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The low-frequency dielectric relaxation of the deuterated rubidium ammonium dihydrogen phosphate
(DRADP) dipole glass was investigated by examining the complex dielectric permittivity above the glass
freezing temperature. We show that none of the well-known Debye-type relaxation functions that include the
Cole-Cole, Cole-Davidson, and Kohlrausch-Williams-Watts functions adequately describe the observed dielec-
tric relaxation behavior of the DRADP. We then examine the Chamberlin’s correlated domain model as a
possible description of the DRADP dipole glass. The experimental data and the computational results based on
the correlated domain model qualitatively agree with each other with common featuigs ¢dng tail at the
lower-frequency side andi) increase in the asymmetry &f'(w) spectrum with decreasing temperature.
Finally, we discuss the fitting results of the DRADP dipole glass in comparison with glass-forming liquids and
other polar glasslike system$50163-1829)03034-9

[. INTRODUCTION quency implies a higher relaxation-time domai!.Kuntjak
and co-workers"'? measured the relative dielectric permit-

In 1982, Courterisreported glassy behavior of dipoles in tivity of a deuterated mixed crystal of RDP and ADP
a mixed crystal of ferroelectric rubidium dihydrogen phos-(DRADP) down to 1 mHz. Assuming a simple linear form
phate (RDP) and antiferroelectric ammonium dihydrogen for the relaxation-time distribution function, they demon-
phosphate(ADP). After his pioneering work, considerable strated that the lowest part of the relaxation frequency went
research efforts have been made to understand the naturetofzero according to the Vogel-Fulcher law. More recently,
dipole glass and the main difference between the dipole glaassing the DSP lock-in amplifier technique Kim and Kim
and the well-studied spin glads® Compared to the spin have precisely measured the relative dielectric permittivity of
glass system, there exists a strong coupling between the elettie DRADP dipole glass system. Using the Tikhonov regu-
tric dipole and the lattice ion in the dipole glass sysfefm. larization method, they successfully obtained the relaxation-
In view of this, the formation of the dipole glass phase cantime distribution function without assuming a plausible func-
be understood in terms of the frustrated correlation betweetional form beforehand®
the dipoles and the strong coupling via random fields. There- Another important progress in the description of the re-
fore, the dipole glass system is now regarded as a modéxation behavior was made by ChambetfftrHis approach
system for the theoretical understanding of glass freezings called the dynamically correlated domain model and is
phenomena. based on the idea that the relaxation of a domainlike particle

Freezing dynamics of the dipole glass system approachingefers to the transition between excited states toward the
the freezing temperature can be studied by broad-band dground state via emission of elementary excitations
electric spectroscopy® 12 Courtené studied the anomalous (phonons, magnons, etcHe applied this idea to the descrip-
dispersion of dielectric loss which was contributed by ations of magnetic relaxatiol, glass-forming liquid->
broadening of relaxation-time distribution. Using the Vogel-amorphous systert{,and quadrupolar systetfi.In this ar-
Fulcher analysis that had been successfully applied to mancle we will apply this approach to examine the relaxation
glass-forming liquid systems, he showed that the charactebehavior of the DRADP dipole glass and discuss a possible
istic relaxation time of the dipole glass could be infinite at adifference between the dipole glass and other glasslike ran-
finite temperature. dom systems.

For the study of the divergence of relaxation time near the In Sec. Il, we will examine various empirical modifica-
freezing temperature, the low-frequency dielectric spectrostions of the Debye relaxation function by the integral trans-
copy is becoming an important tool because a lower freformation into the time-domain. These include the Cole-
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Cole, the Cole-Davidson, and the KWWKohlrausch- I(t)
Williams-Watt9 functions. We will show that none of these € (w)—€.= —J Ve expli wt)dt. (6)
functions adequately describes the observed dielectric relax- 00
ation behavior of the DRADP. As a non-Debye type relax-The above equation implies that the dielectric permittivity at
ation, we will then examine the Chamberlin’s correlated do-a given frequency depends on the relaxation current around a
main model in Sec. Ill. Finally, we will present the fitting time corresponding to the reciprocal of the chosen frequency
results of the DRADP dipole glass and discuss the validityw. In a real system, the dielectric dispersion is usually char-
and the limitations of the correlated domain model for theacterized by the distribution of relaxation times. The mean
description of the relaxation behavior of the DRADP dipolevalue of the distribution function is related to the inertia of
glass. dipole moments. There are two approaches to the description
of dielectric relaxation in a real system: One is an empirical
Il. DIPOLAR RELAXATION modification of P(t) or €* (w) and the other is an integral

