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Modeling premartensitic effects in Ni2MnGa: A mean-field and Monte Carlo simulation study
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The degenerate Blume-Emery-Griffiths model for martensitic transformations is extended by including both
structural and magnetic degrees of freedom in order to elucidate premartensitic effects. Special attention is paid
to the effect of the magnetoelastic coupling in Ni2MnGa. The microscopic model is constructed and justified
based on the analysis of the experimentally observed strain variables and precursor phenomena. The descrip-
tion includes the~local! tetragonal distortion, the amplitude of the plane-modulating strain, and the magneti-
zation. The model is solved by means of mean-field theory and Monte Carlo simulations. This last technique
reveals the crucial importance of fluctuations in pretransitional effects. The results show that a variety of
premartensitic effects may appear due to the magnetoelastic coupling. In the mean-field formulation this
coupling is quadratic in both the modulation amplitude and the magnetization. For large values of the magne-
toelastic coupling parameter we find a premartensitic first-order transition line ending in a critical point. This
critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks
in the specific heat, not always associated with a true phase transition. The main conclusion is that premarten-
sitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and
the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong
enough to freeze the involved mode phonon. The implication of the results in relation to the available experi-
mental data is discussed.@S0163-1829~99!12933-3#
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I. INTRODUCTION

Many metals and alloys undergo a so-called martens
transition~MT! from an open cubic phase at high tempe
tures to a more closed-packed phase at lower temperatu1

It is a displacive, diffusionless, first-order phase transiti
accompanied by incomplete softening of certain transve
phonon modes. For Zr, which belongs to an ideally sim
class of martensitic materials, the pure group-IV metals,2,3 it
was demonstrated that the first-order character can be un
stood as an effect of a coupling between two simultane
strains: an internal two-plane shuffle strain and a unifo
strain.4

A rich variety of precursor phenomena5 have been ob-
served in~weakly! first-order MT. Some of them, as the in
termediate tweed structures,6,7 are not common to all mate
rials, but others, intimately related to the transiti
mechanism, are present in almost all bcc systems studie
far. The most significant is the anomalously lowTA2@110#

phonon branch (@110# propagation,@11̄0# polarization#!, ac-
companied by a low value of the elastic constantC85(C11

2C12)/2. Moreover, both the phonon branch and the cor
sponding elastic stiffness soften with temperature. Recen
a lot of interest has been focused on the intermetallic
Mn-Ga alloy close to the stoichiometric compositio
Ni2MnGa. It is the only known ferromagnetic fcc Heusl
alloy undergoing a MT on cooling. Besides its theoretic
interest, it may be of technological importance too since
opens the possibility of controlling its shape memory pro
PRB 600163-1829/99/60~10!/7071~14!/$15.00
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erties~intimately related to the MT! by applying an externa
magnetic field.8 It has a transition from a bcc~neglecting the
atomic order! to a low-temperature tetragonal phase b
which is modulated by a five-plane shuffle strain.9,10 Particu-
larly intriguing is that for nearly stoichiometric compositio
the full MT is preceded by an intermediate phase in wh
apparently only the shuffle strain is activated, but not
tetragonal strain.11–14 This intermediate phase consists in
micromodulated domain structure, without resulting mac
scopic tetragonal deformation so that the cubic symmetr
preserved.14 This is accompanied by a significant, althoug
not complete, softening of theTA2 phonon branch at a wav
vectorj050.33. Only at lower temperatures, at the marte
sitic transition point, the homogeneous tetragonal strain
activated~and the modulation changes slightly!. This par-
ticular behavior observed in Ni2MnGa seems to be related t
the influence of magnetism. Different behaviors have be
reported in the literature. For some samples11,13,14there ex-
ists evidence for a true phase transition of very weak fi
order which is driven by a magnetoelastic coupling. T
main proof of that is the fact that the intermediate transit
~IT! shifts with the external applied field11 while no ~signifi-
cant! magnetic-field dependence has been found for the
temperature.15,16In other studies,17 the authors could not find
any indication for an IT although precursors, clearly relat
to the magnetization of the sample, have been observed.
parently, the only relevant difference in the samples used
Planeset al.,11 Zheludevet al.,13,14 and Stuhret al.17 is the
content in Mn. Very recently, it has been suggested8 that the
tetragonal phase can be suppressed by increasing the co
7071 ©1999 The American Physical Society
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7072 PRB 60CASTÁN, VIVES, AND LINDGÅRD
tration of Ni at the expense of the content of Mn. Moreov
the magnetoelastic effects have been confirmed from the
perimentally observed dependence of the elastic constan
an external magnetic field.18 In spite of the experimental evi
dence for the magnetoelastic coupling in Ni2MnGa, its mi-
croscopic origin has not been established yet.

In the present paper we have theoretically investigated
nature of the bcc to bct transition and constructed a mode
order to solve the puzzling behavior and to elucidate the
of the magnetic coupling, which counterintuitively seems
couple the ferromagnetic order stronger to the modula
strain (h) than to the uniform tetragonal strain (e). We shall
demonstrate that the situation can be described by the de
erate Blume-Emery-Griffiths model~DBEG!,19 extended to
include coupling to magnetic degrees of freedom, and w
an interpretation of the variables, appropriate to the pres
case.

The plan of the paper is the following: First, in Sec. II, w
provide an analysis of the experimental facts and a theo
cal explanation of the observed phenomena, which is use
justify a microscopic model presented in Sec. III. The mo
is studied using first mean-field theory~Sec. IV! and next
Monte Carlo simulation~Sec. V!. The discussion from the
comparative study is presented in Sec. VI where we prov
also our conclusions taking into account the available exp
mental data.

II. EXPERIMENTAL FACTS
AND THEORETICAL INTERPRETATION

A. Experimental facts

The structural properties of Ni2MnGa have been investi
gated in a series of papers.9–14,17,20At high temperatures the
alloy has the fcc (L21) Heusler structure which, neglectin
the atomic order, can be regarded as a bcc lattice. It is p
magnetic at high temperatures with the magnetic mome
mainly on the Mn sites.21 At temperatures belowTm , it or-
ders ferromagnetically with no particular easy direction
the moment. At the temperatureTM (,Tm) there is a~first-
order! structural phase transition of the martensitic type to
averagetetragonal structure, which additionally is modulat
by a transverse five-layer shuffling strain. Prior to this tra
sition precursor structures of that phase as well as of the
having a six-plane modulation have been observed
neutron-scattering experiments.14,17 This may happen also a
a transition~first-order! at a temperatureTI (TM,TI,Tm)
giving rise to a genuine intermediate phase22 without any
macroscopic tetragonal deformation.14

