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Quantum mechanical theory of the formation of a nuclear emission hologram

J. Odeurs, R. Coussement, and C. L’abbe´
Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

~Received 20 April 1998; revised manuscript received 11 December 1998!

The quantum mechanical theory of the formation of an emission hologram withg radiation is developed.
Radiation, produced by a radioactive source nucleus, can go directly to a detector or can be resonantly scattered
by neighboring resonant nuclei before going to the detector. The interference between these two processes
gives rise to fluctuations in the radiated intensity as a function of the emission angle. These fluctuations contain
information about the surrounding of the emitting nucleus. The coupled system of equations describing the
scattering amplitudes has been solved in the single scattering approximation.@S0163-1829~99!02733-2#
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I. INTRODUCTION

The idea to useg radiation for holography with atomic
resolution has been suggested recently.1,2 The scheme is
simple, in principle: a photon emitted without recoil~Möss-
bauer effect! can reach a~far-field! detector directly~this is
the holographic reference wave! or after it has been scattere
from closely situated nuclei~the object wave!. The two
waves interfere and form the holographic image. Measur
the intensity as a function of the angle of the emitted rad
tion gives information on the relative position of the neig
boring nuclei. In a recent experiment3 nuclear holography
has been presented in a slightly different way: a photon fr
an external radioactive source can be resonantly abso
directly by a nucleus in a crystal or, indirectly, after th
photon has been resonantly scattered by the neighboring
clei. The interference of these processes gives oscillation
the total number of deexcitation events measured as a f
tion of the incidence angle of the photon. These holograp
oscillations give information on the local environment of t
nucleus. In this paper we present the theoretical analysi
‘‘internal’’ or nuclear emission holography, as original
proposed in Refs. 1 and 2.

In Sec. II the mathematical background will be defined.
Sec. III the details of the analysis will be given. In Sec.
the discussion of the results will be presented.

II. MATHEMATICAL BACKGROUND

The general method used in this paper is discusse
Heitler,4 Harris,5 and in a recent article.6 The method applies
quantum-mechanical perturbation theory in the freque
domain to obtain a set of coupled equations. The Ham
tonian of the system is divided into two parts.H0 is the
unperturbed part which describes the evolution of the nuc
states and the free radiation field in the absence of coup
between the nuclear states and the radiation field. The ei
states ofH0 correspond in this case to nuclear states of
ensemble of nuclei and the states of the free radiation fi
taken here as plane waves. Any nucleus in an excited s
can be located at any one of the nuclear positions in
medium. The perturbing part of the Hamiltonian is deno
by V and is responsible for making transitions between
nuclear levels.
PRB 600163-1829/99/60~10!/7140~9!/$15.00
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The actual state of the system is then expressed as

uC~ t !&5(
l

al~ t !e2 i ~El t/\!uw l~0!&, ~1!

whereuw l(0)& is an eigenstate ofH0 andEl the correspond-
ing energy. Solving the Schro¨dinger equation leads to a se
of coupled differential equations relating the expansion
efficientsal(t)

i\
dal

dt
5(

q
aq~ t !ei ~v l2vq!t^w l~0!uVuwq~0!&, ~2!

wherev l2vq5(El2Eq)/\.
A solution of this system of coupled differential equatio

is wanted that satisfies an initial condition such that att50
the system is in a well-defined state, sayn, and all other
probability amplitudes are zero:al(0)50 andan(10)51,
wheret510 means thatt approaches zero from the positiv
side. Although a physically meaningful solution only in
volves positive times (t>0), for analytical reasons howeve
following Heitler,4 the solution will be extended to the neg
tive time axis.

We choose theal ’s such thatal(t)5an(t)50 for t,0. It
follows then thatan has a discontinuity that can be dea
with.4 Heitler has shown that adding an inhomogeneous te
to the right hand side of expression~2! takes care of the
initial condition and the discontinuity completely

i\
dal

dt
5(

q
aq~ t !ei ~v l2vq!t^w l~0!uVuwq~0!&1 i\d lnd~ t !,

~3!

where d ln is the Kronecker delta andd(t) the Dirac delta
function. Next introducing the Fourier transform4

al~ t !52
1

2p i E2`

`

dvAl~v!ei ~v l2v!t, ~4!

