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The low-frequency dielectric relaxation of the deuterated rubidium ammonium dihydrogen phosphate
~DRADP! dipole glass was investigated by examining the complex dielectric permittivity above the glass
freezing temperature. We show that none of the well-known Debye-type relaxation functions that include the
Cole-Cole, Cole-Davidson, and Kohlrausch-Williams-Watts functions adequately describe the observed dielec-
tric relaxation behavior of the DRADP. We then examine the Chamberlin’s correlated domain model as a
possible description of the DRADP dipole glass. The experimental data and the computational results based on
the correlated domain model qualitatively agree with each other with common features of~i! a long tail at the
lower-frequency side and~ii ! increase in the asymmetry ofe9(v) spectrum with decreasing temperature.
Finally, we discuss the fitting results of the DRADP dipole glass in comparison with glass-forming liquids and
other polar glasslike systems.@S0163-1829~99!03034-9#
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I. INTRODUCTION

In 1982, Courtens1 reported glassy behavior of dipoles
a mixed crystal of ferroelectric rubidium dihydrogen pho
phate ~RDP! and antiferroelectric ammonium dihydroge
phosphate~ADP!. After his pioneering work, considerabl
research efforts have been made to understand the natu
dipole glass and the main difference between the dipole g
and the well-studied spin glass.2–8 Compared to the spin
glass system, there exists a strong coupling between the
tric dipole and the lattice ion in the dipole glass system.1,2,5

In view of this, the formation of the dipole glass phase c
be understood in terms of the frustrated correlation betw
the dipoles and the strong coupling via random fields. The
fore, the dipole glass system is now regarded as a m
system for the theoretical understanding of glass freez
phenomena.

Freezing dynamics of the dipole glass system approac
the freezing temperature can be studied by broad-band
electric spectroscopy.2,9–12 Courtens2 studied the anomalou
dispersion of dielectric loss which was contributed by
broadening of relaxation-time distribution. Using the Vog
Fulcher analysis that had been successfully applied to m
glass-forming liquid systems, he showed that the charac
istic relaxation time of the dipole glass could be infinite a
finite temperature.

For the study of the divergence of relaxation time near
freezing temperature, the low-frequency dielectric spectr
copy is becoming an important tool because a lower
PRB 600163-1829/99/60~10!/7170~8!/$15.00
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quency implies a higher relaxation-time domain.9,10 Kuntjak
and co-workers11,12 measured the relative dielectric perm
tivity of a deuterated mixed crystal of RDP and AD
~DRADP! down to 1 mHz. Assuming a simple linear form
for the relaxation-time distribution function, they demo
strated that the lowest part of the relaxation frequency w
to zero according to the Vogel-Fulcher law. More recent
using the DSP lock-in amplifier technique Kim and Kim13

have precisely measured the relative dielectric permittivity
the DRADP dipole glass system. Using the Tikhonov reg
larization method, they successfully obtained the relaxati
time distribution function without assuming a plausible fun
tional form beforehand.13

Another important progress in the description of the
laxation behavior was made by Chamberlin.14 His approach
is called the dynamically correlated domain model and
based on the idea that the relaxation of a domainlike part
refers to the transition between excited states toward
ground state via emission of elementary excitatio
~phonons, magnons, etc.!. He applied this idea to the descrip
tions of magnetic relaxation,14 glass-forming liquid,15,16

amorphous system,17 and quadrupolar system.18 In this ar-
ticle we will apply this approach to examine the relaxati
behavior of the DRADP dipole glass and discuss a poss
difference between the dipole glass and other glasslike
dom systems.

In Sec. II, we will examine various empirical modifica
tions of the Debye relaxation function by the integral tran
formation into the time-domain. These include the Co
7170 ©1999 The American Physical Society
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PRB 60 7171CORRELATED DOMAIN MODEL OF DEUTERATED . . .
Cole, the Cole-Davidson, and the KWW~Kohlrausch-
Williams-Watts! functions. We will show that none of thes
functions adequately describes the observed dielectric re
ation behavior of the DRADP. As a non-Debye type rela
ation, we will then examine the Chamberlin’s correlated d
main model in Sec. III. Finally, we will present the fittin
results of the DRADP dipole glass and discuss the valid
and the limitations of the correlated domain model for t
description of the relaxation behavior of the DRADP dipo
glass.