The above temperaturesTm , TM , and TI are extremely
sensitive to the composition and atomic ordering of
sample. ThusTm may vary from 360 to 395 K, whereasTM
may vary from 175 to 450 K. In the sample studied by Stu
et al.,17 Tm'364 K andTM'284 K with precursor signs
for T.TM , but no intermediate phase was found. In t
sample studied by Zheludevet al.,13,14 Tm'380 K andTM
'220 K and anintermediate phaseis observed belowTI
'260 K. Similarly, Planeset al.11 studied a sample with
Tm'381 K and TM'175 K and found an intermediat
transition atTI'230 K. In spite of the large variation in th
temperatures, we assume the basic physics is the same
hence we shall use the information obtained
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observations on different samples. In particular, we shall
tempt to explain the precursor and the intermediate ph
phenomena by constructing an effective microscopic Ham
tonian, which allows analysis beyond mean-field or Land
expansion treatments.8,11,23

B. Two-strain model

Although Ni2MnGa is a metallic alloy for which both the
structure and the magnetism is determined by the conduc
electrons, it is instructive to consider a model system
the mismatch between cubic crystals, similarly as it is fou
in KCl grown on NaCl ~001!24,25. In this case, the very
large (;17%) lattice constant mismatch causes the interf
to buckle simultaneously in the@110# and @11̄0# directions.
This produces superstructures consisting of seven NaCl
six KBr layers, or multiples thereof, perpendicular to t
interface, while preserving the square symmetry. Both
NaCl and the KBr crystals are modulated since they h
similar elastic properties. This gives rise to superstruct
peaks in the x-ray and helium scattering spectra, precisel
those observed in the intermediate phase of Ni2MnGa, where
one also would expect more higher-order satellites in o
symmetry directions to be found, but not so far looked
experimentally. The buckling gives rise to a variation of t
local @001# direction and a change in lattice constant perp
dicular to the interface~corresponding to a local tetragon
distortion!. We stress that for the ionic crystals the forces
no means triggers the local modulating strains, which
caused by the forced contact between unequal crystals.
Ni2MnGa the situation is rather different. Here, a nesti
feature of the Fermi surface causes a strong electron-pho
coupling and an incipient soft phonon mode atqW 5^j,j,0&
positions in the fcc phase, wherej; 1

3 .14,17 This is presum-
ably the driving mechanism in Ni2MnGa, and gives, as a
consequence, the tetragonal distortion. As precursor p
nomena, quasielastic peaks are observed atj5 1

3 andj5 1
6 ,17

corresponding to a similar six-plane modulation as discus
for the alkali salt interface. To match this to the fcc~001!
lattice plane it is advantageous to make a lattice misma
and expand the lattice and to rumple the interface, or,
other words, cause the@001# direction to fluctuate in
epitaxial-like angles. Stuhret al.17 have shown that the six
plane fcc modulation corresponds precisely to a five-pla
modulation of the tetragonal phase, and the latter is found
a precursor phenomenon. A 5:6 expansion would be v
drastic. However, it suffices to create a superstructure o
common divisor, for example a 30- or 60-plane repeat d
tance. The latter would correspond to a lattice mismatch
1.67%, which is very close to the mismatch observed
tween the fcc and tetragonal phase of Ni2MnGa: ;1.6%.21

Hence we argue that the electronically driven six-pla
modulation in turn also causes the tetragonal distortion. T
theory for why it is advantageous for mismatched crystals
epitaxial interfaces to develop mutual superstructure pe
was discussed in more detail by Vives and Lindga˚rd.26 The

modulation occurs simultaneously in theqW 5@ 1
3 , 1

3 ,0# and qW

5@ 1
3 ,2 1

3 ,0# directions, thus preserving the square symme
of the ~001! plane and yielding a modulated~001! plane,
rather than adirection. In the fcc structure there are thre
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such equivalent planes:~100!, ~010!, and ~001!. In order to
~essentially! preserve the volumeV, a change of which is
expensive for the electrons, thec-axis @001# must shrink
@from T54.2– 295 K it is indeed observed thatV1/3 only
increases by 0.5%~Ref. 21!#. Therefore a model must in
clude a coupling between theplane modulationh and the
tetragonal straine. Then, the question is: How can there
apparent separate temperatures for the onset of orderin
the two kinds of strains? This is possible if in the interme
ate phase the tetragonal strain is only local, varying in dir
tion and also in the allowed directions in the fcc cryst
Moreover, only in the martensitic phase microcrystals wit
resulting tetragonal strain should be formed. The correspo
ing tetragonal structure is observed as highly mosaic wit
large variation of the@001# directions,17 in agreement with
the above picture.

C. Landau models

Very recently, Landau models for the MT in cubic ferr
magnetic materials have been proposed.8,23 In these models,
the magnetoelastic coupling between the uniform strain
sor and the~vector! magnetization is fully considered. Nev
ertheless, they seem more appropriated to the study of
magnetic properties of the martensitic phase rather tha
the analysis of the IT itself. Here, accordingly with the d
cussion given above, we shall adopt a different strategy
study the structural transition in Ni2MnGa in terms of a Lan-
dau expansion of the only most relevant strain and magn
zation variables, including nonuniform strains or modu
tions. Then, similarly to the case for the bcc to hcp transit
in Zr,4 we include the following terms, which are allowed b
symmetry:

F~h,e!5
1

2
mvs

2h21
1

4
Bh41

1

6
Ch6

•••1
1

2
C8e21•••

1Deh2, ~1!

whereh is the discussed plane modulation strain ande the
local uniform contraction perpendicular to that plane, but
do not consider higher-order uniform strain terms. Herevs

2

5a(T2Ts) is the squared frequency27 for the incipient soft-

mode phonon withqW 5^ 1
3 , 1

3 ,0&, other constants are positive
and C85 1

2 (C112C12), which is small and temperature de
pendent. By eliminating the local tetragonal straine we can4

write the free energy along the optimum energy path invo
ing bothe52D2/C8h2 andh as

F~ h̃ !5
1

2
mvs

2h̃21
1

4
B̃h̃41

1

6
Ch̃6 . . . ,

B̃5B22D2/C8. ~2!

The coupling between the two strains therefore makes it p
sible for B̃ to become negative and hence to cause a fi
order transition atTM before the soft-mode transition atT
5Ts , even without the coupling with the magnetism.

