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Modeling premartensitic effects in NbMnGa: A mean-field and Monte Carlo simulation study
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The degenerate Blume-Emery-Griffiths model for martensitic transformations is extended by including both
structural and magnetic degrees of freedom in order to elucidate premartensitic effects. Special attention is paid
to the effect of the magnetoelastic coupling i,MhGa. The microscopic model is constructed and justified
based on the analysis of the experimentally observed strain variables and precursor phenomena. The descrip-
tion includes thglocal) tetragonal distortion, the amplitude of the plane-modulating strain, and the magneti-
zation. The model is solved by means of mean-field theory and Monte Carlo simulations. This last technique
reveals the crucial importance of fluctuations in pretransitional effects. The results show that a variety of
premartensitic effects may appear due to the magnetoelastic coupling. In the mean-field formulation this
coupling is quadratic in both the modulation amplitude and the magnetization. For large values of the magne-
toelastic coupling parameter we find a premartensitic first-order transition line ending in a critical point. This
critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks
in the specific heat, not always associated with a true phase transition. The main conclusion is that premarten-
sitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and
the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong
enough to freeze the involved mode phonon. The implication of the results in relation to the available experi-
mental data is discusseld50163-182099)12933-3

[. INTRODUCTION erties(intimately related to the M)Tby applying an external
magnetic field It has a transition from a bomeglecting the
Many metals and alloys undergo a so-called martensiti@tomic ordey to a low-temperature tetragonal phase bct,
transition (MT) from an open cubic phase at high tempera-which is modulated by a five-plane shuffle str&ifi Particu-
tures to a more closed-packed phase at lower temperaturesarly intriguing is that for nearly stoichiometric composition
It is a displacive, diffusionless, first-order phase transitionthe full MT is preceded by an intermediate phase in which
accompanied by incomplete softening of certain transversapparently only the shuffle strain is activated, but not the
phonon modes. For Zr, which belongs to an ideally simpletetragonal strain’~** This intermediate phase consists in a
class of martensitic materials, the pure group-IV metdls, =~ micromodulated domain structure, without resulting macro-
was demonstrated that the first-order character can be undéicopic tetragonal deformation so that the cubic symmetry is
stood as an effect of a coupling between two simultaneouBreserved? This is accompanied by a significant, although
strains: an internal two-plane shuffle strain and a unifornf’0t complete, softening of theA, phonon branch at a wave
strain? vector §,=0.33. Only at lower temperatures, at the marten-
A rich variety of precursor phenoméhaave been ob- siti(_: transition point, the h_omogeneous te_tragongl strain is
served in(weakly) first-order MT. Some of them, as the in- gcnvated(am_j the modula}tlon. changes slightlyThis par-
termediate tweed structur&$,are not common to all mate- ticular behavior observed in p¥MInGa seems to be related to
rials, but others, intimately related to the transitionthe mﬂue_nce of_magnensm. Different behaw&rs have been
mechanism, are present in almost all bcc systems studied _reporte_d in the literature. For some s_gmb]léé' there ex- '

, are pre . y s evidence for a true phase transition of very weak first
far. The most significant is the ancinalously IGuA,[ 110] order which is driven by a magnetoelastic coupling. The
phonon branch((110] propagation[110] polarization), ac-  main proof of that is the fact that the intermediate transition
companied by a low value of the elastic const@it=(Cy;  (IT) shifts with the external applied fiflwhile no (signifi-
—C1)/2. Moreover, both the phonon branch and the correcanh magnetic-field dependence has been found for the MT
sponding elastic stiffness soften with temperature. Recentlyemperaturé>®in other studies! the authors could not find
a lot of interest has been focused on the intermetallic Ni-any indication for an IT although precursors, clearly related
Mn-Ga alloy close to the stoichiometric composition to the magnetization of the sample, have been observed. Ap-
Ni,MnGa. It is the only known ferromagnetic fcc Heusler parently, the only relevant difference in the samples used by
alloy undergoing a MT on cooling. Besides its theoreticalPlaneset al,'!* Zheludevet al,**'*and Stuhret al!’ is the
interest, it may be of technological importance too since itcontent in Mn. Very recently, it has been suggeStedt the
opens the possibility of controlling its shape memory prop-tetragonal phase can be suppressed by increasing the concen-
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tration of Ni at the expense of the content of Mn. Moreover,observations on different samples. In particular, we shall at-
the magnetoelastic effects have been confirmed from the exempt to explain the precursor and the intermediate phase
perimentally observed dependence of the elastic constants gienomena by constructing an effective microscopic Hamil-
an external magnetic fiefd.In spite of the experimental evi- tonian, which allows analysis beyond mean-field or Landau
dence for the magnetoelastic coupling in,MhGa, its mi-  expansion treatments:>:2®
croscopic origin has not been established yet.

In the present paper we have theoretically investigated the
nature of the bcc to bt transition and constructed a model in B. Two-strain model

order to solve the puzzling behavior and to elucidate the role Although Ni,MnGa is a metallic alloy for which both the

of the magnetic coupling, which counterintuitively seems tostrycture and the magnetism is determined by the conduction
couple the ferromagnetic order stronger to the modulatingjectrons, it is instructive to consider a model system for
strain (») than to the uniform tetragonal straie)( We shall  the mismatch between cubic crystals, similarly as it is found
demonstrate that the situation can be described by the degep- k| grown on NaCl(001)?*%° In this case, the very
erate Blume-Emery-Griffiths mod¢DBEG),' extended 0 |arge (~17%) lattice constant mismatch causes the interface

incI_ude coupli_ng to magne'gic degrees of freedom, and Wm{ buckle simultaneously in tHg.10] and[110] directions.
an interpretation of the variables, appropriate to the presenIPhiS produces superstructures consisting of seven NaCl and

case. six KBr layers, or multiples thereof, perpendicular to the

P ihaly P o NaCl and the KBr crystals are modulated since they have
cal explanation of the observed phenomena, which is used

justify a microscopic model presented in Sec. lll. The mode imilar elastic properties. This gives rise to superstructure
is studied using first mean-field theot@ec. M énd next peaks in the x-ray and helium scattering spectra, precisely as

Monte Carlo simulation(Sec. V). The discussion from the those observed in the intermediate phase ghMiGa, where

comparative study is presented in Sec. VI where we providS™€ also would expect more higher-order satellites in off-
also%ur conclusigns tgkin into accouﬁt the availablert)ax erig,ymmetry directions to be found, but not so far looked for
9 P experimentally. The buckling gives rise to a variation of the

mental data. local [001] direction and a change in lattice constant perpen-
dicular to the interfacécorresponding to a local tetragonal
IIl. EXPERIMENTAL FACTS distortion. We stress that for the ionic crystals the forces by
AND THEORETICAL INTERPRETATION no means triggers the local modulating strains, which are
A. Experimental facts caused by the forced contact between unequal crystals. For

) . ) . Ni,MnGa the situation is rather different. Here, a nesting
The structural properties of pVInGa have been investi-  feapre of the Fermi surface causes a strong electron-phonon
gated in a series of papéts.®*"*At high tem_peratures the coupling and an incipient soft phonon mode&aat:(g £,0)
alloy has the fccl(2,) Heusler structure which, neglecting g_ositions in the fcc phase, whege- 1,417 This is presum-

the atomic order, can be regarded as a bcc lattice. It is par bly the driving mechanism in WnGa, and gives, as a
magnetic at high temperatures with the magnetic moment&>Y g ' gives,

mainly on the Mn site&! At temperatures below, , it or- consequence, the tetragonal distortion. As precursor phe-