o ) ) representation.
When the polarizatioP(t) undergoes a dielectric relax-  "ope of the well-known empirical modifications in the

ation toward the equilibrium state, its time-dependence Cafme-domain is the so-called KWWKohlrausch-Williams-
be described by the following first-order differential Watts function?*24 namely

equation®

+P((t)=Ilim P(t), (1)
t

—00

pg  dt

where 8 is a constant having values between 0 and 1, and
B=1 corresponds to a single Debye relaxation. The two
where 1juq is the characteristic relaxation time. Relaxation most representative empirical modifications of the Debye
behavior can be studied either by monitoring the polarizatiorequation in the frequency-domain are the Cole-Davidson
switching current in the time domain or by measuring thefunction and the Cole-Cole functidh:?®and they are respec-
complex dielectric permittivity in the frequency domain. tively given by the following two relations:

If we apply a static fieldV,, the steady-state solution of

Eq. (1) becomes —
6*(w)—foc:,—ﬁ, (8
P(t)=Pgoexp(— ugt), 2) (1+iwrg)
where the switching curren(t) is given by e
(o) em ©)
P [1+(iw7o) ]

d
|(t):T:_MdPoeXF(—,U«dt)- ()
where 1-« or B is a measure of the deviation from the
Equation(3) indicates that, for a single Debye relaxation, theDebye relaxation. Another useful function that has been fre-
switching current follows a simple exponential decay. quently used to represent the dielectric relaxation behavior in
Alternatively, the relaxation behavior can be described bythe frequency-domain is the Havriliak-Negami functitr®
a dielectric dispersion relation in the frequency domain. Fodefined by
the Debye relaxation, the frequency-dependent complex di-
) Y L
electric permittivitye* (w) is given by (@)= €= e(? € , (10
[1+ (iwTg)*]P

& @

lt+iory’ where @ and B respectively represent the width and the
skewness of the dielectric loss when viewed in asjnglot.

Contrary to the empirical modifications discussed above,
one can alternatively express the frequency-dependent com-
plex dielectric permittivity using a concept of the relaxation-
time distribution in the Debye relaxor, namely,

e (w)—€,=

wheree, ande,, are the static dielectric permittivity and the
dielectric permittivity at an infinite frequency, respectively,
and 74(=1/u4) is the characteristic relaxation tim&?° The
relaxation strengtleg is defined asy— €., and is related to
Po by

g(7)

P * _ — _
65:60_E°°:V020' (5) € (w)—€e,=(€g em)J 1+ind(T), (11

whereC, is the geometric capacitance of the sample ¥gd whgrgg(r) is the rela.lxat'ion—time sttribution function which
is the amplitude of a static field employed in the time-Satisfies the normalization conditiofig(7)d(7)=1. Equa-
domain measurement. The relative permittivity at an infinitetion (11) signifies that the complex dielectric permittivity is
frequencye.., whose time constant is much shorter than thedn integral transformation of(7) using a kernel, 1/(1
characteristic relaxation time for dipolar relaxation, is inde-ti@7). In this case, the polarization switching current can
pendent of the dipolar relaxation mechanism but is related t§€ Written as
the instantaneous polarizatioR;| throughe..=P;/V,Cy. dP(t)

The complex dielectric permittivity can be written as the
Fourier tranzform of the reFI)axation fﬁnctiﬁh?z namely, (V= B _J () uPoexp—ut)d(p), (12

dt
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FIG. 1. Dielectric relaxation characteristics of the Cole-Cole F_|G' 2. Di_electric rela_xation characteristics of the . Cole-
function for two different values of: (a) the relaxation-time dis- D@vidson function for two different values ¢ (a) the relaxation-
tribution function g(7), (b) the complex dielectric permitivity tme distribution functiong(r), (b) the complex dielectric permit-

e"(w). thlty 6"((1)).

wheref(u) represents the distribution of relaxation frequen-ande”(w) are symmetric with respect to the reduced relax-
cies and satisfies the condition that(w)d(w)=1. ation time 7, andwo, respectively, when plotted in logarith-

We are now in a position to find(7) for the two repre- Mi¢ scale. As can be noticed from Fig. 1, both functions
sentative empirical modifications of the Debye equatian, become broader and deviate from the single Debye relaxor
Cole-Cole and Cole-Davidson functionby the integral With increasing value o&. However, the average relaxation
transformation. To do this, let us first consider the complexime is independent ok and is equal taro by virtue of the
dielectric permittivity in the Cole-Cole modification. The Symmetry.

