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Application of augmented-space formalism to a problem of configuration averaging in the
theory of unordered alloys with correlated disorder
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Physical-Technical Institute, Ural Branch of Russian Academy of Sciences, 132 Kirov Street, 426001 Izhevsk, Russia
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Department of Physics, Lomonosov Moscow State University, Vorob’yovy gory, 119899 Moscow, Russia

~Received 2 November 1998!

We present a method for calculating the electronic spectrum of a binary unordered alloy with short-range
order ~SRO!. The method is based on a generalization of the augmented-space formalism in the case of
correlated spatial disorder. A number of schemes for self-consistent calculation of the self-energy of the
configurationally averaged Green’s function are proposed. This approach guarantees a positive density of states
~Herglotz property! for all values of the Cowley SRO parametera. A merit of the method proposed is a correct
limiting transition to the Green’s function of the ordered alloy when the Cowley SRO parameter tends to the
critical value. The approach is in agreement with the known approximations in the case ofa50. As an
illustration, a numerical analysis of self-consistent equations has been carried out for the case of one-
dimensional Markov chain of atoms and for the case of the infinite-dimensional space.
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I. INTRODUCTION

In the present work, we study the problem of configu
tion averaging in the presence of spatial correlations
arises in calculating the macroscopic properties of unorde
systems. This problem is urgent because in real systems
formation of physical properties is substantially influenc
by the short-range ordering~SRO! effects. Among them one
can mention the effect of the atomic ordering correlations
the quasiparticle spectrum in alloys, the influence of
charge- and spin-density correlations on the magnetic st
of transition metals with itinerant electrons, the effect
SRO on the kinetic coefficients in disordered systems, an
on.

We should note that there is no universal principle
describing disordered systems, as fruitful as the Bloch th
rem is for ideal crystals. When calculating approximately
Green’s function one encounters standard difficulties c
nected with violation of the analytical properties of the a
eraged resolvent of the Hamiltonian that ensure a posi
density of states. The coherent potential approximati1

~CPA! first proposed by Soven is free of this shortcomin
However, the CPA is not able to take into account the effe
of local ordering because of the single-site character of
averaging procedure performed within the framework of t
method. A lot of attempts have been made to extend the C
in order to consistently allow for the multiple scattering a
SRO effects. We may refer to the molecular coherent po
tial approximation2,3 ~MCPA! and the embedded cluste
method4 ~ECM!.

In the MCPA the matrices ofn3n size are introduced
instead of the CPA single-site coherent potential andt ma-
trix, which results in a matrix equation. In this framewo
one has to findn2 parameters self-consistently. The attem
to reduce the number of self-consistent parameters an
make the self-energy translationally invariant lead to an
PRB 600163-1829/99/60~10!/7178~18!/$15.00
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proximate procedure of solving the self-consistent equatio
As shown in Ref. 3, in such an approach, however,
Green’s function may have branch points off the real axis
the complex plane, which does not agree with the requi
analytical properties and causes the sum-rule violation.

The method of the cluster embedded into an effective m
dium proposed in Refs. 4 and 5 is convenient for practi
applications but is not a self-consistent approach. In reali
calculations the approximation for the effective medium
chosen in the simplest form and does not go beyond
single-site CPA framework.5,6 For example, in calculations
of the partial density of states~PDOS! such an approach is
not fully consistent, as the accuracy of the effective medi
approximation does not agree with the accuracy of the PD
calculation in the embedded cluster. As it follows from t
analysis performed in Ref. 7, in spite of the density of sta
peaks being situated at the expected positions on the en
axis, their width and shape are incorrect.

The traveling cluster approximation~TCA! proposed in
Ref. 8 attempts to go beyond the single-site framework. T
TCA holds the analytical properties of the averaged Gree
function and takes into account the multiple-scattering
fects without allowance for SRO. The numerical calculatio
performed in Refs. 7 and 9 have shown that the TCA rep
duces much more accurately the fine structure of the im
rity subband in the one-dimensional case than the ECM d

Besides the above methods, the augmented-space for
ism ~ASF! has been developed by Mookerjee10–12 for the
problem of configuration averaging. It has received furth
development in Refs. 9 and 13 without, however, spatial c
relations between the random variables. Based on the A
the authors of Refs. 9 and 13 proposed a generalizatio
the CPA that consistently takes into account multiple scat
ing within the limits of the ‘‘maximum’’ cluster and some
approximations for the averaged resolvent that are contro
by a small parameter and have correct analytical proper
7178 ©1999 The American Physical Society
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Note, that the combination of the ASF with the ‘‘firs
principles’’ methods for calculating the band structure allo
the use of the ASF for realistic systems.14,15

For the problems with correlated disorder, the ASF h
been used without any serious changes in Ref. 16. The
thors expanded the averaged Green’s function of a di
dered alloy with SRO in terms of the averaged Green’s fu
tion without SRO. Although the full expansion of th
averaged Green’s function is of the Herglotz-type, the tr
cation of the expansion results in a negative density of st
for some energies the range of which increases with incr
ing the SRO parameter. A generalization of the ASF in
case of correlated disorder was proposed in Refs. 17 and
However, the operators of the random variables constru
in these works do not have the translation invariance of
corresponding crystal lattice and take into account the co
lation effects only within the limits of one cluster. In ou
work, we propose a generalization of the ASF that is free
the above mentioned drawbacks and a scheme of
consistent calculation of the averaged Green’s function
lowing the ideas of papers in Refs. 9 and 13.

We shall study the tight-binding model of a binary allo
with diagonal disorder. The Hamiltonian has the form

H~$en%!5(
i

u i&e i^ iu1(
ij

u i&Vi2j^ j u, ~1.1!

whereu i& is the Wannier state at a sitei, the set$u i&% is the
complete orthogonal basis in a spaceC. The configuration of
the alloy is described by the set of random variables$e i%,
wheree i assumes the valueeA or eB depending on whethe
the sitei is occupied by an atom ofA or B type, respectively.
The variablese i are not independent for the alloy with SRO
i.e., e i ande j correlate at different sites of the lattice.

In a disordered system, it is the configurationally av
aged properties that are of physical interest. For the Ha
tonian~1.1!, the configurationally averaged Green’s functi
is given by the relation

Ḡij ~e!5E E ¯E ^ iu@e2H~$en%!#21u j &P~$en%!)
n

den ,

~1.2!

where P($en%) is the joint probability density function fo
random variables and

Pe i
~e!5xd~e2eA!1yd~e2eB!

5E E ¯E P~$en%!)
nÞi

den ~1.3!

is the probability density of the random variablee i at the
fixed site. Herex and y are the concentrations of atoms
type A and B, respectively. The transfer matrixVi2j in the
Hamiltonian~1.1! is supposed to be nonrandom.

In Sec. II, we present a generalization of the ASF and
construction of a basis in the augmented space in the ca
a one-dimensional chain of atoms whose configurations
determined by a first-order Markov process.19 In Sec. III, a
general scheme for self-consistent approximations of the
solvent averaged over configurations for such a chain is
posed. These approximations are based on the represen
s
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of the resolvent in the form of an infinity operator fractio
Next, the results obtained are extended to the case of
arbitrary correlation functions and space dimension. Also
is shown that the theory yields a correct limiting transition
the Green’s function of an ordered alloy if the Cowley SR
parameter tends to its critical values. Section IV is devoted
particular approximation schemes being the analogs of
CPA and TCA. We also present the results of a numer
study of the self-consistent equations. In Sec. V we sum
rize our results and say some words about possible app
tions of the proposed theory. The analytical details of cal
lations are presented in Appendices A, B, and C. Finally
Appendix D, we prove that our approach does not viol
analytical properties of the exactly averaged resolvent.

II. AUGMENTED-SPACE FORMALISM FOR AN ALLOY
WITH SHORT-RANGE ORDER

In the ASF approach,10,11 instead of direct averaging o
the Green’s function, one constructs a new Hamilton
without disordered parameters defined on an augme
space. This new space can be represented as the direct
uct of the original Hilbert space by an auxiliary space th
contains all possible configurations of the disordered syst
For each random variable the self-conjugate operator de
mined on this auxiliary space is put into accordance. As
was shown by Mookerjee,12 the physical background of thi
approach is the representation of these operators in term
the creation and annihilation operators of pseudofermio
From this point of view, the problem of an electron movin
in the random potential is equivalent to the problem of
electron interacting with the nonrandom fermion field, a
the auxiliary space describing the configurations of an un
dered alloy corresponds to the Fock space of pseudoferm
states. From the same point of view, the motion of an el
tron in the Gaussian random field may be represented a
interaction of an electron with a bosonlike field.

A. Correlation functions of Markov type

To construct the ASF with allowance for the spatial co
relations one should know the correlation functions of t
products of random variables. Let us consider a o
dimensionalA-B chain whose configuration is determine
by a first-order Markov process.19 Let P(siusj) be the prob-
ability of finding an atom of typesi at site i provided that
there is an atom of typesj at site j , andP(si) be the prob-
ability of finding an atomsi at site i that is equal to its
concentration. Then the probability of the formation of
cluster with a given configuration is expressed as the prod
of pair conditional probabilities:

Pn~sl1
,sl2

,...,sln
!5P~sl1

!P~sl2
usl1

!P~sl3
usl2

!¯P~sln
usln21

!,
~2.1!

where l 1, l 2,¯, l n . The Cowley SRO parameter is de
fined as

a512
PAB

xy
, ~2.2!

wherePAB is the probability of the formation of anA-B pair
at the neighboring sites. We shall suppose thatA is an im-
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purity atom, i.e.,x,y. In the case of maximal repelling be
tween atoms of different types,PAB50. In the opposite case
of maximal attraction,PAB5x. Hence, 0<PAB<x, 2x/y
<a<1. In the case of the absence of SRO,PAB5xy, a
50. The interval 0,a,1 corresponds to the repelling be
tween the atomsA and B, the interval2x/y,a,0 corre-
sponds to their attraction. Using Eqs.~2.1! and~2.2!, one can
obtain the probability of anA-B pair forming at a distancen:

Pn
AB5xy~12an!. ~2.3!