; ; cic-a _117
ders ferromagnetically with no particular easy direction Ofgg:?:sn%nqdl;ra]lsI?ga:t;?,ﬁiT;k:iirﬁ;nbsi\é dulatigrr:daés_dies,’cusse d
the moment. At the temperatuilg, (<T,,) there is afirst- P 9 b

orden structural phase transition of the martensitic type to an

for the alkali salt interface. To match this to the f@01)
averagetetragonal structure, which additionally is modulated attice plane it is advantageous to make a lattice mismatch
by a transverse five-layer shuffling strain. Prior to this tran-

and expand the lattice and to rumple the interface, or, in
sition precursor structures of that phase as well as of the fc(c):ther words, cause th¢001] direction to fluctuate in

having a six-plane modulation have been observed ir<]ap|taX|aI like angles. Stuhet al.”* have shown that the six

X . 7 plane fcc modulation corresponds precisely to a five-plane
neutron-scattering experimertts: This may happen also as modulation of the tetragonal phase, and the latter is found as
a transition(first-orde) at a temperaturd, (Ty<T,<Tp) 9 P '

giving rise to a genuine intermediate phEseithout any a precursor phenomenon. A 5:6 expansion would be very
macroscopic tetragonal deformatith. drastic. quever, it suffices to create a superstructure qf a
The above temperaturd,, Ty, andT, are extremel common divisor, for example a 30- or 60—p|_ane repeat dis-

P T M ! Y tance. The latter would correspond to a lattice mismatch of

sensitive to the composition and atomic ordering of the - .
1.67%, which is very close to the mismatch observed be-
sample. Thudy may vary from 360 to 395 K, wheredsy o0 'the fec and tetragonal phase ofMinGa: ~1.6% 2!

may vary from 175 to 450 K. In the sample studied by StUhrHence we argue that the electronically driven six-plane

1757 - : ;
]?Otra!F>TT m SS:" n}é ﬁwrlg;rn'\\/le diza?: ﬁ];vslteh vegicgc:iﬁ:j Sllinfhemodulation in turn also causes the tetragonal distortion. The
sample sh{lu,died by Zheludeat al 13?14T ~380 K andT theory for why it is advantageous for mismatched crystals at

b y ; m M epitaxial interfaces to develop mutual superstructure peaks

~220 K and anintermediate phasés observed belowr, . . : . o
~260 K. Similarly, Planest al!! studied a sample with was discussed in more detail by Vives and Lindtfd The

T ~381 K and Ty,~175 K and found an intermediate Modulation occurs simultaneously in tioe=[3,5,0] andq
transition atT,~230 K. In spite of the large variation in the =[3,—3,0] directions, thus preserving the square symmetry
temperatures, we assume the basic physics is the same, aoidthe (001) plane and yielding a modulate@®01) plane
hence we shall use the information obtained byrather than alirection In the fcc structure there are three
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such equivalent plane$100), (010), and(001). In order to  plitude |m|, but which is not sensitive to the moment direc-
(essentially preserve the volum&, a change of which is tion. This will cause a change in the soft phonon frequency
expensive for the electrons, theaxis [001] must shrink  below T,, proportional to|m|?2:
[from T=4.2—-295 K it is indeed observed th&f® only
increases by 0.5%Ref. 21)]. Therefore a model must in- wim=a(T-Ty—ulm?=a(T-T)+b(T-Tn), 3
clude a coupling between th@lane modulation » and the
tetragonal straire. Then, the question is: How can there be wherea, b, andu are positive constants, and we have as-
apparent separate temperatures for the onset of ordering efimed a mean-field behavior flon|2. A measurement of the
the two kinds of strains? This is possible if in the intermedi-soft-mode frequency squared should therefore exhibit a kink
ate phase the tetragonal strain is only local, varying in direcat the magnetic ordering temperature. This is exactly the be-
tion and also in the allowed directions in the fcc crystal.havior observed by Stuhretal,}” who found a
Moreover, only in the martensitic phase microcrystals with a=0.018 meW/K and b=0.020 meWK. Unfortunately,
resulting tetragonal strain should be formed. The correspondor the samples showing the [Refs. 11, 13, and J4mea-
ing tetragonal structure is observed as highly mosaic with &yrements in the paramagnetic phase are not available. Nev-
large variation of thg001] directions,” in agreement with  ertheless, in what follows, we shall assume the behavior dis-
the above picture. cussed above for all the samples. Hence the magnetic free-
energy part can be written as
C. Landau models

Very recently, Landau models for the MT in cubic ferro-
magnetic materials have been propo%&tin these models,
the magnetoelastic coupling between the uniform strain ten-
sor and thgvecton magnetization is fully considered. Nev- where a=A(T.—T) and T, is the magnetic transition in
ertheless, they seem more appropriated to the study of thebsence of magnetoelastic couplimy.and 8 are positive
magnetic properties of the martensitic phase rather than tparameters ang/= — uu is yielding the coupling between
the analysis of the IT itself. Here, accordingly with the dis-the amplitude squared of the magnetization and the effective
cussion given above, we shall adopt a different strategy anghodulating strain. By eliminatingm|? one can write an ef-
study the structural transition in lWInGa in terms of a Lan- fective free energy in the form of Ed2). This yields a

dau expansion of the only most relevant strain and magnetiyther temperature dependenceudfandB, as discussed by
zation variables, including nonuniform strains or mOdU|a'PIaneset alll

tions.4Then, similarly to the case for the bcc to hep transition  the other possible coupling between the magnetization

U U 1
Finad M, 7) = 5 a[m+2 Blm|*+ -+ 5 y[m|*7%, (4)

in Zr,” we include the following terms, which are allowed by g the structure is by magnetostriction, which deforms the
symmetry: crystal in thedirection of the magnetizatiof.. Experimen-
1 1 1 1 tally, _the easy o!irection of magnetization is not known with
Fln,e)= §“w§772+ ZB’74+ 60776. o+ E(;' €2+ ... certainty, even in the tetragonal phase. Webstel 2! pro-
posed that it might be in th¢l11) directions of theL2;
+Aen? (1) phase® but that other directions are almost as likely. Ana-

lyzing their data perhaps allows the conclusion that it is at
where 7 is the discussed plane modulation strain @nhe  leastnot in the tetragonal001] direction, which would nor-
local uniform contraction perpendicular to that plane, but wemally have been the obvious choice. If so, it is confined to
do not consider higher-order uniform strain terms. Hete  the (001) plane, say, which has fourfold symmetry and there-
=a(T—T,) is the squared frequencyfor the incipient soft-  fore not yielding a strong easy axis. The lowest-order cou-
mode phonon withi=(§,%,0), other constants are positive, pling would then be of the form- m2e2. An interesting pos-
and C'=3%(C,;—C;,), which is small and temperature de- sibility is if the easy direction is along thelOQ] direction,
pendent. By eliminating the local tetragonal straiwe cat ~ because this may belong to two different modulation planes,
write the free energy along the optimum energy path involv{001) and(010), therefore yielding a minimum magnetostric-
ing bothe=—A?/C’' 5? and 7 as tion because it cannot distinguish betweeri0@1] and a
[010] tetragonal strain. The effect is further reduced because
of the equivalence between moments in fh€0] and[010]
directions in the modulated plaf@0l). Inclusion of the cou-
pling can be done in Eq@), with no qualitative change
B=B—2A2/C’. (2)  [except for an induced dependence on the magnetization of
C’ (Ref. 11], and hence we shall neglect it in the following.
The COUE)Jing between the two strains therefore makes it POSf the Coup"ng is Sufficient]y Strong, it would no doubt pre-
sible for B to become negative and hence to cause a firstvent the existence of an intermediate phase iFMWiGa.
order transition afl,, before the soft-mode transition &t The conclusion of the above analysis is that the phases
=T, even without the coupling with the magnetism. may be characterized by the minimum path modulation
Next let us consider the influence of the magnetism. Astrain in Eq. (2) which includes a finite, but local, tetrag-
ferromagnetic moment can influence an itinerant magnet onal strain which is on average zero because of fluctuating
as NpMnGa in two ways. First, giving rise to a splitting of directions. This is consistent with the observation of a sig-
the electronic energy bands, which is proportional to the amnificant broadening of the fc€002) peak in the neutron-