II. DIPOLAR RELAXATION

When the polarizationP(t) undergoes a dielectric relax
ation toward the equilibrium state, its time-dependence
be described by the following first-order differenti
equation19

1

md

dP~ t !

dt
1P~ t !5 lim

t→`

P~ t !, ~1!

where 1/md is the characteristic relaxation time. Relaxati
behavior can be studied either by monitoring the polarizat
switching current in the time domain or by measuring t
complex dielectric permittivity in the frequency domain.

If we apply a static fieldV0, the steady-state solution o
Eq. ~1! becomes

P~ t !5P0 exp~2mdt !, ~2!

where the switching currentI (t) is given by

I ~ t !5
dP~ t !

dt
52mdP0 exp~2mdt !. ~3!

Equation~3! indicates that, for a single Debye relaxation, t
switching current follows a simple exponential decay.

Alternatively, the relaxation behavior can be described
a dielectric dispersion relation in the frequency domain. F
the Debye relaxation, the frequency-dependent complex
electric permittivitye* (v) is given by

e* ~v!2e`5
e02e`

11 ivtd
, ~4!

wheree0 ande` are the static dielectric permittivity and th
dielectric permittivity at an infinite frequency, respective
andtd(51/md) is the characteristic relaxation time.19,20 The
relaxation strengthes is defined ase02e` and is related to
P0 by

es5e02e`5
P0

V0C0
, ~5!

whereC0 is the geometric capacitance of the sample andV0
is the amplitude of a static field employed in the tim
domain measurement. The relative permittivity at an infin
frequencye` , whose time constant is much shorter than
characteristic relaxation time for dipolar relaxation, is ind
pendent of the dipolar relaxation mechanism but is relate
the instantaneous polarization (Pi) throughe`5Pi /V0C0.

The complex dielectric permittivity can be written as t
Fourier transform of the relaxation function,21,22 namely,
x-
-
-

y

n

n

y
r
i-

e
e
-
to

e* ~v!2e`52E I ~ t !

V0C0
exp~ ivt !dt. ~6!

The above equation implies that the dielectric permittivity
a given frequency depends on the relaxation current arou
time corresponding to the reciprocal of the chosen freque
v. In a real system, the dielectric dispersion is usually ch
acterized by the distribution of relaxation times. The me
value of the distribution function is related to the inertia
dipole moments. There are two approaches to the descrip
of dielectric relaxation in a real system: One is an empiri
modification ofP(t) or e* (v) and the other is an integra
representation.

One of the well-known empirical modifications in th
time-domain is the so-called KWW~Kohlrausch-Williams-
Watts! function,23,24 namely,

P~ t !5P0 exp@2~mt !b# ~7!

whereb is a constant having values between 0 and 1, a
b51 corresponds to a single Debye relaxation. The t
most representative empirical modifications of the Deb
equation in the frequency-domain are the Cole-Davids
function and the Cole-Cole function,21,25and they are respec
tively given by the following two relations:

e* ~v!2e`5
e02e`

~11 ivt0!b
, ~8!

e* ~v!2e`5
e02e`

@11~ ivt0!12a#
, ~9!

where 12a or b is a measure of the deviation from th
Debye relaxation. Another useful function that has been
quently used to represent the dielectric relaxation behavio
the frequency-domain is the Havriliak-Negami function26–29

defined by

e* ~v!2e`5
e02e`

@11~ ivt0!a#b
, ~10!

where a and b respectively represent the width and th
skewness of the dielectric loss when viewed in a ln(v) plot.

Contrary to the empirical modifications discussed abo
one can alternatively express the frequency-dependent c
plex dielectric permittivity using a concept of the relaxatio
time distribution in the Debye relaxor, namely,

e* ~v!2e`5~e02e`!E g~t!

