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Application of augmented-space formalism to a problem of configuration averaging in the
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We present a method for calculating the electronic spectrum of a binary unordered alloy with short-range
order (SRO. The method is based on a generalization of the augmented-space formalism in the case of
correlated spatial disorder. A number of schemes for self-consistent calculation of the self-energy of the
configurationally averaged Green'’s function are proposed. This approach guarantees a positive density of states
(Herglotz propertyfor all values of the Cowley SRO parameterA merit of the method proposed is a correct
limiting transition to the Green'’s function of the ordered alloy when the Cowley SRO parameter tends to the
critical value. The approach is in agreement with the known approximations in the case @f As an
illustration, a numerical analysis of self-consistent equations has been carried out for the case of one-
dimensional Markov chain of atoms and for the case of the infinite-dimensional space.
[S0163-18299)03033-1

[. INTRODUCTION proximate procedure of solving the self-consistent equations.
As shown in Ref. 3, in such an approach, however, the
In the present work, we study the problem of configura-Green’s function may have branch points off the real axis on
tion averaging in the presence of spatial correlations thathe complex plane, which does not agree with the required
arises in calculating the macroscopic properties of unorderednalytical properties and causes the sum-rule violation.
systems. This problem is urgent because in real systems the The method of the cluster embedded into an effective me-
formation of physical properties is substantially influenceddium proposed in Refs. 4 and 5 is convenient for practical
by the short-range orderingRO effects. Among them one applications but is not a self-consistent approach. In realistic
can mention the effect of the atomic ordering correlations orcalculations the approximation for the effective medium is
the quasiparticle spectrum in alloys, the influence of thechosen in the simplest form and does not go beyond the
charge- and spin-density correlations on the magnetic statesngle-site CPA framework® For example, in calculations
of transition metals with itinerant electrons, the effect ofof the partial density of state$DOS such an approach is
SRO on the kinetic coefficients in disordered systems, and soot fully consistent, as the accuracy of the effective medium
on. approximation does not agree with the accuracy of the PDOS
We should note that there is no universal principle forcalculation in the embedded cluster. As it follows from the
describing disordered systems, as fruitful as the Bloch theocanalysis performed in Ref. 7, in spite of the density of states
rem is for ideal crystals. When calculating approximately thepeaks being situated at the expected positions on the energy
Green’s function one encounters standard difficulties conaxis, their width and shape are incorrect.
nected with violation of the analytical properties of the av- The traveling cluster approximatioff CA) proposed in
eraged resolvent of the Hamiltonian that ensure a positivRkef. 8 attempts to go beyond the single-site framework. The
density of states. The coherent potential approximationTCA holds the analytical properties of the averaged Green’s
(CPA) first proposed by Soven is free of this shortcoming.function and takes into account the multiple-scattering ef-
However, the CPA is not able to take into account the effectgects without allowance for SRO. The numerical calculations
of local ordering because of the single-site character of th@erformed in Refs. 7 and 9 have shown that the TCA repro-
averaging procedure performed within the framework of thisduces much more accurately the fine structure of the impu-
method. A lot of attempts have been made to extend the CPAty subband in the one-dimensional case than the ECM does.
in order to consistently allow for the multiple scattering and Besides the above methods, the augmented-space formal-
SRO effects. We may refer to the molecular coherent poterism (ASF) has been developed by Mooker{&&? for the
tial approximatioR® (MCPA) and the embedded cluster problem of configuration averaging. It has received further
method (ECM). development in Refs. 9 and 13 without, however, spatial cor-
In the MCPA the matrices oh X n size are introduced relations between the random variables. Based on the ASF,
instead of the CPA single-site coherent potential amda-  the authors of Refs. 9 and 13 proposed a generalization of
trix, which results in a matrix equation. In this framework the CPA that consistently takes into account multiple scatter-
one has to finch? parameters self-consistently. The attemptsing within the limits of the “maximum” cluster and some
to reduce the number of self-consistent parameters and tpproximations for the averaged resolvent that are controlled
make the self-energy translationally invariant lead to an apby a small parameter and have correct analytical properties.
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Note, that the combination of the ASF with the “first- of the resolvent in the form of an infinity operator fraction.

principles” methods for calculating the band structure allowsNext, the results obtained are extended to the case of the

the use of the ASF for realistic systedfs? arbitrary correlation functions and space dimension. Also, it
For the problems with correlated disorder, the ASF hass shown that the theory yields a correct limiting transition to

been used without any serious changes in Ref. 16. The atwhe Green’s function of an ordered alloy if the Cowley SRO

thors expanded the averaged Green’s function of a disoparameter tends to its critical values. Section IV is devoted to

dered alloy with SRO in terms of the averaged Green'’s funcparticular approximation schemes being the analogs of the

tion without SRO. Although the full expansion of the CPA and TCA. We also present the results of a numerical

averaged Green'’s function is of the Herglotz-type, the trunstudy of the self-consistent equations. In Sec. V we summa-

cation of the expansion results in a negative density of statesze our results and say some words about possible applica-

for some energies the range of which increases with increasions of the proposed theory. The analytical details of calcu-

ing the SRO parameter. A generalization of the ASF in thdations are presented in Appendices A, B, and C. Finally, in

case of correlated disorder was proposed in Refs. 17 and 18ppendix D, we prove that our approach does not violate

However, the operators of the random variables constructednalytical properties of the exactly averaged resolvent.

in these works do not have the translation invariance of the

corresponding crystal lattice and take into account the corret|. AUGMENTED-SPACE FORMALISM FOR AN ALLOY

lation effects only within the limits of one cluster. In our WITH SHORT-RANGE ORDER

work, we propose a generalization of the ASF that is free of 1. ) _

the above mentioned drawbacks and a scheme of self- In the ASF approact:**instead of direct averaging of

consistent calculation of the averaged Green’s function folfhe Green’s function, one constructs a new Hamiltonian

lowing the ideas of papers in Refs. 9 and 13. without disordered parameters defined on an augmented
We shall study the tight-binding model of a binary alloy SPace. This new space can be represented as the direct prod-
with diagonal disorder. The Hamiltonian has the form uct of the original Hilbert space by an auxiliary space that

contains all possible configurations of the disordered system.
o _ ) For each random variable the self-conjugate operator deter-
H({en})=2 |'>€i<'|+2 Vil (1.1 mined on this auxiliary space is put into accordance. As it
' ! was shown by Mookerje¥ the physical background of this
whereli) is the Wannier state at a sitethe set{|i)} is the  approach is the representation of these operators in terms of
complete orthogonal basis in a spakeThe configuration of the creation and annihilation operators of pseudofermions.
the alloy is described by the set of random varialles, =~ From this point of view, the problem of an electron moving
wheree; assumes the value, or eg depending on whether in the random potential is equivalent to the problem of an
the sitei is occupied by an atom & or B type, respectively. electron interacting with the nonrandom fermion field, and
The variables; are not independent for the alloy with SRO, the auxiliary space describing the configurations of an unor-
i.e., ¢ and ¢ correlate at different sites of the lattice. dered alloy corresponds to the Fock space of pseudofermion
In a disordered system, it is the configurationally aver-states. From the same point of view, the motion of an elec-
aged properties that are of physical interest. For the Hamiltron in the Gaussian random field may be represented as an
tonian(1.1), the configurationally averaged Green’s functioninteraction of an electron with a bosonlike field.
is given by the relation
A. Correlation functions of Markov type

Eij(e):f f f <i|[e—H({en})]’llj)P({en})H de,, T(_) construct the ASF with allowance_ for the s_patial cor-
n relations one should know the correlation functions of the

1.2 products of random variables. Let us consider a one-
where P({,}) is the joint probability density function for dimensionalA-B chain whose configuration is determined

random variables and by a first-order Markov process.Let P(§i|sj) be the prob-
ability of finding an atom of types; at sitei provided that
P_(e)=x8(e—ep)+yd(e—ep) there is an atom of typs; at sitej, andP(s;) be the prob-
' ability of finding an atoms; at sitei that is equal to its
concentration. Then the probability of the formation of a
:J J J P({En})!;[i dep (13 cluster with a given configuration is expressed as the product

of pair conditional probabilities:

is the probability density of the random variabde at the
fixed site. Herex andy are the concentrations of atoms of Pn(Si,:Si,---8)=P(s)P(s,,|s)P(sy,[s1,) - P(si |5, ),
type A and B, respectively. The transfer matri_; in the 2.1
Hamiltonian(1.1) is supposed to be nonrandom. . )