~ 1 ~ 1o, 1 -
Fn)= Euw§n2+ZBn4+ gCnG Cee
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scattering data’ This strain is coupled to the magnetization havior of the secondary order parameterin the disordered
such that a ferromagnetic moment on neighboring sites wilphase depends oK* and T*, but exhibits nonanalytical
favor a modulation also at these sites, due to a change in theehavior at the same temperaturedgs Large values oK*

local band structure, but without differentiating between thestabilize the cubic phase. Moreover, tK& parameter and
three possible planar modulations and accompanying tetraghe degeneratiop of the 0 state control the order of the
onal local strains. In order to give meaning to the notion of aransition, which changes from being of second ortfer
local band structure, we consider sites not as the Mn atorfow values ofK*) to first order.

positions, but at a more coarse-grained level, e.g., at the unit- The DBEG modéf was introduced as a simplification
cell level. At the MT a resulting tetragonal strairmay arise  and a further generalization of the LinddaMouritsen

as the interfaces between the modulated fcc and the modwodel? initially designed to mimic the bce to hep transition
lated and locally tetragonal crystallites grow larger andin Zr. Consequently, it naturally inherits the identification of
thicker. This strain is on the average in #@901) directions the two order parameters suitable for z; is the two-plane
but with considerable variations in the epitaxial angles relashuffle strain andb, the homogeneous strain. In the previous
tive to those. To construct a simplified model, we shall con-work!® this was not emphasized since bath and ¢, ex-
sider one with only two variables such that each has only twaibit a phase transition at the same point.

degrees of freedom. One variable with only two values rep- For Ni,MnGa it is more natural to identify the order pa-
resents the plane modulatioﬁsand the other also with only rameters in the opposite way. Therefore, in the present work,
two values represents the resulting tetragonal steaifihis ~ we define

does not correspond to the behavior of a subspace of vari-

ants, but constitutes a simplified statistical analog to the 2 o
physics of NjMnGa. _ '

€= N y (6)
I1l. MODEL
The desired degrees of freedom can be represented by 2 o |2
the p-degenerate Blume-Emery-Griffiths  Hamiltonian q= N (7

(DBEG).Y It was first introduced with the aim to account for
the entropy stabilization of the high-temperature phase imhe breaking symmetry order parametarorresponds to the
martensitic transitions. Recently, it has been shdwiat it tetragonal distortion in the sense thakif 0 (equal popula-
is equivalent, with respect to universal properties, to that ofion of o;=+1 and —1) it corresponds to having all the
the ordinary BEG model with the crystal field shifted by avariants equally populated, and hence awverage cubic
termkgT In p. phase. Forg the relation is more involved because of the
Although the DBEG model is very simple, it includes complicated physics of the modulating strajnin the high-
most of the relevant physical ingredients to understand MTiemperature cubic phase, the variables distribute at ran-
namely a multivariant low-temperature deformed phase anggm, q=0o=2/(p+2). Let us assign the differenag,—q

a high-temperaturaveragecubic phase with enhanced en- | ., amplitudey of the plane modulating strain without
tropy. The model is an extension of the ordinary three'Stat%istin uishing between the three possible modulating planes
Blume-Emery-Griffiths Hamiltonian defined on a lattice, 9 9 P 9p '

which we shall take as simple culior squarg as motivated We now |_nclud_e the inagnetlc _degrees of fre.Edom by
. . . _ means of spin variableS;= =1 (defined on the lattice site
above. On each lattice site=1, ... N a variables;=1,0, i=1 N) having a ferromagnetic Ising interaction. Thus
—1 represents the deformation state near each site on the ' ° r 'I’ ma netgi]c contributign s 9 '
lattice. The stater;=0 represents the undistorted phase, anc} € purely mag
it is chosen to be fold degenerated=1), in order to ap-
proximately account for the high entropy of vibration of the HE=—J5> SS, (8)
cubic phase. The states;=*+1 represent the distorted ()
phase. The Hamiltonian accounting for the energy gain in/vhereJ;*n>0.
having the same structure on neighboring sites was written The total Hamiltonian should further include a coupling
a term between the structural and magnetic variables. We have
argued in Sec. Il that the magnetic influence of electronic
2 2 properties gives rise to a coupling between the magnetic mo-
Hu= _J“ED gioj— K<iEj> (1=of)(1=07) ®) " ment and the plane modulation. On a microscopic level let us
' ’ assume that the presence of a moment of neighboring sites
where the sums are performed over all nearest-neighbajives rise to a modulation on neighboring sites as motivated
pairs. In what follows we will takd>0 as the unit of energy previously. To describe this, let us consider the following
and work in terms of reduced magnitudes definedHs  symmetry allowetf interaction contributions:
=H/J, K*=K/J....

Two order parameters can be definefl,=>0;/N and
¢»,=20c?IN. The model in Eq(5) was solved, folk* =0,
by mean-field and Monte Carlo simulation techniglieg/e
fouEd a phase transition from a culﬁd:so_rdereai phase with _ U’{oZ SiS,-[UiZ(l— sz)+ 012(1— o)1, 9)
¢,=0 to a tetragonalordered phase with¢; #0. The be- an

NN NN

Hipe= _U’Ilazn SiSi‘TiZsz_U30<izj> Sisi(l_giz)(l_gjz)
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that may be rewritten as
Nm=2, S=N;y+N’;+NJ—N;—=N_;—Ny, (16)
I

1 1
nt= _(Uil—i_USO_ZUIO)E 351'(__‘7?) (__Uiz)
) 2 2

1
2
5“’1)

Nmo=2 (1-02)S=Ng—Ng , (17)
+

1 1
2
+ E(UII_USO)GE’D Sisj[(z_ffi

1 _ < + N + N
-G (UL U201 S, S5 10 Nm =2 0iS=(N] =N;)—(NZ;=NZy).  (18)

In the pure ferromagnetic phas& 1) this Hamiltonian ~ 'N€ corresponding entropy can be written as
can be viewed as an Ising model for the variables-12 .
Thus a phase transition exists fdy{;+ Ug,—2U7,) >0 and N! (NN
* 1% . .. . SMF/kBZIn — — — p 0 0 y
11=Ugo- For simplicity, in what follows we shall take N7 INTINT INT NG ING!
UI;=Ug=0 and denotedJ* =U7,<0. Then, the coupling (19
Hamiltonian becomes

where p=1 is the degeneracy factor of the 0 state. The
2 ss mean-field expression of the free energy per particle is
J' .

a5

1 1 1
(1) Fap=—[€+K*(1—q)?+IErm?+2U* mo(m—mg)]
*

As we shall see in the next section, in the mean-field ap-
+7 (q+e+m+m;—mgp)In

proximation, the first term becomes of the form of the cou-
pling term in Eq.(4) whereas the last term gives a simple
modification of the purely magnetic interactidfy defined in
Eq. (8). Furthermore, Eq(11) shows that it may be particu-
larly convenient to choosp=2, which givesg,=1/2.

The total Hamiltonian model for NMnGa can then be

4

g+e+m+ ml—mo)

g—e+ m—ml—mo)

+(q—e+m—m1—mo)ln( 7

q+e—m—m;+mg

+(q+e—m—m;+my)in

written as 4
—e—m+m;+m
HE = Myt M M 12 +(q—e—m+m1+m0)ln(q MM
with Hy,, Hp,, andH;,, respectively given by expressions 1—ast
(5), (8), and(11). We shall demonstrate that it is possible to +2(1—qg+mp)In 1797 Mo +2(1—g—my)
split up the structural transition into one determined by the 4

order parameteq, which we will associate with the IT and
another one, determined ky to be associated with the te- |
tragonal deformation occurring at the MT.