11 ivt
d~t!, ~11!

whereg(t) is the relaxation-time distribution function whic
satisfies the normalization condition,*g(t)d(t)51. Equa-
tion ~11! signifies that the complex dielectric permittivity i
an integral transformation ofg(t) using a kernel, 1/(1
1 ivt). In this case, the polarization switching current c
be written as

I ~ t !5
dP~ t !

dt
52E f ~m!mP0 exp~2mt !d~m!, ~12!
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wheref (m) represents the distribution of relaxation freque
cies and satisfies the condition that* f (m)d(m)51.

We are now in a position to findg(t) for the two repre-
sentative empirical modifications of the Debye equation~i.e.,
Cole-Cole and Cole-Davidson functions! by the integral
transformation. To do this, let us first consider the comp
dielectric permittivity in the Cole-Cole modification. Th
complex permittivitye* (v) can be separated into the re
and imaginary parts, namely,

e8~v!2e`

e02e`
5

1

2 F12
sinh@~12a!x#

cosh@~12a!x#1cos@ap/2#G ,
~13!

e9~v!

e02e`
5

1

2

cos@ap/2#

cosh@~12a!x#1cos@ap/2#
,

wherex5 ln(vt0). On the analogy of the integral transform
tion given in Eq.~11! one can deduce the following relatio
for the relaxation-time distribution function using Eq.~13!:

g~t!5
1

2pt

sin~ap!

cosh@~12a!ln~t/t0!#2cos~ap!
. ~14!

The distribution functiong(t) corresponding to the Cole
Cole relaxation is plotted in Fig. 1~a! as a function of (t/t0)
for two different values ofa. Similarly, the imaginary part of
the complex dielectric permittivity can be computed usi
Eq. ~13! and presented in Fig. 1~b! as a function of (v/v0).
The most prominent feature shown in Fig. 1 is that bothg(t)

FIG. 1. Dielectric relaxation characteristics of the Cole-Co
function for two different values ofa: ~a! the relaxation-time dis-
tribution function g(t), ~b! the complex dielectric permittivity
e9(v).
-

x

ande9(v) are symmetric with respect to the reduced rela
ation timet0 andv0, respectively, when plotted in logarith
mic scale. As can be noticed from Fig. 1, both functio
become broader and deviate from the single Debye rela
with increasing value ofa. However, the average relaxatio
time is independent ofa and is equal tot0 by virtue of the
symmetry.

Similarly, g(t) for the Cole-Davidson relaxation can b
obtained by expanding the complex dielectric permittiv
function, namely,

e* ~v!2e`

e02e`

5
1

~11 ivt0!b
5

1

@A11~vt0!2
•eiu#b

, ~15!

whereu5tan21(vt0). One can eventually obtain the follow
ing distribution function for the Cole-Davidson relaxation

g~t!5
sin~bp!

p S t

t02t D b

for t,t0 , ~16!

g~t!50 for t.t0.

We present bothg(t) and e9(v) for the Cole-Davidson
function in Fig. 2. In this case,g(t) has a long tail in the
lower part oft and discontinuously becomes 0 att5t0. On
the other hand,e9(v) stretches into the high-frequency re
gion with decreasingb. Because of this type of the asymm
try, the average relaxation time should be written as^t&CD
5t03b. Since the Havriliak-Negami function is a combin

FIG. 2. Dielectric relaxation characteristics of the Col
Davidson function for two different values ofb: ~a! the relaxation-
time distribution functiong(t), ~b! the complex dielectric permit-
tivity e9(v).



n
c-
n
c

n

o
e

ec
o

n

y
n
of
the
qual

ies
ate

he
ot

ent

lex
n
for

c-

PRB 60 7173CORRELATED DOMAIN MODEL OF DEUTERATED . . .
tion of the Cole-Cole and Cole-Davidson functions@Eq.
~10!#, one can readily show thate9(v) also has a long tail in
the high-frequency side.