Hence, Eq.~2.1! is expressed in terms ofx anda. Let

ē5xeA1yeB ~2.4!

be the averaged value of the energy at a site and

j i5e i2 ē, j̄ i50 ~2.5!

be the energy shift at sitei. Denote

Dj5~y2x!~eA2eB!, D5Axy~eA2eB!. ~2.6!

Since j i assumes only two valuesjA5eA2 ē and jB5eB
2 ē, therefore (j i2jA)(j i2jB)50, and

j i
25~Dj!j i1D2. ~2.7!

We define the functions called ‘‘connected’’ correlatio
functions:

^j l1
j l2

,...,j ln&c5D2~Dj!n22a l n2 l 1, n>2, ~2.8!

^j i&c50, hereafterl 1, l 2,¯, l n , and according to Eq
~2.7! we do not consider the higher powers ofj i . Then using
Eqs.~2.1! and~2.3!, one can show that any correlation fun
tion on the Markov chain can be represented in terms
‘‘connected’’ functions. For example, leading correlatio
functions are given by the following expressions:

^j l1
j l2&5^j l1

j l2&c ,

^j l1
j l2

j l3&5^j l1
j l2

j l3&c ,

^j l1
j l2

j l3
j l4&5^j l1

j l2&c^j l3
j l4&c1^j l1

j l2
j l3

j l4&c ,

^j l1
j l2

j l3
j l4

j l5&5^j l1
j l2

j l3&c^j l4
j l5&c1^j l1

j l2&c^j l3
j l4

j l5&c

1^j l1
j l2

j l3
j l4

j l5&c ,

..., ~2.9!

where ^¯& means averaging over configurations. Now,
can formulate a general rule for calculating the correlat
function of thenth order. One should separate a chain co
sisting of n atoms into the chains of smaller length takin
away some edges in all possible ways. Each separation
chain corresponds to a term in the correlation function tha
equal to the product of the connected correlation function
smaller order. Finally, we should add to the expression
tained the connected correlation function~2.8! of the nth
order.
f

n
-

f a
is
f
-

B. Construction of a basis in the augmented space in the case
of a one-dimensional chain

Following the ASF,10,11,13 we associate a real random
valuej i ~2.5! with a self-conjugate operatorĵ i determined on
an auxiliary spaceF, such that the range of the random val
coincides with the spectrum of the corresponding opera
In the case of a binary alloy,j i has a probability distribution
given by Eq.~1.3!, andF is a 2N-dimensional vector space
where N is the number of the lattice sites. The comple
orthonormalized basis$us&% can be defined in the spaceF,
wheres5(s1 ,s2 ,...,sN) andsi5A or B. Here the vectorus&
is associated with one of the 2N possible configurations~si
5A if the site i is occupied by an atom of typeA, and si
5B otherwise!. The vectors$us&% are the eigenvectors for a
ĵ i , so that

ĵ ius&5j i~si!us&, ~2.10!

j i~si!5H eA2 ē, si5A

eB2 ē, si5B.

According to this definition, the operatorsĵ i commutate with
each other.

Let f (j i ,j j ,...,jk) be a function of random variablesj i ,
j j ,...,jk . The operator associated with this function is d
fined as f̂ 5 f ( ĵ i ,ĵ j ,...,ĵk), and according to Eq.~2.10!,

^su f ûs& is the value off for a fixed configuration of atoms on
a chain. Letp(s) be the probability of the realization o
configurations. We define the ground state inF as

uvac&5(
s

Ap~s!us&. ~2.11!

Then the value off averaged over all configurations of
system is

f̄ 5^vacu f̂ uvac&. ~2.12!

Following the ideas of papers in Refs. 9 and 13, we const
a basis involving the vectors generated byĵ i when acting on
uvac&. It will be shown further that the configuration spac
F has a Fock-space structure:

F5E0% E1%¯% En%¯ . ~2.13!

HereE0 is a one-dimensional subspace generated byuvac&
~2.11!. Next we define anN-dimensional subspaceE1 corre-
sponding to single excitations as the span of the vectors

u i%5D21ĵ iuvac&, ~2.14!

which, unlike the case of independent random variables,
not orthogonal to each other. It follows from Eqs.~2.8! and
~2.9! that the matrix of the scalar product of vectors~2.14! is
gi j 5$ iu j%5a u i 2 j u. The Fourier transform ofgi j is

g~q!5
1

N (
i j

gi j exp$ iq~ i 2 j !%5
12a2

11a222a cosq
,

qP@2p,p#. ~2.15!
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If uau,1, theng(q).0 ~the matrixgi j is positively defined!,
hence the vectors~2.14! are linearly independent and form
complete basis inE1 . Sincej̄ i5$vacu ĵ iuvac%50, E1 is or-
thogonal toE0 .

Let u i,j% ( i , j ) be the basis vectors ofE2 that should be
built up orthogonally toE0 andE1 , therefore we require

$vacu i,j%50, $ i8u i,j%50, ~2.16!

for all i8 and iÞ j . Let

b1u i,i11%5@ ĵ i11ĵ i2a02a1~ ĵ i1 ĵ i11!#uvac%. ~2.17!

Since the vectoru i,i11% has to satisfy the relations~2.16!,
and u i% is defined by Eq.~2.14!, we multiply $vacu and

$vacu ĵ i from the left by Eq.~2.17! and, using Eqs.~2.8! and
~2.9!, we find

a05D2a, a15Dj
a

11a
.

The coefficientb1 in Eq. ~2.17! can be found from the nor
malization condition$ i,i11u i,i11%51:

b1
25D4~12a2!1D2~Dj!2

12a

11a
a. ~2.18!

Sinceb1
2.0, from Eq. ~2.18! we get the restriction on the

Cowley parameter2x/y,a,1(x,y) that has been alread
mentioned. Ifa51 or a52x/y, then b150. Bearing in
mind that the correlation functions~2.8! and ~2.9! are the
powers ofa, we can check that the vectoru i,i11%, built up
according to Eq.~2.17!, is orthogonal not only tou i% and
u i11%, but to all other vectors u j%PE1 . Besides,
$ i,i11u j, j 11%50 if iÞ j .

For an arbitrary vectoru i,i1n% we can write

bnu i,i1n%5@ ĵ iĵ i1n2Ln11
~1! ~ ĵ i ,ĵ i11 ,...,ĵ i1n!#uvac%.

~2.19!

Here Ln11
(1) is a first-degree polynomial in (n11) variables

with (n12) arbitrary coefficients. We can find them d
manding the vectoru i,i1n% to be orthogonal touvac% and to
the single excitationsu j% such thati< j < i 1n. Using Eqs.
~2.8! and ~2.9! we get (n12) equations;bn can be found
using the normalization condition. Next, by direct verific
tion, we make sure that the vectoru i,i1n% is constructed in
such a way that is also orthogonal tou j 8%, where j 8¹@ i ,i
1n#. Following that scheme we find that

b2u i,i12%5@ ĵ iĵ i122a2
~0!2a2

~1!~ ĵ i1 ĵ i12!2a2
~2!ĵ i11#uvac%,

where

a2
~0!5D2a2, a2

~1!5Dj
a2

11a
, a2

~2!5Dja2
12a

11a
,

and

b3u i,i13%5@ ĵ iĵ i132a3
~0!2a3

~1!~ ĵ i1 ĵ i13!

2a3
~2!~ ĵ i111 ĵ i12!#uvac%,

where
a3
~0!5D2a3, a3

~1!5Dj
a3

11a
, a3

~2!5Dja3
12a

11a
,

and so on. We define the subspaceE2 as a span of the vec
tors $u i,i1n%% given by Eq. ~2.19!. Under the restriction
2x/y,a,1, one can prove that the set of vectors~2.19! is
a complete~but nonorthogonal! basis inE2 . In this case, for
the pairs of vectorsu i, j % ( j . i ) and u l,m% (m. l ) we have

$ i, j u l,m%50, j < l ,

$ i,j u l,m%5
bj 2 l

2

bj 2 ibm2 l
a l 2 iam2 j , i< l , j <m,

~2.20!

$ i, j u l,m%5
bm2 l

bj 2 i
a l 2 ia j 2m, i< l ,m< j .

In the general case, we shall assume that the subspacEn
is a span of the vectors

usn~ l!&5u l1 ,l2 ,...,ln%, ~2.21!

wheresn is the configuration of a cluster,l is the location of
its center of gravity,l 1, l 2,¯, l n . By analogy with Eq.
~2.19!, we write

bsn
u l1 ,l2 ,...,ln%5@ ĵ l1

ĵ l2
¯ ĵ ln

2Ll n2 l 111
(n21) ~ ĵ l1

,ĵ l111 ,ĵ l112 ,...,ĵ ln
!#uvac%.

~2.22!

HereLk
(n21)(j1 ,j2 ,...,jk), n<k is a (n21)-th degree poly-

nomial in k variables of the form

Lk
(n21)~j1 ,j2 ,...,jk!