1-g—m
n #) —4(1—q)|n(g)

where T* =kgT/zJ, and z is the coordination number of a
given site. Notice thain,; appears only in the entropic con-
In this section we solve the presented mdde) by using  tribution to the free energy. Standard minimization with re-
standard mean-field techniques. The state of order of the syspect tom; renders the following relationshipm; =[e(m
tem depends on the occupation numkéfs This stands for  — Mo)1/q, which has to be fulfilled at all temperatures. Then,
the number of pointS in the structur@akE — 1,+ 110 and mag- after substitution in ECKZO) we obtain the fO||OWing expres-
neticS= +,— state. There are six different occupation num-sion for the free energy as a function @ft, m,my:
bers which should fulfill the following normalization condi-

; (20

IV. MEAN-FIELD TREATMENT

tion: Fhe=—[€2+K*(1—q)%+I5m?+2U* my(m—mg) ]
+ - + - + - _ + —
Ni +Ny +Ng +No +NZ;+N2; =N, (13 +T* (q-l—e)ln(—qze +(q—e)|n(—q26)

where N is the total number of points in the lattice. We

define the following order parameters: +(g+m-m )In(Q+m_mo)
—Mp)IN| ——F—
2
Ne=> o;=(N] +N;)—(NT,+NZ), (14 q—m+mg
i +(g—m+mg)ln S —

Na=3 o?=N=(Ng +No ), as) F =g min| 5+ (1-q-mo
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TABLE I. Identification of the different phases of the model and their corresponding abbreviated notation.
The phaseg™ andq~ are both average cubic phases and undistinguishable above the critical point. For
convenience, thg™ phase is also called premartensitic FPMT. Note that 2/(p+2) takes the value 1/2
for p=2.

Name € m q
Paramagnetic cubic PC 0 0 —
Pure cubic do

Ferromagnetic cubic FC Average cubig () 0 #0 <(Qo

Premartensitic FPMTq*) >

Ferromagnetic martensitic FMT #0 #0 >(qg

1—g—my p The space of the model parameters of interest here is lim-
In T) —2(1=9)in{5]-2gIng|. (2D ited by the conditions]}>0, U*<0, and J}+U*>0.

Then, for appropriated values &f*, there exist three phase

Further minimization with respect to the other four orderiransitions at the temperaturgd, < T¥ <T% associated with

parameters yields the next set of coupled equations: €, g, andm, respectively. In what follows we shall fix the
T* qte value of the magnetic interaction &,=4.0, thus determin-
€= 5 nq_ ot (220 ing the distance betweeR;, and T}, and use different val-

—[K*(l

T*

2

* — -
U*(m—2mg) 5 In

—In

ues of the coupling parametdy* (O<U*<—Jy=—4).
D Then, the values oK* for which the IT exists are deter-
—q)+T* |n(§H mined by Eq.(23). Indeed, by setting=0, it follows that
for K*(T*)=—2T* In(p/2) the order parameterhas a con-
_ _ _ tinuous phase transition. The results will be presented for
(q+e€)(g—e€)(g+m—mg)(q—m+mg) . two values of the degeneracy fact@=2 and p=4. In
q?(1—qg+mg)(1—g—mp) Table | we give the identification of the different phases in
(23) relation to the problem of interest here and their correspond-
ing abbreviated notation. Figures 1 and 2 show the tempera-
T g+m-—mp ture behavior of the order parameters for a given value of
7Inm, (24 U*=—-3.50 along the path determined by the condition
q 0 K*(T*)=—2T* In(p/2) (coexistence ling In particular, for
p=2 one hak* (T*)=0. For the sake of clarityng(T*) is
. (25 not shown. At high temperature, a magnetic transition ap-
(@+m=mg)(1-g—mo) pears atT*=J%+U*/2 from a paramagnetic cubic phase

Jrm+U*mg=

T*  (g—m+mg)(1—g+mg)

Their solution gives the temperature dependence of the ordéPC (e=0,0=1/2m=m,=0) to a ferromagnetipure cu-

parameters.

Between all possible solutions only the absoluteic phaseFC) (e=0,gq=1/2m=2my# 0). From Eq.(23) it

minima correspond to thermodynamic equilibrium. This re-is easy to see that, far=1/2 (T* <T}), m andm, are not
quires the analysis of the second derivatives of the free erindependent buin=2m,. At lower temperatures, the order

ergy. parameterq separates into two branches (g>1/2) and
p=2, U'=-3.5,K'=0.0 p=4,U=-35K=-=2T In2

1.0 : . . 1.0 ; ' .
2 0.8 r g:J 0.8
w L
= =
w wl
S 06 f = 0.6
< <C
o o
< g
o 04+ r 04
1w} w
=) [m]
o nng
O 0.2+ O 02+

0.0 0.0

0.0 0.5 3.0 0.0 3.0

FIG. 1. Mean-field temperature evolution of the order param- FIG. 2. Mean-field temperature evolution of the order param-
eters forJ5=4.0,U* = — 3.5, p=2 along the coexistence line, that eters for J5=4.0, U*=—-3.5, p=4 along the coexistence line
in this case p=2) corresponds t&* =0. K*(T*)=—2T* In(p/2).
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p=2, U=-3.5
3.0 T T 1.0
PC )
Tm
2ol o 05 | 1
t
- + | 3
g | a .
1.0 - | T ‘£ o0
) w 1.0
FMT i
<§( 0.91
0.0 : : c 05+ 1
~0.4 0.0 04 0.8 = 0.80 T
K
E 0.87
o 0 0 1.35
FIG. 3. Section of the phase diagram obtained by mean-fielc & ™~
techniques ford},=4.0, U*=—3.5, andp=2. Continuous lines @
stand for second-order phase transitions and dashed lines for firs
order ones. The black diamond shows the location of the critica
point. The labels indicate the different phases as explained il
Table I. 1
g~ (g<1/2). This occurs at the critical poirit;, and sepa-
rates two different ferromagnetic phases both withO but 3.0

with different values ofg: a pure cubic phase =0,
=1/2m=2my#0) and anaverage cubic phase =0,
#1/2m+#my#0). The two branches af are identified with . .
the tetragonal-like modulatior‘q(*) and the fcc-like modu- FIG. 5. Mean-field temperature evolution of the order param-
* __ * — — H

lation (g~) in the sense that when all are equally populatect'®'s for‘]*m__“'o' U*=-35, 5:4*a”d three Tfierem values of
the cubic symmetry is preserved. Finally, at a temperatur h- ga) Kt —h—2-(t)h<ch ,t('tl)) :‘(th_ Ech ar_ld(cz‘:] __1'8?'<;u'ca.n

Y, @ martensiticlike transition to a ferromagnetic martensi- € INSets snowthe detall ot the behavior ot the magnetiz