In Sec. Il, we present a generalization of the ASF and the\f/i\/h:ée;;<|2< <In. The Cowley SRO parameter is de
construction of a basis in the augmented space in the case o?
a one-dimensional chain of atoms whose configurations are pAB
determined by a first-order Markov procéSdn Sec. Ill, a a=1-——, (2.2
general scheme for self-consistent approximations of the re- y
solvent averaged over configurations for such a chain is provhereP”E is the probability of the formation of aA-B pair
posed. These approximations are based on the representatiamnthe neighboring sites. We shall suppose thas an im-
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purity atom, i.e.x<y. In the case of maximal repelling be-
tween atoms of different type®”E=0. In the opposite case
of maximal attractionP”B=x. Hence, G=P"B<x, —xl/y
<a<1. In the case of the absence of SRR\B=xy, «
=0. The interval B<a<1 corresponds to the repelling be-
tween the atom#& andB, the interval—x/y<a<0 corre-
sponds to their attraction. Using Eq2.1) and(2.2), one can
obtain the probability of ak-B pair forming at a distance:
pAB=

xy(1—a"). 2.3

Hence, Eq(2.1) is expressed in terms of and . Let

?:XGA"'YGB (24)
be the averaged value of the energy at a site and
g=e—€ =0 2.9
be the energy shift at site Denote
Aé=(y—x)(ea—eg), A=\Xy(ea—ep). (2.6

Since & assumes only two values,=e,— € and ég=€p
—¢, therefore €—£,)(&— &) =0, and

E=(AE)&+A2 (2.7)

We define the functions called “connected” correlation
functions:

<§|1§|2,...,§|n>cz AZ(Ag)rFZalnfll’

(&)c=0, hereafterl,<l,<---<I,, and according to Eg.
(2.7 we do not consider the higher powers&f Then using
Egs.(2.1) and(2.3), one can show that any correlation func-

n=2, (2.9
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B. Construction of a basis in the augmented space in the case
of a one-dimensional chain

Following the ASF%113\we associate a real random

valueé; (2.5 with a self-conjugate operatérdetermined on
an auxiliary space, such that the range of the random value
coincides with the spectrum of the corresponding operator.
In the case of a binary alloy; has a probability distribution
given by Eq.(1.3), and® is a 2V-dimensional vector space,
where N is the number of the lattice sites. The complete
orthonormalized basi§/s)} can be defined in the spade
wheres=(s;,S,,...,Sy) ands;=A or B. Here the vectofs)

is associated with one of thé'2possible configurationss;
=A if the sitei is occupied by an atom of typ&, ands;
=B otherwis@. The vectorq|s)} are the eigenvectors for all

&, so that

&ls)=&(spls), (2.10
—€ S=A
&i(si)= i:_i =B

According to this definition, the operatofscommutate with
each other.

Let f(&,&,....&) be a function of random variables,
§j,..-,&c. The operator associated with this function is de-
fined asf=f(&,§,....&), and according to Eq(2.10),
(s|f]s) is the value off for a fixed configuration of atoms on
a chain. Letp(s) be the probability of the realization of
configurations. We define the ground state @ as

|vac>=§ Vp(s)]s). (2.19)

tion on the Markov chain can be represented in terms offhen the value off averaged over all configurations of a
“connected” functions. For example, leading correlation system is

functions are given by the following expressions:
(&,6,)=(&é)c,
(&,6,6,)=(& 6,6)c,
(6,6,6,6,)= (6,666 )t (6,668 )c

(&,6,6,8,60=(6,8,8) (8,80 (&,6,)c(6,8,6)c
+(&, 668,86 )

o (2.9

where(---) means averaging over configurations. Now, we

f=(vac|f|vac).

(2.12

Following the ideas of papers in Refs. 9 and 13, we construct
a basis involving the vectors generatedépyvhen acting on
|vac). It will be shown further that the configuration space
® has a Fock-space structure:

Here E, is a one-dimensional subspace generatediviay)
(2.11). Next we define amN-dimensional subspade, corre-
sponding to single excitations as the span of the vectors

i}=A"1&|vac), (2.14

can formulate a general rule for calculating the correlationVNich, unlike the case of independent random variables, are

function of thenth order. One should separate a chain con.1°t orthogonal to each other. It follows from Eq2.8) and

sisting of n atoms into the chains of smaller length taking (2-9 that the“rp?tr|x of the scalar product of vect@gsl4) is
away some edges in all possible ways. Each separation of%j={ili}=a""". The Fourier transform ofj; is

chain corresponds to a term in the correlation function that is 9

equal to the product of the connected correlation functions of 9(q) = iz gi expliq(i—j)}= 17a

smaller order. Finally, we should add to the expression ob- N4 =Y

tained the connected correlation functié2.8) of the nth
order.

1+ a’—2acosq’

(2.19

ge[—m,7].
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If |a|<1, theng(q)>0 (the matrixg;; is positively defineg 0 L o’ 5 -«
hence the vector.14) are linearly independent and form a 3(3 '=A%3, a< )_A§1+a 3(3 ):A§a3m,
complete basis ifE;. Since&={vac|&|vac}=0, E, is or-
thogonal toE,. and so on. We define the subsp&teas a span of the vec-
Let|i,j} (i<j) be the basis vectors &, that should be tors {|i,i+n}} given by Eq.(2.19. Under the restriction
built up orthogonally tcE, andE, therefore we require —x/ly<a<1, one can prove that the set of vect@sl9 is
o o a completgbut nonorthogonalbasis inE,. In this case, for
{vacli,jt=0, {i"|i.j}=0, (218 the pairs of vector$i, j} (j>i) and|l,m} (m>1) we have

for all i’ andi#j. Let
{i,jilm}=0, js=I,

byli,i+1} =[&11&—ao—ai(&+&1)]lvac. (2.17) ,

Since the vectoti,i+1} has to satisfy the relation®.16), fijllm}= bj— o™l i<l<j=m
and |i} is defined by Eq.(2.14, we multiply {vac| and ’ b;_ib ' ’
{vac|%i from the left by Eq.(2.17) and, using Egs2.8) and (2.20
(2.9, we find
{i,j|lm}= b oM isl<ms|.
— A2 —
ao—A o, A§1+a

In the general case, we shall assume that the sub&pace

The coefficienth, in Eq. (2.17 can be found from the nor- is a span of the vectors

malization condition{i,i+1Ji,i+1}=1:
|0'n(|)>=||1,|2,...,|n}, (221)

whereo, is the configuration of a clusterjs the location of
Since b§>0, from Eq.(2.18 we get the restriction on the its center of gravity|,<I,<---<lI,. By analogy with Eq.
Cowley parameter x/y< a<1(x<y) that has been already (2.19, we write
mentioned. Ifa=1 or «=—x/y, thenb;=0. Bearing in
mind that the correlation function@.8) and (2.9 are the p_ |1, I,,... | }=[% & ---&
powers ofa, we can check that the vect{ri+1}, built up " e

=A4(1—a2)+A2(A§)2]1:—Za. 2.18

In

according to Eq.(2.17), is orthogonal not only tdi} and —LD (E 2 y: ... E)]vac.
li+1}, but to all other vectors|j}eE;. Besides, -ty 1(Ey bz ) llvacy
{i,i+1]j,j+1=0 if i#j. (2.22

For an arbitrary vectofi,i+n} we can write
HereL{" V(¢&;,&,,...,£), n<kis a (n— 1)-th degree poly-
bolii+ny=[&&n— LY 1(&, &1, Een)]|vach. nomial ink variables of the form

(2.19

Here LM, is a first-degree polynomial inn(+ 1) variables | (, e )
with (n+2) arbitrary coefficients. We can find them de- ~k 11520005k
manding the vectai,i+n} to be orthogonal t¢vac} and to
the single excitationgj} such thati<j<i+n. Using Egs.
(2.8) and (2.9) we get}(n+2) equationsb, can be found :an)le Ve > ) cVEg+
using the normalization condition. Next, by direct verifica-
tion, we make sure that the vectdri+n} is constructed in
such a way that is also orthogonal [fd}, wherej’ ¢[i,i +1<i B 12 v 8iy6iy i
+n]. Following that scheme we find that b e

(2.23
bli,i+2}=[&iiso— 8" —as" (& + &40 — a5 Eisallvach,
where The coefficients of the polynomi&R.23 are determined by
5 the condition that the vectdio,(l)) is orthogonal to any
al®=A22, all=Ag a a® = Aga? ,1—a vector defined on the cluster,(I')C{l;.l5,...l,}{m<n),
2 a9 1+a’ 2 “1¥a and by relationg2.7), (2.8), and (2.9). The vector|o,(1))

built up in such a way proves to be orthogonal to any vector
|s) e Eq®E 1@ --®E, ;. The vectorgo,(l)) and|a/(l"))

- N N [ SN EL VS are orthogonal for different clusters,(l) ando/,(I") if they
bsfi,i+3}=[£idi+s—as" — a5 (&i+ Liva) do not overlap. Relation€.20 are a particular case of this
_ 5@ p: rule.

a . + & ac s . . .