5c0
(n)1(

i 51

k

ci
(n)j i1 (

1< i , j <k
ci j

(n)j ij j1¯

1 (
1< i 1, i 2,¯, i n21<k

ci 1i 2¯ i n21

~n! j i 1
j i 2

¯j i n21
.

~2.23!

The coefficients of the polynomial~2.23! are determined by
the condition that the vectorusn( l)& is orthogonal to any
vector defined on the clustersm( l8)#$ l1 ,l2 ,...,ln%(m,n),
and by relations~2.7!, ~2.8!, and ~2.9!. The vectorusn( l)&
built up in such a way proves to be orthogonal to any vec
us&PE0% E1%¯% En21 . The vectorsusn( l)& and usn8( l8)&
are orthogonal for different clusterssn( l) andsn8( l8) if they
do not overlap. Relations~2.20! are a particular case of thi
rule.

In the ASF representation the Hamiltonian~1.1! has the
form13:
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H5(
i

u i&^ iu ^ ĵ i1(
ij

u i&~ ēd ij 1Vi2j !^ j u ^ Î , ~2.24!

where Î is the unit operator inF. The Hamiltonian~2.24!
acts on the augmented spaceC ^ F, u i&PC, which as before
has a Fock-space structure:

C ^ F5E(0)
% E(1)

%¯% E(n)
%¯ ,

whereE(n)5C ^ En . We denote a basis vector inE(n):

u i1l,sn~ l!&5u i1l& ^ usn~ l!&. ~2.25!

Herei is the location of an electron with respect to the cen
of gravity of a clustersn( l) ( i[0 if n50). According to Eq.
~2.22!,

Im ĵ i~En!#En21% En% En11 ,

where Imĵi(En) is the image ofEn under the mappingĵ i .
Therefore, the Hamiltonian~2.24! has a three-diagonal bloc
form in the basis~2.25!:

Hnm5Hndnm1Dndn11,m1Dn
1dn21,m , ~2.26!

whereHnm5PnHPm , Dn5PnHPn11 , andPn(n>0) is the
orthogonal projector ontoE(n).

III. CONFIGURATION AVERAGING OF
THE RESOLVENT

A. Representation of the resolvent as a continued fraction in
the case of Markov-type correlations

In the ASF framework the problem of finding the Green
function ~1.2! reduces to calculating the projectionG0(e)
5P0 @1/(e2H)# P0 of the resolvent of the Hamiltonian
~2.24! onto a subspaceE(0). According to Eq.~2.12!, we
have

G0~e!5( u l,s0~ l!&Ḡlm~e!^m,s0~m!u. ~3.1!

For further calculations it is convenient to define a ba
$ux@sn( l)#&% in F that is dual to$usn( l)&% ~2.21!, ~2.22!,
such that

^x@sn~ l!#usm8 ~ l8!&5dss8dnmd ll8 .

Then in the augmented spaceC ^ F a basisu i1l,x@sn( l)#&
5u i1l& ^ ux@sn( l)#& dual to the basis~2.25! is generated:

^ i1l,x@sn~ l!#u j1l8,sm8 ~ l8!&5dss8dnmd ll8d ij .

We next introduce the Fourier transform:

u i,sn ,q&5
1

AN
(

l
u i1l,sn~ l!&exp$2 iql%, qP@2p,p#

ux~ i,sn ,q!&5
1

AN
(

l
u i1l,x@sn~ l!#&exp$2 iql%,

~3.2!
r

s

^x~ i,sn ,q!u j ,sm8 ,q8&5dss8dnmd ijdqq8 ,

^ i,sn ,qu j ,sm8 ,q8&5dqq8dnm exp$ iq~ j2i!%^sn~ i!usm8 ~ j !&.

Then the Hamiltonian~2.24! has the form

H5(
q

H~q!, H~q!5Hvc~q!1U~q!,

Hvc~q!5u0,s0 ,q&~ ē1V~q!!^0,s0 ,qu

1 (
i, j ,sn ,n>1

u i,sn ,q&~ ēd ij1Vi2j !^x~ j ,sn ,q!u,

~3.3!

V~q!5
1

N (
ij

Vi2j exp$ iq~ i2j !%,

U~q!5 (
i,d,sn ,sm8

u i,sn ,q&exp$ iqd%jsn( i)s
m8 ( i1d)

(0)

3^x~ i1d,sm8 ,q!u,

wherejsn( i)s
m8 ( i1d)

(0)
5^x@sn( i)#u ĵ0usm8 ( i1d)&, d is the vector

connecting the centers of gravity of clusterssn( i) and
sm8 ( i1d), Hvc(q) is the Hamiltonian of the ‘‘virtual’’ crys-
tal, U(q) is the representation of the random potential.

Let us introduce the orthogonal projectors onto the spa
Eq

(n) :

Pn
q5(

i,sn

u i,sn ,q&^x~ i,sn ,q!u. ~3.4!

Using Eq.~3.4!, we can rewrite Eq.~3.1! in the form13

G0~e,q!5
1

e2H0~q!2S0~e,q!
, ~3.5!

where

H0~q!5P0
qH~q!P0

q , Q0
q512P0

q ,

S0~e,q!5P0
qH~q!Q0

q 1

e2Q0
qH~q!Q0

q Q0
qH~q!P0

q .

~3.6!

Proceeding the projection, we writeS0(e,q) in the form of a
continued fraction13:
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S0~e,q!5D0~q!
1

e2H12D1~q!
1

e2H2~q!2
�

Dn21~q!
1

e2Hn~q!2Sn~e,q!

D0
1~q!

D1
1~q!

Dn21
1 ~q!,

~3.7!
ct
-
13
n.
n

.

fo

ed

r

e

s

n

om

k

e

where Hn(q)5Pn
qH(q)Pn

q , Dn(q)5Pn
qU(q)Pn11

q , and the
projectorsPn

q are defined by Eq.~3.4!.
It is impossible to calculate analytically the formally exa

expression ~3.7! because it is determined by infinite
dimensional matrices. In contrast to the paper in Ref.
problems arise already on the first ‘‘level’’ of the fractio
Therefore, it is convenient to choose a special orthogo
basis in each spaceEq

(n) . Next we write usn( i),q&
5u l1 ,l2 ,...,ln ,q& instead ofu i,sn ,q&, where, as before in Eq
~2.21!, sn( i)5$ l1 ,l2 ,...,ln% denotes a cluster ofsn , andi is
its center of gravity. Let us construct an orthogonal basis
n51:

uc0 ,q&5u0,q&,

ucm ,q&5~12a2!21/2~ um,q&2um21,q&a exp$ iq%),
~3.8!

uc2m ,q&5~12a2!21/2~ u2m,q&2u2m11,q&a

3exp$2 iq%), m.0.

In the subspaceEq
(2) the orthogonal basis can be defin

as

ucm,m11 ,q&5um,m11,q&,

ucm,m12 ,q&5~122m2!21/2~ um,m12,q&

2um,m11,q&m exp$ iq/2%

2um11,m12,q&m exp$2 iq/2%),

ucm,m13 ,q&5~12l22h2!21/2~ um,m13,q&

2um,m12,q&l exp$ iq/2%

2um11,m13,q&l exp$2 iq/2%

1hum11,m12,q&),

... .

Here m5ab1 /b2 , l5ab2 /b3 , h5ab1 /b3 , the coeffi-
cientsb1 , b2 , b3 are defined by Eqs.~2.18! and~2.19!. Us-
ing the scalar products~2.20!, an arbitrary basis vecto
ucm,m1k ,q& can be obtained by orthogonalizingum,m1k,q&
to each of the double excitation vectors from the segm
@m,m1k#.

A similar statement is also valid for the subspaceEq
(n)(n

.2). We shall denote the vectors of the orthonormal basi
Eq

(n) by ucsn( i) ,q&, wheresn( i)5$ l1 ,l2 ,...,ln%. An arbitrary
,

al

r

nt

in

basis vectorucsn( i) ,q& can be obtained by orthogonalizatio

of the vectorusn( i),q& to all n-fold excitations belonging to
@ l 1 l n#.

Let us now consider the matrix components of the rand
potential U(q). Let Un(q)5Pn

qU(q)Pn
q . According to Eq.

~2.26!, the Hamiltonian~3.3! has a three-diagonal bloc
form, hence,

U~q!5 (
n>1

Un~q!1 (
n>0

@Dn~q!1Dn
1~q!#. ~3.9!

The matrix components of the operator~3.9! can be calcu-
lated using the relation

^ j ,sn ,quU~q!u i,sm8 ,q&5^sn~ j !u ĵ0usm8 ~ i!&exp$ iq~ i2j !%;

then

^0,s0 ,quD0~q!ucm ,q&5dm,0D. ~3.10!

The random potentialU1(q) is diagonal in the basis~3.8! of
the subspaceEq

(1) :

^c0 ,quU1~q!uc0 ,q&5Dj, ~3.11!

^cm ,quU1~q!uck ,q&5dmkDj
a umu

11a
, mÞ0.

In the case of uncorrelated disorder (a50), the nonzero
matrix components ofD1(q) are written as13:

^cm ,quD1~q!uc0,m ,q&5D exp$2 iqm/2%, mÞ0.
~3.12!

In the case ofaÞ0, the constantD in Eq. ~3.12! is replaced
by another constant. For example,

^c1 ,quD1~q!uc0,1,q&5D21~12a2!21/2b1 exp$2 iq/2%,
~3.13!