Finally, let us consider the complex permittivity functio
corresponding to the KWW function. Since the KWW fun
tion describes the dieletric relaxation in the time-domain, o
can establish the following relation for the complex diele
tric permittivity:21

e* ~v!2e`

e02e`
5E exp~2 ivt !S 2

d

dt
P~ t ! Ddt

5E g~t!

11 ivt
d~t!, ~17!

where P(t)5exp@2(t/tww)bww#. Using Eq.~17! one can de-
duce the relationship betweenP(t) andg(t) as

P~ t !5exp@2~ t/tww!bww#5E exp~2t/t!g~t!dt.

~18!

Thus, the time-dependent polarization is the Laplace tra
form of the distribution functiong(t). Using the inverse
Laplace transform one can obtain an analytic solution
g(t). For this purpose, let us first introduce the following s
of variables:

x5tww /t, ~19!

s5t/tww ,

b5bww ,

l~x,b!5
tww

x2
gS tww

x D .

Using these definitions one can rewrite Eq.~18! as

exp~2sb!5E exp~2sx!l~x,b!dx. ~20!

The analytic solution ofl(x,b), thus,g(t) is given by

lS x,
1

2D5
1

2Ap
x23/2exp~20.25x!, ~21!

l~x,b!5
1

pE exp~2xu!exp@2ub cos~pb!#

3sin@ub sin~pb!#du,

l~x,b!52
1

p (
k

~21!k sin~pbk!
G~bk11!

G~k11!xbk11
,

whereG denotes the gamma function. The complex diel
tric permittivity can be obtained using a series expansion
the gamma function, namely,
e
-

s-

f
t

-
f

e* ~v!2e`

e02e`
5(

k
~21!k21

G~bwwk11!

G~k11!

3
1

~vtww!bwwk
expS 2 i

pbwwk

2 D . ~22!

The convergence ofg(t) ande9(v) is good fort,tww but
becomes very poor fort.tww .

g(t) and e9(v) for the KWW function are presented i
Fig. 3. The distribution functiong(t) has a long tail in the
lower part oft but e9(v) stretches into the high-frequenc
region with decreasingb. Therefore, the dielectric relaxatio
characteristics of the KWW function are similar to those
the Cole-Davidson function. Because of the asymmetry,
average relaxation time and its higher moments are not e
to tww and (tww)n, respectively, but should be written as

^t&ww5
tww

bww
GS 1

bww
D and ^tn&ww5

~tww!n

bww

G~n/bww!

G~n!
.

~23!

We have systematically investigated dielectric propert
of the deuterated rubidium ammonium dihydrogen phosph
mixed crystal @Rb12x(ND4)xD2PO4 ~DRADP-x) with x
50.4] for a wide range of frequency. It was shown that t
dielectric response of the DRADP-0.4 dipole glass did n
follow the single Debye relaxation as temperature w
down to the glassy freezing temperature.13 In this study we
have further found that the imaginary part of the comp
dielectric permittivity of the DRADP-0.4 has a long tail i
the low-frequency region. As discussed in this section,

FIG. 3. Dielectric relaxation characteristics of the KWW fun
tion for two different values ofb: ~a! the relaxation-time distribu-
tion functiong(t), ~b! the complex dielectric permittivitye9(v).
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7174 PRB 60BOG-GI KIM, JONG-JEAN KIM, AND HYUN M. JANG
the Cole-Cole-type relaxation bothg(t) ande9(v) are sym-
metric with respect to the reduced relaxation timet0 andv0,
respectively, when plotted in logarithmic scale. We have a
shown that all three remaining relaxation functions, i.
Cole-Davidson, Havriliak-Negami, and KWW, have a com
mon feature of a long tail in the high-frequency side
e9(v). Therefore, none of these four relaxation functions c
adequately describe the dielectric relaxation behavior of
DRADP dipole glass. In view of this, as briefly mentioned
the Introduction, we have investigated the correlated dom
model as a possible description of the DRADP dipole gla