3 (Gt Givdllvach In the ASF representation the Hamiltoniéh1) has the

where form®>:

and
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=3 pilok+ 3 Iy +viilel, @24 O Gl o 8') = oo Do

wherel is the unit operator inb. The Hamiltonian(2.24)
acts on the augmented spake @, |i) e ¥, which as before
has a Fock-space structure:

(i,o,0li,07,0") = S4q' Samexpia(i =) K on(D) (1))

Then the Hamiltoniari2.24) has the form
VYed=EQgEWg---pgEMeg. .-, 2.24

whereEW=¥®E,. We denote a basis vector E":

li+l,on(D)y=i+)&|on()). (2.29

Herei is the location of an electron with respect to the center
of gravity of a clustew,(l) (i=0 if n=0). According to Eq.
(2.22,

H:% H(A), H(q)=Hy(a)+UQ),

Hye(@)=10,00,0)(e+V(0))(0,00,9|

+ >

ij,on,n=

) li,on, @) (€8 +Vi{x(j,0q.,9)

IM&(E)CEy 18 Eq@En, 1, ’
where Im&(E,,) is the image ofE,, under the mapping; . @3
Therefore, the Hamiltonia(2.24) has a three-diagonal block
form in the basig2.25: 1 S
V(@)= 2 Vi expliali=i)},

Hnm:Hn5nm+An5n+1,m+A:5n—l,mv (2.26

whereH,,,= P HPm, Ay=P,HP, 1, andP,(n=0) is the

i (n) . .
orthogonal projector ont&'". Uq)= 2 |""n'q>eXp{'qd}§E¢i)(i)g;n(i+d)

. !
id, o T

IIl. CONFIGURATION AVERAGING OF

THE RESOLVENT

A. Representation of the resolvent as a continued fraction in
the case of Markov-type correlations

X(x(i+d,o0,,0)],

(0)

wheregun(i)or,n(iw)=<X[an(i)]|%0|or’n(i+d)>, d is the vector

In the ASF framework the problem of finding the Green’s connecting the centers of gravity of clustess,(i) and

function (1.2 reduces to calculating the projectid@dy(€)

o (i+d), H,(q) is the Hamiltonian of the “virtual” crys-

=Py[1/(e—H)] Py of the resolvent of the Hamiltonian tal, 2(q) is the representation of the random potential.
(2.24 onto a subspac&®. According to Eq.(2.12, we Let us introduce the orthogonal projectors onto the spaces

have

Go(€)=2 |Loo(1))Gm(e)(m,ao(m)].  (3.)

(n) .
Eq’:

PI=> li,00,a){x(i,0,0)|. 3.4

o

For further calculations it is convenient to define a basis

{Ix[on(DD} in @ that is dual to{|o,(1))} (2.2, (2.22),
such that

<X[Un(|)]|‘7r’n(|’)>: Oa! OnmOl’ -

Then in the augmented spadex ® a basis|i+|, x[ on(1)])
=li+l)®|x[on(1)]) dual to the basi$2.25 is generated:

(i+LxLonD 1+, 00(1") = 8,57 Gambir’ 6 -

We next introduce the Fourier transform:

I —iZ i+, 0m0(1 —igl —
I’U”’q>_\/ﬁ| I 10'n( ))exp{ 'q}- QE[ T, ]

|X(Iian'q)> /N T |I f 1X[Cn( )])eX] 10 }'
(3.2)

Using Eq.(3.4), we can rewrite Eq(3.1) in the form'

1
Coled™ g —Soe 9
where
Ho(a)=PgH(a)Pg, Q§=1—Pg,
S o(e,0)= PIH(Q) Q== QH(Q) P
SO R e Q) T a6

Proceeding the projection, we writg(€,q) in the form of a
continued fractioft:
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L Ag(9)

E_Hl_Al(q)E_Hz(q)_

where H,(q) =PiH(q) PR, Aq(q)=Piu(a)Py, 1, and the
projectorsPy are defined by Eq(3.4).

Af(q) (3.7

1
An*l(q)e—’Hn(q)—En(f,Q) A:Ll(CI),

basis vectoq‘zﬁgn(i) ,q) can be obtained by orthogonalization
of the vector|a,(i),q) to all n-fold excitations belonging to

Itis impossible to calculate analytically the formally exact | nl

expression (3.7) because it is determined by infinite-

Let us now consider the matrix components of the random

dimensional matrices. In contrast t?. the Ppaper in Ref. 13potential 24(q). Let Un(q) =P3U(q)PY. According to Eq.
problems arise already on the first “level” of the fraction. (2 2g, the Hamiltonian(3.3 has a three-diagonal block

Therefore, it is convenient to choose a special orthogon

basis in each spac&(”. Next we write |o(i),q)
=|ly,l5,...l,,q) instead ofi,o,,,q), where, as before in Eq.
(2.2D, ou(i)={l1,l5,...,l,} denotes a cluster af,,, andi is

rm, hence,

u<q>=n§1un<q>+r§0[An<q>+A:<q>]. (3.9

its center of gravity. Let us construct an orthogonal basis for

n=1:
|th0,a)=10,0),

|, a)=(1— o)~ Y4|m,q) — |m—1,0) a exfiq}),
(3.9

|-,y =(1—a?) " Y4|-m,q)—|-m+1,g)«

xXexp{—iq}), m>0.

In the subspacEgz) the orthogonal basis can be defined

as
|¢m,m+lvq>:|mvm+11q>'

|¢m,m+2 ,q>: (1- Zﬂz)_llz(lm,m+2,q>
—|m,m+1,0)u exp{iq/2}
—Im+1,m+2,q)u exp{—iq/2}),

| Ymme3.0)=(1=N?— %)~ Y4 |m,m+3,0)
—|m,m+2,g)\ expliq/2}
—|m+1,m+3,9)\ exp{ —iq/2}
+ 7lm+1,m+2,q)),

Here u=ab,/b,, N\=ab,/bs, n=ab,/bs, the coeffi-
cientsb,, b,, bs are defined by Eq€2.18 and(2.19. Us-
ing the scalar product$2.20, an arbitrary basis vector
|mm+k.0) can be obtained by orthogonalizihig,m+k,q)

The matrix components of the operai@®.9) can be calcu-
lated using the relation

(G, on, Al @i o, )= (o) &l o)) expliati—j)};
then

<0’001q|A0(Q)|¢m’q>:5m,OA- (3.10

The random potentidl;(q) is diagonal in the basi€3.8) of
the subspac&(:

(o, alt(a)| tho,qy=AE,
Im|

(malth (o) v, 9y = 5mkA§m,

(3.11

m=+0.

In the case of uncorrelated disorde#=0), the nonzero
matrix components oA ,(q) are written as*

(m 9l A1) hom,a)=A exp{—igm/2}, m#0

(3.12

In the case ofx+# 0, the constanA in Eq. (3.12 is replaced
by another constant. For example,

(1,0a|A1(D)] o1,y =A" 11— a?) b, exp{—iq/2},
(3.13

<¢—1:Q|A1(Q)|¢0,—1aQ>:A71(1_az)71/2b1 expliq/2},

where b;>0 is defined by Eq(2.18. Since the vectors

| ym.m-+k,0) are builtup by means of orthogonalization of the
vectors of type(2.19, for a#0, the matrix components
(i, dlA (D] i, A) (¥, 9l A2(A)|[¢f-m, —,Q), where O
<m<Kk, are also nonzero and tend to zero @s>0. The
other matrix components af,(q) are equal to zero.

to each of the double excitation vectors from the segment In the subspacEgz), the random potentidl,(q) is diag-

[m,m+K].
A similar statement is also valid for the subsp

&P(n

>2). We shall denote the vectors of the orthonormal basis in

E{Y by [y, 0), whereon(i)={l,l2,....In}. An arbitrary

onal for the clusters of unit length:

A¢
<¢m,m+1 ,Q|U2(Q)| Dk 1 ,q>: 5mkm o™ (3.14
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Ag Sn(e)=ThEn(e, )T +SI2(e,q) S,
(Y—m,—m-1,9lU( D]y —k-1,9) = 5mkma| ’ (3.17

where
m=0.