- + the intermediate transition.
tic (tetragonal phase(FMT) (e#0,0=9",m#0,my#0) oc-

curs. , _critical point (black diamond} the regions withg™ andq ™.
In Figs. 3 and 4 we show the phase diagram as a functiog, , — > (Fig. 3), this boundary is a vertical straight line and
of K*. The intermediate transitioiT) is of first order and it 1arefore cannot be crossed by sweepifigat constank* .
is represented by the dashed lirf] separating, below the \ye advance here that this is a mean-field artifact. The exact
treatment by Monte Carlo simulation will show that this tran-
sition line is always bent, even fqg=2. The mean-field

p=4,U=-35 solution renders a real first-order IT only fpe>2, as can be

30 seen in Fig. 4 fop=4. As an example, in Fig. 5 we show
PC the temperature behavior of the order parametergpfed
2.5 - and three values ok* around the critical valu&? ; K*
Ta <K} (a), K*=KZ (b), andK* >K7 (c). The inset shows an
20+ FC enlarged view of the magnetization behavior arodiid
- In Fig. 6 we show the location of the critical point|{)
15 | T for p=2 (K% =0) with respect to the magnetid@f,) and the
\\\\\ e g' martensitic Ty,) transitions as function of the coupling pa-
10l FPMTQ Tt ] rameterU*. One observes that, as the strength of the cou-
T pling decreases, the critical point approaches the martensitic
FMT ! line in such a way that the IT disappears well beftr&
0‘5_2_0 18 16 14 12 becomes zero. This is consistent with some experimental
K observation¥ indicating that strong coupling is required for

the IT to appear. The same behavior is found ffer 4, as

FIG. 4. Section of the phase diagram obtained by mean-fiel®hown in Fig. 7. We note that, in this case, the critical points

calculations ford},=4.0, U* =

3.5, andp=4. Continuous lines

correspond to different values &€* (K% =—2T* Inp/2).

stand for second-order phase transitions, dashed lines for first-ord&igure 8 ShQWS thellocation of the critical poirthick line)
ones. The black diamond shows the location of the critical pointand the region of first-order IT in th&/* —K* plane. For
The labels indicate the different phases as explained in Table I. very weak coupling, the IT does not exist. For4, as the
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p=2, K'=0
4.0 : 0.0 p=2
PC
-05
X 40}
p=
-1.5 | zone
with IT
-2.0 : :
-4 -3 -2 -1
U

FIG. 8. U* —K* section of the phase diagram obtained from
FIG. 6. U* —T* section obtained from mean-field calculations mean-field calculations fop=2 and p=4. The location of the
for JX=4.0, p=2, andK* =0. Continuous lines stand for second- critical points are shown with a thick continuous line. The thin line
order phase transitions. The labels indicate the different phases #sestimated from the value #* at which the IT and the MT meet.
explained in Table I. The intermediate region indicated by FPMT isThe region inside the triangle denotes the range of the model pa-
a phase separation region with coexistence of the two phases wittameters for which there exists the first-order intermediate transition
g* andq™. The thin dashed line indicates the section of the phasdIT) in the case op=4.
diagram shown previously in Fig. 3. . ) ) .
of the mean-field treatment but, in the next section, we will
strength of the magnetoelastic coupling increases, the IT ex>€ that Monte Carlo s_tu_d|es render th_e same feature. Thus it
IS more plausible that it is due to the incompleteness of the

) . " N
ists for & Iarger_ mterva_l_of v_alues 6" aboveK . model, addressed preferentially to the study of the IT and
The magnetic transition is of second order for all values 2 .
of model parameters studied. The MT is found to be firstrelated effects. Actually, our model description is done in
P : : " >terms of a single modulation strain whereas it is kndvthat
order only for low values of the coupling strength for which . .
) X ) the MT and the IT phases have different modulations.
e andq order simultaneously. Notice that this does not con- In conclusion. the main effect of the maanetoelastic cou-
tradict the results obtained previously for the DBEG with . e ° magne *
U*=0 andK*=0. Actually, forp=4, it was found that the pling parametet)” is to generate a 9r|t|cal poinTf; , Kg
MT transition is discontinuous only fak*>0.° Thus the —2T* Inp/2), between the magnetidf,) and the marten-
mean-field solution of the present model does not reproduc8tic (Twm) trfmsmons. Itis the end point of a first-order tran-
the evident first-order character of the MT in,NinGa. At  Sition line Ty (U*) that, emerging from the martensitic phase
this point, this could be attributed to the insufficient accuracyPoundary, separates tvaveragecubic (e=0) ferromagnetic
(m=#0) phases with different modulation amplitudg= g,
—q): q" (»<0) and q~ (%>0). Provided the coupling
strength is large enough, the IT exists for a limited range of
K* (below the critical valugwhich, in turn, depends od* .
PC Before ending this section, we would like to show that the
3 T ] magnetoelastic coupling behind the model under discussion
o is consistent with the one considered in the Landau expan-
: sion (4), which in turn has been inspired by the experiments.
2l FC ] Let us consider the simplest casepef 2 (andK* =0). Fur-
thermore, we shall assume thay may be approximated by

p=4,K'=-2T In2

To mo=(1—q)m. Although this decouplindsee Eq.(17)] is
1l FPMT | exact only forT*=T} , it provides the first coupling term
T betweenm and g. Indeed, from Eq.21) we see that the
" MT magnetoelastic contribution to the internal energy becomes
0 : ‘ of the form
2.0 2.5 . -80 -3.5
u —2U*mg(m—mg)=—2U*q(1—q)m?
FIG. 7. U* —T* section obtained from mean-field calculations . -U* 2 I
for J%=4.0 andp=4. For each value obJ*, K* is selected in ) m+2U"m"7", (26)

order to find the critical point. Continuous lines stand for second- ~

order phase transitions. The labels indicate the different phases agheren=do—q=3—(g. As was already discussed at the end
explained in Table I. The intermediate region indicated by FPMT isof Sec. Ill, the first contribution represents a simple correc-
a phase separation region with coexistence of the two phases wition to the Curie temperature, and the second is the magne-
gt andq. toelastic coupling.
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V. MONTE CARLO SIMULATIONS

p=2, U'=-3.5, K=0.15

T T

In this section we solve numerically the modéR) by
using Monte Carlo simulation techniqu&sOur objective is
to find system configurationd &;},{S;}) distributed accord- 4 r
ing to the canonical ensemble probability. The corresponding
equilibrium simulations have been carried out using the stan
dard Metropolis algorithm. The changes in the and S 3wt
variables are proposed independently and accepted or r
jected according to the single-site transition probability

=min{1,e"2""/T"}. We have used a two-dimensional square
lattice with N (=L?) sites subjected to periodic boundary
conditions. Different lattice sizes ranging fro=20 to L
=100 have been studied. The unit of time is the Monte Carlc
step (MCS) and consists i\ attempts of changing the;
and S; variables. The simulations have been carried up tc
~30x 10° MCS per site. Runs have been performed starting
from two_initial conditions:(i_)_ a perfect FMT phase d P 3 4 5 6
=1S=1ji=1.2,...N) and (ii) a perfect FC phasedf
=0,5=1,=1,2,...N). This is very convenient in order to
detect metastability and hysteresis when crossing first-order
transition lines. Notice that, from the mean-field solution FIG. 9. Example of the scaling with the system sizéas indi-
presented in the previous section, we already have an idea 6fted by the legencf the specific heat*. Note that the MT and

the range of the space of parameters we have to explor@.e magr_1et|c tran'_sl_tlon exhibit shlftlng and increasing peaks, the
Accordingly, we shall fix]g=4.0 and use different values of |ntermeQ|ate transitioflT) peaks also |ncrease. but do .n.0t show a
U*<0. Concerning the degeneracy factor we restrict the;:_lear shift tendency and the pt_eak corresponding to critical fluctua-
Monte Carlo simulations t@p=2. Nevertheless, we have fons does not change at all with

verified that other values @>2 render qualitatively similar

results. Most of the simulations have been performed at fixe@nd the corresponding susceptibilities the phase diagram can
values of the model parameterd{ andK*) and sweeping be obtained. The phase transitions associated &yitly and

the temperaturd™, but few have been performed at fixed m have been determined from the location of the peaks in
T* and sweeping the parametgét . either the specific heat or in the corresponding

o——o L=100
o—o L=50
s—a =25

—-v =10

LARGE CRITICAL
FLUCTUATIONS g

The different quantities measured after each MCS are: theusceptibilities”® This method is more accurate than to look

internal energyH*, and the order parametens, €, andq.
These quantities have been averaged ov200 configura-
tions taken every 100 MCS and discarding the first MTS
for equilibration. Such averages will be denoted (by - ).
We have computedH*),{|m[),{(q),(|€|). Moreover, the

for singularities directly on the behavior of the order param-
eters. Moreover, we have checked whether or not the peaks
correspond to a true phase transition by studying their depen-
dence with increasing the system slzeAs an example, in
Fig. 9 we show the temperature dependence of the specific

specific heat and the susceptibilities associated with the fludieat for U* = —3.5, K*=0.15, and four different system
tuations of the order parameters have also been measuredsizes (=10,25,50,100). The smooth peakTt~4.3 does