complex permittivity e* (w) can be separated into the real  Similarly, g(7) for the Cole-Davidson relaxation can be
and imaginary parts, namely, obtained by expanding the complex dielectric permittivity

function, namely,

€(w)—e. 1 sinf (1— a)X]
€o—€. 2| cosh(1—a)x]+codam/2]|’ € (w)—ex 1 B 1 15
(13 €= €  (l+iwr)? [‘/l+(“’To)2~ei9]ﬁ’
(o) 1 cog am/2] , whereg=tan *(wr,). One can eventually obtain the follow-
€g— €. 2 cosli(1—a)x]+cod am/2] ing distribution function for the Cole-Davidson relaxation
wherex=In(wm). On the analogy of the integral transforma- sin( ) B
tion given in Eq.(11) one can deduce the following relation g(7)= B ( T ) for <y, (16)
for the relaxation-time distribution function using Ed.3): ™ To— 7T
sin(ar) (7)=0 for 7> r,.
o(r)= (14 ? °

277 cosh(1—a)In(7/7g)]—cogam)’
We present botly(7) and €”(w) for the Cole-Davidson
The distribution functiorg(7) corresponding to the Cole- function in Fig. 2. In this caseg(7) has a long tail in the
Cole relaxation is plotted in Fig.(&) as a function of ¢/ ) lower part of 7 and discontinuously becomes Ot 75. On
for two different values ofv. Similarly, the imaginary part of the other hand¢”(w) stretches into the high-frequency re-
the complex dielectric permittivity can be computed usinggion with decreasing. Because of this type of the asymme-
Eg. (13) and presented in Fig.() as a function of p/wy).  try, the average relaxation time should be writtery @gp
The most prominent feature shown in Fig. 1 is that bath) = 75X B. Since the Havriliak-Negami function is a combina-
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tion of the Cole-Cole and Cole-Davidson functiofisq.
(10)], one can readily show that'(w) also has a long tail in
the high-frequency side.

Finally, let us consider the complex permittivity function
corresponding to the KWW function. Since the KWW func-

tion describes the dieletric relaxation in the time-domain, one

can establish the following relation for the complex dielec-
tric permittivity:2*

e (w)— e, ) d
%_—%:fexq—lwt)(—ap(t))dt
9(7)
- l-l-ind(T)’ (17

where P(t) = exf — (t/7,,,)?]. Using Eq.(17) one can de-
duce the relationship betweé(t) andg(r) as

P(t)=exd — (t/TWW)BWW] = f exp —t/T)g(7)dr.
(18

Thus, the time-dependent polarization is the Laplace trans-

form of the distribution functiong(7). Using the inverse

Laplace transform one can obtain an analytic solution of

g(7). For this purpose, let us first introduce the following set
of variables:

X= Tww! T, (19
s=t/Tyw,
B=Buww:
_ Tww [ Tww
)\(Xaﬂ)_ X2 g X )
Using these definitions one can rewrite Ef8) as
exp(—sﬁ)zf exp(—SX)\ (X, B)dx. (20)

The analytic solution ok (x,8), thus,g(7) is given by
\ 1
%2

1
A(X,B8)= ;J exp(—xu)exd —u? cog 7B)]

. _
5 \/;x Zexp(—0.25), (22)

x sinfu? sin(7B)]du,

T'(Bk+1)

1 |
NxB)==— 2 (—1)kSIr\(WBk)W,
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FIG. 3. Dielectric relaxation characteristics of the KWW func-
tion for two different values of3: (a) the relaxation-time distribu-
tion functiong(7), (b) the complex dielectric permittivitg”(w).

10 100

€ (w)— € L L(Buwk+1)
€0~ €x _Ek (-p< T(k+1)
1 . T BuwK
—(wTWW) ok exp(—| 5 ) (22

The convergence aj(7) and€”(w) is good forr< 7, but
becomes very poor for> 7, .

g(7) and €"(w) for the KWW function are presented in
Fig. 3. The distribution functiom(7) has a long tail in the
lower part of r but €”’(w) stretches into the high-frequency
region with decreasing. Therefore, the dielectric relaxation
characteristics of the KWW function are similar to those of
the Cole-Davidson function. Because of the asymmetry, the
average relaxation time and its higher moments are not equal
to 7w and (r,)", respectively, but should be written as

. (TWW)n L(n/Buww)

~ Baw (N
(23

and (7")yw

—MF(—
(=g Tlg.