Eq. ~2! can be rewritten in the frequency domain

~v2v l !Al~v!5(
q

Aq~v!
Vlq

\
1d ln , ~5!
7140 ©1999 The American Physical Society



m

c
r

ed

e
n
um

te

r-
of

’’
th
n
oo

es

a
o

he

ly
si

nd
n

f

to

o

on

th

c-
tor
rix
-

can

f
n do
ne

ro-
pre-
em-
tron
idth

ve

dix
x

en

a-

PRB 60 7141QUANTUM MECHANICAL THEORY OF THE FORMATION . . .
whereVlq is the matrix element inducing a transition fro
the qth unperturbed state to thelth unperturbed state,Vlq
5^w l(0)uVuwq(0)&. The integral representation of the Dira
delta function has been used.4 To obtain an equation fo
Al(v), we would have to divide by (v2v l). This division
will not be unique4 and it can be shown that if theal ’s are to
fulfill the initial conditions the result of the division by (v
2v l) must be a factor lim

«→011/(v2v l1 i«). This has
only a mathematical meaning when integrals are involv
which eventually is always the case~see later!. In fact the
replacement of (v2v l) by (v2v l1 i«) ~« an infinitesimal,
positive number! defines the path of integration, guarante
ing causality.4 This is completely analogous to the definitio
of integration paths in the propagator concept in quant
electrodynamics. Of course the devicei« will always disap-
pear from the physical answers, as will become clear la
So Eq.~5! will be rewritten as

~v2v l1 i«!Al~v!5(
q

Aq~v!
Vlq

\
1d ln . ~6!

The advantage of the set of equations, Eq.~6!, is that it is a
linear ~coupled! system. In the next section this general fo
malism will be applied to the study of the interaction
radiation with nuclei embedded in a lattice.

III. ANALYSIS

A. Fundamental equations

Let us consider, att50, an excited nucleus, the ‘‘source
nucleus, surrounded by identical ground state nuclei,
‘‘scattering’’ nuclei, and no photons or conversion electro
present. The source nucleus is taken at the origin of a c
dinate system. The coordinate of the scattering nucleusm is
denotedrm . The different quantum mechanical amplitud
are defined below.

A(v): the amplitude of the source nucleus excited,
scattering nuclei in their ground states, no photons or c
version electrons present.

Bm(v): the amplitude corresponding to excitation of t
mth scattering nucleus to one of its excited states\v0 and no
photons or conversion electrons present. To keep the ana
as simple as possible, just one excited state will be con
ered. This can be generalized.

Ck(v): the amplitude where all nuclei are in the grou
state, there are no conversion electrons, and a photo
wave vectork is present.

Dp(v): the amplitude corresponding to the presence o
conversion electron with momentump, produced by the
source nucleus, all nuclei in the ground state and no pho
present.

Dm,p(v): the amplitude corresponding to the presence
a conversion electron, with momentump, from the mth
nucleus, all nuclei in their ground states and no phot
present.

The coupled equations relating these amplitudes can
be shown to be

~v2v01 i«!A~v!5(
k

Vk

\
Ck~v!1(

p

Vp

\
Dp~v!11,

~7!
,
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~v2vp1 i«!Dp~v!5
Vp*

\
A~v!, ~8!

~v2v01 i«!Bm~v!5(
k

Vk

\
eik•rmCk~v!

1(
p

Vp

\
eip•rm /\Dm,p~v!, ~9!

~v2vp1 i«!Dm,p~v!5
Vp*

\
e2 ip–rm /\Bm~v!, ~10!

~v2vk1 i«!Ck~v!5
Vk*

\
A~v!1(

m

Vk*

\
e2 ik–rmBm~v!,

~11!

whereVk andVk* are the matrix elements describing, respe
tively, absorption and emission of a photon with wave vec
k. Analogous definitions and notations hold for the mat
elements,Vp and Vp* , describing electron conversion pro
cesses, withp the momentum of the conversion electron.

An understanding of the structure of these equations
be obtained by considering Eq.~11!. Equation~11! expresses
the amplitude for finding a photon present,Ck(v). The first
term on the right-hand side of Eq.~11! corresponds to having
the source nucleus emit such a photon. The sum overm on
the right-hand side of Eq.~11! corresponds to the emission o
a photon by the scattering nuclei. Since each nucleus ca
this we must sum over all resonant scattering nuclei. O
must keep track of where that emission took place by int
ducing the appropriate phase factor. An analogous inter
tation can be done for all other processes. It should be
phasized at this stage that the treatment of the elec
conversion processes is only necessary to produce a w
~and also a shift that will be incorporated intov0) due to
electron conversion which, combined with the radiati
width ~see later!, will give the total width of the nuclear
excited state. This has been explained in detail in Appen
A. Combining Eqs.~7!–~11! it has been shown in Appendi
A that

S v2v01 i
G

2\ DA~v!