BTV o
fw, (28)
q:<q2>T_—*<q>2, (29
xe=w- (30

T*

not correspond to a true phase transition since it does not
exhibit scaling behavior. The second-order phase transitions
(at Ty ~2.25 andTy,~5.2) exhibit peaks which shift and
become narrower and higher as one increases the system size
L.3* Besides, first-order phase transitiong" ~3.9) exhibit
sharp discontinuities which, although they can also increase,
neither shift nor become smoother with increasingn this

last case ifL is not very large or averages are not taken for
long enough MCS, hysteresis may appear.

Figure 10 shows three sections of the phase diagram as a
function of K* corresponding to three different values of the
coupling parameterty* =0.0 (a), U*=—-2.5 (b), and U*
=—3.5(c). We notice that, for each value &f*, the mag-
netic (Ty) and martensiticT}y,) transitions are almost inde-
pendent ofK*. The overall conclusion emerging from Fig.

All these definitions correspond to intensive quantities. In10 is that the premartensitic effects are more important the
many cases the specific hedt has also been obtained from larger the strength of the magnetoelastic couplifgis. As

the numerical derivative (N)d(+*)/dT. The agreement

between this and the estimation obtained from @d) gives

it was anticipated by the mean-field calculations, its main
effect is the showing up of a critical poifiblack diamong,

confidence that the equilibration times used are appropriatend a first-order transition linelashed ling separating two
From the behavior of the order parameters, the specific he®C phasesg™ andq ™, with different values of the modula-
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O p=2, U'=—3.5, N=100x100
10 + PC . . 6 .
(a) U'=0 PC T,
81 ] ———o—"\._.w*.//’
- 6 FC 7 5t FC |
4 L . i = ey B B
FMT o w2
S P e N
0 I_ q(} < \\ Dﬁ B
8 : : . : . : 3 % \\_____“Tl' AAAAAAAAA 3
PG FPMT T
6 [ - 1 %00 ——0— - -
Fo (b) U=-2.5 o | T, i
-4 1 FMT
q (\._\ q
2" . ] 1 w
FMT 0.0 0.2 04
0 — — K
8 T T T
PC (¢) U=-35 FIG. 11. Detailed section of the phase diagrdfig. 10(c)] ob-
6 W__/_,_. 7 tained by MC simulation wititU* = — 3.5 andJ,=4, showing the
) details of the metastability regions and the fluctuations in the neigh-
-4 q *\ q FC . borhood of the critical point. Symbols and lines have the same
EPMT >~~~ ————_ _ __ meaning as in Fig. 10. Besides, we have indicated the position of
2t . 1 the large fluctuation peaks with squares and the metastability limits
FMT of the first-order transition lines with points inside triangles. The
0 : : : orientation of the triangles indicates the direction of the MC simu-
0.0 0.2 Of" 0.6 0.8 lation runs performed in order to locate each metastability limit.
K Note that we have performed increasing runs (A) and increas-
ing (™) and decreasing{) K* runs. Dotted lines are guides to the

eyes.
FIG. 10. Sections of the phase diagram obtained by MC simu- Y

lation with J5=4 and (a) U*=0, (b) U*=-25, and(c) U*

=—3.5. Dots indicate the actual numerical data. Lines are guides t§1g K* starting from theg™ phas¢ and some others at con-
the eyes, indicating second-order transitidosntinuous and first-  stantK* and increasing the temperature from the MT phase.
order transitiongdashegl The (approximatg position of the critical ~ The first-order IT, as will be discussed below, is not found
point is shown by a black diamond. The labels indicate the differenby decreasing temperature.

phases as explained in Table I. Keeping Fig. 11 in mind, now we shall study the tempera-
_ ture behavior of the specific heat at const&it and U*

tion amplitude». Contrarily to the mean-field solution, for =—3.5 above and below the critical point. The correspond-

p=2, theT} (K*) is now bent due tdo;o;) fluctuations, as ing results are shown in Fig. 12. Different phenomenology

will be discussed in the next section. may be observed when, increasing the temperature, we move

The second interesting point manifested by the Montefrom the bottom to the top of the figure.
Carlo results is the existence of large fluctuations close to the (i) For K* =—0.1, a martensitic transition and a magnetic
critical point which, we stress, do not correspond to truetransition with no sign of an intermediate transition.
phase transitions. These are revealed by anomalies in the (i) For K*=0.12, a martensitic transition, an anomaly
response functions defined in Eq&7)—(30). In the case of (indicated by() due to the proximity of the critical point and
the specific heat, such anomalies appear in the form oh magnetic transition. As we mentioned before, this anomaly
smooth peaks that become difficult to resolve as we movés due to fluctuations and appears when crossing the dotted
away from the critical point. In Fig. 11, which is an enlargedline (with squaresin Fig. 11.
view of Fig. 10c), we denote the position of such smooth  (jii) For K*=0.14, 0.15, and 0.18, an additional pef&dx
peaks by two dotted linevith white squaresthat, from the  the left, also indicated by) due to the intermediate transi-
critical point, extend towards both sides of the FC phase. Weion shows up. AK* increases one observes that the fluc-
have also indicated the metastability limits associated withuation peak gets smoothéince we move away from the
the IT (points inside triangles Actually, the position of the  critical point while the IT shifts towards lower temperatures.
IT [denoted by black points along the dashed line representrhe entire temperature behavior it =0.15 has been pre-
ing T¥ (K*)] is determined as the middle point of these lim- viously discussed in Fig. 9.
iting lines. The metastability limit points have been obtained (iv) Finally, for values olK* even larger K* =0.25), the
by performing some runs at constarit (<T;;) and sweep- anomaly due to critical fluctuations has almost disappeared
ing K* (either increasindg<* from theq* phase or decreas- and only the peaks associated with the three phases transi-
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p=2, U'=-3.5, N=100x100 . p=2, U =-3.5, K=0.15, N=100x100
7 j fuct, 5[ o—s 1/N d<H >/dT (@)
4 L
. 3t
K'=0.25 oL
10 19
K'=0.18 —y
N . ﬁ 4.0 ¢ e—exm (b)
© K'=0.15 w .
=
2]
K=0.14 f E]
2]
K'=0.12
K'=-0.1
0 L I
0 2 4 6

. FIG. 14. Comparison of the specific-heat behav@rand the
T susceptibilitieqb). In (a), the two curves correspond to the estima-
- . . _ tion of c* from the derivative of the energy®) and from the
FIG. 12. Specific-heat evolution, correspondingUd =—3.5 fluctuations as defined in the texD]. In (b) the three different

- . -
gnq different values oK* as mdlcated. The arrows on each plgt curves correspond to the fluctuations of the three order parameters
indicate the peaks corresponding to the IT and the large fluctuations

i, ) , q, , as indi he | .
due to the closeness of the critical point. € g, andm, as indicated by the legend

tions are clearly revealed: the martensitic, the intermediate |; g interesting to note that such double peak behavior

(or premartensitit; and the magnetic transitions. found around the IT has been observed experimentally in

It is difficult to be exactly at the critical poinfthat we . . .
. * . Ni,MnGa. Figure 18) shows an example corresponding to
have estimateds =0.130+0.005) but it would correspond MC simulations withp=2, U* = — 3.5, andk* =0.14. The

A ; . .
to the value oK™ at which the anomaly peak begins to split two peaks are found for heating runs only. Due to the meta-

up- stability of the first-order intermediate phase transition, the
transition to theq™ phase it is not found when cooling. A
similar behavior is found when performing calorimetric mea-
T surements as illustrated in Fig. 3. The corresponding ex-
a4l | @ perimental details can be found in Ref. 11. The lines corre-
spond to thermograms obtained by heating and codlasy
indicated by the leaning arrowsActually, Fig. 13b) corre-
sponds to an enlargement of Fig. 1 in Ref. 11 that has been
reproduced with permission of the authors. Here, additional
calorimetric runs are shown in order to reveal the systematic
character of such double peaks obtained when heating. In-
deed, in the original published figure the two peaks are al-
most unobservable and were not considered by the authors
who treat both peaks as a single one. When comparing Figs.
13(a) and 13b) one observes that the highest peak occurs in
different order. We do not have an explanation for this yet,
but it could be related to the calorimeter inertia.

