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Microscopic theory of vortex dynamics in homogeneous superconductors
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Vortex dynamics in a type-II superconductor is systematically investigated by the influence functional
method. The irrelevant fermionic degrees of freedom are integrated out and their effects on the dynamics are
treated in terms of the vortex coordinate. When an isolated vortex is moving against its background, forces
proportional to the first order of vortex velocity on the vortex are calculated within the present formulation.
The total transverse force on the moving vortex is explicitly shown to be proportional to the superfluid number
density and insensitive to impurities. Its equivalent expressions in terms of the Berry phase and the various
summations of transitions between quasiparticle~hole! states are discussed. At finite temperatures, due to the
finite population of quasiparticle~hole! excitations above~below! the energy gap, there is a friction against
vortex motion which diverges logarithmically in the low-frequency limit. Nonmagnetic impurities give rise to
an additional friction from the core states which saturates to a value independent of the normal-state resistivity
in the dirty limit. In this limit, the coupling to the electromagnetic field does not change the conclusions if
charge neutrality in the superconductor is maintained. Macroscopic constraints on vortex dynamics by the
second law of thermodynamics and by the fluctuation-dissipation theorems are also discussed.
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I. INTRODUCTION

In a type-II superconductor, vortex motion is responsi
for a variety of low-frequency transport phenomena. It is
only topological singularity whose dynamical properties a
widely accessible to experimental studies in both class
and quantum regimes, and its importance has long b
realized.1–4 Despite decades of research, the theoret
agreement reached so far is very limited: At zero tempe
ture, in the absence of any impurity potentials, a vortex f
lows the local superfluid velocity. In the absence of a lo
superfluid velocity, when a vortex follows the motion of a
external trapping potential, there is a momentum chang
the superfluid transverse to the direction of vortex motion
order to provide this momentum change, a force must
applied by the external trapping potential to the superfl
through the vortex. The vortex experiences a transverse f
proportional to the superfluid number density, balanced
the external force from the trapping potential. Beyond t
simplest and idealized situation many aspects of vortex
namics have remained unsettled and even controversia
the present paper we attempt to provide an influence fu
tional formulation of vortex dynamics from the microscop
Bardeen-Cooper-Schrieffer~BCS! theory, and a few detailed
microscopic calculations under realistic conditions.

The current microscopic understandings of vortex dyna
ics in the presence of impurities and at finite temperatu
may be classified into two different physical pictures, whi
are based on different theoretical approaches and give
tradictory results. In one picture the magnitude of the to
force experienced by the vortex in the transverse directio
proportional to the superfluid number density.5,6 The super-
PRB 600163-1829/99/60~9!/6850~28!/$15.00
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fluid momentum change caused by the vortex motion is p
vided by an externally controlled trapping potential in t
absence of a local superfluid velocity, regardless of the e
tence of the normal fluid.6 It is an exact consequence of th
global topological constraint on the vortex. The normal flu
at finite temperatures gives rise to friction for the vort
motion in the longitudinal direction. Furthermore, the glob
methods used in Refs. 5 and 6 indicate that the total tra
verse force is insensitive to random impurities, though th
are additional frictional effects. In this picture, in the absen
of the externally controlled trapping potential, the pinnin
and friction should be used to obtain vortex motion perp
dicular to the direction of an externally applied current. F
the other picture, the essence of the results is that there
additional forces in the transverse direction of vortex velo
ity, provided by unbounded quasiparticle excitations or
normal fluid, by bounded vortex core states, by the substr
or by a certain combination of them.7–11 The total transverse
force is reduced, which is most clearly represented by
alleged gradual turning on the cancellation between two
pological effects by a relaxation time:7 the spectral flow of
vortex core state transitions and the Berry phase counting
away from the core. To discuss this controversy from a
tailed and straightforward approach is one of the main p
poses of the present paper.

We now state precisely the physical quantities which
are going to address. In the classical limit, we are looking
an effective equation of motion for a vortex. In two dime
sions~2D!, or for a straight vortex line in 3D, the equatio
for a vortex specified byr v takes the form of a Langevin
equation:
6850 ©1999 The American Physical Society
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mv r̈ v5F~r v ,t !2Bṙ v3 ẑ2h ṙ v1f. ~1!