511(
m

(
k

1

v2vk1 i«

uVku2

\2
e2 ik–rmBm~v!,

~12!

whereG is the total width of the nuclear excited state, giv
by the sum of the electron conversion widthgc, and the
radiative widthgR, defined by Eqs.~A5! and ~A9!, respec-
tively. v0 incorporates a level shift coming from the summ
tion overk in Eq. ~7!. This is explained in Appendix A.

It has been shown also in Appendix A that
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S v2v01 i
G

2\ DBm~v!

5A~v!(
k

1

v2vk1 i«

uVku2

\2
eik–rm

1(
k

(
m8Þm

Bm8~v!
1

v2vk1 i«

uVku2

\2
eik•~rm2rm8!.

~13!

Equations~11!, ~12!, and~13! are the fundamental equation
describing multiple scattering in the frequency domain. T
positions of all resonant nuclei occur in the expressions.

The system of equations has been solved exactly in
case of radiation coming from a radioactive source,6 scat-
tered in the forward direction. In the following we will us
another approach, where an approximate solution will
presented. This solution will lead to the idea of holograp
with g radiation.

B. Approximate solution

Hypotheses. ~i! The probability of the source nucleus r
excited by radiation coming from the neighboring nuclei
negligible. This can be justified for internuclear distances.1
Å, which is always the case.~ii ! Single scattering by the
surrounding nuclei. This will be an excellent approximati
for thin samples. In fact, both hypotheses constitute
single scattering approximation.

The sums overm andk in the right-hand side of Eq.~12!
describe absorption by the source nucleus of radiation c
ing from the scattering nuclei. According to hypothesis~i!,
this process will be neglected. Therefore,

A~v!5
1

v2v01 i ~G/2\!
. ~14!

This is nothing but the familiar~Lorentzian! frequency spec-
trum centered aroundv0 with width G/2\.

The last series on the right-hand side of Eq.~13! describes
the excitation of scattering nucleus at positionrm due to
radiation coming from the other scattering nuclei. These p
cesses are neglected according to hypothesis~ii !. Therefore,

S v2v01 i
G

2\ DBm~v!5A~v!(
k

1

v2vk1 i«

uVku2

\2
eik•rm

~15!

or with Eq. ~14!

S v2v01 i
G

2\ DBm~v!

5
1

v2v01 i ~G/2\!(k

1

v2vk1 i«

uVku2

\2
eik•rm.

~16!

Making use of Eqs.~11! and ~16!, Ck(v) and, after going
back to time domain,ck(t) can be calculated explicitly. This
has been done in Appendix B. One finds
e

e

e
y

e

-

-

ck~ t !5
Vk*

\

1

vk2v01 i ~G/2\!
~12ei ~vk2v01 iG/2\!t!

2
Vk*

2\2

gR

@vk2v01 i ~G/2\!#2 (
m

e2 ik•rm

3
eivkr m /c

v0r m /c
$11@ i ~vk2v01 iG/2\!

3~ t2r m /c!ei ~vk2v01 iG/2\!~ t2r m /c!

2ei ~vk2v01 iG/2\!~ t2r m /c!#%. ~17!

The total probability amplitude for having a photon wi
wave vectork is the sum of two terms

ck~ t !5ck
~0!~ t !1ck

~1!~ t ! ~18!

with

ck
~0!~ t !5

Vk*

\

1

vk2v01 i
G

2\

~12ei ~vk2v01 iG/2\!t! ~19!

and

ck
~1!~ t !52

Vk*

2\2

gR

@vk2v01 i ~G/2\!#2 (
m

e2 ik•rm
eivkr m /c

v0r m /c

3$11@ i ~vk2v01 iG/2\!~ t2r m /c!

3ei ~vk2v01 iG/2\!~ t2r m /c!

2ei ~vk2v01 iG/2\!~ t2r m /c!#%. ~20!

ck
(0)(t) is the amplitude to have a photon with wave vectok

produced by the source nucleus alone.ck
(1)(t) is the ampli-

tude to have a photon with wave vectork due to scattering
nuclei, having scattered the photon produced by the sou
nucleus. In the next section, the radiated intensity will
calculated with the aid of expressions~19! and ~20!.

IV. RADIATED INTENSITY AND DISCUSSION

A. Radiated intensity

The probability of having a photon with wave vectork
present at timet, is given by

Pk~ t !5uck~ t !u25uck
~0!~ t !u21uck

~1!~ t !u2

12Re@ck
~0!~ t !ck

~1!* ~ t !#. ~21!