Next let us consider the influence of the magnetism
ferromagnetic momentmW can influence an itinerant magn
as Ni2MnGa in two ways. First, giving rise to a splitting o
the electronic energy bands, which is proportional to the a
of
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plitude umu, but which is not sensitive to the moment dire
tion. This will cause a change in the soft phonon frequen
below Tm proportional toumu2:

vs
2~m!5a~T2Ts!2uumu25a~T2Ts!1b~T2Tm!, ~3!

where a, b, and u are positive constants, and we have a
sumed a mean-field behavior forumu2. A measurement of the
soft-mode frequency squared should therefore exhibit a k
at the magnetic ordering temperature. This is exactly the
havior observed by Stuhret al.,17 who found a
50.018 meV2/K and b50.020 meV2/K. Unfortunately,
for the samples showing the IT~Refs. 11, 13, and 14! mea-
surements in the paramagnetic phase are not available.
ertheless, in what follows, we shall assume the behavior
cussed above for all the samples. Hence the magnetic f
energy part can be written as

Fmag~m,h̃ !5
1

2
aumu21

1

4
bumu41•••1

1

2
gumu2h̃2, ~4!

where a5A(Tc2T) and Tc is the magnetic transition in
absence of magnetoelastic coupling.A and b are positive
parameters andg52mu is yielding the coupling between
the amplitude squared of the magnetization and the effec
modulating strain. By eliminatingumu2 one can write an ef-
fective free energy in the form of Eq.~2!. This yields a
further temperature dependence ofvs

2 andB̃, as discussed by
Planeset al.11

The other possible coupling between the magnetiza
and the structure is by magnetostriction, which deforms
crystal in thedirection of the magnetization.8 Experimen-
tally, the easy direction of magnetization is not known w
certainty, even in the tetragonal phase. Websteret al.21 pro-
posed that it might be in thê111& directions of theL21
phase,28 but that other directions are almost as likely. An
lyzing their data perhaps allows the conclusion that it is
leastnot in the tetragonal@001# direction, which would nor-
mally have been the obvious choice. If so, it is confined
the~001! plane, say, which has fourfold symmetry and the
fore not yielding a strong easy axis. The lowest-order c
pling would then be of the form1mW 2e2. An interesting pos-
sibility is if the easy direction is along the@100# direction,
because this may belong to two different modulation plan
~001! and~010!, therefore yielding a minimum magnetostric
tion because it cannot distinguish between a@001# and a
@010# tetragonal strain. The effect is further reduced beca
of the equivalence between moments in the@100# and @010#
directions in the modulated plane~001!. Inclusion of the cou-
pling can be done in Eq.~4!, with no qualitative change
@except for an induced dependence on the magnetizatio
C8 ~Ref. 11!#, and hence we shall neglect it in the followin
If the coupling is sufficiently strong, it would no doubt pre
vent the existence of an intermediate phase in Ni2MnGa.

The conclusion of the above analysis is that the pha
may be characterized by the minimum path modulat
strain h̃ in Eq. ~2! which includes a finite, but local, tetrag
onal strain which is on average zero because of fluctua
directions. This is consistent with the observation of a s
nificant broadening of the fcc~002! peak in the neutron-
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7074 PRB 60CASTÁN, VIVES, AND LINDGÅRD
scattering data.17 This strain is coupled to the magnetizatio
such that a ferromagnetic moment on neighboring sites
favor a modulation also at these sites, due to a change in
local band structure, but without differentiating between
three possible planar modulations and accompanying tet
onal local strains. In order to give meaning to the notion o
local band structure, we consider sites not as the Mn a
positions, but at a more coarse-grained level, e.g., at the u
cell level. At the MT a resulting tetragonal straine may arise
as the interfaces between the modulated fcc and the m
lated and locally tetragonal crystallites grow larger a
thicker. This strain is on the average in the^001& directions
but with considerable variations in the epitaxial angles re
tive to those. To construct a simplified model, we shall co
sider one with only two variables such that each has only
degrees of freedom. One variable with only two values r
resents the plane modulationsh̃, and the other also with only
two values represents the resulting tetragonal straine. This
does not correspond to the behavior of a subspace of v
ants, but constitutes a simplified statistical analog to
physics of Ni2MnGa.

III. MODEL

The desired degrees of freedom can be represente
the p-degenerate Blume-Emery-Griffiths Hamiltonia
~DBEG!.19 It was first introduced with the aim to account fo
the entropy stabilization of the high-temperature phase
martensitic transitions. Recently, it has been shown29 that it
is equivalent, with respect to universal properties, to tha
the ordinary BEG model with the crystal field shifted by
term kBT ln p.

Although the DBEG model is very simple, it include
most of the relevant physical ingredients to understand M
namely a multivariant low-temperature deformed phase
a high-temperatureaveragecubic phase with enhanced e
tropy. The model is an extension of the ordinary three-s
Blume-Emery-Griffiths Hamiltonian defined on a lattic
which we shall take as simple cubic~or square!, as motivated
above. On each lattice sitei 51, . . . ,N a variables i51,0,
21 represents the deformation state near each site on
lattice. The states i50 represents the undistorted phase, a
it is chosen to bep fold degenerate (p>1), in order to ap-
proximately account for the high entropy of vibration of th
cubic phase. The statess i561 represent the distorte
phase. The Hamiltonian accounting for the energy gain
having the same structure on neighboring sites was wri
as19

HM52J(
^ i , j &

NN

s is j2K(
^ i , j &

NN

~12s i
2!~12s j

2! ~5!

where the sums are performed over all nearest-neigh
pairs. In what follows we will takeJ.0 as the unit of energy
and work in terms of reduced magnitudes defined asH*
5H/J, K* 5K/J . . . .

Two order parameters can be defined,f15(s i /N and
f25(s i

2/N. The model in Eq.~5! was solved, forK* >0,
by mean-field and Monte Carlo simulation techniques.19 We
found a phase transition from a cubic~disordered! phase with
f150 to a tetragonal~ordered! phase withf1Þ0. The be-
ill
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havior of the secondary order parameterf2 in the disordered
phase depends onK* and T* , but exhibits nonanalytica
behavior at the same temperature asf1. Large values ofK*
stabilize the cubic phase. Moreover, theK* parameter and
the degenerationp of the 0 state control the order of th
transition, which changes from being of second order~for
low values ofK* ) to first order.

The DBEG model19 was introduced as a simplificatio
and a further generalization of the Lindga˚rd-Mouritsen
model,4 initially designed to mimic the bcc to hcp transitio
in Zr. Consequently, it naturally inherits the identification
the two order parameters suitable for Zr:f1 is the two-plane
shuffle strain andf2 the homogeneous strain. In the previo
work19 this was not emphasized since bothf1 and f2 ex-
hibit a phase transition at the same point.

For Ni2MnGa it is more natural to identify the order pa
rameters in the opposite way. Therefore, in the present w
we define

e5
( s i

N
, ~6!

q5
( s i

2

N
. ~7!