We have systematically investigated dielectric properties
of the deuterated rubidium ammonium dihydrogen phosphate
mixed crystal [Rb; _,(ND,),D,PO, (DRADPx) with x
=0.4] for a wide range of frequency. It was shown that the
dielectric response of the DRADP-0.4 dipole glass did not
follow the single Debye relaxation as temperature went
down to the glassy freezing temperattitdn this study we

wherel” denotes the gamma function. The complex dielec-have further found that the imaginary part of the complex
tric permittivity can be obtained using a series expansion otlielectric permittivity of the DRADP-0.4 has a long tail in
the gamma function, namely, the low-frequency region. As discussed in this section, for
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the Cole-Cole-type relaxation bot{7) ande”(w) are sym- We now considen,. Chamberlin proposed two distinct
metric with respect to the reduced relaxation timgeandw,,  size distribution functions for the dynamically correlated do-
respectively, when plotted in logarithmic scale. We have alsanains. One is a normal Gaussian distribution function, which
shown that all three remaining relaxation functions, i.e.,is valid for an ergodic system governed by the central limit
Cole-Davidson, Havriliak-Negami, and KWW, have a com-theorem:

mon feature of a long tail in the high-frequency side of

€"(w). Therefore, none of these four relaxation functions can nycexp — (X—xo)?]. (27)

adequately describe the dielectric relaxation behavior of thgne other is a Poisson distribution obtained using the bond-

DRADP dipolle glass. In vigw of Fhis, as briefly mentioned i”_ percolation theory. Therefore, this type of distribution func-
the Introduction, we have investigated the correlated domaik\o, is relevant to a glass-like system having a quenched
model as a possible description of the DRADP dipole glass;gndomness:

l1l. CHAMBERLIN'S CORRELATED DOMAIN MODEL nxYPexg —x?3]. (28)

Dynamically correlated domain is defined as a regionSince dipole glass has a quenched randomness, one can ob-
where the dispersive excitations have a common dynamitain the following expression for the complex dielectric per-
phase factor and, thus, relaxes uniformly with a single relaxmittivity after combining Eq.(28) with Eg. (26):
ation rate. Therefore, all the dipolésr sping within the
correlated domain have the same average level of
excitation**~*8Since the initial responseP{) and the relax-
ation rate ;) are directly related to the size of a given
correlated domain, the net respor®g) can be written us- where A is a parameter that represents the dipolar strength

ing the following linear response terms with the weightedA €. The line shape of the permittivity spectrum is, therefore,
sum over all the domains: determined byw, which is defined as,= wyexp(—C/x), as

discussed in Eq.25).

€ (w)=A f x*%exp( —x#3) (29
D

ltio/ow,’

P(t)= ZS NsPs exp(—tws), (24 IV. RESULTS AND DISCUSSION

whereng is the size distribution function. In Sec. Il, we examined all of the four important empirical
Now, let us consider the two size-dependent functions ifmodifications of the Debye relaxatio(Cole-Cole, Cole-
Eq. (24). It seems reasonable thBy is proportional to the ~Davidson, Havriliak-Negami, and KWW functionsand
size(s) of the domain because the initial response per dipoldound that none of these functions adequately describes the
(or spin can be assumed to be homogeneous throughout experimental dielectric relaxation behavior of the DRADP
given correlated domain. On the other hamd,can be writ-  dipole glass. Then, we subsequently examined the Chamber-
ten aswsxexp(— oE¢/kgT) if one assumes that the relaxation lin’s correlated domain model as a possible model of the
rate of each domain does obey the thermally activatedlipole glas; i_n the previous section. In'this section, we will
Arrhenius behavior. The excitation density of states can bé&est the validity of the correlated domain model for the de-
assumed to be proportional to the volume of a given domairgcription of dielectric behavior of the DRADP dipole glass
so that the energy level spacing is given b=+ A/s, and discuss the main difference between the dipole glass and
whereA is related to the energy bandwidth. The relaxationother random systems, especially a glass-forming liquid.
rate then becomes.xexp(—als), where the dimensionless _ TO do this, let us reconsider EQ9) first. As discussed in
energy ratioa is defined asyr= SEs/kgT. Eq. (25), the coefficientC represents the degree of the dy-
Using the above arguments and replacing a discrete varfamic correlation between dipoles. In caseCot 0, w, be-
able s to a continuous variable, one can rewrite the COMeS wo irrespective of the value ofx since w,

weighted response functioR(t) as the following integral = @o€Xp(~C/x). Then, substituting ¥/ for wo, one can re--
form: alize that the imaginary part of the dielectric permittivity is

given by the integral representation of simple Debye-type

relaxors, namely,
P(t)ochxnX exp —tw,)dx, (25
where w,= wyexp(—C/X), wgy IS an asymptotic relaxation (30
rate, andC is a coefficient representing the degree of the
dynamic dipolar correlation. The complex dielectric permit-In this case, all the constituting domains are the independent
tivity is the Fourier transform of time derivative of the re- Debye relaxors with the same relaxation frequency, and the

