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Polaron density matrix and effective mass at finite temperature
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We calculate the density matrix elements of the polaron using Feynman’s variational method. The density
matrix is diagonalized, and the eigenvalues and eigenfunctions are derived. These results and the calculated
density matrix are used to evaluate the root-mean-squar® displacement®; and the effective mas&EM)

m* for various values of coupling strengths between electron and medium and of the temperature. We find that
EM is related to the rms displacement. The temperature dependence of the EM is in qualitative agreement with
experiment[S0163-182609)08333-7

I. INTRODUCTION tion length. The EM found here obeys the definition
The concept of the polaron was first introduced by i:(?ZEPt €1
Landad and subsequently developed by Riioh.>® Exten- m*  gP? ’ '

sive reviews on this subject are now availabl® The po- ' IPo
laron is an electron moving in a polar or ionic cystal togethefwhere P, is the total momentum of the electron plus the
with the self-induced polarization of the lattice. Severaldeformation created by it which moves along with it. This
methods exist for calculating the effective m&&#/) of the  definition differs from the one used by Saifdhin which a
polaron. In the past, most works on polarons were devoted tfictitious driving force acting on the electron was introduced
calculating the ground-state energy and the effective mass @f the action functional and the effective mass was calculated
the polaron at zero temperature. Analytical results are availfrom the acceleration rate against the force.
able for these properties only for the limit of small and large  The paper is organized as follows. We derive the expres-
values of electron-phonon coupling strengths® The  sion for a density matrix of the polaron in Sec. Il. We cal-
theory of Tyablikov’ can prove results for both the weak- culate the mean-square displacement in imaginary time and
coupling as well as strong-coupling limits, but the methodeffective mass for various values of coupling constdats
cannot resolve intermediate coupling behavior. Feynman’and 8 in Sec. Ill. This paper ends with a conclusion in
celebrated path integr&l*® theory of the polaroff provides  Sec. IV.
an excellent interpolation between the small and large
electron-phonon coupling strengths. Receftlhe polaron Il. POLARON DENSITY MATRIX
spectrumE(K) has been extracted using a diagrammatic '
Monte Carlo(MC) method from the asymptotic decay of the  Let us begin with the Filch Hamiltoniar?® for an elec-
Green'’s function. tron in a polar crystal. We take all the optical phonons to
Different definitions and approximations lead to differenthave the same frequency and be equaktoThe Frdich
dependences of the EM of the polaron on temperature. Sontdamiltonian is
theorie$?2~?4 predict that the EM of the polaron increases
with increasing temperature, while other theof{€s=2"lead p2 R 1 _
to an EM that decreases with increasing temperature. H= %Jf; hwayayg+ \/_V; [e(k)expik-r)a,+H.c.].
In the present paper we calculate the EM of the polaron
) . ! . 2.1
from the density matrix at various temperatures which shows
that the EM decreases with increasing temperature. In thilerea,’ anda, are the operators which create and annihilate
work the qualitative behavior of the effective mass is in ac-3 phonon with wave vectds and energyiw,, P andr are
cordance with the experimental behavidiTo our knowl-  electron momentum and position operatams,is its band
edge this is the first evaluation of the temperature depenmass, andV is the volume of the system. The coupling
dence of the EM for the polaron from the density matrix. strength between electron and phonon is expressed as
We have shown that the diagonalization of the density
matrix yields eigenvalues and eigenvecttr$n this paper, C
we first calculate the density matrix of the polaron and then ek =i (2.2
use this density matrix to calculate the eigenstates of the
polaron. From the values of eigenfunctions and eigenvaluesyhere
we calculate various properties of the polaron including its
EM and the root-mean-squatems) displacementcorrela- c=—ifhw(fil2mw)Y(47a)?
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and « is the coupling strength of the electron-phonon inter- Bh
action. The dimensionless Hich coupling constant is given fo dty(t—s)=0 for Ost<ph.
by
o The action S is translationally invariant, i.e.;y(t—8#)
- E(i_ i) (Zm_w) = y(t) for anyt within 0O<t<g#. The kernelp, is the sum
2\e, €lhow\ h ' of all possible paths which connecandr’ in time gi. One
where —e is the electron charge, ane, and e, are high can regard this as a straight line betweeandr’ plus all

frequency and static dielectric constants.
The action corresponding to the Fioth Hamiltonian[Eq.

