected by the field. Therefore, the elect
moves with lesser resistance offered by the medium tha
the absence of an accelerating field.
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