7 _ 10/9 _v2/3
€ (w)—AfDdx xYexp(—x )—1+(w7)2.

sponse function given in E¢25), namely, distribution function of the Debye relaxors is the same as the
domain-size distribution, i.e., Poisson-like distribution.
. dx WhenC is not equal to zero, the sign @f actually deter-
€ (w)x fDxnxm- (26) mines the line shape of the dielectric permittivity spectrum.

In case ofC<0, the imaginary part of the dielectric permit-
Comparing Eq(26) with Eq. (11), one can deduce thai, tivity has a long tail in the high-frequency side. On the other
is nothing but the distribution function of the relaxation time, hand, it has a long tail in the low-frequency region for
and w, has the same meaning as-1/ >0. As discussed in Sec. I, the complex dielectric permit-
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FIG. 5. The variation of the simulated (w) plotted as a func-
tion of frequency, showing the effect of the dynamic dipolar corre-
lation (C) on the simulated”(w) spectrum.

FIG. 4. The variation of the simulated (w) plotted as a func-
tion of frequency for three different values of,.

tivity of the DRADP dipole glass has a long tail in the low-
frequency region. Therefore, the condition@#0 is appro-  powell method of theNumerical Recipes in € For the
priate for the relaxation of dipoles in the DRADP. integration, the gromo method of tivumerical Recipes in C
We now examine the effects of the two important param-(Ref. 30 was used. It took approximately three hours for
eters,wo and C (with positive values on the shape of the gach numerical fitting of the complex permittivity function.
complex dielectric permittivity function. Let us first consider /4rjoys initial conditions were tested to prevent the function
the asymptot_ic relaxat,ion rate,. Figurg 4 shows the varia- g, tapping in a local minimum. When we obtained the
tion of _the simulatece”(w) as a function of frequency _for same final result irrespective of the initial condition em-
three dlfferen.t values abo. The param.eterA andC used in IﬂPoned, we judged that the function reached its global mini-
the computation are 1 and 2, respectively. One can make t um
following three important conclusions from the inspection of Fiéure 6 compares the numerically obtained functions

the result shown in Fig. 4i) The frequency-dependent di- ; . . . . .

electric response is nearly the same as that of the Singl(‘gzontlnuous solid lingswith the experimental dielectric per-

Debye relaxor for a small positive value of @) The width mittivity at four different temperatures. Although there are

of the permittivity function is independent af, for a given ~ SOMe discrepancies between the computational results and
the experimental dat,both of them have the same general

value of C. (iii) The value ofwg actually determines the - ’ : ”!
frequency at whiche”(w) shows its maximume yay. tendencies(i) a long tail at the lower-frequency side afig

Figure 5 shows the effect of the coefficient of dynamicincrease in the asymmetry ef (w) spectrum with decreas-
correlation,C, on the simulated”(w) for A=1 andw,=1.  iNg temperature. Because we were trying to get the best fit-
The extent of the shift toward the low-frequency region withting at the low-frequency region, the discrepancies between
the appearance of a tail in the low-frequency side increaseese two results became pronounced at the high-frequency
as C increases or as the coupling between the dipoles beside.
comes stronger. One can obtain the following conclusion by The three physically important parameters used in the
comparing the result of Fig. 5 with that of Fig. 4: Becausepresent correlated domain model have been obtained for
the width of €”(w) spectrum is independent of,, both the  various temperatures by the numerical fitting, and they are
asymmetry and the width af’(w) are solely determined by presented in Fig. 7. As shown in Fig(dJ, the amplitude
the degree of the dynamic correlation between dipdles, parameterA is essentially constant with its mean value