. - . . St=PI-T3
It is not difficult to see that in the general case the matrix
components is a projector onto the orthogonal complemenLﬁﬁS') in the

subspac&™ . We also define a projector
(Pnnsm AU P 11,9y #0 d

n
and decrease as po_wersa)iike Eqg. (3.14. . Si— 2 S
We can analyze in the same way the matrix components m=p M
of operators\,(q) (n=2) andi/,(q)(n>2). For example, in o _
the absence of SRO, on the mth “level” of the continued The substltutlor(3..17) means that we exactly take into ac-
fraction the random potential has the fdfin count the scattering on all clustees,C oy@{m=n). The
contribution of other configurations is taken into account by
) . means of effective medium. As a result, at every “level” of
Um(Q)ZiE li,om WA om0l (@=0). the continued fraction the summation is going over a finite
©7m set of clusters. Although the matrices in the continued frac-
In the case ofa#0 the matrix components of the kind tion are infinite with respect t@ j, their inversion may be
<¢,Um(|) ’qwm(q”‘/’%(") ,q) decrease as powers af with performed analytically. In the particular case ®&0, we

increasing distance between the $itand the cluster centers come to the approximation suggesteq in the Ref..9..
of gravity | and!'. When the parameter is not small, it is more efficient to

For particular calculations, one has to use an approximar—e.StriCt the random potential with consideration for the mag-
tion scheme. Let us select a clustef with n sites, the n'tUd,fa of @ instead Of. substltuthrﬁ&la. Ngmely, on the
scattering on which will be exactly taken into account. Wemth Iev_e I” of theqcontlnued fre_lc_t|on we define the orthogo-
shall call it the “maximum” clustere™. Define in EX nal projectors R, onto a finite subspace of vectors
@Eéz)ea--@Eg‘) a subspaceLq=Lél)@Léz)ea---@Lg” , {va(') ,q)}  such that the matrix components
where L{™ is a span of the vector§i,o,,q) such that (Vo) AU 57 11y ,0) have the order ofx not greater
iUonCon®m=n). It follows from Eq. (2.22 that(q)  thanp (p>0 is an integex In this case we should make the
mapsL, onto L@ E. Let T be an orthogonal projector following substitution:

onto the subspacke{” and

n n
" U= X RIUDRE+ X [TIAR(D T
Tq: 2 Tq m=1 m=1
m
" FT8AL@TI+ Ao(@)+Ag (0).
be an orthogonal projector onto,. In terms of these, the

nonconsistent approximation consists in the following substi-

. B. The ASF and the averaging of the resolvent
tution:

in the cases of arbitrary correlations and space dimension

u(q):,»TqZ,{(q)T‘“+A0(q)+A5(q), (3.195 Let us consider how to extend the above theory to the
cases of arbitrary correlations and space dimension. In the
i.e., the action oft/(q) is restricted to the subspade, general case, the Cowley paramedeis not unique. For an
@Ego). After substitution(3.15, the operatorsd,(q) and  unordered binary alloy we have a set of parametgyshat
Un(g)(m=n) have nonzero matrix components for a finite characterize the pair-correlation function. For the nth coordi-
number of clusters, therefore the inversion of matrices imation shella, is defined by an expression similar to Eq.

Eq(3.7) can be performed analytically. (2.2:
Following the paper in Ref. 13, to construct self-
consistent approximations we define the operators PﬁB
anzl_ Xy )
ff _ . .
%° (E’q)_i,j,(rrlz,nzl [, @) 2i-j(e){x(.on.a)l, herePA® is the probability of the formation of aAB pair at

(3.1  adistance equal to the radius of the nth coordination shell.
Other correlation functions are determined by their own sets
He(e,q)=H,(q) +2(e,q), of parameters. Although these correlation functions remain
unknown for real systems, a few parameters may be ex-
where2;_j(e) is the Fourier transform afo(e€,q). Accord-  tracted from the experiment. To formulate the theory, it is
ing to Eq.(3.19, we replace the random potential in Eqg. not necessary to know all the correlation functions. For ex-
(3.3 by a potential the action of which is restricted ltg ~ ample, to obtain an approximation like the TCA, which will
@Ego). Further, on each “level” of the continued fraction be discussed in details in Sec. IV A, in calculating the matrix
we make the substitution: components on the second “level” of the continued fraction



PRB 60 APPLICATION OF AUGMENTED-SPACE FORMALISM O . .. 7185

one has to know only the correlation functions up to the fifth, Consider some possible approximations ¥gj(e,q). Let
inclusive. Therefore, we should either know the required corus make in the Hamiltonia(8.3) the substitution(3.15 and
relation functions or suggest a kind of model correlation thaput %, (e,q) =0 in Eqg.(3.19. Then we get a nonconsistent
would approximate those of the real system. approximation. For a self-consistent approximation, besides

In the general case, we shall not separate the spdoe  the restriction of the random potential io,® EQ® one
subspace&,, which are orthogonal to each other, becauseshould make the substitution in E@.19 satisfying the rule
their construction according to formul&®.22 and(2.23 is (3.21:
valid only in the case of Markov-type correlations. Let, as
before, the basis vectofvac) (2.11) generate a one- 3, (e,)=S13%(e,q) S, (3.22
dimensional subspacE,. Define the vectorgo,(l)), m where
>0, which are orthogonal tbvac), as follows

Si=pPI—T9,

lvac)+a, |vac), (3.18  andx®f(eq) is defined by Eq(3.16. For the case of Mar-
kov correlations, the scheme proposed is the same as the
where the coefficiena, is determined from the condition @PProximation discussed above, and it transforms into the
=0 d thm nstart. is determined from approximation suggested in Ref. 9 if there is no SRO. Since
(vaclom( )>_ ’ an (_3_ constart,, 1S dete € _o the subspack contains a finite set of clusters, the inversion
the normalization condition of the vectgoy(l)). Adding  of the matrices in Eq(3.19 may be performed analytically.
the electron functions to E¢3.18 as in Eq.(2.29, we geta  The details of such calculations are presented in Appendix
set of vectorgi+l,ay(l)) that form a complete basis W A the case of the one-dimensional chain is discussed in Sec.
®®. The HamiltonianH acting on the augmented space |v A and in Appendices B and C.
Ve, in the site representation has as before the form The ASF was generalized to the case of off-diagonal dis-
(2.24). Using Eq.(3.2 and making the Fourier transform, we order in Ref. 9. A similar generalization is also possible in
rewrite the Hamiltoniar#(q) in the form(3.3). LetE{Y be  case of SRO within the framework of the above proposed
a one-dimensional subspace generated by the vect@theme. For an example, in the case of a one-dimensional
|0,00,0), andE, be a span of vectori,o,q)} such that  chain with Markov-type correlations we will have the five-
onC ol (m>0), i.e.,Eq is a space of clusters the scatter- diagonal Hamiltonian determined on the augmented space.
ing on which is exactly taken into account. LBff be an  The expressiori3.7) for the self-energy in the form of con-
orthogonal projector onto the Subspa—g?), PY be an or- tinued fraction is valid only for the case of diagonal disorder.
thogonal projector ont&,, Q3=1—PJ, Q9=1—PJ—Pd. However, the general approximation sche(Bel5), (3.19,

cgmlamu»:(_ IT &
(H

|E(Tm

Introduce also the operators, and(3.22) does not imply such restriction.
Ag(q)= PSZ/{(q)Qg, A, (9)=P%(q)Q", C. Limiting cases of the ordered alloy
The representation of the resolvent proposed above has
H, (q)=PYH(q)PA. the advantage of providing correct limiting transition to the
_ _ Green’s function of the ordered alloy if the SRO parameter
The averaged Green’s functiocBo(e,q) of the Hamil-  tends to its critical values. Consider, for example, a two-

tonian (1.1) is defined by the expressiof8.5). Since the dimensional square lattice and define a two-site correlation
subspaces corresponding to clusters with different numbemginction as follows
of sites are not orthogonal to each other, the representation of

the self-energy in the form of a continued fraction is not Or.r.=(& & )=A2alr1 2l (3.23
convenient. Therefore, we write the exact expression for vz e .
Yo(€,q) as follows: where||r,—r,||=|X1— X5+ |y1— V2|, |a|<1 is the the Cow-

ley parameter. Then, for=1, the alloy separates into two
1 N subsystems containing the atoms/for B type only. For
So(€,0)=A0(q) e H.(Q) -3, (e q)Ao (Q), x=0.5, a=—1, the atomsA alternate with the atomB in
* A (3.19  staggered order. In these cases the exact Green's functions
are known and we can compare them with our expressions.
where In the case ofa= *1, for the Fourier transform of the
matrix g, (3.23 we get the formulas:

(@. (3.20

1
2*(6,Q)=A*(Q)WA:

g(q>=<2w>229 sq+g), a=1,  (3.29
Let T9 be an orthogonal projector onto a subsphgeof
vectors|i,o,,q), such thaiU o,C o) ¥(m>0). According

to Egs.(3.18 and(3.3), the operatot/(q) maps the subspace Q(Q)Z(ZW)Z%: o(q+Q+g), a=-1,
Lq onto L@ E(Y. Sincel/(q) is Hermitian, it follows from
Eq. (3.20 that here the summation goes over all vectgrsf the reciprocal

lattice, Q= (,r) (the lattice constard=1). We denote by
T3, (6,9)=2, (€,9)T9=0. (3.2)  |(nk),q)=li,q) a basis in the Fourier representation of the
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subspace corresponding to single-site excitations. We can or- 1+a . '
thogonalize this basis using E®.23); (0,0|Vgld(ni ,q}amV(q+Q)exp{|(ql+ m)N+i(q,
|$00 ) =[0.0), +mkp—0, (a——1).

| bk @)= (1= a®) " H(|(nk),a) — @expfidz}|(n,k=1),0)  Therefore the matrix, (q) is factorized in the limiting
— aexpligy|(n—1Kk),q)+ a? expliq, cases, and for the averaged Green’s function we have the

expression
+igat(n—1k-1),q)),
1
n>0,k>0, (q4;,9,)=0. (3.2 Go(e€,0)= e V(Q)—So(c0)’ (3.27)
For othem andk, we have the similar formulas. Far=0 or
k=0, the orthogonal basis is defined according to B). A2
Associate the transfer matrix;_; with an operatorV, 2o(e,q)= — ,
acting on the augmented space as defined by (Bd.6. e—e—Vo(q)—A¢

Since the vectors corresponding to multiple excitations can . _
be orthogonalized to the vectoig ), in the case olx ~ Where the constants, A¢, ande are defined by Eqs2.6)
=+1 itis sufficient to examine only the matrix componentsand(2.4).

of the kind (0,q|Vy| ¢k ,a). Using Egs.(A5) (3.24 and In the case ofa=1, the expression for the averaged re-
(3.25, we obtain solvent has the form
Vool @) =(0,0|V([0,0)=V(q), a=1, X y

~ Gol€.q)= e—epr—V(q) * e—eg—V(Q)’
Voo(@)=(0,q|V4[0,0)=V(q+Q), a=-1, (3.2

and coincides with the exact Green’s function of the alloy

l-a . . separated into two subsystems with weigktandy.
(0,a|Vql d(niy ) — 1+aV(q)exp[|q1n+|q2k}—>0, In the case ofw=—1, using Eq.(3.26 for the diagonal
matrix component of the averaged resolvent we obtain the
(a—1), expression

& 1 fd e—e—V(q+Q)
00(6)_(277)2 = en(e—en)—(e— V(@) +V(Q+Q)]+ V(QV(q+Q)

which coincides, forx=0.5, with the exact expression for ) ] ]
the Green’s function of the ideal crystal with a staggered <|,Q|Aq|J,Q>:§k: (i,alk,a)Ax_;
arrangement of th& andB atoms.

1 T
IV. ANALYSIS OF THE SELF-CONSISTENT EQUATIONS =— f dp g(p—q)A(p)eXp{lp(J —i)},
FOR THE SELF-ENERGY 27 &

A. TCA-like approximation (4.1

As an example of the suggested approximation schem@here integration is over the first Brillouin zorithe lattice
(3.19, (3.17) for the self-energy, consider a one-dimensionalconstanta= 1), A(p) is the Fourier transform of the matrix
Markov chain, pun=2, and choose a pair of nearest neigh—Ai_J. , andg(q) is determined by Eq2.15. Carrying out the
bors as the maximum cluster;®=0,. On the second substitution of Eqs(3.15 and (3.17 into Eq. (3.7) and in
“level” of the continued fraction the vectorfi,o,,q) are  view of Eq.(3.10, we get
orthogonal to each other. As noted above in Sec. Il B, on the
first “level” of the continued fraction the basigi,o,q)} is So(e€,q)
not orthogonal, therefore it is convenient to perform all sub-
sequent calculations using the orthonormalized basis
{|#m,q)} defined by expressioné3.8). Denote byﬂij(q) =A2< glzo,q‘G‘j“(e,q)
=(4:,9|Aql#; ,0) the matrix components of a translation-
invariant operator of the kin(B.16). It is shown in Appendix
B that using the formulag3.8) of transformation of the basis,

the matrix componentd;;(q) can be expressed via the con- Wi(e,q) = ¢, qyW (e (.l
volution: , c ) ij L€ al,

1
1-W;(e,9)G(€,q) ¢O,q> ,
4.2)
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GMe,q)=[e—HM(e,q)] L. Here 0={—1,0,1}, wg=A¢, o1=w_1=aA&/(1+a); in
the case of¢ o, j € 0, Wi‘JTl(e,q) is defined in the same way

The nonzero matrix componemzl(e,q) have the form:
as in Eq.(4.3) with rearrangement of indicesand j. The

Wiit(e,q)= 8w+ 27(e,0) = 2i(e,q), i,jea, matrix component& *(e,q) in the first expression of Eq.
_ 4.3 (4.3 are nonzero foi,j#0. Using Eq.(3.13, they can be
Wi‘}l(e,q): —2jj(e,q), ieo, jeo. determined by an expression similar to E4.2):

j/2,0'2,q>,

1
a1 2 . L . eff
2ij (elq)_b qu'q(J I)/2}<|/21021q‘62 (Elq) 1—W2(E,Q)Ggﬁ(€,Q)

b

2 __
b A (1-a?)’

(4.9

Wo(e.) =2 Loz OWEe ) oz.al.  G5leq)=[e-H5 (€] ™

Hereo,={-1/2,1/3, V\/i‘TZ(e,q)=O, if i,j & 0p, otherwise Hamiltonian (1.1) has been carried out. The histograms in
! Figs. 2 and 3 correspond to a fixed lattice containin§ 10

Ag atoms. In the one-dimensional case, such an analysis is
Wgz(e,q):\,ogij_gifj(e), Vo= ] simple and reduces to calculating the number of zeroes of
J 1ta eigenfunctions of the Hamiltonia.

The central peak in Fig. 1 close to=e€, corresponds

With appropriate rearrangement of rows and columns ofnainly to the states localized on th%-B pairs, and two
the matrices in Eqsi4.2) and (4.4), their inversion can be satellite peaks correspond primarily to the bonding and anti-
performed analyticall(see Appendix € As a result, we bonding states localized on the A pairs. Their contribution
obtain a self-consistent nonlinear integral equation thato the total density of states is proportional 5 =x(x
should be solved numerically. In the absence of SRO ( +ay), whereP*” is the probability of the formation of an
=0), the approximation suggested coincides with thea-A pair at the nearest-neighbor sites. The weight of the
TCA.®® central subband is-PAB=xy(1—«). The curves in Fig. 1

The approximation considered correctly takes into acdemonstrate the correct behavior under changes of the Cow-
count the scattering on all pairs of nearest neighbors, thgsy parameter. The case of>0 (thin solid curve corre-
scattering on the other clusters is taken into account b¥ponds to the situation of effective attraction between the
means of the effective medium. As shown in Ref. 13, in theatoms of the same type. The weight of the satellite subbands
case ofa=0 it is a successive approximation in terms of increases as compared to the case of the absence of SRO
(a/Ro) and exg—allo}, wherea is the lattice constanR, is  bpecause of the increase in the numberfefA pairs. The
the effective damping length of the transfer integval;,  weight of the central subband, on the contrary, decreases. For
andl is of the order of the mean free path of an electron.,<0 (dashed ling we have the opposite situation of effec-

From the analysis in Sec. lll A, it follows that in the pres- tive repulsion between the atoms of the same type.
ence of SRQu is an additional small parameter.