^c21 ,quD1~q!uc0,21 ,q&5D21~12a2!21/2b1 exp$ iq/2%,

where b1.0 is defined by Eq.~2.18!. Since the vectors
ucm,m1k ,q& are builtup by means of orthogonalization of th
vectors of type~2.19!, for aÞ0, the matrix components
^ck ,quD1(q)ucm,k ,q&, ^c2k ,quD1(q)uc2m,2k ,q&, where 0
,m,k, are also nonzero and tend to zero asa→0. The
other matrix components ofD1(q) are equal to zero.

In the subspaceEq
(2) , the random potentialU2(q) is diag-

onal for the clusters of unit length:

^cm,m11 ,quU2~q!uck,k11 ,q&5dmk

Dj

11a
am, ~3.14!
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^c2m,2m21 ,quU2~q!uc2k,2k21 ,q&5dmk

Dj

11a
a umu,

m>0.

It is not difficult to see that in the general case the ma
components

^cn,n1m ,quU2~q!uck,k1 l ,q&Þ0

and decrease as powers ofa like Eq. ~3.14!.
We can analyze in the same way the matrix compone

of operatorsDn(q)(n>2) andUn(q)(n.2). For example, in
the absence of SRO, on the mth ‘‘level’’ of the continu
fraction the random potential has the form13:

Um~q!5 (
iPsm

u i,sm ,q&Dj^ i,sm ,qu, ~a50!.

In the case ofaÞ0 the matrix components of the kin
^csm( l) ,quUm(q)ucs

m8 ( l8) ,q& decrease as powers ofa with

increasing distance between the site0 and the cluster center
of gravity l and l’ .

For particular calculations, one has to use an approxi
tion scheme. Let us select a clustersn with n sites, the
scattering on which will be exactly taken into account. W
shall call it the ‘‘maximum’’ clustersn

max. Define in Eq
(1)

% Eq
(2)

%¯% Eq
(n) a subspaceLq5Lq

(1)
% Lq

(2)
%¯% Lq

(n) ,
where Lq

(m) is a span of the vectorsu i,sm ,q& such that
iøsm#sn

max(m<n). It follows from Eq. ~2.22! that U(q)
mapsLq onto Lq% Eq

(0) . Let Tm
q be an orthogonal projecto

onto the subspaceLq
(m) and

Tq5 (
m51

n

Tm
q

be an orthogonal projector ontoLq . In terms of these, the
nonconsistent approximation consists in the following sub
tution:

U~q!⇒TqU~q!Tq11D0~q!1D0
1~q!, ~3.15!

i.e., the action ofU(q) is restricted to the subspaceLq
% Eq

(0) . After substitution~3.15!, the operatorsDm(q) and
Um(q)(m<n) have nonzero matrix components for a fin
number of clusters, therefore the inversion of matrices
Eq.~3.7! can be performed analytically.

Following the paper in Ref. 13, to construct se
consistent approximations we define the operators

Seff~e,q!5 (
i,j ,sn ,n>1

u i,sn ,q&S i2 j~e!^x~ j ,sn ,q!u,

~3.16!

H eff~e,q!5Hvc~q!1Seff~e,q!,

whereS i2 j(e) is the Fourier transform ofS0(e,q). Accord-
ing to Eq. ~3.15!, we replace the random potential in E
~3.3! by a potential the action of which is restricted toLq
% Eq

(0) . Further, on each ‘‘level’’ of the continued fractio
we make the substitution:
x

ts

a-

i-

n

Sm~e,q!⇒Tm
q Sm~e,q!Tm

q11Sm
q Seff~e,q!Sm

q1 ,
~3.17!

where

Sm
q 5Pm

q 2Tm
q

is a projector onto the orthogonal complement toLq
(m) in the

subspaceEq
(m) . We also define a projector

Sq5 (
m51

n

Sm
q .

The substitution~3.17! means that we exactly take into a
count the scattering on all clusterssm#sn

max(m<n). The
contribution of other configurations is taken into account
means of effective medium. As a result, at every ‘‘level’’
the continued fraction the summation is going over a fin
set of clusters. Although the matrices in the continued fr
tion are infinite with respect toi, j , their inversion may be
performed analytically. In the particular case ofa50, we
come to the approximation suggested in the Ref. 9.

When the parametera is not small, it is more efficient to
restrict the random potential with consideration for the ma
nitude of a, instead of substitution~3.15!. Namely, on the
mth ‘‘level’’ of the continued fraction we define the orthogo
nal projectors Rm

q onto a finite subspace of vector
$ucsm( l) ,q&% such that the matrix componen

^csm( l) ,quUm(q)ucs
m8 ( l8) ,q& have the order ofa not greater

thanp (p.0 is an integer!. In this case we should make th
following substitution:

U~q!⇒ (
m51

n

Rm
q Um~q!Rm

q 1 (
m51

n

@Tm
q Dm~q!Tm11

q

1Tm11
q Dm

1~q!Tm
q ] 1D0~q!1D0

1~q!.

B. The ASF and the averaging of the resolvent
in the cases of arbitrary correlations and space dimension

Let us consider how to extend the above theory to
cases of arbitrary correlations and space dimension. In
general case, the Cowley parametera is not unique. For an
unordered binary alloy we have a set of parametersan that
characterize the pair-correlation function. For the nth coor
nation shellan is defined by an expression similar to E
~2.2!:

an512
Pn

AB

xy
,

herePn
AB is the probability of the formation of anAB pair at

a distance equal to the radius of the nth coordination sh
Other correlation functions are determined by their own s
of parameters. Although these correlation functions rem
unknown for real systems, a few parameters may be
tracted from the experiment. To formulate the theory, it
not necessary to know all the correlation functions. For
ample, to obtain an approximation like the TCA, which w
be discussed in details in Sec. IV A, in calculating the mat
components on the second ‘‘level’’ of the continued fracti
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one has to know only the correlation functions up to the fif
inclusive. Therefore, we should either know the required c
relation functions or suggest a kind of model correlation t
would approximate those of the real system.

In the general case, we shall not separate the spaceF into
subspacesEn which are orthogonal to each other, becau
their construction according to formulas~2.22! and ~2.23! is
valid only in the case of Markov-type correlations. Let,
before, the basis vectoruvac& ~2.11! generate a one
dimensional subspaceE0 . Define the vectorsusm( l)&, m
.0, which are orthogonal touvac&, as follows

csm
usm~ l!&5S )

iPsm( l)
ĵ iD uvac&1asm

uvac&, ~3.18!

where the coefficientasm
is determined from the condition

^vacusm( l)&50, and the constantcsm
is determined from

the normalization condition of the vectorusm( l)&. Adding
the electron functions to Eq.~3.18! as in Eq.~2.25!, we get a
set of vectorsu i1l,sn( l)& that form a complete basis inC
^ F. The HamiltonianH acting on the augmented spa
C ^ F, in the site representation has as before the fo
~2.24!. Using Eq.~3.2! and making the Fourier transform, w
rewrite the HamiltonianH(q) in the form ~3.3!. Let Eq

(0) be
a one-dimensional subspace generated by the ve
u0,s0 ,q&, andEq be a span of vectors$u i,sm ,q&% such that
sm#sn

max(m.0), i.e.,Eq is a space of clusters the scatte
ing on which is exactly taken into account. LetP0

q be an
orthogonal projector onto the subspaceEq

(0) , Pq be an or-
thogonal projector ontoEq , Q0

q512P0
q , Qq512P0

q2Pq.
Introduce also the operators,

D0~q!5P0
qU~q!Q0

q , D* ~q!5PqU~q!Qq,

H* ~q!5PqH~q!Pq.

The averaged Green’s functionG0(e,q) of the Hamil-
tonian ~1.1! is defined by the expression~3.5!. Since the
subspaces corresponding to clusters with different num
of sites are not orthogonal to each other, the representatio
the self-energy in the form of a continued fraction is n
convenient. Therefore, we write the exact expression
S0(e,q) as follows:

S0~e,q!5D0~q!
1

e2H* ~q!2S* ~e,q!
D0

1~q!,

~3.19!

where

S* ~e,q!5D* ~q!
1

e2QqH~q!Qq D
*
1~q!. ~3.20!

Let Tq be an orthogonal projector onto a subspaceLq of
vectorsu i,sm ,q&, such thatiøsm#sn

max(m.0). According
to Eqs.~3.18! and~3.3!, the operatorU(q) maps the subspac
Lq onto Lq% Eq

(0) . SinceU(q) is Hermitian, it follows from
Eq. ~3.20! that

TqS* ~e,q!5S* ~e,q!Tq50. ~3.21!
,
r-
t

e

tor

rs
of

t
r

Consider some possible approximations forS0(e,q). Let
us make in the Hamiltonian~3.3! the substitution~3.15! and
put S* (e,q)50 in Eq. ~3.19!. Then we get a nonconsisten
approximation. For a self-consistent approximation, besi
the restriction of the random potential toLq% Eq

(0) , one
should make the substitution in Eq.~3.19! satisfying the rule
~3.21!:

S* ~e,q!⇒SqSeff~e,q!Sq, ~3.22!

where

Sq5Pq2Tq,

andSeff(e,q) is defined by Eq.~3.16!. For the case of Mar-
kov correlations, the scheme proposed is the same as
approximation discussed above, and it transforms into
approximation suggested in Ref. 9 if there is no SRO. Si
the subspaceLq contains a finite set of clusters, the inversio
of the matrices in Eq.~3.19! may be performed analytically
The details of such calculations are presented in Appen
A, the case of the one-dimensional chain is discussed in
IV A and in Appendices B and C.