(2.D]is written as
m o, el ﬁh Bﬁ G(|t s|) ©
Sz—f dt|r(t)|“— zf f .
24 Jo Axth Ir(t)y—r(s)|’ r()=[r+ (' —n)t/Bhl+by+ >, [b,expiQyt)
(2.3 n=t
where +b)exp(—iQut)], (2.10
expl|t—s|w) +exp{[ A —[(t—s)[|w} whereQ,=27n/g#, andb’ is complex conjugate ob, .
G(|t—s])= 2 exp Blio—1) . Thus the paths are labeled by the Fourier coefficieptand

possible fluctuations around a straight line which vanishes at
the end points. The fluctuations around the straight path are
represented as a Fourier series. Therefore, the path can be

(2.4) the sum over paths can be reduced to an integration over all

coefficientsb, (=by,+ ibin) which satisfy the condition
For the above actiofEq. (2.3)] the path integral has not ’
yet been evaluated exactly. Only approximate methods have r(0)=r and r(ph)=r".
:Jeenegspplled The density matrix for the polaron can be wnt-By using EqQ.(2.10 we havep, in the form

polr B =Texd —(r—1)2Q]. (211
o180 = [ DIOSH-SNOT. 29 where

3

The density matrix also cannot be evaluated exactly; o1 RS Am’n?
therefore, the first cumulant approximation is used to evalu- = 2mN2| a1 | yahitH4Amin?| ] (212
ate the density matri® To evaluate the density matrix by ¢ ¢
this approximation one has to choose a reference a&jon Bh2
for which the density matrixpy can be evaluated exactly. "527'
The exact expression for the density matrix can be written as
p(r.r':Bh)=po(r.r'; Bh)(exH —[S—So]))s,. (2.6 m oS ”n
Q=552+ 2 T raz | (2.13
2Bh = +
where BhT n=1 [4m N+ gyl
! J d Q 2.1
po<r,r';ﬁﬁ>=f Dr(tiexp{—So(r[tD}. (2.7 M= |, dVOSRIQN=y,. (214

The average on the right-hand siRHS) of Eq.(2.6) can W€ now calculatg(S—S))s,, where(X)s, is defined by
be expanded in cumulant, andS§[ r(t)] is taken to be qua-

dratic, only the first two cumulants are nonzero. Feynman’s (X) JXexp(— Sp)dr(t)
variational approach is confined to the first cumulant, and the S Jexp(—Sy)dr(t)
density matrix is given by From Egs.(2.3) and (2.9 we get
_ — —{(S=S))s,= W[ dtf ds G(|t—s|)
We choose the most general two-time quadratic attion 77

in the present work. This action has parameters which are

. L d3k
determined by minimizing the free energy. For the present X f ——(explik-[r(t)—r(s)]
work we take the trial action as 2772k2< M b
1 Bh Bh
m (Ba = _
0
S L xr(t)-r(s)> (2.19
+ 57572 | dt] dsy(t—s)r(t)-r(s), (2.9 ' :

wherey has to fulfill the requirement Finally, we obtain
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| |2 6 [ T T T T T T T ¥ T T T T T T T T
—((S—Sp))s,= —rzf dtJ ds G(|t—s|) .
S|r{k(r —r)E] 5
J dk————— s exp( — k2F)
+(r’—r)ZG+3H. (2.16

The propagator for polaron in the variational approximation
therefore reduces to

p(r',r;Bh)=Texd —Q(r' —r)?]exd —((S—So))s, -
(2.17

In(r /n)

E, F, G andH in Eq. (2.16 are defined as

Yn €03 Qp(t+5)/2]siN Qp(t—15)/2]
mn[4m’n®+ )\Zyn]

t—s -
E=——+2\2>

,Bh n=1

’ ol o v e e
(2183, 1 20 40 60 80 100

(a) n

1-co§Qy(t—9)] (2.18h 3 —

F=2\22

i1 [4mPnP+niy,]

47°n%y, 2 1\ —-
6=3 Z 7 2.18 ]
2 AT AL (2189

o 2 NoVn

———— 2.1
=1 4772n2+)\§yn (2.189

In (r /n)

Minimizing the free energy, one gets

|c|? o[
I 12797, f f ds

G(|t—s|){1—cod Q,(t—s)]}
, 2 1—cogQ,(t—9)]]%* (2.19
Zhenél 4772n2+)\5yn

1 20 40 60 80 100
(b) n

We calculatey,, numerically for variousr and 8 values,

and then calculate free energy and effective mass.

Ill. RESULTS AND DISCUSSIONS

FIG. 1. Natural logarithmbasee) of the fully self-consistent
variational constants Ipf/n) for (a) a=3 anda=7 at 5=0.25
and(b) a=3 anda=7 at8=10.0. 1y, is in units of the inverse
length squared. It is an even function mfand it is defined here

only for integern. It is zero atn=0.
A. Density matrix of the polaron

In this section we first calculate self-consistently the val-
ues of y which represent the coupling between the electron
and the medium. Figure(d) shows the natural logarithm of
v,In versusn for =7 and 3 at3=0.25, and Fig. (b)
shows the same fg8=1. We can writey,=A,n, whereA,
is smoothly decreasing function of From F|gs (F)] and
(1b) it is clear that asB increases, i.e., as the temperature
decreases, the coupling between the electron and the medium

_wI\2
(r=ry } (3.2

p(r,r’;ﬁﬁ)xem[—

Hereu is a constant and is related to the EM. We expand the
density matrix in terms of Legendre polynomials as

yp— P/ (cosé).