III. CHAMBERLIN’S CORRELATED DOMAIN MODEL

Dynamically correlated domain is defined as a reg
where the dispersive excitations have a common dyna
phase factor and, thus, relaxes uniformly with a single rel
ation rate. Therefore, all the dipoles~or spins! within the
correlated domain have the same average level
excitation.14–18Since the initial response (Ps) and the relax-
ation rate (vs) are directly related to the size of a give
correlated domain, the net responseP(t) can be written us-
ing the following linear response terms with the weight
sum over all the domains:

P~ t !5(
s

nsPs exp~2tvs!, ~24!

wherens is the size distribution function.
Now, let us consider the two size-dependent functions

Eq. ~24!. It seems reasonable thatPs is proportional to the
size~s! of the domain because the initial response per dip
~or spin! can be assumed to be homogeneous througho
given correlated domain. On the other hand,vs can be writ-
ten asvs}exp(2dEs/kBT) if one assumes that the relaxatio
rate of each domain does obey the thermally activa
Arrhenius behavior. The excitation density of states can
assumed to be proportional to the volume of a given dom
so that the energy level spacing is given bydEs56D/s,
whereD is related to the energy bandwidth. The relaxati
rate then becomesvs}exp(2a/s), where the dimensionles
energy ratioa is defined asa5dEss/kBT.

Using the above arguments and replacing a discrete v
able s to a continuous variablex, one can rewrite the
weighted response functionP(t) as the following integral
form:

P~ t !}E
D

xnx exp~2tvx!dx, ~25!

where vx5v0 exp(2C/x), v0 is an asymptotic relaxation
rate, andC is a coefficient representing the degree of t
dynamic dipolar correlation. The complex dielectric perm
tivity is the Fourier transform of time derivative of the re
sponse function given in Eq.~25!, namely,

e* ~v!}E
D

xnx

dx

11 iv/vx
. ~26!

Comparing Eq.~26! with Eq. ~11!, one can deduce thatxnx
is nothing but the distribution function of the relaxation tim
andvx has the same meaning as 1/t.
o
,
-
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We now considernx . Chamberlin proposed two distinc
size distribution functions for the dynamically correlated d
mains. One is a normal Gaussian distribution function, wh
is valid for an ergodic system governed by the central lim
theorem:

nx}exp@2~x2x0!2#. ~27!

The other is a Poisson distribution obtained using the bo
percolation theory. Therefore, this type of distribution fun
tion is relevant to a glass-like system having a quenc
randomness:

nx}x1/9exp@2x2/3#. ~28!

Since dipole glass has a quenched randomness, one ca
tain the following expression for the complex dielectric pe
mittivity after combining Eq.~28! with Eq. ~26!:

e* ~v!5AE
D

x10/9exp~2x2/3!
dx

11 iv/vx
, ~29!

whereA is a parameter that represents the dipolar stren
De. The line shape of the permittivity spectrum is, therefo
determined byvx which is defined asvx5v0 exp(2C/x), as
discussed in Eq.~25!.

IV. RESULTS AND DISCUSSION

In Sec. II, we examined all of the four important empiric
modifications of the Debye relaxation~Cole-Cole, Cole-
Davidson, Havriliak-Negami, and KWW functions! and
found that none of these functions adequately describes
experimental dielectric relaxation behavior of the DRAD
dipole glass. Then, we subsequently examined the Cham
lin’s correlated domain model as a possible model of
dipole glass in the previous section. In this section, we w
test the validity of the correlated domain model for the d
scription of dielectric behavior of the DRADP dipole gla
and discuss the main difference between the dipole glass
other random systems, especially a glass-forming liquid.

To do this, let us reconsider Eq.~29! first. As discussed in
Eq. ~25!, the coefficientC represents the degree of the d
namic correlation between dipoles. In case ofC50, vx be-
comes v0 irrespective of the value ofx since vx
5v0 exp(2C/x). Then, substituting 1/t for v0, one can re-
alize that the imaginary part of the dielectric permittivity
given by the integral representation of simple Debye-ty
relaxors, namely,

e9~v!5AE
D

dx x10/9exp~2x2/3!
vt

11~vt!2 . ~30!