The breaking symmetry order parametere corresponds to the
tetragonal distortion in the sense that ife50 ~equal popula-
tion of s i511 and 21) it corresponds to having all th
variants equally populated, and hence anaverage cubic
phase. Forq the relation is more involved because of th
complicated physics of the modulating strainh̃. In the high-
temperature cubic phase, thes i variables distribute at ran
dom q5q052/(p12). Let us assign the differenceq02q

with the amplitudeh̃ of the plane modulating strain withou
distinguishing between the three possible modulating plan

We now include the magnetic degrees of freedom
means of spin variablesSi561 ~defined on the lattice site
i 51, . . . ,N) having a ferromagnetic Ising interaction. Thu
the purely magnetic contribution is

Hm* 52Jm* (
^ i , j &

SiSj , ~8!

whereJm* .0.
The total Hamiltonian should further include a couplin

term between the structural and magnetic variables. We h
argued in Sec. II that the magnetic influence of electro
properties gives rise to a coupling between the magnetic
ment and the plane modulation. On a microscopic level le
assume that the presence of a moment of neighboring
gives rise to a modulation on neighboring sites as motiva
previously. To describe this, let us consider the followi
symmetry allowed30 interaction contributions:

Hint* 52U11* (
^ i , j &

SiSjs i
2s j

22U00* (
^ i , j &

SiSj~12s i
2!~12s j

2!

2U10* (
^ i , j &

SiSj@s i
2~12s j

2!1s j
2~12s i

2!#, ~9!
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that may be rewritten as

Hint* 52~U11* 1U00* 22U10* !(
^ i , j &

SiSj S 1

2
2s i

2D S 1

2
2s j

2D
1

1

2
~U11* 2U00* !(

^ i , j &
SiSjF S 1

2
2s i

2D1S 1

2
2s j

2D G
2

1

4
~U11* 1U00* 12U10* !(

^ i , j &
SiSj . ~10!

In the pure ferromagnetic phase (Si51) this Hamiltonian
can be viewed as an Ising model for the variables 1/22s i

2 .
Thus a phase transition exists for (U11* 1U00* 22U10* ).0 and
U11* 5U00* . For simplicity, in what follows we shall take
U11* 5U00* 50 and denoteU* 5U10* ,0. Then, the coupling
Hamiltonian becomes

Hint* 52U* (
^ i , j &

SiSj S 1

2
2s j

2D S 1

2
2s i

2D2
1

2
U* (

^ i , j &
SiSj .

~11!

As we shall see in the next section, in the mean-field
proximation, the first term becomes of the form of the co
pling term in Eq.~4! whereas the last term gives a simp
modification of the purely magnetic interactionJm* defined in
Eq. ~8!. Furthermore, Eq.~11! shows that it may be particu
larly convenient to choosep52, which givesq051/2.

The total Hamiltonian model for Ni2MnGa can then be
written as

H* 5HM* 1Hm* 1Hint* , ~12!

with HM* , Hm* , andHint* , respectively given by expression
~5!, ~8!, and~11!. We shall demonstrate that it is possible
split up the structural transition into one determined by
order parameterq, which we will associate with the IT and
another one, determined bye, to be associated with the te
tragonal deformation occurring at the MT.

IV. MEAN-FIELD TREATMENT

In this section we solve the presented model~12! by using
standard mean-field techniques. The state of order of the
tem depends on the occupation numbersNs

S . This stands for
the number of points in the structurals521,11,0 and mag-
neticS51,2 state. There are six different occupation nu
bers which should fulfill the following normalization cond
tion:

N1
11N1

21N0
11N0

21N21
1 1N21

2 5N, ~13!

where N is the total number of points in the lattice. W
define the following order parameters:

Ne5(
i

s i5~N1
11N1

2!2~N21
1 1N21

2 !, ~14!

Nq5(
i

s i
25N2~N0

11N0
2!, ~15!
-
-

e

s-

-

Nm5(
i

Si5N1
11N21

1 1N0
12N1

22N21
2 2N0

2 , ~16!

Nm05(
i

~12s i
2!Si5N0

12N0
2 , ~17!

Nm15(
i

s iSi5~N1
12N1

2!2~N21
1 2N21

2 !. ~18!

The corresponding entropy can be written as

SMF /kB5 lnS N!

N1
1!N1

2!N21
1 !N21

2 !N0
1!N0

2!
p(N0

1
1N0

2)D ,

~19!

where p>1 is the degeneracy factor of the 0 state. T
mean-field expression of the free energy per particle is

FMF* 52@e21K* ~12q!21Jm* m212U* m0~m2m0!#

1
T*

2 F ~q1e1m1m12m0!lnS q1e1m1m12m0

4 D
1~q2e1m2m12m0!lnS q2e1m2m12m0

4 D
1~q1e2m2m11m0!lnS q1e2m2m11m0

4 D
1~q2e2m1m11m0!lnS q2e2m1m11m0

4 D
12~12q1m0!lnS 12q1m0

4 D12~12q2m0!

3 lnS 12q2m0

4 D24~12q!lnS p

2D G , ~20!

whereT* 5kBT/zJ, and z is the coordination number of a
given site. Notice thatm1 appears only in the entropic con
tribution to the free energy. Standard minimization with r
spect tom1 renders the following relationship:m15@e(m
2m0)#/q, which has to be fulfilled at all temperatures. The
after substitution in Eq.~20! we obtain the following expres
sion for the free energy as a function ofe,q,m,m0:

FMF* 52@e21K* ~12q!21Jm* m212U* m0~m2m0!#

1T* F ~q1e!lnS q1e

2 D1~q2e!lnS q2e

2 D
1~q1m2m0!lnS q1m2m0

2 D
1~q2m1m0!lnS q2m1m0

2 D
1~12q1m0!lnS 12q1m0

4 D1~12q2m0!
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TABLE I. Identification of the different phases of the model and their corresponding abbreviated not
The phaseq1 and q2 are both average cubic phases and undistinguishable above the critical poin
convenience, theq1 phase is also called premartensitic FPMT. Note thatq052/(p12) takes the value 1/2
for p52.

Name e m q

Paramagnetic cubic PC 0 0 2

Pure cubic q0

Ferromagnetic cubic FC Average cubic (q2) 0 Þ0 ,q0

Premartensitic FPMT (q1) .q0

Ferromagnetic martensitic FMT Þ0 Þ0 .q0
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m-
lnS 12q2m0

4 D22~12q!lnS p

2D22q ln qG . ~21!

Further minimization with respect to the other four ord
parameters yields the next set of coupled equations:

e5
T*

2
ln

q1e

q2e
, ~22!

2FK* ~12q!1T* lnS p

2D G
5

T*

2
lnS ~q1e!~q2e!~q1m2m0!~q2m1m0!

q2~12q1m0!~12q2m0!
D ,

~23!

Jm* m1U* m05
T*

2
ln

q1m2m0

q2m1m0
, ~24!

U* ~m22m0!5
T*

2
ln

~q2m1m0!~12q1m0!

~q1m2m0!~12q2m0!
. ~25!

Their solution gives the temperature dependence of the o
parameters. Between all possible solutions only the abso
minima correspond to thermodynamic equilibrium. This
quires the analysis of the second derivatives of the free
ergy.