The first termuck
(0)(t)u2 is the probability to have a photo

with wave vectork, due to the presence of the source nucle
alone. The second termuck

(1)(t)u2 is the probability to have a
photon with wave vectork, due to the presence of the sca
tering nuclei, having scattered the photon produced by
source nucleus. For a small number of scattering nuclei,
term is much smaller thenuck

(0)(t)u2 so that it can be ne-
glected. The last term on the right-hand side of express
~21! is an interference term between the amplitude due to
source nucleus and all amplitudes due to the scattering
clei.

The interference termI k
01(t) is given explicitly by
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I k
01~ t !52ReH uVku2gR

\3

1

vk2v01 i ~G/2\!
~12ei ~vk2v01 iG/2\!t!

1

@vk2v02 i ~G/2\!#2 (
m

eik•rm
e2 ivkr m /c

v0r m /c

3$11@2 i ~vk2v02 iG/2\!~ t2r m /c!e2 i ~vk2v02 iG/2\!~ t2r m /c!2e2 i ~vk2v02 iG/2\!~ t2r m /c!#%J . ~22!
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It is clear from expression~22! that the count rate depends o
the direction, this because of the presence of the fac
eik•rm. The count rate will thus change as a function of t
emission direction. Expression~22! contains therefore infor-
mation on the position of the scattering nuclei with respec
the source nucleus.

We will consider the probability that a photon has be
emitted in directionk for long times (t→`). The interfer-
ence term for long times becomes

I k
01~`!52ReH uVku2gR

\3

1

vk2v01 i ~G/2\!

3
1

@vk2v02 i ~G/2\!#2 (
m

eik•rm
e2 ivkr m /c

v0r m /c J .

~23!

At resonance, it can be shown that

I k
01~`!5

8uVku2gR

G3 (
m

sin~k•rm2v0r m /c!

v0r m /c
. ~24!

The contrast functionFk ~still corresponding to the reso
nance condition!, is given by the ratio of the interferenc
term I k

01(`) given by expression~24!, and the square of the
absolute value of expression~19!, evaluated at resonance an
for long times. One has

Fk5
I k

01~`!

uck
~0!~`!u2

52
gR

G (
m

sinS k•rm2
v0r m

c D
v0r m /c

. ~25!

The detector, positioned in a certain direction, does not r
ister a single energy, of course. One has to integrate
interference term, Eq.~23!, and the direct term over all pho
ton energies. When doing so, the new contrast functionFk
will depend solely on the direction, given by the unit vect
k̂5k/k. The explicit expression results in

Fk̂52
gR

G (
m

e2~12 k̂• r̂ m!Gr m/2\c
sin@~12 k̂• r̂ m!v0r m /c#

v0r m /c
,

~26!

where r̂ m is a unit vector in the directionrm . It can be

verified easily thate2(12 k̂• r̂ m)Gr m/2\c'1, so that finally one
has

Fk̂52
gR

G (
m

sin@~12 k̂• r̂ m!v0r m /c#

v0r m /c
. ~27!
rs

o
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This contrast function has similar features as the one for
x-ray fluorescence hologram7 or photoelectron hologram.8 In
the next section this function will be discussed.

B. Discussion

The contrast functionFk̂ depends evidently on the direc
tion k̂ with respect to the positionsrm of the nuclei. Measur-
ing as a function of the direction will thus give informatio
on the positions of the nuclei with respect to the sou
nucleus, whence the term nuclear hologram. Superimpo
on a constant background, due to the direct radiation of
source nucleus, there will be fluctuations in the measu
intensity. The reconstruction of the real image from the
diated intensity can be done according to certain techniq
~see, e.g., Ref. 9!.

The order of magnitude of the ‘‘contrast’’ as well as
the ‘‘oscillations’’ as a function of the emission direction
will be estimated for one scattering nucleus at a distance
Å from the source nucleus. For the ratiogR /G we take 1

10.
The energy is taken as 14.4 keV (57Fe nucleus!. A simple
calculation shows that the contrast, defined here as the
ference between the maximum and the minimum value of
ratio given by expression~27!, is of the order of 1%. Al-
though expression~27!, applied to the simple case of on
source nucleus and one scattering nucleus, is not real
periodic function, it shows a series of~nonequidistant!
maxima and minima. Figure 1 shows the simulated cont
for this simple case. The angular distance between a m
mum and its adjacent minimum is about 8° for radiati
emitted in the vicinity of 90° with respect to the line joinin
source and scattering nucleus. For smaller or larger ang
this angular distance increases. For example, a maxim
occurs around 37° and its adjacent minimum around 20°