We have carried out a numerical analysis of the self- 1
consistent Eq94.2), (4.3) and(4.4) for the following values -
of the model parameters of the Hamiltonidh.l): ep 08 |
=—€g=2.5;V;_; =1.0, ifi, ] are the nearest neighbors, and %
Vi_j=0 otherwise. The concentration of impurity atoos » 06
A type) wasx=0.1 andx=0.5. Such parameters determine 2
the most interesting range of strong scattering and high con- ‘g 0.4 1
centrations. There is a gap between the impurity and host 2
bands, the former being in the energy range fre#.5 to 0.2 1
—0.5, the latter in the range from 0.5 to 4.5. A& 0.1 the /ﬂ\
changes occurring in the host band are small as compared to 0 1 ; : ""

the ideal crystalX=0) and atx=0.5 the bands are symmet-
ric with respect taee=0. So we can examine the energy range
(0.5;4.5) corresponding to the impurity band. For compari- FIG. 1. Density of states in the impurity band of a disordered
son of the theoretical results with the “exact” ones, numeri-Markov chain forx=0.1, ex=—eg=2.5, V=1.0, a=0 (thick

cal analysis of the distribution of eigenvalues of the randoniine), a=0.1 (thin line), = —0.05 (dashed ling

Energy
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FIG. 2. Density of states in the impurity band of a disordered
Markov chain forx=0.1, ex= —eg=2.5,V=1.0. 02 - 05 -
0 0
In Fig. 2 the density of states at=0.1 and different val- 6 1 2 38 4 5 c 1 2 3 4 5

ues of the SRO parameter calculated using the self-consisten a = 1.0, exact solution « = —1.0, exact solution
equations are compared with the “exact” results for a chain
containing 16 atoms. The theoretical curves reproduce fairly Energy
well the main peculiarities of the histograms, the density of
states being positive over the whole range of the SRO gy
rameter variation. Fow>0, the density of states evolves a
towards the exact solutiona(=1) corresponding to total
segregation of the alloy. The case @f — 1/9 corresponds
to the critical point of maximal repelling between the atomswhen two limiting cases of the chain ordering are possible.
of the same kind. In the approximation considered, the relaSince atx=0.5 the contribution of the cluster configurations,
tive weight of the satellite subbands is defined by the matrixhe scattering on which is taken into account by means of the
components of the projectoss,(q), A7 (q) (3.13, which  effective medium, is rather large-(x®), our approximation
are equal to zero fow= —x/y. The contribution of other does not reproduce completely the fine structure of the sub-
configurations, except for th&-A pairs, is of ordex®, and  band in the case o&=0. In order to obtain a better agree-
for x=0.1, it is not observed on the histogram correspondingnent with the histogram, it is necessary to take into account
to the “exact” solution. the clusters larger than a pair of nearest neighbors. However,
Figure 3 presents the density of statexat0.5 for posi-  the calculated density of states agrees reasonably well with
tive (0<a<1) and negative{ 1<a<0) SRO parameters, the histograms wheg tends to its critical values.

FIG. 3. Density of states in the impurity band of a disordered
rkov chain forx=0.5, ea=— €5=2.5,V=1.0.
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B. CPA-like approximation self-consistent scheme proposed in Sec. Il B, this approxi-
mation corresponds to the choice of a single site of the lattice
In this section we shall consider the simplest self-as the maximum clustero{"=0,). Using Egs.(A2) and
consistent single-site approximation which extends the CPAA3) and the relations similar to E4C4), we get the self-
(Ref. 1) to the case of correlated disorder. In the generaktonsistent integral equation for the self-energy:

A%Gl(€,q)
[1+Tof &) 12— [(A8) +S oo €.0) + ool .9) G €,q)

EO(G’Q): (45)

where space of single-site excitations there remains the only matrix
component of the random potentiéd,o4,q|4(q)|0,01,q)
=A¢. As follows from Eq.(4.6), in the approximation con-
sidered, only the two-site correlation function should be
known. For the analysis of the omitted terms, one has to
= off 1 consider the matrix components of a random potential of the
Goolea)= Wf dpg(P=a)Go(&,p), kind (¢;,01,9|U(q)|#;,01,9), which can be calculated us-
(4.6) ing a three-site correlation function. As an example, consider

- 1
Eoo(faQ):Wf dpg(p—q)2o(e,p),

- 1 a simple cubic lattice iml-dimensional space and define the
loo(€,9) = Wf dpg(p—a)o(e€,p)Gole,p), correlation functions as follows:

- 1 . .

Joo €)= 550 J dp g(p=a)Z(e,p)Gole.p). (&&)=A%g;=A%", o<1,

Here the integration is over the first Brillouin zone of the q
lattice, d is the space dimensiog,q) is the Fourier trans- o .
li=ill= 2 lia=il.

form of the two-site correlation function: (4.8
1 o
9()=15 2 g explial=D}, (4.7 a
(E§E)=0%A0aP, p=2, m,
gi=A"XEE).
In the absence of spatial correlations in the allgy= J;, L .
and Egs.(4.5 and (4.6) lead to the CPA in the form of mMy=max|i,—jnl,|in=Knl,[jn—Knl}.

Onodera and Toyozaw:

A2GEf( o) Then the orthonormalized bas{_$q§i,al,q)} can be con-
00 structed as in3.25 and the restriction of the random poten-

2(e)= 1-[AE-3(e)]G(e)’ tial to the subspack, has the form:

whereGgg(e) is the diagonal matrix component of the resol-
vent of the effective Hamiltonian in the site representation. all
It should be noted that in the presence of SRO, in contrast (¢i,o1,9|U)| Py, 01,0)= 5ij(A§)(1+—a)d-
to the CPA, the approximatiof.5 leads to spatial disper-
sion of the self-energy. In the limit of “strong” correlations,
g(p) has the form(3.24 and for the self-energy we have the As follows from the matrix components of the random po-
expression(3.27) corresponding to the Green’s function of tential, the omitted terms in Eq$4.5—(4.7) are small in
the ordered alloy. parametera. Moreover, for a translation-invariant operator
Let us consider the omitted terms in 4.5 connected Vg of the kind in Eq.(3.16, one can obtain the relations
with SRO. For this purpose, in the subspace of single-sit@imilar to Eq.(3.26):
excitations that form the subspalcgin our casgsee Sec. llI
B), it is convenient to introduce an orthonormalized basis
{| i, 01 ,_q)}_. Such a b_as_is can be built up by orthogonalizing<0’ 1,0Vl b o1, q)—
the basis{|i,o,,q)} similar to the formula(3.25, where
|$0,01,0)=]0,01,q). Let us assume that the vectors corre- d
sponding to multiple excitations are orthogonalized to the : :
subspacd._,. In virtue of the restriction(3.15, in the sub- Xex;{ Ingl q”'”] =0 {e=1),

di2
V(a)

1+a
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1+ a\ 92 1 1
o,,v-,,(—)v+ _ f__
(0,01,0|Vql #i,01,0)— T (9+Q) p(2,9) e 5(2 dn§=:l cospn>
rex In=1 (qn+ﬂ-)ln —0 Xrgl g(qn_pn) dpn-
(a——1), The probability density(z,q) can be found easily. Since
Q=(m,...,m). ifﬂ g(q,—p,) dp,=1
277_ o n n n ’

Using the inversion formulas for block matrices and calcu-

lating the expressiofB.19, we come to the result that in the we can consider the integration variablgsas independent

limit of “strong” correlations, whena—1 or a— —1, the  random variables distributed on the segmientsr, 7] with

correction to the exact solutiof8.27) is of the order of (1  probability density (1/2Z)g(q,—pn).- Then p(z,q) is the

—|al)d. probability density of the random variablez
The numerical analysis of the self-consistent &qg5) be- —(1/J—)2n ,cosp,. Therefore, by virtue of the central

comes much easier if we choose the two-site correlationimit theorem, using Eq(4.9) we get

function in the form(4.8) and consider the limit of the infi-

nite space dimensiondE& ). According to Eq.(2.15, for 1 (z— ap)?
the Fourier transform ofj; we have p(z,0)= \/(1—2_)ex;{ T2 |
mT(iL—
d d 1_a2
= = . (4.9 1
g(q) nl:[l g(qn) nl;[]_ 1+0[2—2a’COSqn ( ) M:_E cosqp, -

\/a n=1
We assume the components of the transfer matyix in the ) )
Hamiltonian (1.1) to be different from zero and equal ¥ The functional dependence of such a form allows us to write

only for the pairs of nearest neighbors. It is known that inGa(e,a) = G®(e,u), where
order to obtain the nontrivial result in the casedsf «, one

should overdetermine the parame\‘.éasV:V*/\/a, where exd — (z— Ol,u)2
V* is a finite magnitude. Then the dispersion law of the S e )= +oo 1-a?
Hamiltonian of the virtual crystal has the form: €, \/7 b
77(1 o —w € 6 z— E(E Z)
d (4.12
&§=€t —= E cosk,, b=2V*. Thus, we have proved that the functional dependence

Ggg(e,q) on q has the form(4.10. For the diagonal matrix
To solve the integral equatiof#.5), let us assume that the component of the averaged resolvent we have the expres-

function X (€,q) has the form sion:
1 d 1 T e_“zd,u
Zole®=X(ep), w= s, comhy. (410 GO~ =) e ba s(ew