Besides the behavior of the specific heat, it is also instruc-
tive to look at the behavior of the susceptibilities. Figure 14
shows the evolution of,, x4, andy. with temperature for
K*=0.15 andU* = — 3.5 (this is one of the cases shown in
Fig. 12 and discussed in point)iiiThe smooth peak in the
specific heatmarked by?) is associated only with fluctua-
tions ofq, while at the IT(large peakthe discontinuity iny
(modulating straijp is accompanied by an increase of the

T(C) fluctuationsy, (tetragonal homogeneous distortion
Very recently, measurements of magnetic and transport

FIG. 13. Details of the specific-heat evolution at the premartenfroperties of NiMnGa alloys have been reportedagneti-
sitic phase transition showing the double peak effect and hysteresigation measurements as a function of temperature, for small
(a) Results from MC simulation of the present model correspondingvalues of the applied field, reveal the existence of premarten-
to U*=-3.5 andK*=0.14 and(b) experimental data extracted Sitic anomalies at two different temperaturéseparated
from Ref. 11. ~20°). Only the low-temperature anomaly is found when

p=2, U'=-3.5, K'=0.14, N=100x100

dQ/dT (mJ/g K)
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performing resistivity measurements. Nevertheless, it has

been suggestétithat both correspond to different true pre- 1.0
martensitic transitions. In the light of the present results we
suggest that the high-temperature anomaly could be a signa-
ture of the critical fluctuations. We agree with the authors
that more careful experimental studies are needed in order to
clarify the results. 06 ¢

p=2, N=100x100

¢ region
VI. DISCUSSION AND CONCLUSIONS 0.4 | WithIT region with
fluctuations
The phase diagram of the model exhibits, qualitatively,

the same features in both mean-field theory and Monte Carlo 0.2 f,
simulations. A given value of the ferromagnetic interaction 28
parameted® >0 determines the distance between the mag- 0.0 & : : :
netic Ty, and the martensitid@}, (<T,) transitions. For ap- -4 -3 [;? - 0

propriated values of the parametét$ andU*, the follow-
ing phases are found, from high to low temperature:
paramagnetic cubi¢PC), ferromagnetic cubidFC), ferro-
magnetic intermediate or premartensiti€PMT), and ferro-
magnetic martensiticFMT). The change from the FC to the
FPMT phases occurs below a critical poiffty,K¥) and it ~We can estimate its value by taking the results from the
takes place through a true phase transition only Kdr  standard Ising model and therefore—(Z,,0;0;)

>K} . The existence of this intermediate phase depends ofEjsing(T*). This function is zero only al* =. For T*

both K* and U*. First one needs the magnetoelastic cou-=0 takes the value- 2N and increases monotonously. In the
pling U*(—J%<U*<0) to be strong enough. We obtain Ising model, aff* =T} =2.27, Ef;,,= — V2. Therefore the
that T}, decreases withJ* whereasT}, remains almost un- conditon E"=E" gives a transition line at*(T*)=
altered so that the critical point disappears, onTieline, ~ —Ejsing(T*)/2N. It bends toward&* >0 values wherT*

well beforeU* reaches the value zef&ig. 6). Moreover, decreases. Remember that in the mean-field approximation a
provided theU* is adequate, the IT exists for a limited range Similar behavior is found only when the degeneracy factor of
of values ofK* (>K¥*) across the first-order transition line the O state ip>2. _ _

T (K*). The corresponding order parameter is the modulat- Anqther point illustrated by the Monte Qarlo.smulatl_ons
ing strain amplitude and changes from high to low values a& the important role played by the fluctuations in describing
one decreases the temperature across the IT. According Rgfmariensmf: effects. In Fig. 15 we show, schematically, the
the theory of the harmonic thermal vibrations in a crystal, K™ —U™ section of the phase diagram as it is obtained from
this is consistent with the behavior observed for the phonof’® numerical results presented in the previous section. The
frequency* Moreover, in our results, the IT is accompanied friangle defines the region with a first-order intermediate
by a jump in the magnetization, only visible fpe>2. Since (premartensitig transition and it is limited by the line of
this happens in both mean-field and Monte Carlo solution&'itical points (thick line) and the line where the IT disap-
we conclude that this has to do with the coupling rather tha?®ars on the MT linéthin line). The shadow region denotes
with the fluctuations. Experimentally, a jump in the magne—the zone of Iarge{crltlcal) flu'ctuatlons a_n'd it has bgee_n esti-
tization has not been detected so a3 mated from the anomalies in the specific heat. It is interest-

Some differences are obtained between the Monte Carlfid that, apart from the region of fluctuations, the mean-field
simulation and the mean-field solutions. First, in the simula-Selution renders a qualitative similar phase diagx&iy. 8)
tions, theT} (K*) line always bends towards increasikg although shifted to negative values Kf . . .
for p=2 whereas the mean-field solution gives, for 2, a Experimentally, the interplay betwedd™ and K*, re-
perfect vertical boundary @*=0. This is due to{c;c) quired for the IT to occur, is determined by the composition

. 0

fluctuations and may be understood as follows. The i”temagﬂct,;ehsa?,@p;ﬁiylnt?ee;r?’rggiﬂsgefgfiggrﬁgggﬁgﬂshﬁoﬁmﬂﬁi
Erc;ez%)]o a pure phase ¢;=0,5=1) is given by[see stoichiometry (NjMnGa). Among them, the most important

and common to all the samples, is a significant softening of
E-=—K*2N—J*2N, (31) the 3[110]TA, acoustic mode with decreasing temperature,
accompanying the formation of an intermediate structure
while the energy of a purg™ phase ¢;=+1, at random, that, while preserving the cubic symmetry, is transversely
S=1)is modulated®*®along the[ 110] direction with wave vecto.
Moreover, this inte(rf}rﬂidiate strlt;cture may appear through a
. . true phase transiti or not:’ We point out that both
E"=- < % Ui‘ri> ~Jm2N. (32 behaviors are compatible with the present results. In simple
words, the samples showing the IT would fall inside the
In the mean-field approximation the term betwéen-) is  triangle in Fig. 15 while the others would not. More pre-
neglected and therefore the conditi@ =E* gives K* cisely, in the samples showing the IT the strength of the
=0. In Monte Carlo simulations, the fluctuations are presentmagnetoelastic couplingU*) is enough to freeze com-