Let us now examine the validity and the limitations of the around 20 or tends to decrease slightly with decreasing tem-
correlated domain model for the description of the relaxatiorperature. This suggests that the dipolar strengéhis little
behavior of the DRADP by a numerical fitting of the experi- affected by temperature. Figuréby shows that Ingg) in-
mental results. The algorithm used in the present study is thereases almost linearly with the absolute temperature. This
method of the multidimensional minimization using the predicts that the Debye frequency of the dynamically corre-
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FIG. 7. Analysis of dielectric relaxation parameters used in the
correlated domain mode(la) the amplitude parametédy as a func-

FIG. 6. Comparison of the experimental dielectric permittivity fion of temperature(b) the temperature dependence of the Debye
of the DRADP dipole glass with the numerically obtained permit- réquency and the degree of the dynamic dipolar correlat@n (
tivity function (based on the correlated domain modal four dif-
ferent temperatures.

Frequency(Hz)

greater than zero but they are still much smaller than those
for the DRADP estimated here.

lated domain decreases with decreasing temperature and ex As shown in Fig. 6, the scaling does not work satisfacto-

. 2 . lly for the DRADP. This is mainly caused by the fact that
plains the general tendency of the variation in expenmentaII)fhe broadness of the dielectric permittivity spectrum is sig-
obtained Debye frequencies.

o nificantly greater than those of other glass-like dipolar sys-
The temperature dependence of the dynamic dipolar cofmg | the Chamberlin's model, the broadness of the di-
relation is also presented in Fig(by by plotting the coeffi-  gjectric permittivity is directly related to the asymmetry of
cientC as a function of temperature. It has a plateau value ogn(w) spectrum, and the broadness cannot be established
around 20 at near 60 K and then increases monotonously §gthout imposing this asymmetry. Therefore, more satisfac-
temperature decreases. The estimated positive valu€s of tory numerical fittings obtained in Salol and KTaQi
with the absence of a “crossover” correspond to the exisquadrupole glass can be attributed to the smaller broadness
tence of a long tail at the low-frequency sideeS{w) spec- in €’(w) spectrum.
trum and suggest an existence of the Curie-von Schweider However, there are a couple of ways toward the improve-
(Cv9) type power law relaxation. These results are in sharpment. One is the introduction of a temperature-dependent
contrast to the negative values Gfand, thus, to the exis- parameter that can give an arbitrary broadness in a Poisson-

tence of a long tail in the high-frequency side &{w) ob-
served in a series of glass-forming materia!-3?
According to the study done by Chamberttthe esti-

type distribution. Then, the size distribution function of the
dynamically correlated domain would depend on tempera-
ture. The other is the change in the form of kernel other than

mated values o€ for Salol, a glass-forming liquid, are nega- the Debye kernel. This strategy is based on the fact that the
tive and vary from—1.5 to — 4.7 as temperature decreasesCole-Davidson kernel is broader than the simple Debye ker-
from 290 to 219 K. Similar relaxation behavior was alsonel.
observed in other glass-forming liquids that include propyle-
neglycol (PRGL and N-methyl-e-caprolactam(NMEC).3?

These observations suggest that the dynamic dipolar correla-
tion of the DRADP is significantly stronger than that of The low-frequency dielectric relaxation of the DRADP
glass-forming liquids but the freezing temperature of thedipole glass was investigated by examining the complex di-

V. CONCLUSIONS

DRADP dipole glassbelow 40 K; Fig. 7 is significantly
lower than those of glass-forming materifsin case of
KTaO,:Li, a kind of quadrupole glass, Chambetfinre-
ported that the Dixon-Nagel scalitfgdid work pretty well.
In this system, values of the correlation coeffici€htare

electric permittivity and the relaxation-time distribution

functiong(7) above the glass freezing temperature. We have
shown that none of the well-known Debye-type relaxation
functions that include the Cole-Cole, Cole-Davidson, and
KWW functions does adequately describe the observed di-
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electric relaxation behavior of the DRADP. We have thenmetry of the dielectric response function of the DRADP
applied and examined the Chamberlin’s correlated domaiulipole glass.

model as a possible description of the DRADP dipole glass.

Although there are some discrepancies between the experi-

mental data a_md the computational results based on the cor- ACKNOWLEDGMENTS
related domain model, both of them have the same general . .
tendencies (i) a long tail at the lower-frequency side afid This work was supported by the Korea Science and Engi-

increase in the asymmetry af (w) spectrum with decreas- neering FoundatiotRCDAMP-1998. Support from the Ba-
ing temperature. The observed discrepancies were then egic Science Research InstituBSRI) at POSTECH is also
plained in terms of the broadness or, equivalently, the asymappreciated.
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