HereS (e, ) is an unknown function ofe. If this assump-  HereZ(e,u) satisfies the integral equation:
tion is true, it is necessary that the functional dependence of
the form(4.10 should also be valid for all functions in Eq.
(4.6). We shall prove it by obtainingsgi(e,q). Using Eq. 2(en)
(4.9, we get ~
B AZGeﬁ(E,,lL)
Bl e.c= - f - [1+T(e, ) P=[(AE) +3(€,p) +(€,) ]G (e, 1)
00 e (27T)d B b d (413
e = 21 cosp,—(€,p)
n:

where S(e,1), T(e,n), I(e,x) are defined by integrals
similar to Eq.(4.12 according to Eq(4.6).
XH —od The equation(4.13 for the self-energy can be easily
A= 9(dn—Pn)dpy solved numerically. Calculations are carried out for the fol-
lowing values of the Hamiltoniail.1): ea=—eg=1.0, b
(Tt p(z,q) =2V*=1.0. Figure 4 shows the density of states for the
N J',w e—e—bz—23(€,2) Z (4.1 impurity concentratiorx=0.2 anda>0. Figure 5 presents
the density of states for=0.5 anda<0. The dashed line in
where the figures corresponds to the CPA=0). The thin solid

d
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known. The considered scheme leads to consistent allowance
for multiple scattering in the limits of a chosen maximum
cluster. In the simplest case we have obtained an extended
variant of the CPA that takes into account the SRO effects.
An analysis of the approximations suggested shows that,
in addition to the small parameters of the theory developed
in Ref. 13, in our approach the expansion is also performed
in small parameters and (1—|«|)? (d is the space dimen-
sion, « is the Cowley parametgrThe approximations ensure
a correct limiting transition to the Green'’s function of the
ordered alloy when the Cowley parameter tends to its critical
values. Fora=0 we have obtained the expressions of the
FIG. 4. Density of states of the unordered alloydat for ~ known approximation&® Analysis of the analytical proper-
x=0.2, ea=—eg=1.0, b=2V*=1.0, =0 (dashed line, CPA ties of the approximations shows that they are of Herglotz-
a=0.5 (thick line), @=1.0 (thin line). type and do not result in a negative density of states for all
values of the SRO parameter in the whole energy range.
We have also carried out numerical analysis of the self-
line («=0.5 anda=—0.5) demonstrates the evolution of consistent equations for a chain and for the case of the
the density of states from the case of a completely unorderejgfinite-dimensional space. The results obtained are in rea-

Density of states

Energy

alloy to the ordered system. sonable agreement with the histograms and their qualitative
behavior adequately reflects the dependence of the spectrum
V. CONCLUSION on the SRO parameter.

) i As mentioned at the end of Sec. Il A, the ASF can be

_In this paper we have considered the problem of calculatyeneralized to the case of off-diagonal disorder. Addition-
ing the electronic spectrum of a binary unordered alloy withy)y \yithin the ASF one can obtain the exact expression for
correlated diagonal disorder. For configuration averaging ofe one-particle density of states for a cluster of fixed size
the one-particle Green’s function we have proposed &nq configuratiod. In our approach, the partial density of
method which, in the framework of the ASF, allowed us 10g¢4te5 depending on the arrangement of impurity atoms in the
take into account the correlations of random variables. The oo ast neighborhood calculated in the general approxima-
suggested method, as compared to other approaches, has fiiy scheme, will automatically incorporate the SRO.
advantage of using the translation invariance when defining o tight-binding model of an unordered alloy with diag-
the basis in the augmented space. We have demonstrated &, gisorder represents the simplest example of a disordered
method of constructing such a basis in the case of the ongysiem. However, the solution of this problem may be used
dimensional chain, on which the spatial correlations of ranyg 5 necessary foundation for realistic calculations of the
dom variables are determined by a first-order Markov proecironic structure of unordered alloys with SRO. Particular
cess. In contrast to the case of uncorrelated disorder, thigiention must be paid to the CR/SRO expression in Sec.
basis is not orthogonal. _ IV B (4.5. It is easily seen that this equation contains famil-

Using the ASF, we have obtained the formally exact ex+5r fynctions that do not involve the ASF terms. Besides, the
pression for the translanon-myanant self-energy operator of,athod proposed can be used for comparative assessment of
the averaged Green's function. In the case of the onegitarent techniques that do not possess a thorough math-
dimensional Markov chain, the self-energy is presented as @matical foundation.
continued operator fraction. The general schemes of non- g regjistic calculations of the electronic structure of dis-
and self-consistent approximations for the self-energy operas; qered alloys Kudrnovskand Drchal®2* have combined
tor have been proposed. They can be applied in the space gfe cpa with the first-principles tight-binding muffin-tin or-
any dimension if the necessary correlation functions arg)is (TB-LMTO) methoc?®? To represent the Green's

function of the system in this approach one should find the
auxiliary Green’s function of some tight-binding Hamil-
25 4 tonian. The disorder leads to the existence of random off-
diagonal elements in the auxiliary Hamiltonian. However, by
using the localized TB—LMTO representatitaso calleds
representationwe can reduce the Hamiltonian to the one

' with diagonal disorder only and then use the CPA. A similar
1 scheme may be used to allow for the SRO effects. While
/. f
2 0

3

Density of states
o

taking account of the angular moment in the ASF approach,
we deal with the finite matrices whose elements are labeled
' by orbital indicesL andL’ instead of scalar numbers in the
2 4 Fourier representation, and with a matrix equation instead of
the CPA+SRO relation(4.5). The two-site correlation func-
FIG. 5. Density of states of the unordered alloydat for ~ tion g(q) arising in this equation can be reconstructed from
x=0.5, es=—eg=1.0, b=2V*=1.0, =0 (dashed line, CPA  the Cowley SRO parameteks, by means of the Fourier
a=—0.5 (thick line), = —1.0 (thin line). transform(2.15 (the experimental Cowley SRO parameters

-4
Energy
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are found from thex-ray diffractiorf’). ACKNOWLEDGMENTS
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Another problem is connected with taking into accountros Foundation.
the spatial correlations in the arrangement of electrons with
different spin directions within the Hubbard model. This al-
lowance for spatial correlations brings one beyond the scope APPENDIX A
of the “Hubbard-11I" (or alloylike) approximatiorf® In this
case we should consider some correlation functions with in- In this appendix we show how to calculate the expression
trinsic SRO parameters, and then, by analogy with the variat3.19 for the self-energy operator. Carrying out the substi-
tional Gutzwiller's method® minimize the ground-state en- tution of Egs.(3.15 and(3.22 into Eq.(3.19, we write the
ergy over the SRO parameters. equation forX(e,q):

1
So(e, )=A2<O,a' 0| G, (€, ‘0,0 , >, Al
o(€,q 1,0|G, (€,9) 1—W*(e,q)Giﬁ(e,q) 1.9 (A1)
|
where Then the calculation of Eq$A2), (A3) reduces to multipli-
off off . cation and inversion of the finite matrices composed from the
Gy (ea)=[e—H, (&xD] 7, matrix components of the operatda#4) in the orthonormal-

ized basis. The matrix componerig, () ,q|Aq|¢//g;n(j) ,q),

[A, is one of the operatoréA4) of the kind (3.16)] can be
expressed by the convolution

W, (€,0) = WD+ W)+ WIT,
W =T9[2(q)—2%f(e,q)1T9,

VV(*3>= _ queff(&q)'rq, Wf)T: —TqEEﬁ(e,q)Sq. (i,o vQ|Aq|j !O-r,'n o)

We define also the operators 1 /
= dpg?n/m(p—q)A(p)explip(j—i)}. (A5

Giﬁ(l)ZTqGiﬁ(e,q)Tq, Giff(z):sqGiff(f,q)Sq, (2_77)df pPg (p—a)A(p)explip(j—i)}. (A5)
Giﬁ(3)=SqGiﬁ(e,q)Tq, Giﬁ(3)T=TqG§ﬁ(e,q)Sq. Here A(p) is the Fourier transform of the matrik;_;, and

g"n"r’n(p—q) is the Fourier transform of the matrix of the

The superscripfT here designates the transposition operagqjar products of the vectors defined by E2j18):

tion.
Then, using the inversion formulae for block matrié@s, o
one can show thafy(e,q) in Eq. (Al) is defined as g;" m={(a,()|on(j))- (AB)
3o(€,q)=A%0,04,9|D"*[0,04,0), (A2)  |ntegration in Eq.A5) is over the first Brillouin zoned is
whereD is the operator mapping the subspagge(see Sec. the space dimension. As a result, we obtain the integral equa-
Il B) onto itself: tion defining>(€,q).
For more details, see also Sec. IV A and Appendices B
D=I"1-W}» - wW&TGeM2W (A3) and C, where we discuss the one-dimensional case.
Ih=(1- WG ) (65M) ~H(1- 65" TW). APPENDIX B