FIG. 1. Mean-field temperature evolution of the order para
eters forJm* 54.0, U* 523.5, p52 along the coexistence line, tha
in this case (p52) corresponds toK* 50.
r
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The space of the model parameters of interest here is
ited by the conditionsJm* .0, U* ,0, and Jm* 1U* .0.
Then, for appropriated values ofK* , there exist three phas
transitions at the temperaturesTM* ,TI* ,Tm* associated with
e, q, and m, respectively. In what follows we shall fix th
value of the magnetic interaction toJm* 54.0, thus determin-
ing the distance betweenTM* andTm* , and use different val-
ues of the coupling parameterU* (0,U* ,2Jm* 524).
Then, the values ofK* for which the IT exists are deter
mined by Eq.~23!. Indeed, by settinge50, it follows that
for K* (T* )522T* ln(p/2) the order parameterq has a con-
tinuous phase transition. The results will be presented
two values of the degeneracy factor,p52 and p54. In
Table I we give the identification of the different phases
relation to the problem of interest here and their correspo
ing abbreviated notation. Figures 1 and 2 show the temp
ture behavior of the order parameters for a given value
U* 523.50 along the path determined by the conditi
K* (T* )522T* ln(p/2) ~coexistence line!. In particular, for
p52 one hasK* (T* )50. For the sake of clarity,m0(T* ) is
not shown. At high temperature, a magnetic transition
pears atTm* 5Jm* 1U* /2 from a paramagnetic cubic phas
~PC! (e50,q51/2,m5m050) to a ferromagneticpure cu-
bic phase~FC! (e50,q51/2,m52m0Þ0). From Eq.~23! it
is easy to see that, forq51/2 (T* ,TI* ), m andm0 are not
independent butm52m0. At lower temperatures, the orde
parameterq separates into two branchesq1(q.1/2) and

- FIG. 2. Mean-field temperature evolution of the order para
eters for Jm* 54.0, U* 523.5, p54 along the coexistence line
K* (T* )522T* ln(p/2).
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q2(q,1/2). This occurs at the critical pointTIc* and sepa-
rates two different ferromagnetic phases both withe50 but
with different values ofq: a pure cubic phase (e50,q
51/2,m52m0Þ0) and anaverage cubic phase (e50,q
Þ1/2,mÞm0Þ0). The two branches ofq are identified with
the tetragonal-like modulation (q1) and the fcc-like modu-
lation (q2) in the sense that when all are equally popula
the cubic symmetry is preserved. Finally, at a tempera
TM* , a martensiticlike transition to a ferromagnetic marten
tic ~tetragonal! phase~FMT! (eÞ0,q5q1,mÞ0,m0Þ0) oc-
curs.

In Figs. 3 and 4 we show the phase diagram as a func
of K* . The intermediate transition~IT! is of first order and it
is represented by the dashed line (TI* ) separating, below the

FIG. 3. Section of the phase diagram obtained by mean-fi
techniques forJm* 54.0, U* 523.5, andp52. Continuous lines
stand for second-order phase transitions and dashed lines for
order ones. The black diamond shows the location of the crit
point. The labels indicate the different phases as explained
Table I.

FIG. 4. Section of the phase diagram obtained by mean-fi
calculations forJm* 54.0, U* 523.5, andp54. Continuous lines
stand for second-order phase transitions, dashed lines for first-o
ones. The black diamond shows the location of the critical po
The labels indicate the different phases as explained in Table
d
re
i-

n
critical point ~black diamond!, the regions withq1 andq2.
For p52 ~Fig. 3!, this boundary is a vertical straight line and
therefore cannot be crossed by sweepingT* at constantK* .
We advance here that this is a mean-field artifact. The ex
treatment by Monte Carlo simulation will show that this tran
sition line is always bent, even forp52. The mean-field
solution renders a real first-order IT only forp.2, as can be
seen in Fig. 4 forp54. As an example, in Fig. 5 we show
the temperature behavior of the order parameters forp54
and three values ofK* around the critical valueKc* ; K*
,Kc* ~a!, K* 5Kc* ~b!, andK* .Kc* ~c!. The inset shows an
enlarged view of the magnetization behavior aroundTI* .

In Fig. 6 we show the location of the critical point (TIc* )
for p52 (Kc* 50) with respect to the magnetic (Tm* ) and the
martensitic (TM* ) transitions as function of the coupling pa
rameterU* . One observes that, as the strength of the co
pling decreases, the critical point approaches the martens
line in such a way that the IT disappears well beforeU*
becomes zero. This is consistent with some experimen
observations18 indicating that strong coupling is required fo
the IT to appear. The same behavior is found forp54, as
shown in Fig. 7. We note that, in this case, the critical poin
correspond to different values ofK* (Kc* 522T* ln p/2).
Figure 8 shows the location of the critical points~thick line!
and the region of first-order IT in theU* 2K* plane. For
very weak coupling, the IT does not exist. Forp54, as the

ld

st-
l

in
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FIG. 5. Mean-field temperature evolution of the order param
eters forJm* 54.0, U* 523.5, p54 and three different values of
K* : ~a! K* 522.0,Kc* , ~b! K* 5Kc* , and~c! K* 521.85,Kc* .
The insets show the detail of the behavior of the magnetizationm at
the intermediate transition.
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7078 PRB 60CASTÁN, VIVES, AND LINDGÅRD
strength of the magnetoelastic coupling increases, the IT
ists for a larger interval of values ofK* aboveKc* .

The magnetic transition is of second order for all valu
of model parameters studied. The MT is found to be fi
order only for low values of the coupling strength for whic
e andq order simultaneously. Notice that this does not co
tradict the results obtained previously for the DBEG w
U* 50 andK* >0. Actually, forp54, it was found that the
MT transition is discontinuous only forK* .0.19 Thus the
mean-field solution of the present model does not reprod
the evident first-order character of the MT in Ni2MnGa. At
this point, this could be attributed to the insufficient accura

FIG. 6. U* 2T* section obtained from mean-field calculatio
for Jm* 54.0, p52, andK* 50. Continuous lines stand for secon
order phase transitions. The labels indicate the different phase
explained in Table I. The intermediate region indicated by FPMT
a phase separation region with coexistence of the two phases
q1 andq2. The thin dashed line indicates the section of the ph
diagram shown previously in Fig. 3.

FIG. 7. U* 2T* section obtained from mean-field calculatio
for Jm* 54.0 andp54. For each value ofU* , K* is selected in
order to find the critical point. Continuous lines stand for seco
order phase transitions. The labels indicate the different phase
explained in Table I. The intermediate region indicated by FPMT
a phase separation region with coexistence of the two phases
q1 andq2.
x-

s
t

-

ce
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of the mean-field treatment but, in the next section, we w
see that Monte Carlo studies render the same feature. Th
is more plausible that it is due to the incompleteness of
model, addressed preferentially to the study of the IT a
related effects. Actually, our model description is done
terms of a single modulation strain whereas it is known31 that
the MT and the IT phases have different modulations.