In this case, all the constituting domains are the independ
Debye relaxors with the same relaxation frequency, and
distribution function of the Debye relaxors is the same as
domain-size distribution, i.e., Poisson-like distribution.

WhenC is not equal to zero, the sign ofC actually deter-
mines the line shape of the dielectric permittivity spectru
In case ofC,0, the imaginary part of the dielectric permi
tivity has a long tail in the high-frequency side. On the oth
hand, it has a long tail in the low-frequency region forC
.0. As discussed in Sec. II, the complex dielectric perm
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tivity of the DRADP dipole glass has a long tail in the low
frequency region. Therefore, the condition ofC.0 is appro-
priate for the relaxation of dipoles in the DRADP.

We now examine the effects of the two important para
eters,v0 and C ~with positive values!, on the shape of the
complex dielectric permittivity function. Let us first consid
the asymptotic relaxation rate,v0. Figure 4 shows the varia
tion of the simulatede9(v) as a function of frequency fo
three different values ofv0. The parametersA andC used in
the computation are 1 and 2, respectively. One can make
following three important conclusions from the inspection
the result shown in Fig. 4:~i! The frequency-dependent d
electric response is nearly the same as that of the si
Debye relaxor for a small positive value of C.~ii ! The width
of the permittivity function is independent ofv0 for a given
value of C. ~iii ! The value ofv0 actually determines the
frequency at whiche9(v) shows its maximum,vmax.

Figure 5 shows the effect of the coefficient of dynam
correlation,C, on the simulatede9(v) for A51 andv051.
The extent of the shift toward the low-frequency region w
the appearance of a tail in the low-frequency side increa
as C increases or as the coupling between the dipoles
comes stronger. One can obtain the following conclusion
comparing the result of Fig. 5 with that of Fig. 4: Becau
the width ofe9(v) spectrum is independent ofv0, both the
asymmetry and the width ofe9(v) are solely determined by
the degree of the dynamic correlation between dipoles,C.

Let us now examine the validity and the limitations of t
correlated domain model for the description of the relaxat
behavior of the DRADP by a numerical fitting of the expe
mental results. The algorithm used in the present study is
method of the multidimensional minimization using th

FIG. 4. The variation of the simulatede9(v) plotted as a func-
tion of frequency for three different values ofv0.
-

he
f

le

es
e-
y

n

he

Powell method of theNumerical Recipes in C.30 For the
integration, the qromo method of theNumerical Recipes in C
~Ref. 30! was used. It took approximately three hours f
each numerical fitting of the complex permittivity function
Various initial conditions were tested to prevent the functi
from tapping in a local minimum. When we obtained th
same final result irrespective of the initial condition em
ployed, we judged that the function reached its global mi
mum.

Figure 6 compares the numerically obtained functio
~continuous solid lines! with the experimental dielectric per
mittivity at four different temperatures. Although there a
some discrepancies between the computational results
the experimental data,13 both of them have the same gener
tendencies:~i! a long tail at the lower-frequency side and~ii !
increase in the asymmetry ofe9(v) spectrum with decreas
ing temperature. Because we were trying to get the best
ting at the low-frequency region, the discrepancies betw
these two results became pronounced at the high-freque
side.

The three physically important parameters used in
present correlated domain model have been obtained
various temperatures by the numerical fitting, and they
presented in Fig. 7. As shown in Fig. 7~a!, the amplitude
parameterA is essentially constant with its mean valu
around 20 or tends to decrease slightly with decreasing t
perature. This suggests that the dipolar strengthDe is little
affected by temperature. Figure 7~b! shows that ln(v0) in-
creases almost linearly with the absolute temperature. T
predicts that the Debye frequency of the dynamically cor

FIG. 5. The variation of the simulatede9(v) plotted as a func-
tion of frequency, showing the effect of the dynamic dipolar cor
lation (C) on the simulatede9(v) spectrum.
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lated domain decreases with decreasing temperature an
plains the general tendency of the variation in experiment
obtained Debye frequencies.