For further calculations it is convenient to choose in the sub- | ot d=1 and the translation-invariant operaty has the
spacel, the orthonormalized basi$| Yo (i) )}, where  form similar to Eq.(3.16:
iUonCop®{(m=>0), which can be obtained by orthogonal-

ization of the basi$|i,o,,q)}, as in the case of the Markov- ) )
type correlations in Sec. Ill A. Consider also the operators: A= 2 . li,on, DA _(x(j,0n,9)].  (BL)

i,j oy,.n=

eff eff _ _ gy eff -1
27(eq), GTeq=[e-HT (] ", (A4) Then on the first “level” of the continued fraction the matrix

1(e,0)=G*M(e,0)2"(¢,0), components

J(ny) :Eeﬁ(e,q)GEﬁ(e,q)zef‘f(E,q). RAI] (Q) :<Irljl vq|Aq| lllj 1q>y
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(i,j=0,=1) are expressed in terms of the matrix compo- Eo(e,q)=A2(¢0,q|D‘1|wo,q>.
nents(i,q|Aqlj,q) (B1) (in what follows we omit the index

q for simplicity): Here, according to Eq$3.13 and(3.15), S, is the matrix of

the operator

Aoo:(0|/'\|0>’ Tqu(q)Tq

A=A _ 0|A|1 i9(0|Al0 i

01=A-10= T_QZK |A|1) — a€'%0|A[0)], :nzl|¢n'q>A_l(1_az)_llzble_lqn/2<¢0,n!Q|r
A A 1 —iq An B-rll—
Ao_1=Alo=ﬁ[<1lAIO>—ae (0[A]0)], 5 o |=Ta W -WETET WY (c2

n n
2 _ _
A11=37171=1+a <O|A|O> Fn1:(1_M3)TGﬁff(3))[Gﬁff(l)] 1(1_Gﬁﬁ(3)TW$13))_

2
1 The diagonal blocks in EqC2) have the following dimen-
@ iq “ig sions:A;(1x1) (the central sité forming the clusteir),
—1-2le (1/Al0)+e "(0[A|1)], C1(2%2) (two nearest neighborg —1), A,(2X2) (two
sites forming the cluster,). Therefore, a rank of the matrix
- 1 _ D is equal to 5.
Alflzm[<l|A| —1)+a”e ?%0|A|0) For calculation(C2) it is convenient to define the follow-
' ing operators?
—2ae '9(1|A|0)],

G(e,a)=[e-H(eD] !, 1(q)=C"(e,q)2(e,q),
~ 1 4 (C3
A—11=1_—2[<—1|A|1>+azez'q<O|A|0>

“ I(e,a)=3"(€,0)G*(e,0) (e, q).

Using the formulaS!=PJ— T3, whereP{ is the orthogonal
projector onto the subspatﬁg‘;‘) (see Sec. lll A, one can

—2a€'9(—1|A|0)].

APPENDIX C

obtain that
In this Appendix we present the details of calculation of
expression££2), (4.9, aﬁd(4.4). As shown in Appendix A, VV(ng)TGﬁﬁ(Z)VV(ng):ng)_ | gl)zﬁﬁ(l)_zﬁﬁ(ln 511)
it is convenient to present the matric@ﬁ“(e,q) andW,(e,q) 43 effl) geff(l)y eff(1) (C4)
(n=1,2) in a block form by rearrangement of the rows and " noon
columns:

Ly t= (@410 =3 GG 1+ 1

ff(1 ff(1
—Gﬁ( )Eﬁ ( )).

Gﬁf‘f(l) Gﬁff(?:)T \Nﬁff(l) ngf(3>T
Gﬁﬁ(s) Gﬁﬁ(Z) ’ Wﬁff(B) 0

Then in case oh=2, the involutions in Eq(C2) are ex-

where forn=1: [AM];;, i,jeo; [AP];, ieo, jeo;  pressed in terms of matrices of order{2), which are de-

[AP];;, i,j ¢ o (here the matrix components of the opera-fined by matrix components of operatdfS3):

tors are calculated in the orthogonal basend forn=2: 1

(A, ey [AP]y, ieos, jeon [ADP), i j(e)= —f dgS o e q)exp—iq(i— )},

i,] € o,. The symbolT denotes the transposition operation. 2w ) -

The operatoA; may be presented in a block form through

the projector operators: off 1 (= o
L 6 y(e1= 5= | dacycareni-iali- i),

AV =ToATH, A =SIASH,

(3) q (T_Tdp 4 1 (= o
An’=ShAqTn,  AnT=TrAaSh, == | dase(caGocaeni-iai-D),
where the projector§] andS] are defined in Sec. Il A. This i
representation allows all necessary transformations in EQs. 1 (=
(4.2 and (4.4) using the inversion formulas of block J_i_(e):_J’ dg32(e,q)Gole,q)exp—iq(i—j)},
matrices?’ To defineX (e,q) one should calculate one com- vl 2w )5 Gxo(€.Q)Gole.)expt—iq(i—)}

onent of the matrix that is inverse to the following matrix: . .
P 9 wherei,j==*1/2. In case oh=1, the matrices of order (3

A, BI 0 X 3) in the expression&C2) are formed from the magnitudes
—-|B. C, S Eij(f’Q), Gijj(e,q), 1ij(€,9), Jij(e,q) (i,j=0,£1), which
D ! j L €Y are the matrix components of the operat@@8) in the or-
0 S A thogonal basigsee Appendix B
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APPENDIX D: ANALYTICAL PROPERTIES
OF THE RESOLVENT AND ITS APPROXIMATIONS

The resolvent of the self-conjugate operafgrhas the
propertied!

G'(e)=G(€*), G(e1)—G(ex)=(e2~€1)G(€1)G(er).
(D1)

As follows from Eg.(D1), the anti-Hermitian part of the
resolvent has a fixed sigithe Herglotz property In contrast
to G(e), Gy(e) does not satisfy the second relation in Eq.
(D1). Nevertheless, due to the conditi®yG(e)G* (€)Py
=0, Gy(e) is of Herglotz type.

Any approximation of the resolvei@(e) such that

G (€)=Go(€*), (D2)

Go(€1) —Gol€x) = (€2~ €1)Go(€1)P(€1,€2)Go(€r),

where ®(€,,€,) is an operator analytical function of two
variables andd(e,6*)=0, has the anti-Hermitian part of
fixed sign, i.e.,

Go(€)—Gg (€)=(€* —€)Go(e)P(€,€*)Gy (€).

The nonconsistent approximations g(e€,q), obtained by
breaking the continued fraction on timeth “level” satisfy
the condition(D2) and have correct analytical properties.

We prove that the self-consistent sche(@d5), (3.17) in
the case of one-dimensional chain and the schésnk)),
(3.22 for the general case provide the equation¥g( €,q)
satisfying the conditiofD2). Denote

Gy (€,0)=[e—PYH,(q)PY" = TU(q) TI"
— S5 e,q) S ] 7,

where the projector39, S% andP? have been defined in
Sec. lllA and Sec. Il B ®(€,q) has the form(3.16). Then,
using Egs(3.7) and(3.19, we write
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Go(€,0)—Go(€*,0)

+

Go

AEO(Q))
€

=(€" —€)Gy(€,0) I+ (€,9),

(D3)
AZo(q)=A0(0)Gy(€,0)(e* —€
+S9AS () ST G (€,a)Ag (),

where A3.o(q) =3o(e,q) —So(e*,0), AZ(q)=2(¢q)
—3fi(e*,q). Consider further an abstract vector spae
where we choose the complete orthonormalized basis
{|¢(l,0))}. Here aC o™, o+ 0y, and the index goes
over all sites of the lattice. Denote ¥(qg,o)) the Fourier
transforms of ¢(l,0)). Then

SIAS () ST =D STKIAZ,(p)§~H(p,q)KIT ST,
p

(D4)
where

K=

2 |Loaxsd.ol,

|,0'go'n

andd 1(p,q) is the inverse operator to

apa= 2 [¢(p.o)g” (p=a)(g(p.o)l,

o’,a"gon

here g""'(p—q) is the Fourier transform of the matrix of
scalar product$A6). Since the matrix of scalar products is
positively definite, the operatdy (p,q) is positively defi-
nite, too. From the structure of Eq®3) and(D4) it follows
that any iteration of Eq(D3) is of the Herglotz-type if the
initial condition is Herglotz. If the iteration process is con-
vergent, then in the limit we get the resolvent with required
analytical properties.
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