21+1 ', Bh
-3 (21 +L)py(r,r' )

decreases, while the coupling between the electron and the (3.2
medium increases with increasinag
Using these values of,,, we calculate the density matrix From Eq.(3.2 we get
for the polaron for variougr and 8. In the numerical calcu-
lation we adopt units such that= w=m=Kkg=1. oi(r r",Bh)zZa-rrr’rlp(r r': BH)P,(cosf)d(coso)
From Eqgs.(2.16 and (2.17) it is clear that the polaron e - T ! '
density matrixp(r,r’;8%) has the form 3.3
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a=3, p=0.25,1=2 2.93

-2.94

-2.95

n,0

-2.96

-2.97

1 1 L L

-2.98
0.0 20.0 40.0 60.0 80.0 100.0

l‘12

FIG. 3. Energy eigenvalues of the polaron as a function of
square of level number &t=0.

zero the density matrix tends towards théunction.

B. Eigenenergies of the polaron

For a particular value of, p|(r,r’;B%) is calculated at
various values of andr’ in the form of a M+ 1) X (M
+1) square matrix, wher&! is the number of mesh with
spacingA between 0 andl with (4/3)7L3=V being the size
of the system. Sethiet al?® have shown earlier that the nu-
merical accuracy of the energies and wave function calcu-
lated fromp,(r,r’; B%) depends on the values bfand A.
Since we use the complete density matrix, the parameter
BhIP defined in Ref. 29 does not appear in the present cal-
culation. In the calculation, one should takelarge com-
pared tox . andA should be as small as possible. After a few
trials we choosé =0.075 and_=10.0. The matrix is diago-
nalized using the house-holder mettéd.

The calculated energy level&, ] are fitted well by the
general equation
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This is shown in Fig. 3 in which we pld, 5 as a function

FIG. 2. (a) Density matrix plotted as a function ofandr’ for ~ of n? for =3 and 8=10.0. Similar behavior is found for

|=2, a=3, and$=0.25.(b) p(r,r';8#) as a function ofr—r’|  other values ofr andB. The eigenstates found here are iden-
for several valueg at =3.0.(c) p(r,r';5h) as a function ofr  tical to those of a particle in a box moving in a constant
—r'| for several values at =10.0. attractive potential because of the translational invariance of

. _ . , the action Eq. (2.3)]. The valueE, represents the strength of
pi(r,r';ph) is calculated at various values oendr’ for @ i potential and can be thought to represent the binding
particular value of. We plot the density matrix as a function energy of the electron with the local disturbance it has cre-
of randr’ in Fig. 2a). The diagonal part of Fig.(d) is the  ateq in the medium. The constabtin the above equation is
measure of partition function of the polaron. We observegjated to the effective mass* of the polaron. This is in

from Fig. 2a) that asr andr’ increase the density matrix 5ccordance with the definition given by E@.1).
decreases very rapidly, which is evident from E8.2). In

Figs. 2b) and 2c) we plot the density matrix as a function of
[r—r'| for various values ofxr and 8. From Fig. Zb) it is
clear that asy increasesi.e., coupling between electron and  The shape of the eigenvectors again supports the conten-
the medium increasgthe density matrix tends towards the tion that the electron behaves as if it is a free particle in a box
function, and also from Fig.(2) it is evident asg tends to  with effective massn*=m. This is due to the fact that the

C. Effective mass
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100 ———————r—— ———— i Diagonalization ofp,,,,, leads to the eigenspectrum of the
. form of Eq.(3.4). One can understand the origin Bf and
..... az3 m* by rewriting the Eq(3.7) as
80 - 1 , Mmoo 132 A s -
. ] Prino( T 1" Bh) = 2mBh? ex —/J’Eb—m(f—f) ,
60 ,", _ (3.9
£ i ‘ where
*\ /”
E - M [1 1 3
40 ’,' b E: Ewnlﬂﬁ cot Ewnlﬁh (39)
I ] and
20 + P i
- . . 1 Bhaoy ¥
‘ E,=—=In|—-— 3.1
; °= " Sinf B wn) (319
L for a nonlocal harmonic oscillator. Note that the acti®n
0 10 2 8 30 40 50 given by Eq.(2.3 also characterizes a nonlocal harmonic

oscillator with time(imaginary tim¢ dependent spring con-
FIG. 4. Effective mass as a function gffor a=3 (solid line stant. Because the system is translationally invariant, we do
and @=7 (dotted ling. not find eigenvalues and eigenfunctions corresponding to the
internal motion. The quantithb is in fact the contribution
electron drags along with it the disturbance it has created idue to the internal motion of the polaron.
the medium. Comparison of E¢3.4) with eigenvalues of a