The ASF was generalized to the case of off-diagonal d
order in Ref. 9. A similar generalization is also possible
case of SRO within the framework of the above propos
scheme. For an example, in the case of a one-dimensi
chain with Markov-type correlations we will have the five
diagonal Hamiltonian determined on the augmented sp
The expression~3.7! for the self-energy in the form of con
tinued fraction is valid only for the case of diagonal disord
However, the general approximation scheme~3.15!, ~3.19!,
and ~3.22! does not imply such restriction.

C. Limiting cases of the ordered alloy

The representation of the resolvent proposed above
the advantage of providing correct limiting transition to t
Green’s function of the ordered alloy if the SRO parame
tends to its critical values. Consider, for example, a tw
dimensional square lattice and define a two-site correla
function as follows

gr1r2
5^ĵ r1

ĵ r2
&5D2a ir12r2i, ~3.23!

whereir12r2i5ux12x2u1uy12y2u, uau,1 is the the Cow-
ley parameter. Then, fora51, the alloy separates into tw
subsystems containing the atoms ofA or B type only. For
x50.5, a521, the atomsA alternate with the atomsB in
staggered order. In these cases the exact Green’s func
are known and we can compare them with our expressio

In the case ofa561, for the Fourier transform of the
matrix gr1r2

~3.23! we get the formulas:

g~q!5~2p!2(
g

d~q1g!, a51, ~3.24!

g~q!5~2p!2(
g

d~q1Q1g!, a521,

here the summation goes over all vectorsg of the reciprocal
lattice,Q5(p,p) ~the lattice constanta51!. We denote by
u(nk),q&5u i,q& a basis in the Fourier representation of t
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subspace corresponding to single-site excitations. We ca
thogonalize this basis using Eq.~3.23!;

uf~00! ,q&5u0,q&,

uf~nk! ,q&5~12a2!21~ u~nk!,q&2a exp$ iq2%u~n,k21!,q&

2a exp$ iq1%u~n21,k!,q&1a2 exp$ iq1

1 iq2%u~n21,k21!,q&),

n.0,k.0, ~q1 ,q2!5q. ~3.25!

For othern andk, we have the similar formulas. Forn50 or
k50, the orthogonal basis is defined according to Eq.~3.8!.

Associate the transfer matrixVi2j with an operatorVq
acting on the augmented space as defined by Eq.~3.16!.
Since the vectors corresponding to multiple excitations
be orthogonalized to the vectorsuf (nk) ,q&, in the case ofa
561 it is sufficient to examine only the matrix componen
of the kind ^0,quVquf (nk) ,q&. Using Eqs.~A5! ~3.24! and
~3.25!, we obtain

Ṽ00~q!5^0,quVqu0,q&5V~q!, a51,

Ṽ00~q!5^0,quVqu0,q&5V~q1Q!, a521, ~3.26!

^0,quVquf~nk! ,q&→
12a

11a
V~q!exp$ iq1n1 iq2k%→0,

~a→1!,
r
re

m
a
h

th

b
s

n-

,
n-
or-

n

^0,quVquf~nk! ,q&→
11a

12a
V~q1Q!exp$ i ~q11p!n1 i ~q2

1p!k%→0, ~a→21!.

Therefore the matrixH* (q) is factorized in the limiting
cases, and for the averaged Green’s function we have
expression

G0~e,q!5
1

e2 ē2V~q!2S0~e,q!
, ~3.27!

S0~e,q!5
D2

e2 ē2Ṽ00~q!2Dj
,

where the constantsD, Dj, and ē are defined by Eqs.~2.6!
and ~2.4!.

In the case ofa51, the expression for the averaged r
solvent has the form

G0~e,q!5
x

e2eA2V~q!
1

y

e2eB2V~q!
,

and coincides with the exact Green’s function of the all
separated into two subsystems with weightsx andy.

In the case ofa521, using Eq.~3.26! for the diagonal
matrix component of the averaged resolvent we obtain
expression
Ḡ00~e!5
1

~2p!2 E dq
e2 ē2V~q1Q!

~e2eA!~e2eB!2~e2 ē !@V~q!1V~q1Q!#1V~q!V~q1Q!
,

x

which coincides, forx50.5, with the exact expression fo
the Green’s function of the ideal crystal with a stagge
arrangement of theA andB atoms.

IV. ANALYSIS OF THE SELF-CONSISTENT EQUATIONS
FOR THE SELF-ENERGY

A. TCA-like approximation

As an example of the suggested approximation sche
~3.15!, ~3.17! for the self-energy, consider a one-dimension
Markov chain, putn52, and choose a pair of nearest neig
bors as the maximum clusters2

max5s2. On the second
‘‘level’’ of the continued fraction the vectorsu i ,s2 ,q& are
orthogonal to each other. As noted above in Sec. III B, on
first ‘‘level’’ of the continued fraction the basis$u i ,s1 ,q&% is
not orthogonal, therefore it is convenient to perform all su
sequent calculations using the orthonormalized ba

$ucm ,q&% defined by expressions~3.8!. Denote byÃi j (q)
5^c i ,quAquc j ,q& the matrix components of a translatio
invariant operator of the kind~3.16!. It is shown in Appendix
B that using the formulas~3.8! of transformation of the basis
the matrix componentsÃi j (q) can be expressed via the co
volution:
d

e
l
-

e

-
is

^ i ,quAqu j ,q&5(
k

^ i ,quk,q&Ak2 j

5
1

2p E
2p

p

dp g~p2q!A~p!exp$ ip~ j 2 i !%,

~4.1!

where integration is over the first Brillouin zone~the lattice
constanta51!, A(p) is the Fourier transform of the matri
Ai 2 j , andg(q) is determined by Eq.~2.15!. Carrying out the
substitution of Eqs.~3.15! and ~3.17! into Eq. ~3.7! and in
view of Eq. ~3.10!, we get

S0~e,q!

5D2K c0 ,qUG1
eff~e,q!

1

12W1~e,q!G1
eff~e,q!

Uc0 ,qL ,

~4.2!

W1~e,q!5(
i j

uc i ,q&Wi j
s1~e,q!^c j ,qu,



y
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G1
eff~e,q!5@e2H 1

eff~e,q!#21.

The nonzero matrix componentsWi j
s1(e,q) have the form:

Wi j
s1~e,q!5d i j v i1S i j

s1~e,q!2S̃ i j ~e,q!, i , j Ps,
~4.3!

Wi j
s1~e,q!52S̃ i j ~e,q!, i Ps, j ¹s.
o

ha
(

th

ac
th
b

th
of

n
s-

elf

d

e
o
o

d
t-
ge
r
ri
om
Here s5$21,0,1%, v05Dj, v15v215aDj/(11a); in
the case ofi ¹s, j Ps, Wi j

s1(e,q) is defined in the same wa
as in Eq.~4.3! with rearrangement of indicesi and j . The
matrix componentsS i j

s1(e,q) in the first expression of Eq
~4.3! are nonzero fori , j Þ0. Using Eq.~3.13!, they can be
determined by an expression similar to Eq.~4.2!:
S i j
s1~e,q!5b2 exp$ iq~ j 2 i !/2%K i /2,s2 ,qUG2

eff~e,q!
1

12W2~e,q!G2
eff~e,q!

U j /2,s2 ,qL ,

b25
b1

2

D2~12a2!
, ~4.4!

W2~e,q!5(
i j

u i ,s2 ,q&Wi j
s2~e,q!^ j ,s2 ,qu, G2

eff~e,q!5@e2H 2
eff~e,q!#21.
in
0

s is
of

nti-

the

ow-

the
nds
SRO

. For
c-

ed
Heres25$21/2,1/2%, Wi j
s2(e,q)50, if i , j ¹s2 , otherwise

Wi j
s2~e,q!5v0d i j 2S i 2 j~e!, v05

Dj

11a
.

With appropriate rearrangement of rows and columns
the matrices in Eqs.~4.2! and ~4.4!, their inversion can be
performed analytically~see Appendix C!. As a result, we
obtain a self-consistent nonlinear integral equation t
should be solved numerically. In the absence of SROa
50), the approximation suggested coincides with
TCA.8,9

The approximation considered correctly takes into
count the scattering on all pairs of nearest neighbors,
scattering on the other clusters is taken into account
means of the effective medium. As shown in Ref. 13, in
case ofa50 it is a successive approximation in terms
(a/R0) and exp$2a/l0%, wherea is the lattice constant,R0 is
the effective damping length of the transfer integralVi2j ,
and l 0 is of the order of the mean free path of an electro
From the analysis in Sec. III A, it follows that in the pre
ence of SROa is an additional small parameter.

We have carried out a numerical analysis of the s
consistent Eqs.~4.2!, ~4.3! and~4.4! for the following values
of the model parameters of the Hamiltonian~1.1!: eA
52eB52.5; Vi2j 51.0, if i, j are the nearest neighbors, an
Vi2j50 otherwise. The concentration of impurity atoms~of
A type! wasx50.1 andx50.5. Such parameters determin
the most interesting range of strong scattering and high c
centrations. There is a gap between the impurity and h
bands, the former being in the energy range from24.5 to
20.5, the latter in the range from 0.5 to 4.5. Atx50.1 the
changes occurring in the host band are small as compare
the ideal crystal (x50) and atx50.5 the bands are symme
ric with respect toe50. So we can examine the energy ran
(0.5;4.5) corresponding to the impurity band. For compa
son of the theoretical results with the ‘‘exact’’ ones, nume
cal analysis of the distribution of eigenvalues of the rand
f

t

e

-
e
y

e

.