In conclusion, the main effect of the magnetoelastic co
pling parameterU* is to generate a critical point (TIc* , Kc*
522T* ln p/2), between the magnetic (Tm* ) and the marten-
sitic (TM* ) transitions. It is the end point of a first-order tra
sition lineTI* (U* ) that, emerging from the martensitic pha
boundary, separates twoaveragecubic (e50) ferromagnetic
(mÞ0) phases with different modulation amplitude (h̃5q0

2q): q1 (h̃,0) and q2 (h̃.0). Provided the coupling
strength is large enough, the IT exists for a limited range
K* ~below the critical value! which, in turn, depends onU* .

Before ending this section, we would like to show that t
magnetoelastic coupling behind the model under discus
is consistent with the one considered in the Landau exp
sion ~4!, which in turn has been inspired by the experimen
Let us consider the simplest case ofp52 ~andK* 50). Fur-
thermore, we shall assume thatm0 may be approximated by
m0.(12q)m. Although this decoupling@see Eq.~17!# is
exact only forT* >TI* , it provides the first coupling term
betweenm and q. Indeed, from Eq.~21! we see that the
magnetoelastic contribution to the internal energy becom
of the form

22U* m0~m2m0!.22U* q~12q!m2

5
2U*

2
m212U* m2h̃2, ~26!

whereh̃5q02q5 1
2 2q. As was already discussed at the e

of Sec. III, the first contribution represents a simple corr
tion to the Curie temperature, and the second is the mag
toelastic coupling.

as
s
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-
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FIG. 8. U* 2K* section of the phase diagram obtained fro
mean-field calculations forp52 and p54. The location of the
critical points are shown with a thick continuous line. The thin li
is estimated from the value ofK* at which the IT and the MT meet
The region inside the triangle denotes the range of the model
rameters for which there exists the first-order intermediate transi
~IT! in the case ofp54.
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V. MONTE CARLO SIMULATIONS

In this section we solve numerically the model~12! by
using Monte Carlo simulation techniques.32 Our objective is
to find system configurations ($s i%,$Si%) distributed accord-
ing to the canonical ensemble probability. The correspond
equilibrium simulations have been carried out using the s
dard Metropolis algorithm. The changes in thes i and Si
variables are proposed independently and accepted o
jected according to the single-site transition probabilityW

5min$1,e2DH* /T* %. We have used a two-dimensional squa
lattice with N (5L2) sites subjected to periodic bounda
conditions. Different lattice sizes ranging fromL520 to L
5100 have been studied. The unit of time is the Monte Ca
step ~MCS! and consists inN attempts of changing thes i
and Si variables. The simulations have been carried up
;303103 MCS per site. Runs have been performed start
from two initial conditions: ~i! a perfect FMT phase (s i
51,Si51,i 51,2, . . .N) and ~ii ! a perfect FC phase (s i
50,Si51,i 51,2, . . .N). This is very convenient in order to
detect metastability and hysteresis when crossing first-o
transition lines. Notice that, from the mean-field soluti
presented in the previous section, we already have an ide
the range of the space of parameters we have to exp
Accordingly, we shall fixJm* 54.0 and use different values o
U* ,0. Concerning the degeneracy factor we restrict
Monte Carlo simulations top52. Nevertheless, we hav
verified that other values ofp.2 render qualitatively similar
results. Most of the simulations have been performed at fi
values of the model parameters (U* andK* ) and sweeping
the temperatureT* , but few have been performed at fixe
T* and sweeping the parameterK* .

The different quantities measured after each MCS are:
internal energyH* , and the order parametersm, e, and q.
These quantities have been averaged over;200 configura-
tions taken every 100 MCS and discarding the first 104 MCS
for equilibration. Such averages will be denoted by^•••&.
We have computed̂H* &,^umu&,^q&,^ueu&. Moreover, the
specific heat and the susceptibilities associated with the fl
tuations of the order parameters have also been measur

c* 5S 1

ND ^H * 2&2^H* &2

T* 2
, ~27!

xm5
^m2&2^umu&2

T*
, ~28!

xq5
^q2&2^q&2

T*
, ~29!

xe5
^e2&2^ueu&2

T*
. ~30!

All these definitions correspond to intensive quantities.
many cases the specific heatc* has also been obtained from
the numerical derivative (1/N)d^H* &/dT. The agreemen
between this and the estimation obtained from Eq.~27! gives
confidence that the equilibration times used are appropr
From the behavior of the order parameters, the specific
g
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and the corresponding susceptibilities the phase diagram
be obtained. The phase transitions associated withe, q, and
m have been determined from the location of the peaks
either the specific heat or in the correspondi
susceptibilities.33 This method is more accurate than to loo
for singularities directly on the behavior of the order para
eters. Moreover, we have checked whether or not the pe
correspond to a true phase transition by studying their dep
dence with increasing the system sizeL. As an example, in
Fig. 9 we show the temperature dependence of the spe
heat for U* 523.5, K* 50.15, and four different system
sizes (L510,25,50,100). The smooth peak atT* ;4.3 does
not correspond to a true phase transition since it does
exhibit scaling behavior. The second-order phase transit
~at TM* ;2.25 andTm* ;5.2) exhibit peaks which shift and
become narrower and higher as one increases the system
L.34 Besides, first-order phase transitions (TI* ;3.9) exhibit
sharp discontinuities which, although they can also increa
neither shift nor become smoother with increasingL. In this
last case ifL is not very large or averages are not taken
long enough MCS, hysteresis may appear.

Figure 10 shows three sections of the phase diagram
function ofK* corresponding to three different values of th
coupling parameter:U* 50.0 ~a!, U* 522.5 ~b!, and U*
523.5 ~c!. We notice that, for each value ofU* , the mag-
netic (Tm* ) and martensitic (TM* ) transitions are almost inde
pendent ofK* . The overall conclusion emerging from Fig
10 is that the premartensitic effects are more important
larger the strength of the magnetoelastic couplingU* is. As
it was anticipated by the mean-field calculations, its m
effect is the showing up of a critical point~black diamond!,
and a first-order transition line~dashed line! separating two
FC phases,q1 andq2, with different values of the modula

FIG. 9. Example of the scaling with the system sizeL ~as indi-
cated by the legend! of the specific heatc* . Note that the MT and
the magnetic transition exhibit shifting and increasing peaks,
intermediate transition~IT! peaks also increase but do not show
clear shift tendency and the peak corresponding to critical fluc
tions does not change at all withL.
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tion amplitudeh̃. Contrarily to the mean-field solution, for
p52, theTI* (K* ) is now bent due tôs is j& fluctuations, as
will be discussed in the next section.