Figure 2 displays the intensity pattern of the 14.4 ke
radiation produced by an excited57Fe nucleus at a center o
a cube~of length 2.866 Å! surrounded by eight ground sta
57Fe nuclei at the corners of the cube. The intensity is sho
as a function of the spherical angular coordinatesu and w,
where the axes are defined in Fig. 2. The spots with bri
intensity correspond to directions with high radiated intens
and, inversely, the darker a spot, the lower the intensity c
responding to this direction. For any specific configuratio
the contrast function can be easily evaluated numerically

Experiments can be performed with the use of a positi
sensitive detector. Given the numerical values of the simu
tion displayed in Fig. 2, a rough estimate of the needed
gular resolution can be made for the cluster of nuc
presented in Fig. 2. The angular distance between a m
mum and a minimum is of the order of 10°. If we choose f
the detection a pixel definition of one tenth of this, we wou
need an angular resolution of 1°, which is easily feasible.
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7144 PRB 60J. ODEURS, R. COUSSEMENT, AND C. L’ABBE´
a microcurieg source a total counting time of the order of
few days would already be sufficient.

Finally, it has to be mentioned that a real holograp
image will not look as simple as the one we considered
Fig. 2, this due to the contribution of nuclei situated furth
away from the source nuclei. It can be seen from expres
~27! that the further the nuclei are away from the sou
nucleus, the higher the frequencies of the oscillations co
sponding to these nuclei are. Applying a low-pass filter
procedure on the contrast function, one can filter out the h
frequency oscillations, and thus keep only the contributio
of the near-neighbor atoms.

V. CONCLUSIONS

Radiation emitted by a radioactive nucleus incorpora
in a solid state lattice can go directly to a~far-field! detector
or it can scatter resonantly by neighboring nuclei in t
ground state, before going to the detector. The two type
radiation interfere, which gives rise to oscillations in the
tensity reaching the detector if measurements are perfor
as a function of the emission angle. These oscillations c
tain information about the relative position of the nuclei i
volved in the scattering processes. This is the idea of ho
raphy with nuclear radiation. The direct radiation is t
reference wave and the scattered radiation is the object w
in the holography. The real space reconstruction has to
performed. The quantum mechanical theory of the scatte
processes has been developed using perturbation theo
the frequency domain. Allowing for only single resona

FIG. 1. Contrast function@Eq. ~27!# of the 14.4 keV radiation
produced by an excited57Fe nucleus at which neighborhood
ground state57Fe nucleus is situated at 3 Å.u is the angle between
the line defined by the source and scattering nuclei and the
defined by the source nucleus and the~far away! detector.
c
n
r
n

e
e-
g
h
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d
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ed
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g-
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g
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scattering, the system of equations can be solved exactly.
have developed the theory for a single line source. The
tension to the case where there is hyperfine splitting has
to be done. Nuclear emission holography has the advan
that it could be applied to study structures that are too sm
for the usual x-ray diffraction.

To obtain a single hologram, some conditions have to
fulfilled:11 the environment of every source nucleus has to
the same, every environment has to be oriented in the s
way, the size of the sample has to be much smaller than
distance sample-detector, the radiation emitted by differ
source nuclei has to be incoherent~this is always the case fo
radioactive nuclei!. The problem of sample preparation fo
nuclear emission holography is not trivial. Nuclear emiss
holography is only applicable if enriched single crystalli
samples are available. The most useful radioactive isot
for emission holography is probably57Fe. The problem of
sample preparation is the introduction of57Co ~which decays
to 57Fe) into a sample containing57Fe in the ground state
Ion implantation of57Co into a previously prepared enriche
sample of 57Fe is a possibility. Co-deposition of57Co and
57Fe by means of special techniques such as molecular b
epitaxy ~e.g., at the ion and molecular beam laboratory12 of
the University of Leuven! is another possibility.

As already has been mentioned, the crucial part is
57Fe environment of every57Co. If all environments are
identical and oriented the same way, then separate but i
tical holograms are added. If there exist a small numbe
inequivalent source sites, then the hologram will be a sup

e
FIG. 2. Intensity pattern of radiation produced by an excit

nucleus on a substitutional site in a bcc cell with lattice const
2.866 Å, surrounded by eight ground state nuclei.
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PRB 60 7145QUANTUM MECHANICAL THEORY OF THE FORMATION . . .
position of the neighboring environments surrounding e
source nucleus. If the environments have completely rand
orientations with respect to each other, the structure in
hologram will disappear.