-

n-
st

to

i-
-

Hamiltonian ~1.1! has been carried out. The histograms
Figs. 2 and 3 correspond to a fixed lattice containing 16

atoms. In the one-dimensional case, such an analysi
simple and reduces to calculating the number of zeroes
eigenfunctions of the Hamiltonian.21

The central peak in Fig. 1 close toe5eA corresponds
mainly to the states localized on theA-B pairs, and two
satellite peaks correspond primarily to the bonding and a
bonding states localized on theA-A pairs. Their contribution
to the total density of states is proportional toPAA5x(x
1ay), wherePAA is the probability of the formation of an
A-A pair at the nearest-neighbor sites. The weight of
central subband is;PAB5xy(12a). The curves in Fig. 1
demonstrate the correct behavior under changes of the C
ley parameter. The case ofa.0 ~thin solid curve! corre-
sponds to the situation of effective attraction between
atoms of the same type. The weight of the satellite subba
increases as compared to the case of the absence of
because of the increase in the number ofA-A pairs. The
weight of the central subband, on the contrary, decreases
a,0 ~dashed line!, we have the opposite situation of effe
tive repulsion between the atoms of the same type.

FIG. 1. Density of states in the impurity band of a disorder
Markov chain for x50.1, eA52eB52.5, V51.0, a50 ~thick
line!, a50.1 ~thin line!, a520.05 ~dashed line!.
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In Fig. 2 the density of states atx50.1 and different val-
ues of the SRO parameter calculated using the self-consi
equations are compared with the ‘‘exact’’ results for a ch
containing 106 atoms. The theoretical curves reproduce fai
well the main peculiarities of the histograms, the density
states being positive over the whole range of the SRO
rameter variation. Fora.0, the density of states evolve
towards the exact solution (a51) corresponding to tota
segregation of the alloy. The case ofa521/9 corresponds
to the critical point of maximal repelling between the atom
of the same kind. In the approximation considered, the r
tive weight of the satellite subbands is defined by the ma
components of the projectorsD1(q), D1

1(q) ~3.13!, which
are equal to zero fora52x/y. The contribution of other
configurations, except for theA-A pairs, is of orderx3, and
for x50.1, it is not observed on the histogram correspond
to the ‘‘exact’’ solution.

Figure 3 presents the density of states atx50.5 for posi-
tive (0,a,1) and negative (21,a,0) SRO parameters

FIG. 2. Density of states in the impurity band of a disorder
Markov chain forx50.1, eA52eB52.5, V51.0.
nt
n

f
a-

-
x

g

when two limiting cases of the chain ordering are possib
Since atx50.5 the contribution of the cluster configuration
the scattering on which is taken into account by means of
effective medium, is rather large (;x3), our approximation
does not reproduce completely the fine structure of the s
band in the case ofa50. In order to obtain a better agree
ment with the histogram, it is necessary to take into acco
the clusters larger than a pair of nearest neighbors. Howe
the calculated density of states agrees reasonably well
the histograms whena tends to its critical values.

FIG. 3. Density of states in the impurity band of a disorder
Markov chain forx50.5, eA52eB52.5, V51.0.
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B. CPA-like approximation

In this section we shall consider the simplest se
consistent single-site approximation which extends the C
~Ref. 1! to the case of correlated disorder. In the gene
e

f

l-
n.
ra
-
,
e

of

si

si
ng

e
th
-
A
l

self-consistent scheme proposed in Sec. III B, this appro
mation corresponds to the choice of a single site of the lat
as the maximum cluster (smax5s1). Using Eqs.~A2! and
~A3! and the relations similar to Eq.~C4!, we get the self-
consistent integral equation for the self-energy:
S0~e,q!5
D2G̃00

eff~e,q!

@11 Ĩ 00~e,q!#22@~Dj!1S̃00~e,q!1 J̃00~e,q!#G̃00
eff~e,q!

, ~4.5!
trix

be
to

the
-
der
e

n-

o-

or
s

where

S̃00~e,q!5
1

~2p!d E dp g~p2q!S0~e,p!,

G̃00
eff~e,q!5

1

~2p!d E dp g~p2q!G0~e,p!,

~4.6!

Ĩ 00~e,q!5
1

~2p!d E dp g~p2q!S0~e,p!G0~e,p!,

J̃00~e,q!5
1

~2p!d E dp g~p2q!S0
2~e,p!G0~e,p!.

Here the integration is over the first Brillouin zone of th
lattice, d is the space dimension,g(q) is the Fourier trans-
form of the two-site correlation function:

g~q!5
1

N (
ij

gij exp$ iq„i2j …%, ~4.7!

gij 5D22^ĵ iĵ j&.

In the absence of spatial correlations in the alloy,gij 5d ij ,
and Eqs.~4.5! and ~4.6! lead to the CPA in the form o
Onodera and Toyozawa:22

S~e!5
D2G00

eff~e!

12@Dj2S~e!#G00
eff~e!

,

whereG00
eff(e) is the diagonal matrix component of the reso

vent of the effective Hamiltonian in the site representatio
It should be noted that in the presence of SRO, in cont

to the CPA, the approximation~4.5! leads to spatial disper
sion of the self-energy. In the limit of ‘‘strong’’ correlations
g(p) has the form~3.24! and for the self-energy we have th
expression~3.27! corresponding to the Green’s function
the ordered alloy.

Let us consider the omitted terms in Eq.~4.5! connected
with SRO. For this purpose, in the subspace of single-
excitations that form the subspaceLq in our case~see Sec. III
B!, it is convenient to introduce an orthonormalized ba
$uf i ,s1 ,q&%. Such a basis can be built up by orthogonalizi
the basis$u i,s1 ,q&% similar to the formula~3.25!, where
uf0 ,s1 ,q&5u0,s1 ,q&. Let us assume that the vectors corr
sponding to multiple excitations are orthogonalized to
subspaceLq . In virtue of the restriction~3.15!, in the sub-
st

te

s

-
e

space of single-site excitations there remains the only ma
component of the random potential^0,s1 ,quU(q)u0,s1 ,q&
5Dj. As follows from Eq.~4.6!, in the approximation con-
sidered, only the two-site correlation function should
known. For the analysis of the omitted terms, one has
consider the matrix components of a random potential of
kind ^f i ,s1 ,quU(q)uf j ,s1 ,q&, which can be calculated us
ing a three-site correlation function. As an example, consi
a simple cubic lattice ind-dimensional space and define th
correlation functions as follows:

^ĵ iĵ j&5D2gij 5D2a i i2j i, uau,1,

i i2j i5 (
n51

d

u i n2 j nu, ~4.8!

^ĵ iĵ j ĵk&5D2~Dj!ap, p5 (
n51

d

mn ,

mn5max$u i n2 j nu,u i n2knu,u j n2knu%.

Then the orthonormalized basis$uf i ,s1 ,q&% can be con-
structed as in~3.25! and the restriction of the random pote
tial to the subspaceLq has the form:

^f i ,s1 ,quU~q!uf j ,s1 ,q&5d ij ~Dj!
a i ii

~11a!d .

As follows from the matrix components of the random p
tential, the omitted terms in Eqs.~4.5!–~4.7! are small in
parametera. Moreover, for a translation-invariant operat
Vq of the kind in Eq.~3.16!, one can obtain the relation
similar to Eq.~3.26!:

^0,s1 ,quVquf i ,s1 ,q&→S 12a

11a D d/2

V~q!

3expH i (
n51

d

qni nJ →0 ~a→1!,
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^0,s1 ,quVquf i ,s1 ,q&→S 11a

12a D d/2

V~q1Q!

3expH i (
n51

d

~qn1p!i nJ →0

~a→21!,

Q5~p,...,p!.

Using the inversion formulas for block matrices and calc
lating the expression~3.19!, we come to the result that in th
limit of ‘‘strong’’ correlations, whena→1 or a→21, the
correction to the exact solution~3.27! is of the order of (1
2uau)d.

The numerical analysis of the self-consistent Eq.~4.5! be-
comes much easier if we choose the two-site correla
function in the form~4.8! and consider the limit of the infi-
nite space dimension (d5`). According to Eq.~2.15!, for
the Fourier transform ofgij we have

g~q!5 )
n51

d

g~qn!5 )
n51

d S 12a2

11a222a cosqn
D . ~4.9!

We assume the components of the transfer matrixVi2j in the
Hamiltonian~1.1! to be different from zero and equal toV
only for the pairs of nearest neighbors. It is known that
order to obtain the nontrivial result in the case ofd5`, one
should overdetermine the parameterV asV5V* /Ad, where
V* is a finite magnitude. Then the dispersion law of t
Hamiltonian of the virtual crystal has the form:

ek5 ē1
b

Ad
(
n51

d

coskn , b52V* .

To solve the integral equation~4.5!, let us assume that th
function S0(e,q) has the form

S0~e,q!5S~e,m!, m5
1

Ad
(
n51

d

cosqn . ~4.10!

HereS(e,m) is an unknown function ofm. If this assump-
tion is true, it is necessary that the functional dependenc
the form ~4.10! should also be valid for all functions in Eq
~4.6!. We shall prove it by obtainingG̃00

eff(e,q). Using Eq.
~4.9!, we get

G̃00
eff~e,q!5

1

~2p!d E 1

e2 ē2
b

Ad
(
n51

d

cospn2S0~e,p!

3 )
n51

d

g~qn2pn!dpn

5E
2`

1` r~z,q!

e2 ē2bz2S~e,z!
dz, ~4.11!

where
-

n

of

r~z,q!5
1

~2p!d E dS z2
1

Ad
(
n51

d

cospnD
3 )

n51

d

g~qn2pn! dpn .