The second interesting point manifested by the Mon
Carlo results is the existence of large fluctuations close to t
critical point which, we stress, do not correspond to tru
phase transitions. These are revealed by anomalies in
response functions defined in Eqs.~27!–~30!. In the case of
the specific heat, such anomalies appear in the form
smooth peaks that become difficult to resolve as we mo
away from the critical point. In Fig. 11, which is an enlarge
view of Fig. 10~c!, we denote the position of such smooth
peaks by two dotted lines~with white squares! that, from the
critical point, extend towards both sides of the FC phase. W
have also indicated the metastability limits associated w
the IT ~points inside triangles!. Actually, the position of the
IT @denoted by black points along the dashed line represe
ing TI* (K* )# is determined as the middle point of these lim
iting lines. The metastability limit points have been obtaine
by performing some runs at constantT* (,TIc* ) and sweep-
ing K* ~either increasingK* from theq1 phase or decreas-

FIG. 10. Sections of the phase diagram obtained by MC sim
lation with Jm* 54 and ~a! U* 50, ~b! U* 522.5, and ~c! U*
523.5. Dots indicate the actual numerical data. Lines are guides
the eyes, indicating second-order transitions~continuous! and first-
order transitions~dashed!. The~approximate! position of the critical
point is shown by a black diamond. The labels indicate the differe
phases as explained in Table I.
e
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ing K* starting from theq2 phase! and some others at con
stantK* and increasing the temperature from the MT pha
The first-order IT, as will be discussed below, is not foun
by decreasing temperature.

Keeping Fig. 11 in mind, now we shall study the temper
ture behavior of the specific heat at constantK* and U*
523.5, above and below the critical point. The correspon
ing results are shown in Fig. 12. Different phenomenolo
may be observed when, increasing the temperature, we m
from the bottom to the top of the figure.

~i! For K* 520.1, a martensitic transition and a magnet
transition with no sign of an intermediate transition.

~ii ! For K* 50.12, a martensitic transition, an anoma
~indicated by↑) due to the proximity of the critical point and
a magnetic transition. As we mentioned before, this anom
is due to fluctuations and appears when crossing the do
line ~with squares! in Fig. 11.

~iii ! For K* 50.14, 0.15, and 0.18, an additional peak~to
the left, also indicated by↑) due to the intermediate transi
tion shows up. AsK* increases one observes that the flu
tuation peak gets smoother~since we move away from the
critical point! while the IT shifts towards lower temperature
The entire temperature behavior forK* 50.15 has been pre-
viously discussed in Fig. 9.

~iv! Finally, for values ofK* even larger (K* 50.25), the
anomaly due to critical fluctuations has almost disappea
and only the peaks associated with the three phases tra

-

to

t

FIG. 11. Detailed section of the phase diagram@Fig. 10~c!# ob-
tained by MC simulation withU* 523.5 andJm54, showing the
details of the metastability regions and the fluctuations in the nei
borhood of the critical point. Symbols and lines have the sa
meaning as in Fig. 10. Besides, we have indicated the position
the large fluctuation peaks with squares and the metastability lim
of the first-order transition lines with points inside triangles. Th
orientation of the triangles indicates the direction of the MC sim
lation runs performed in order to locate each metastability lim
Note that we have performed increasingT* runs (n) and increas-
ing (x) and decreasing (v) K* runs. Dotted lines are guides to th
eyes.
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PRB 60 7081MODELING PREMARTENSITIC EFFECTS IN . . .
tions are clearly revealed: the martensitic, the intermed
~or premartensitic!, and the magnetic transitions.

It is difficult to be exactly at the critical point~that we
have estimatedKc* .0.13060.005) but it would correspond
to the value ofK* at which the anomaly peak begins to sp
up.

FIG. 12. Specific-heat evolution, corresponding toU* 523.5
and different values ofK* as indicated. The arrows on each pl
indicate the peaks corresponding to the IT and the large fluctuat
due to the closeness of the critical point.

FIG. 13. Details of the specific-heat evolution at the premart
sitic phase transition showing the double peak effect and hyster
~a! Results from MC simulation of the present model correspond
to U* 523.5 andK* 50.14 and~b! experimental data extracte
from Ref. 11.
te It is interesting to note that such double peak behav
found around the IT has been observed experimentally
Ni2MnGa. Figure 13~a! shows an example corresponding
MC simulations withp52, U* 523.5, andK* 50.14. The
two peaks are found for heating runs only. Due to the me
stability of the first-order intermediate phase transition,
transition to theq1 phase it is not found when cooling. A
similar behavior is found when performing calorimetric me
surements as illustrated in Fig. 13~b!. The corresponding ex
perimental details can be found in Ref. 11. The lines cor
spond to thermograms obtained by heating and cooling~as
indicated by the leaning arrows!. Actually, Fig. 13~b! corre-
sponds to an enlargement of Fig. 1 in Ref. 11 that has b
reproduced with permission of the authors. Here, additio
calorimetric runs are shown in order to reveal the system
character of such double peaks obtained when heating
deed, in the original published figure the two peaks are
most unobservable and were not considered by the aut
who treat both peaks as a single one. When comparing F
13~a! and 13~b! one observes that the highest peak occurs
different order. We do not have an explanation for this y
but it could be related to the calorimeter inertia.

Besides the behavior of the specific heat, it is also instr
tive to look at the behavior of the susceptibilities. Figure
shows the evolution ofxm , xq , andxe with temperature for
K* 50.15 andU* 523.5 ~this is one of the cases shown
Fig. 12 and discussed in point iii!. The smooth peak in the
specific heat~marked by↑) is associated only with fluctua
tions ofq, while at the IT~large peak! the discontinuity inxq
~modulating strain! is accompanied by an increase of th
fluctuationsxe ~tetragonal homogeneous distortion!.

Very recently, measurements of magnetic and transp
properties of NiMnGa alloys have been reported.35 Magneti-
zation measurements as a function of temperature, for s
values of the applied field, reveal the existence of premar
sitic anomalies at two different temperatures~separated
;20°). Only the low-temperature anomaly is found wh

ns

-
is.
g

FIG. 14. Comparison of the specific-heat behavior~a! and the
susceptibilities~b!. In ~a!, the two curves correspond to the estim
tion of c* from the derivative of the energy (d) and from the
fluctuations as defined in the text (s). In ~b! the three different
curves correspond to the fluctuations of the three order param
e, q, andm, as indicated by the legend.
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7082 PRB 60CASTÁN, VIVES, AND LINDGÅRD
performing resistivity measurements. Nevertheless, it
been suggested35 that both correspond to different true pr
martensitic transitions. In the light of the present results
suggest that the high-temperature anomaly could be a si
ture of the critical fluctuations. We agree with the autho
that more careful experimental studies are needed in ord
clarify the results.