If the problem of sample preparation is solved, the s
cific applications of nuclear emission holography could
the study of nuclei on a surface or of nuclei belonging
clusters or precipitates. A final word could be said about
influence of Thomson electronic scattering. The Thoms
scattering occurs not only for the scattering nuclei, but a
for the atoms of the matrix. The Thomson cross section4 is of
the order of 6310225 cm2, while the resonant nuclear cros
section for57Fe is 2.56310218 cm2. If the concentration of
the resonant scattering nuclei is low~as is the case for non
enriched samples!, the Thomson scattering will increase th
background, reducing the effect of the holographic osci
tions. For enriched, thin samples, Thomson scattering wil
negligible because of the large difference between the r
nant nuclear and Thomson cross sections.
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APPENDIX A

The general Eqs.~12! and ~13! will be derived in this
appendix, starting from Eqs.~7!–~11!. Substituting Eq.~8! in
Eq. ~7!

~v2v01 i«!A~v!5(
k

Vk

\
Ck~v!

1(
p

1

v2vp1 i«

uVpu2

\2
A~v!11.

~A1!

Analogously, with Eqs.~9! and ~10!, one has

~v2v01 i«!Bm~v!5(
k

Vk

\
eik•rmCk~v!

1(
p

1

v2vp1 i«

uVpu2

\2
Bm~v!.

~A2!

By converting the sums onp in Eqs.~A1! and ~A2! into an
integral4 and expressinguVpu2/\2(v2vp1 i«) in terms of a
principal part and a delta function, according to the relatio4

1

x1 i«
5P

1

x
2 ipd~x! ~A3!

one has
h
m
e

-
e

e
n
o

-
e
o-

-
i-
-

(
p

uVpu2

\2~v2vp1 i«!
A~v!

5
V

~2p\!3

1

\2 PE E E uVpu2

v2vp
p2dpdVA~v!2 i

3
V

~2p\!3

p

\2E E E uVpu2p2d~v2vp!dpdVA~v!

~A4!

and an analogous expression forBm(v). P stands for the
principal value of the integral. The presence of the volumeV
in Eq. ~A4! and in the others resulting from the conversion
a sum into an integral in three dimensions, is only appar
because the matrix elements such asuVpu2 contain10 1/V.

When the expression in Eq.~A4! is taken to the left-hand
side of Eq.~A1!, the principal value term corresponds to
shift in the frequency, which can be incorporated intov0.
The second term of Eq.~A4! gives a width due to the inter
action of a nucleus with its conversion electron. This wid
gc is defined by

gc5
2pV

~2p\!3\ E E E uVpu2p2d~v2vp!dpdV. ~A5!

Rewriting Eq.~A1! gives then

S v2v01 i
gc

2\ DA~v!5(
k

Vk

\
Ck~v!11. ~A6!

The corresponding equation forBm(v) is

S v2v01 i
gc

2\ DBm~v!5(
k

Vk

\
eik•rmCk~v!. ~A7!

Solving now Eq.~11! of the main text forCk(v) and substi-
tuting into Eq.~A6! gives

S v2v01 i
gc

2\ DA~v!5(
k

1

v2vk1 i«

uVku2

\2
A~v!

1(
m

(
k

1

v2vk1 i«

uVku2

\2

3e2 ik•rmBm~v!11. ~A8!

Considering the first term on the right-hand side of Eq.~A8!,
the sum onk can be converted into an integral, analogou
to what has been done before. This results again in a pri
pal value term and a delta-function term. The principal va
term corresponds again to a frequency shift when brough
the left-hand side. The delta function term corresponds to
usual radiative width13 gR , where

gR5
2pV

~2p!3\
E E E uVku2d~v2vk!k2dkdV. ~A9!
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Collecting terms on the left-hand side of Eq.~A8!, using Eq.
~A9!, gives

S v2v01 i
G

2\ DA~v!

511(
m

(
k

1

v2vk1 i«

uVku2

\2
e2 ik•rmBm~v!

~A10!

which is Eq.~12! of the main text.
G is the total width, equal to the sum of the conversio

electron and radiative widths. Solving again Eq.~11! of the
main text forCk(v) and substituting into Eq.~A7! gives

S v2v01 i
gc

2\ DBm~v!5A~v!(
k

1

v2vk1 i«

uVku2

\2
eik•rm

1(
k

(
m8

Bm8~v!
1

v2vk1 i«

3
uVku2

\2
eik•~rm2rm8!. ~A11!