particle in a box leads to the relation D. Mean-square displacement
Physically interesting quantities like the mobility and dif-
m* 7\5(7T/L)2 fusion are intimately related to the mean-square displace-
‘m 28D (39 ment in real time. However, for imaginary timgh, the
mean-square displacement is defined as

wherelL is the radius of the sphere which we have used to 2 D2 2
truncate the elements of the d%nsity matrix. In principle, it is R*(Bh)=Ry=(|r(8h)—r(0)[*). (3.11)
necessary to use a large size of the system.liz).. We  The averaging in Eq(3.11) is with respect to the density
have used for all our calculations a valuelof 15.0, which  matrix p(r,r’: 8#%); i.e., we can writeRfg as

is much larger than any, considered by us. The values of

m* andE, reported here are independent of the values.of , Ip(r,r';ph)(r—r’)%drdr’

Figure 4 shows the variation of the EM withfor =3 and B Jp(r’;phydrdr’ (312
7. Itis clear from Fig. 4 that the EM depends on the coupling

a. As « increases, the electron has to drag more deformation In Fig. 5 we plotR; as a function ofg and a. These

and appears heavier. trends are expected. A8 increases(i.e., temperature de-
To have a physical insight into the origin &, and m*, creasep the polaron will be more and more confined; i.e.,
let us consider a simple action Rz decreases, while asincreases agaiR; decreases. Note

that for a particular value of, a largerg has a smalleR;.
Since the nature dE, | and,(r) found from the density

. matrix suggests that the polaron behaves like a free particle

4Bh with effective massm*, therefore the density matriy

should be Gaussian, i.e.,

2
m(x)n|

Im (pr )
Snlhozzzfo dt|l’(t)| +

Bh Bh
_ 2
xfo dtfO dgr(t)—r(s)]s, (3.6

) (r=r")?
p(l’,r ,Bﬁ)mexy{—z—m . (313
characterizing a nonlocal harmonic oscillator. The density . . )
matrix for this action is well knowR? Comparing Eq(3.13 with Eq. (3.1) shows thaiu is related
to the EM as
m 32 wnBh 3 m
p (r,r';ﬁﬁ)z{ } , =2\2—.
nlho 27T,3ﬁ2 25|nl‘(%wn|ﬂﬁ) M em*

Moy, Therefore,RB must be related to the effective mass as
xexp[ - T(r—r’)zcotk(wmﬂﬁ/Z)}.

3.7

1/2

Rs=\e (3.14

m*



7250 SETHIA, HIRATA, TANIMURA, AND SINGH PRB 60

eigenvalues and wave functions of the internal states them-
self, i.e., the states representing the binding of the electron
with the local disturbance created by the electron itself. What
we got are values o, and m* which reflect the result of
the internal states. It is, however, possible to explicitly break
the symmetry by adding a potential energy term of the form
$xr? to the action of Eq(2.3) and consider the behavior in
the limit y—0.3°

According to Sophr® the EM defined by Eq(1.1) is
equivalent to

1 r(Bh)—r(0)|?

Based on the calculation and discussion of the present work,
we recommend that Eq4.1) should be used for the defini-
tion of the effective mass.
0 o 1‘0 2‘0 3'0 4’0 50 Saitotf® has calculated the EM by introducing a fictitious
driving forcef acting on the electron in the Hamiltonian or
B action and derived the effective mass from a term involving

2 . . .
FIG. 5. Root-mean-square displacement as a functiog fufr f n the expression of the fre.e energy. This led to the fol-
various values of. lowing expression for the EM:

The temperature dependence of the effective mass is in m
accordance qualitatively with the experimental behavior. .
However, quantitatively there is some discrepancy between
theory and experiment. This is attributed to the following The valuemg calculated from this equation is signifi-
three reasons: (i) the acoustical phonon may play a role, cantly smaller than that of the present work. This can be
(i) Feynman’s polaron model is a continuum model, &l understood from the fact that the external field acts only on
the structure of the medium has not been taken into accounthe electron and accelerates it. The associated medium defor-
mation is not affected by the field. Therefore, the electron
IV. CONCLUDING REMARKS moves with lesser resistance offered by the medium than in

o the absence of an accelerating field.
From the reported results it is clear that the polaron be-

haves almost like a free particle with effective massin a
constant potential well. The potential well created by the
electron in the medium leads to binding of the electron with One of us(A.S. thanks Professor B. L. Tembe for his
the local disturbance. The wave functions have the symmetrgritical comments, and one of ¥.S.) acknowledges De-
of the translational invariance of the action of the systém. partment of Science and Technolo@yew Delhi), India for
Because of this invariance we were not able to extract thénancial support.

=24,

———. 4.2
= Amnl+ yn)\g “.2
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