VI. DISCUSSION AND CONCLUSIONS

The phase diagram of the model exhibits, qualitative
the same features in both mean-field theory and Monte C
simulations. A given value of the ferromagnetic interacti
parameterJm* .0 determines the distance between the m
netic Tm* and the martensiticTM* (,Tm* ) transitions. For ap-
propriated values of the parametersK* andU* , the follow-
ing phases are found, from high to low temperatu
paramagnetic cubic~PC!, ferromagnetic cubic~FC!, ferro-
magnetic intermediate or premartensitic~FPMT!, and ferro-
magnetic martensitic~FMT!. The change from the FC to th
FPMT phases occurs below a critical point (TIc* ,Kc* ) and it
takes place through a true phase transition only forK*
.Kc* . The existence of this intermediate phase depends
both K* and U* . First one needs the magnetoelastic co
pling U* (2Jm* ,U* ,0) to be strong enough. We obta
that TIc* decreases withU* whereasTM* remains almost un-
altered so that the critical point disappears, on theTM* line,
well beforeU* reaches the value zero~Fig. 6!. Moreover,
provided theU* is adequate, the IT exists for a limited rang
of values ofK* (.Kc* ) across the first-order transition lin
TI* (K* ). The corresponding order parameter is the modu
ing strain amplitude and changes from high to low values
one decreases the temperature across the IT. Accordin
the theory of the harmonic thermal vibrations in a cryst
this is consistent with the behavior observed for the pho
frequency.14 Moreover, in our results, the IT is accompani
by a jump in the magnetization, only visible forp.2. Since
this happens in both mean-field and Monte Carlo soluti
we conclude that this has to do with the coupling rather th
with the fluctuations. Experimentally, a jump in the magn
tization has not been detected so far.21,23

Some differences are obtained between the Monte C
simulation and the mean-field solutions. First, in the simu
tions, theTI* (K* ) line always bends towards increasingK*
for p>2 whereas the mean-field solution gives, forp52, a
perfect vertical boundary atK* 50. This is due tô s is j&
fluctuations and may be understood as follows. The inte
energy of a pureq2 phase (s i50,Si51) is given by@see
Eq. ~12!#

E252K* 2N2Jm* 2N, ~31!

while the energy of a pureq1 phase (s i561, at random,
Si51) is

E152K (
nn

s is j L 2Jm* 2N. ~32!

In the mean-field approximation the term between^•••& is
neglected and therefore the conditionE25E1 gives K*
50. In Monte Carlo simulations, the fluctuations are prese
s
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We can estimate its value by taking the results from
standard Ising model and therefore2^(nns is j&
.EIsing* (T* ). This function is zero only atT* 5`. For T*
50 takes the value22N and increases monotonously. In th
Ising model, atT* 5Tc* .2.27, EIsing* 52A2. Therefore the
condition E25E1 gives a transition line atK* (T* ).
2EIsing* (T* )/2N. It bends towardsK* .0 values whenT*
decreases. Remember that in the mean-field approximati
similar behavior is found only when the degeneracy factor
the 0 state isp.2.

Another point illustrated by the Monte Carlo simulation
is the important role played by the fluctuations in describ
premartensitic effects. In Fig. 15 we show, schematically,
K* 2U* section of the phase diagram as it is obtained fr
the numerical results presented in the previous section.
triangle defines the region with a first-order intermedia
~premartensitic! transition and it is limited by the line o
critical points ~thick line! and the line where the IT disap
pears on the MT line~thin line!. The shadow region denote
the zone of large~critical! fluctuations and it has been est
mated from the anomalies in the specific heat. It is intere
ing that, apart from the region of fluctuations, the mean-fi
solution renders a qualitative similar phase diagram~Fig. 8!
although shifted to negative values ofK* .

Experimentally, the interplay betweenU* and K* , re-
quired for the IT to occur, is determined by the compositi
of the sample. Indeed, premartensitic effects in the NiMn
alloy have only been reported for compositions around
stoichiometry (Ni2MnGa). Among them, the most importan
and common to all the samples, is a significant softening
the 1

3 @110#TA2 acoustic mode with decreasing temperatu
accompanying the formation of an intermediate struct
that, while preserving the cubic symmetry, is transvers
modulated10,36along the@110# direction with wave vector13 .
Moreover, this intermediate structure may appear throug
true phase transition11,14 or not.17 We point out that both
behaviors are compatible with the present results. In sim
words, the samples showing the IT would fall inside t
triangle in Fig. 15 while the others would not. More pr
cisely, in the samples showing the IT the strength of
magnetoelastic coupling (U* ) is enough to freeze com

FIG. 15. Space parametersU* 2K* obtained with MC simula-
tions, indicating the regions with IT and with large fluctuations. T
thick line indicates points with true critical behavior.
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pletely the anomalous phonon with degree of softness rel
to K* . For deeper discussions it is imperative to have a be
understanding about what is behind the composition dep
dence giving rise to the different behavior in the samples
particular, experiments in order to compare the different
gree of softness of the anomalous phonon are required.
thermore, it is important to know the strength of the mag
toelastic coupling. For this, measurements in both
ferromagnetic and the paramagnetic phases of the temp
ture behavior ofvs

2 are needed. A study of the characterist
of the kink around the Curie point would be very helpfu
Finally, we point out that samples in the critical regio
~shadow region in Fig. 15! should exhibit a significant in-
crease of diffuse scattering when decreasing the tempera
below the Curie point.

The present model renders, independently of the te
nique used to solve it, a MT which is continuous for t
range of model parameters studied. This would be a ser
setback in case we were interested in the properties of
MT itself. For this, models such as those discussed in Ref
and 23 could be more appropriate. Here, we have develo
a model with the aim to focus on the study of the IT a
related premartensitic effects in Ni2MnGa. It is based on the
assumption, sustained by the change of the slopedvs

2/dT at
the Curie point, that the magnetism causes the freezing o
incipiently unstable1

3 @110# TA2 phonon and the splitting
from the homogeneous strain. With this point of view, t
intermediate phase is a precursor of the MT. On the ot
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hand, in view of the fact that the actual modulation of t
martensitic phase is different from that of the intermedi
phase, some authors have claimed that both phase trans
have to be regarded as independent.36 If so, additional cou-
pling terms between the modulation and the homogene
strains are required in order to produce a change in
modulation at the martensitic transition. In this sense, it
been observed that the dip in theTA2 branch shifts under an
external uniaxial stress.37 However, more along with the
point of view adopted here, Stuhret al.17 have demonstrated

that the @ 1
3

1
3 0# characterizing the intermediate phase b

comes a vector@0.38,0.38,0# in the tetragonal phase, ver

close to the@ 2
5

2
5 0# expected for a five-layered modulation.

From the above discussion it follows that, in spite of t
appealing results obtained, the present model needs t
improved in order to reproduce the whole scenario of
structural transition in Ni2MnGa. Finally, it is worth men-
tioning that, by increasing the strength of the magnetoela
coupling U* , it is possible to extend the present study
samples for which the MT takes place in a paramagn
matrix.38
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