The second series of the right-hand side of Eq.~A11! can be
divided in two parts: one withm8Þm and the other with
m85m. Then Eq.~A11! can be rewritten as

S v2v01 i
gc

2\ DBm~v!

5A~v!(
k

1

v2vk1 i«

uVku2

\2
eik•rm

1Bm~v!(
k

1

v2vk1 i«

uVku2

\2

1(
k

(
m8Þm

Bm8~v!
1

v2vk1 i«

uVku2

\2
eik•~rm2rm8!.

~A12!

The second term on the right-hand side of Eq.~A12! can
again be transformed into an integral. When this term
brought to the left-hand side, there will again be a freque
shift and a radiative width. The equation forBm(v) then
becomes

S v2v01 i
G

2\ DBm~v!

5A~v!(
k

1

v2vk1 i«

uVku2

\2
eik•rm

1(
k

(
m8Þm

Bm8~v!
1

v2vk1 i«

uVku2

\2
eik•~rm2rm8!

~A13!

which is Eq.~13! of the main text.
-

s
y

APPENDIX B

The sum onk in expression~16!

S v2v01 i
G

2\ DBm~v!

5
1

v2v01 i ~G/2\!(k

1

v2vk1 i«

uVku2

\2
eik•rm

~B1!

of the main text will be evaluated now. After converting th
sum into an integral, as has been done in Appendix A o
has

(
k

1

v2vk1 i«

uVku2

\2
eik•rm

5
V

~2p!3\2E E E uVku2

v2vk1 i«
eik•rmd3k.

~B2!

The integral in expression~B2! is of special interest, becaus
it contains the factoreik•rm. It will be evaluated in Appendix
C. One finds

(
k

1

v2vk1 i«

uVku2

\2
eik•rm

52
V

2p\2c2

eivr m /c

r m
uV~v!u2v. ~B3!

The radiative widthgR can be shown@after evaluation of the
integral in expression~A9!# to be equal to

gR5
V

p\c3
uV~v!u2v2. ~B4!

Substituting Eq.~B4! into Eq. ~B3! gives

(
k

1

v2vk1 i«

uVku2

\2
eik•rm52

gR

2\

eivr m /c

vr m /c
~B5!

which is a Hankel function of the first kind.
Substituting Eq.~B5! into Eq. ~B1! gives

S v2v01 i
G

2\ DBm~v!52
1

v2v01 i ~G/2\!

gR

2\

eivr m /c

vr m /c
.

~B6!

Substituting finally Eqs.~14! of the main text and~B6! into
Eq. ~11! of the main text gives us

Ck~v!5
1

~v2vk1 i«!

Vk*

\

1

v2v01 i ~G/2\!

2
gRVk*

2\2

1

~v2vk1 i«!

1

@v2v01 i ~G/2\!#2

3(
m

e2 ik•rm
eivr m /c

vr m /c
. ~B7!
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Going back to the time domain, applying the inverse Fou
transformation of expression~B7! @Eq. ~4!#, givesck(t)

ck~ t !52
1

2p i

Vk*

\ E
2`

1` ei ~vk2v!t

~v2vk1 i«!@v2v01 i ~G/2\!#

3dv1
1

2p i

Vk*

2\2 (
m

e2 ik•rm

3E
2`

1` ei ~vk2v!t

~v2vk1 i«!@v2v01 i ~G/2\!#2

3gR

eivr m /c

vr m /c
dv. ~B8!

The expression containing the first integral will be deno
ck

(0)(t). After contour integration one finds

ck
~0!~ t !5

Vk*

\ F 1

vk2v01 i ~G/2\!
1

ei ~vk2v01 iG/2\!t

v02vk2 i ~G/2\!G
5

Vk*

\

1

vk2v01 i ~G/2\!
~12ei ~vk2v01 iG/2\!t!.

~B9!

The expression containing the second integral on the ri
hand side of expression~B8! will be denotedck

(1)(t), defined
by

ck
~1!~ t !5

1

2p i

Vk*

2\2 (
m

e2 ik•rm

3E
2`

` ei ~vk2v!t

~v2vk1 i«!@v2v01 i ~G/2\!#2 gR

3
eivr m /c

vr m /c
dv. ~B10!

It has to be noticed thatv50 is not a pole because of th
presence ofgR @Eq. ~B4!#. E.g., for a dipole transitiongR
}v3 ~see, e.g., Ref. 13!. Becausevk will always be close to
the nuclear resonance frequencyv0 , the factor 1/v can be
written as 1/v0 in all residues arising in the integration ov
v. This can be confirmed by a straightforward analysis.
gR /v can be put in front of the integral and replaced
gR /v0 . Therefore

ck
~1!~ t !5

1

2p i

Vk*

2\2

gR

v0r m /c (
m

e2 ik•rm

3E
2`

1` ei ~vk2v!t

~v2vk1 i«!@v2v01 i ~G/2\!#2

3eivr m /cdv. ~B11!