The probability densityr(z,q) can be found easily. Since

1

2p E
2p

p

g~qn2pn! dpn51,

we can consider the integration variablespn as independen
random variables distributed on the segment@2p,p# with
probability density (1/2p)g(qn2pn). Then r(z,q) is the
probability density of the random variable z
5(1/Ad)(n51

d cospn . Therefore, by virtue of the centra
limit theorem, using Eq.~4.9! we get

r~z,q!5
1

Ap~12a2!
expF2

~z2am!2

12a2 G ,
m5

1

Ad
(
n51

d

cosqn .

The functional dependence of such a form allows us to w
G̃00

eff(e,q)5G̃eff(e,m), where

G̃eff~e,m!5
1

Ap~12a2!
E

2`

1`
expF2

~z2am!2

12a2 G
e2 ē2bz2S~e,z!

dz.

~4.12!

Thus, we have proved that the functional depende
G̃00

eff(e,q) on q has the form~4.10!. For the diagonal matrix
component of the averaged resolvent we have the exp
sion:

Ḡ00~e!5
1

Ap
E

2`

1` e2m2
dm

e2 ē2bm2S~e,m!
.

HereS(e,m) satisfies the integral equation:

S~e,m!

5
D2G̃eff~e,m!

@11 Ĩ ~e,m!#22@~Dj!1S̃~e,m!1 J̃~e,m!#G̃eff~e,m!
,

~4.13!

where S̃(e,m), Ĩ (e,m), J̃(e,m) are defined by integrals
similar to Eq.~4.12! according to Eq.~4.6!.

The equation~4.13! for the self-energy can be easil
solved numerically. Calculations are carried out for the f
lowing values of the Hamiltonian~1.1!: eA52eB51.0, b
52V* 51.0. Figure 4 shows the density of states for t
impurity concentrationx50.2 anda.0. Figure 5 presents
the density of states forx50.5 anda,0. The dashed line in
the figures corresponds to the CPA (a50). The thin solid
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line (a50.5 anda520.5) demonstrates the evolution o
the density of states from the case of a completely unorde
alloy to the ordered system.

V. CONCLUSION

In this paper we have considered the problem of calcu
ing the electronic spectrum of a binary unordered alloy w
correlated diagonal disorder. For configuration averaging
the one-particle Green’s function we have proposed
method which, in the framework of the ASF, allowed us
take into account the correlations of random variables. T
suggested method, as compared to other approaches, ha
advantage of using the translation invariance when defin
the basis in the augmented space. We have demonstrate
method of constructing such a basis in the case of the o
dimensional chain, on which the spatial correlations of r
dom variables are determined by a first-order Markov p
cess. In contrast to the case of uncorrelated disorder,
basis is not orthogonal.

Using the ASF, we have obtained the formally exact e
pression for the translation-invariant self-energy operato
the averaged Green’s function. In the case of the o
dimensional Markov chain, the self-energy is presented a
continued operator fraction. The general schemes of n
and self-consistent approximations for the self-energy op
tor have been proposed. They can be applied in the spac
any dimension if the necessary correlation functions

FIG. 4. Density of states of the unordered alloy atd5` for
x50.2, eA52eB51.0, b52V* 51.0, a50 ~dashed line, CPA!,
a50.5 ~thick line!, a51.0 ~thin line!.

FIG. 5. Density of states of the unordered alloy atd5` for
x50.5, eA52eB51.0, b52V* 51.0, a50 ~dashed line, CPA!,
a520.5 ~thick line!, a521.0 ~thin line!.
ed
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f
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e
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e

known. The considered scheme leads to consistent allowa
for multiple scattering in the limits of a chosen maximu
cluster. In the simplest case we have obtained an exten
variant of the CPA that takes into account the SRO effec

An analysis of the approximations suggested shows t
in addition to the small parameters of the theory develop
in Ref. 13, in our approach the expansion is also perform
in small parametersa and (12uau)d ~d is the space dimen
sion,a is the Cowley parameter!. The approximations ensur
a correct limiting transition to the Green’s function of th
ordered alloy when the Cowley parameter tends to its crit
values. Fora50 we have obtained the expressions of t
known approximations.9,13 Analysis of the analytical proper
ties of the approximations shows that they are of Herglo
type and do not result in a negative density of states for
values of the SRO parameter in the whole energy range

We have also carried out numerical analysis of the s
consistent equations for a chain and for the case of
infinite-dimensional space. The results obtained are in r
sonable agreement with the histograms and their qualita
behavior adequately reflects the dependence of the spec
on the SRO parameter.

As mentioned at the end of Sec. III A, the ASF can
generalized to the case of off-diagonal disorder. Additio
ally, within the ASF one can obtain the exact expression
the one-particle density of states for a cluster of fixed s
and configuration.7 In our approach, the partial density o
states depending on the arrangement of impurity atoms in
nearest neighborhood calculated in the general approxi
tion scheme, will automatically incorporate the SRO.

The tight-binding model of an unordered alloy with dia
onal disorder represents the simplest example of a disord
system. However, the solution of this problem may be u
as a necessary foundation for realistic calculations of
electronic structure of unordered alloys with SRO. Particu
attention must be paid to the CPA1SRO expression in Sec
IV B ~4.5!. It is easily seen that this equation contains fam
iar functions that do not involve the ASF terms. Besides,
method proposed can be used for comparative assessme
different techniques that do not possess a thorough m
ematical foundation.

For realistic calculations of the electronic structure of d
ordered alloys Kudrnovsky´ and Drchal23,24 have combined
the CPA with the first-principles tight-binding muffin-tin or
bitals ~TB–LMTO! method.25,26 To represent the Green’
function of the system in this approach one should find
auxiliary Green’s function of some tight-binding Hami
tonian. The disorder leads to the existence of random
diagonal elements in the auxiliary Hamiltonian. However,
using the localized TB–LMTO representation~also calledb
representation! we can reduce the Hamiltonian to the on
with diagonal disorder only and then use the CPA. A simi
scheme may be used to allow for the SRO effects. Wh
taking account of the angular moment in the ASF approa
we deal with the finite matrices whose elements are labe
by orbital indicesL andL8 instead of scalar numbers in th
Fourier representation, and with a matrix equation instead
the CPA1SRO relation~4.5!. The two-site correlation func-
tion g(q) arising in this equation can be reconstructed fro
the Cowley SRO parametersan by means of the Fourie
transform~2.15! ~the experimental Cowley SRO paramete
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are found from thex-ray diffraction27!.
Of crucial importance for describing the magnetic prop

ties of transition-metal alloys is the allowance for spatial s
correlations28 that may be carried out within our extende
version of the CPA.

Another problem is connected with taking into accou
the spatial correlations in the arrangement of electrons w
different spin directions within the Hubbard model. This a
lowance for spatial correlations brings one beyond the sc
of the ‘‘Hubbard-III’’ ~or alloylike! approximation.29 In this
case we should consider some correlation functions with
trinsic SRO parameters, and then, by analogy with the va
tional Gutzwiller’s method,30 minimize the ground-state en
ergy over the SRO parameters.
ra
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APPENDIX A

In this appendix we show how to calculate the express
~3.19! for the self-energy operator. Carrying out the subs
tution of Eqs.~3.15! and~3.22! into Eq. ~3.19!, we write the
equation forS0(e,q):
S0~e,q!5D2K 0,s1 ,qUG* ~e,q!
1

12W* ~e,q!G
*
eff~e,q!

U0,s1 ,qL , ~A1!
the

e

ua-

B

x

where

G
*
eff~e,q!5@e2H

*
eff~e,q!#21,

W* ~e,q!5W
*
~1!1W

*
~3!1W

*
~3!T ,

W
*
~1!5Tq@U~q!2Seff~e,q!#Tq,

W
*
~3!52SqSeff~e,q!Tq, W

*
~3!T52TqSeff~e,q!Sq.

We define also the operators

G
*
eff~1!5TqG

*
eff~e,q!Tq, G

*
eff~2!5SqG

*
eff~e,q!Sq,

G
*
eff~3!5SqG

*
eff~e,q!Tq, G

*
eff~3!T5TqG

*
eff~e,q!Sq.

The superscriptT here designates the transposition ope
tion.

Then, using the inversion formulae for block matrices20

one can show thatS0(e,q) in Eq. ~A1! is defined as

S0~e,q!5D2^0,s1 ,quD21u0,s1 ,q&, ~A2!

whereD is the operator mapping the subspaceLq ~see Sec.
III B ! onto itself:

D5G212W
*
~1!2W

*
~3!TG

*
eff~2!W

*
~3! , ~A3!

G215~12W
*
~3!TG

*
eff~3!!~G

*
eff~1!!21~12G

*
eff~3!TW

*
~3!!.

For further calculations it is convenient to choose in the s
space Lq the orthonormalized basis$ucsm( i) ,q&%, where

iøsm#sn
max(m.0), which can be obtained by orthogona

ization of the basis$u i,sm ,q&%, as in the case of the Markov
type correlations in Sec. III A. Consider also the operato

Seff~e,q!, Geff~e,q!5@e2H eff~e,q!#21, ~A4!

I ~e,q!5Geff~e,q!Seff~e,q!,

J~e,q!5Seff~e,q!Geff~e,q!Seff~e,q!.
-

-

:

Then the calculation of Eqs.~A2!, ~A3! reduces to multipli-
cation and inversion of the finite matrices composed from
matrix components of the operators~A4! in the orthonormal-
ized basis. The matrix components^csn( i) ,quAqucs

m8 ( j ) ,q&,

@Aq is one of the operators~A4! of the kind ~3.16!# can be
expressed by the convolution

^ i,sn ,quAqu j ,sm8 ,q&

5
1

~2p!d E dp gsnsm8 ~p2q!A~p!exp$ ip~ j2i!%. ~A5!