The temperature dependence of the dynamic dipolar
relation is also presented in Fig. 7~b! by plotting the coeffi-
cientC as a function of temperature. It has a plateau value
around 20 at near 60 K and then increases monotonous
temperature decreases. The estimated positive valuesC
with the absence of a ‘‘crossover’’ correspond to the ex
tence of a long tail at the low-frequency side ofe9(v) spec-
trum and suggest an existence of the Curie-von Schwe
~CvS! type power law relaxation. These results are in sh
contrast to the negative values ofC and, thus, to the exis
tence of a long tail in the high-frequency side ofe9(v) ob-
served in a series of glass-forming materials.15,31,32

According to the study done by Chamberlin,15 the esti-
mated values ofC for Salol, a glass-forming liquid, are nega
tive and vary from21.5 to 24.7 as temperature decreas
from 290 to 219 K. Similar relaxation behavior was al
observed in other glass-forming liquids that include propy
neglycol ~PRGL! and N-methyl-e-caprolactam~NMEC!.32

These observations suggest that the dynamic dipolar cor
tion of the DRADP is significantly stronger than that
glass-forming liquids but the freezing temperature of
DRADP dipole glass~below 40 K; Fig. 7! is significantly
lower than those of glass-forming materials.32 In case of
KTaO3:Li, a kind of quadrupole glass, Chamberlin18 re-
ported that the Dixon-Nagel scaling31 did work pretty well.
In this system, values of the correlation coefficientC are

FIG. 6. Comparison of the experimental dielectric permittiv
of the DRADP dipole glass with the numerically obtained perm
tivity function ~based on the correlated domain model! at four dif-
ferent temperatures.
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greater than zero but they are still much smaller than th
for the DRADP estimated here.

As shown in Fig. 6, the scaling does not work satisfac
rily for the DRADP. This is mainly caused by the fact th
the broadness of the dielectric permittivity spectrum is s
nificantly greater than those of other glass-like dipolar s
tems. In the Chamberlin’s model, the broadness of the
electric permittivity is directly related to the asymmetry
e9(v) spectrum, and the broadness cannot be establis
without imposing this asymmetry. Therefore, more satisf
tory numerical fittings obtained in Salol and KTaO3:Li
quadrupole glass can be attributed to the smaller broad
in e9(v) spectrum.

However, there are a couple of ways toward the impro
ment. One is the introduction of a temperature-depend
parameter that can give an arbitrary broadness in a Pois
type distribution. Then, the size distribution function of th
dynamically correlated domain would depend on tempe
ture. The other is the change in the form of kernel other th
the Debye kernel. This strategy is based on the fact that
Cole-Davidson kernel is broader than the simple Debye k
nel.

V. CONCLUSIONS

The low-frequency dielectric relaxation of the DRAD
dipole glass was investigated by examining the complex
electric permittivity and the relaxation-time distributio
functiong(t) above the glass freezing temperature. We ha
shown that none of the well-known Debye-type relaxati
functions that include the Cole-Cole, Cole-Davidson, a
KWW functions does adequately describe the observed

FIG. 7. Analysis of dielectric relaxation parameters used in
correlated domain model:~a! the amplitude parameterA as a func-
tion of temperature,~b! the temperature dependence of the Deb
frequency and the degree of the dynamic dipolar correlation (C).-
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electric relaxation behavior of the DRADP. We have th
applied and examined the Chamberlin’s correlated dom
model as a possible description of the DRADP dipole gla
Although there are some discrepancies between the ex
mental data and the computational results based on the
related domain model, both of them have the same gen
tendencies :~i! a long tail at the lower-frequency side and~ii !
increase in the asymmetry ofe9(v) spectrum with decreas
ing temperature. The observed discrepancies were then
plained in terms of the broadness or, equivalently, the as
rg

t.
in
s.
ri-

or-
ral

x-
-

metry of the dielectric response function of the DRAD
dipole glass.
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