FIG. 15. Space parametes' —K* obtained with MC simula-
tions, indicating the regions with IT and with large fluctuations. The
thick line indicates points with true critical behavior.
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pletely the anomalous phonon with degree of softness relatduand, in view of the fact that the actual modulation of the
to K*. For deeper discussions it is imperative to have a bettemartensitic phase is different from that of the intermediate
understanding about what is behind the composition deperphase, some authors have claimed that both phase transitions
dence giving rise to the different behavior in the samples. Irhave to be regarded as independ&rit.so, additional cou-
particular, experiments in order to compare the different depling terms between the modulation and the homogeneous
gree of softness of the anomalous phonon are required. Fustrains are required in order to produce a change in the
thermore, it is important to know the strength of the magne-modulation at the martensitic transition. In this sense, it has
toelastic coupling. For this, measurements in both théeen observed that the dip in thé, branch shifts under an
ferromagnetic and the paramagnetic phases of the temperaxternal uniaxial stres¥. However, more along with the
ture behavior ofu§ are needed. A study of the characteristicspoint of view adopted here, Stulkt all” have demonstrated
of the kink around the Curie point would be very helpful. that the[330] characterizing the intermediate phase be-
Finally, we point out that samples in the critical region comes a vectof0.38,0.38, in the tetragonal phase, very
(shadow region in Fig. 5should exhibit a significant in- .0 44 thg £20] expected for a five-layered modulation.
crease of diffuse scattering when decreasing the temperature . o . .
below the Curie point. From the above dlsc_ussmn it follows that, in spite of the
The present model renders, independently of the tech"leloeallng _results obtained, the present model negds to be
nigue used to solve it, a MT which is continuous for thelmproved in ordgr to reproduce t_he Wh‘?'e_ scenario of the
tructural transition in NMnGa. Finally, it is worth men-

range of model parameters studied. This would be a serio . . . .
setback in case we were interested in the properties of th oning that, by increasing the strength of the magnetoelastic

MT itself. For this, models such as those discussed in Refs. goupllng u*, it IS possible to extend the. present study to
and 23 could be more appropriate. Here, we have develop mplgg for which the MT takes place in a paramagnetic
a model with the aim to focus on the study of the IT andmamx‘

related premartensitic effects in jMnGa. It is based on the

assump_tion,_sustained by the c_hange of the slhpﬁdj' at ACKNOWLEDGMENTS

the Curie point, that the magnetism causes the freezing of the

incipiently unstable3[110] TA, phonon and the splitting We acknowledge A. Planes, LI. Masa, and E. Obrado
from the homogeneous strain. With this point of view, thefor fruitful discussions. This work has received financial sup-
intermediate phase is a precursor of the MT. On the otheport from CICyT (Project No. MAT98-031b

1Z. Nishiyama, Martensitic Transformations/Academic Press, and L.E. Tanner, Phys. Rev. &, 11 310(1995.
New York, 1978. 14A. Zheludev, S.M. Shapiro, P. Wochner, and L.E. Tanner, Phys.
2C. Stassis and J. Zaretsky, Solid State Comn&i2n9 (1984. Rev. B54, 15045(1996.
SW. Petry, A. Heimig, J. Trampeneau, M. Alba, C. Herzig, H.R. 15E. Obrado A. Gonzdez-Comas, LI. Mansa, and A. Planes, J.
Schober, and G. Vogl, Phys. Rev.48, 10 933(199)); A. He- Appl. Phys.83, 7300(1998.

imig, W. Petry, J. Trampeneau, M. Alba, C. Herzig, H.R. 8F. Zuo, X. Su, and K.H. Wu, Phys. Rev. 5B, 11 127(1998.
Schober, and G. Vogibid. 43, 10 948(1991); J. Trampeneau, ’U. Stuhr, P. Vorderwisch, V.V. Kokorin, and P.A. Lindga
A. Heimig, W. Petry, M. Alba, C. Herzig, W. Mieleley, and Phys. Rev. B56, 14 360(1997.

H.R. Schoberijbid. 43, 10 963(1991). 18A. Gonzdez-Comas, E. Obradd.l. Manosa, A. Planes, V.A.

4p.-A. Lindg°ad and O.G. Mouritsen, Phys. Rev. LeH7, 2458 Chernenko, B. Hattink, and A. Labarta, Phys. Rev6B,. 7085
(1986. (1999.

5J.A. Krumhansl and Y. Yamada, Mater. Sci. Eng., 187, 167  '°E. Vives, T. Casta, and P.-A. Lindged, Phys. Rev. B53, 8915
(1990. (1996.

63.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, and L.E. Tannerr®V.V. Kokorin, V.A. Chernenko, E. Cesari, J. Pons, and C. Segui,
Phys. Rev. Lett57, 3199(1984). J. Phys.: Condens. Matt& 6457 (1996.

"R. Oshima, M. Sugiyama, and F.E. Fujita, Metall. Trans1®  2'P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak, Philos.
803 (1988. Mag. B 49, 295(1984).

8A.N. Vasil'ev, A.D. Bozhko, V.V. Khovailo, I.E. Dikshtein, V.G.  ??This intermediate phase is also called premartensitic phase.
Shavrov, V.D. Buchelnikov, M. Matsumoto, S. Suzuki, J. 22V.A. L'vov, E.V. Gomonaj, and V.A. Chernenko, J. Phys.: Con-

Takagi, and J. Tani, Phys. Rev.3®, 1113(1999. dens. Matterl0, 4587 (1998.
9V.V. Martynov and V.V. Kokorin, J. Phys. 112, 739 (1992. 243. Baker and P.-A. Lindgd, Phys. Rev. B4, R11 137(1996.
10G. Fritsch, V.V. Kokorin, and A. Kempf, J. Phys.: Condens. Mat- 2°J. Baker and P.-A. Lindgd (unpublished
ter 6, L107 (1994). 28E. Vives and P.-A. Lindgal, Phys. Rev. B4, 1318(1991).
1A, Planes, E. Obradd\. Gonzalez-Comas, and LI. Masa, Phys.  2?7In Ref. 4 the coefficient to the internal strain was, in order to
Rev. Lett.79, 3926(1997). emphasize the direct relation to the soft-mode frequency, for
12|, Manosa, A. Gonzez-Comas, E. ObradacA. Planes, V.A. simplicity just written aswy, whereas the more correct form of
Chernenko, V.V. Kokorin, and E. Cesari, Phys. Rev.5B course is in terms of the squared frequency as used heasé
11 068(1997). 28The easy direction of magnetization at very low temperatures is

13A. Zheludev, S.M. Shapiro, P. Wochner, A. Schwartz, M. Wall,  parallel to the(111) of the L2, phase. Nevertheless, associated



7084 CASTAN, VIVES, AND LINDGARD PRB 60

with the martensitic transition exhibited at low temperatures,3*We have verified that the peaks corresponding to second-order

this direction may be different. transitions scale according to the standard finite-size scaling as-
29T W. Burkhardt, Phys Rev. Bto be published 1 November sumptions. Nevertheless, the detail of such analysis is out of the
1999. scope of this paper.
3°TheaiajSiSj term would correspond to the magnetostriction cou-%°F. Zuo, X. Su, P. Zhang, G.C. Alexandrakis, F. Yang, and K.H.
pling €2m?, which is already effectively included in E). Wu, J. Phys.: Condens. Matt@f, 2821(1999.
3lyv.V. Martynov, J. Phys. V5, C8-91(1995. 36E. Cesari, V.A. Chernenko, V.V. Kokorin, and J. Pons, Acta
320.G. Mouritsen, Computer Studies of Phase Transitions and  Mater. 45, 999 (1997).
Critical PhenomendSpringer-Verlag, Berlin, 1994 37A. Zheludev and S.M. Shapiro, Solid State Comm@8, 35

33In the first case we have fitted a parabolic peak while in the (1996.
second one we will need a fourth-order polynomial fit which 38\/.A. Chernenko, C. SeguE. Cesari, J. Pons, and V.V. Kokorin,
always involves larger error bars. Phys. Rev. B57, 2659(1998.