This integral can also be calculated using the residue th
rem. Fort,r m /c, the contour has to be closed in the upp
half plane, where there are no poles. Consequently, fot
,r m /c, ck

(1)(t)50. This is nothing but the principle of cau
sality which states that there cannot be any radiation com
from a scattering nucleus before it is excited by radiat
r

d

t-

o

o-
r

g
n

coming from the source. Fort.r m /c the contour has to be
closed in the lower half plane, where there are two polesv
5vk2 i« and v5v02 iG/2\ ~which is of second order!.
After calculation one finds

ck
~1!~ t !52

Vk*

2\2

gR

@vk2v01 i ~G/2\!#2 (
m

e2 ik•rm
eivkr m /c

v0r m /c

3$11@ i ~vk2v01 iG/2\!~ t2r m /c!

3ei ~vk2v01 iG/2\!~ t2r m /c!

2ei ~vk2v01 iG/2\!~ t2r m /c!#%. ~B12!

Substituting expressions~B9! and~B12! into Eq.~B8! finally
gives

ck~ t !5
Vk*

\

1

vk2v01 i ~G/2\!
~12ei ~vk2v01 iG/2\!t!

2
Vk*

2\2

gR

@vk2v01 i ~G/2\!#2 (
m

e2 ik•rm

3
eivkr m /c

v0r m /c
$11@ i ~vk2v01 iG/2\!~ t2r m /c!

3ei ~vk2v01 iG/2\!~ t2r m /c!2ei ~vk2v01 iG/2\!~ t2r m /c!#%

~B13!

which is Eq.~17! of the main text.

APPENDIX C

The integral in expression~B2!, I (rm ,v), is defined by

I ~rm ,v!5E E E uVku2

v2vk1 i«
eik•rmd3k. ~C1!

Choosingrm//OZ, soeik•rm5eikr mcosu, one has

I ~rm ,v!5E E E uVku2

v2vk1 i«
eikr mcosuk2dksinududf.

~C2!

Supposing thatuVku2 does not depend onu andf ~no polar-
ization effects!, thef integration gives 2p. Theu integration
is also simple

E
0

p

eikr mcosusinudu5
eikr m2e2 ikr m

ikr m
. ~C3!

Therefore

I ~rm ,v!52pE
0

` uVku2

v2vk1 i« S eikr m2e2 ikr m

ikr m
D k2dk.

~C4!

With

k5
vk

c
→dk5

1

c
dvk ~C5!

the integral becomes
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I ~rm,v!5
2p

c3 E
0

` uVku2

v2vk1 i« S eivkr m /c2e2 ivkr m /c

ivkr m /c D
3vk

2dvk . ~C6!

This integral cannot be evaluated in a simple manner us
contour integration, because of the lower bound 0. It will
shown now how the lower bound can be extended to2`,
without changing the value of the integral.e6 ivkr m /c are os-
cillating functions ofvk . For r m large~of the order of a few
Å!, vkr m /c@1, except for small values ofvk . But for small
values ofvk ,vk

2/(v2vk1 i«) is negligible. For appreciable
values ofvk ,e6 ivkr m /c oscillates rapidly, so there will be n
contribution to the integral unless one of the other fact
shows a comparatively fast variation, compensating this
to e6 ivkr m /c. This occurs neark5v/c. As a consequence
the range ofvk values that contribute to the integral could
reduced to a small regioncDk0 aroundv and there, all fac-
tors are practically constant except those which have
been mentioned. So we can extend the integral from2` to
1`. Therefore
on
-

g

s
e

st

I ~rm ,v!5
2p

ir mc2E
2`

` uVku2eivkr m /c

v2vk1 i«
vkdvk

2
2p

ir mc2E
2`

` uVku2e2 ivkr m /c

v2vk1 i«
vkdvk . ~C7!

These two integrals, contrary to the one in expression~C6!,
can be calculated easily using the residue theorem. The
tour of the first integral has to be closed in the upper h
plane. The pole is within the contour. The contour of t
second integral has to be closed in the lower half plane
the pole is outside of the contour, so that the second inte
is zero. Therefore we have

I ~rm ,v!52
~2p!2eivr m /cuV~v!u2v

r mc2
. ~C8!

This expression is used in expression~B2!.
s
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