HereA(p) is the Fourier transform of the matrixAi2j , and

gsnsm8 (p2q) is the Fourier transform of the matrix of th
scalar products of the vectors defined by Eq.~3.18!:

gij
snsm8 5^sn~ i!usm8 ~ j !&. ~A6!

Integration in Eq.~A5! is over the first Brillouin zone,d is
the space dimension. As a result, we obtain the integral eq
tion definingS0(e,q).

For more details, see also Sec. IV A and Appendices
and C, where we discuss the one-dimensional case.

APPENDIX B

Let d51 and the translation-invariant operatorAq has the
form similar to Eq.~3.16!:

Aq5 (
i , j sn ,n>1

u i ,sn ,q&Ai 2 j^x~ j ,sn ,q!u. ~B1!

Then on the first ‘‘level’’ of the continued fraction the matri
components

Ãi j ~q!5^c i ,quAquc j ,q&,
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( i , j 50,61) are expressed in terms of the matrix comp
nents^ i ,quAqu j ,q& ~B1! ~in what follows we omit the index
q for simplicity!:

Ã005^0uAu0&,

Ã015Ã2105
1

A12a2
@^0uAu1&2aeiq^0uAu0&#,

Ã0215Ã105
1

A12a2
@^1uAu0&2ae2 iq^0uAu0&#,

Ã115Ã21215
11a2

12a2 ^0uAu0&

2
a

12a2 @eiq^1uAu0&1e2 iq^0uAu1&#,

Ã1215
1

12a2 @^1uAu21&1a2e22iq^0uAu0&

22ae2 iq^1uAu0&#,

Ã2115
1

12a2 @^21uAu1&1a2e2iq^0uAu0&

22aeiq^21uAu0&#.

APPENDIX C

In this Appendix we present the details of calculation
expressions~4.2!, ~4.3!, and~4.4!. As shown in Appendix A,
it is convenient to present the matricesGn

eff(e,q) andWn(e,q)
(n51,2) in a block form by rearrangement of the rows a
columns:

FGn
eff~1! Gn

eff~3!T

Gn
eff~3! Gn

eff~2! G , FWn
eff~1! Wn

eff~3!T

Wn
eff~3! 0

G ,

where for n51: @A1
(1)# i j , i , j Ps; @A1

(3)# i j , i ¹s, j Ps;
@A1

(2)# i j , i , j ¹s ~here the matrix components of the oper
tors are calculated in the orthogonal basis!, and for n52:
@A2

(1)# i j , i , j Ps2 ; @A2
(3)# i j , i ¹s2 , j Ps2 ; @A2

(2)# i j ,
i , j ¹s2 . The symbolT denotes the transposition operatio
The operatorAq may be presented in a block form throug
the projector operators:

An
~1!5Tn

qAqTn
q , An

~2!5Sn
qAqSn

q ,

An
~3!5Sn

qAqTn
q , An

~3!T5Tn
qAqSn

q ,

where the projectorsTn
q andSn

q are defined in Sec. III A. This
representation allows all necessary transformations in E
~4.2! and ~4.4! using the inversion formulas of bloc
matrices.20 To defineS0(e,q) one should calculate one com
ponent of the matrix that is inverse to the following matri

D5F A1 B1
T 0

B1 C1 S1

0 S1
1 A2

G , ~C1!
-

f

-

.

s.

S0~e,q!5D2^c0 ,quD21uc0 ,q&.

Here, according to Eqs.~3.13! and~3.15!, S1 is the matrix of
the operator

TqD1~q!Tq

5 (
n561

ucn ,q&D21~12a2!21/2b1e2 iqn/2^c0,n ,qu,

FAn Bn
T

Bn Cn
G5Gn

212Wn
~1!2Wn

~3!TGn
eff~2!Wn

~3! , ~C2!

Gn
215~12Wn

~3!TGn
eff~3!!@Gn

eff~1!#21~12Gn
eff~3!TWn

~3!!.

The diagonal blocks in Eq.~C2! have the following dimen-
sions:A1(131) ~the central site0 forming the clusters1),
C1(232) ~two nearest neighbors1 21!, A2 (232) ~two
sites forming the clusters2). Therefore, a rank of the matrix
D is equal to 5.

For calculation~C2! it is convenient to define the follow
ing operators:13

Geff~e,q!5@e2H~e,q!#21, I ~e,q!5Geff~e,q!Seff~e,q!,
~C3!

J~e,q!5Seff~e,q!Geff~e,q!Seff~e,q!.

Using the formulaSn
q5Pn

q2Tn
q , wherePn

q is the orthogonal
projector onto the subspaceEq

(n) ~see Sec. III A!, one can
obtain that

Wn
~3!TGn

eff~2!Wn
~3!5Jn

~1!2I n
~1!Sn

eff~1!2Sn
eff~1!I n

~1!

1Sn
eff~1!Gn

eff~1!Sn
eff~1! , ~C4!

Gn
215~11I n

~1!2Sn
eff~1!Gn

eff~1!!@Gn
eff~1!#21~11I n

~1!

2Gn
eff~1!Sn

eff~1!!.

Then in case ofn52, the involutions in Eq.~C2! are ex-
pressed in terms of matrices of order (232), which are de-
fined by matrix components of operators~C3!:

S i 2 j~e!5
1

2p E
2p

p

dqS0~e,q!exp$2 iq~ i 2 j !%,

Gi 2 j
eff ~e!5

1

2p E
2p

p

dq G0~e,q!exp$2 iq~ i 2 j !%,

I i 2 j~e!5
1

2p E
2p

p

dq S0~e,q!G0~e,q!exp$2 iq~ i 2 j !%,

Ji 2 j~e!5
1

2p E
2p

p

dqS0
2~e,q!G0~e,q!exp$2 iq~ i 2 j !%,

wherei , j 561/2. In case ofn51, the matrices of order (3
33) in the expressions~C2! are formed from the magnitude
S̃ i j (e,q), G̃i j (e,q), Ĩ i j (e,q), J̃i j (e,q) ( i , j 50,61), which
are the matrix components of the operators~C3! in the or-
thogonal basis~see Appendix B!.
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APPENDIX D: ANALYTICAL PROPERTIES
OF THE RESOLVENT AND ITS APPROXIMATIONS

The resolvent of the self-conjugate operatorH has the
properties31

G1~e!5G~e* !, G~e1!2G~e2!5~e22e1!G~e1!G~e2!.
~D1!

As follows from Eq. ~D1!, the anti-Hermitian part of the
resolvent has a fixed sign~the Herglotz property!. In contrast
to G(e), G0(e) does not satisfy the second relation in E
~D1!. Nevertheless, due to the conditionP0G(e)G1(e)P0
>0, G0(e) is of Herglotz type.

Any approximation of the resolventG0(e) such that

G0
1~e!5G0~e* !, ~D2!

G0~e1!2G0~e2!5~e22e1!G0~e1!F~e1 ,e2!G0~e2!,

where F(e1 ,e2) is an operator analytical function of tw
variables andF(e,e* )>0, has the anti-Hermitian part o
fixed sign, i.e.,

G0~e!2G0
1~e!5~e* 2e!G0~e!F~e,e* !G0

1~e!.

The nonconsistent approximations forS0(e,q), obtained by
breaking the continued fraction on themth ‘‘level’’ satisfy
the condition~D2! and have correct analytical properties.

We prove that the self-consistent scheme~3.15!, ~3.17! in
the case of one-dimensional chain and the scheme~3.15!,
~3.22! for the general case provide the equation forS0(e,q)
satisfying the condition~D2!. Denote

G* ~e,q!5@e2PqHvc~q!Pq12TqU~q!Tq1

2SqSeff~e,q!Sq1#21,

where the projectorsTq, Sq, and Pq have been defined in
Sec. III A and Sec. III B,Seff(e,q) has the form~3.16!. Then,
using Eqs.~3.7! and ~3.19!, we write
v

llis

v,

B

J.
.

G0~e,q!2G0~e* ,q!

5~e* 2e!G0~e,q!S 11
DS0~q!

e* 2e DG0
1~e,q!,

~D3!

DS0~q!5D0~q!G* ~e,q!~e* 2e

1SqDSeff~q!Sq1!G
*
1~e,q!D0

1~q!,

where DS0(q)5S0(e,q)2S0(e* ,q), DSeff(q)5Seff(e,q)
2Seff(e* ,q). Consider further an abstract vector spaceQ,
where we choose the complete orthonormalized ba
$uf( l,s)&%. Here s#sn

max, sÞs0 , and the indexl goes
over all sites of the lattice. Denote byuf(q,s)& the Fourier
transforms ofuf( l,s)&. Then

SqDSeff~q!Sq15(
p

SqKqDS0~p!ĝ21~p,q!Kq1Sq1,

~D4!

where

Kq5 (
l,s#sn

max
u l,s,q&^f~ l,s!u,

and ĝ21(p,q) is the inverse operator to

ĝ~p,q!5 (
s,s8#sn

max
uf~p,s&)gss8~p2q!^f~p,s8!u,

here gss8(p2q) is the Fourier transform of the matrix o
scalar products~A6!. Since the matrix of scalar products
positively definite, the operatorĝ21(p,q) is positively defi-
nite, too. From the structure of Eqs.~D3! and~D4! it follows
that any iteration of Eq.~D3! is of the Herglotz-type if the
initial condition is Herglotz. If the iteration process is co
vergent, then in the limit we get the resolvent with requir
analytical properties.
atter
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