Heremv is the vortex mass,h is the friction coefficient,B is
the coefficient for the transverse force withẑ the direction
perpendicular to the plane of vortex motion, and the fluc
ating forcef related to the friction force by the fluctuation
dissipation theorem. The forceF contains all other forces
which are not functions of vortex velocity: the force from th
trapping potential, pinnings, the force due to an externa
applied supercurrent,12 the force due to other vortices, et
We may classify the terms in the above equation into th
types, according to the order of time derivatives ofr v :

~i! Forces contain no explicit dependence on any ti
derivative of vortex coordinater v , represented byF. These
types of forces may be regarded as conceptually well un
stood, corresponding to the Born-Oppenheimer potent
and are not controversial, though practically they can be
ficult to evaluate. They are contained in our formulation, b
will not be discussed in the present paper.

~ii ! Forces have a first-order time derivative of the vort
coordinate, the vortex velocity, represented by the transv
and longitudinal coefficientsB and h. Calculating those
forces explicitly is the focus of the present paper. It is o
purpose to clarify the physical origins behind those forc
starting from a well-defined microscopic theory, the BC
theory, using a well-defined and rigorous procedure, the
fluence functional method.13 We will show in detail that the
total transverse force is insensitive to details, and is prop
tional to the superfluid number density, and present calc
tions leading to finite vortex friction contributions.

~iii ! The term contains the second-order time derivat
of the vortex coordinate, the vortex massmv . This is also
an unclear quantity, and the subject of the recent ac
study.14,15 Though we believe our present formulation al
provides the framework to address the dynamical effects
the vortex mass, we will not explore them here.16 This term
will be ignored by assigning the vortex accelerationr̈ v50.

We organize the rest of the paper as follows. In Sec. II
total transverse force is studied from a macroscopic poin
view. We first demonstrate from a thermodynamic consid
ation that the magnitude of the total transverse force sho
be proportional to the superfluid number density. A reduct
from this value will lead to a violation of the second law
thermodynamics. Then we put the transverse force and
tion in the context of fluctuation-dissipation theorems, a
illustrate that the relaxation time approximation in the mic
scopic derivations of vortex dynamics should be avoided
Sec. III we first present a general formulation based on
BCS theory. Then we relate this formulation to that of t
influence functional approach which has been proved to
rigorous and effective to calculate friction in quantum dis
pative dynamics of a subsystem, where the total system
described by a Hamiltonian. A few general properties of o
formulation will be discussed. In Sec. IV we give detail
evaluations of both longitudinal and transverse correlati
in the clean limit for arbitrary temperatures, which lead
both the friction and the total transverse force. In particu
detailed evaluations of the total transverse force from eit
extended state counting or core state transitions are g
there, and are explicitly shown to be equivalent. In Sec
the effects of impurity potentials are considered. We w
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show that the total transverse force will not be affecte
However, impurity potentials strongly affect the core sta
spectrum, which leads to a contribution to the vortex fricti
in addition to that of extended states. In Sec. VI we sh
that the electromagnetic field does not affect the total tra
verse force and friction, under the condition that the cha
neutrality in the superconductor is maintained. In Sec.
some experimental tests are briefly discussed, and we s
marize in Sec. VIII.

II. THERMODYNAMICS AND STATISTICAL MECHANICS

A. Force balance and thermodynamics

The microscopic calculations which we will present lat
are unavoidably lengthy and technical. It may be helpful
obtain an overall picture and useful information~as much as
we can! under general but elementary considerations. In t
subsection we give a thermodynamic consideration of vor
dynamics to show that there is a constraint on the total tra
verse force, and in the next subsection the derivation of v
tex dynamics will be put in the context of fluctuation
dissipation theorems.

We may write down a possible equation of motion for
quantized vortex in the absence of impurities, taking in
account the possible role of the normal fluid in the motion
the vortex, in the limit of the vortex acceleration equal
zero:

hrsẑ3~uv2vs!2D~uv2vn!2D8ẑ3~uv2vn!1Fext50.
~2!

Herers is the number density of the superfluid,uv , vs , and
vn are the velocities of vortex, the superfluid, and the norm
fluid with respect to the substrate or the wall of the contain
Those velocities are independent variables. The velocity
pendences are only in first order in Eq.~2!. The first term in
the left-hand side of Eq.~2! is the Magnus force,2 whose
magnitude is proportional to the superfluid number dens
The last term represents a possible external force on the
tex. The other two terms are possible contributions com
from the interaction of the vortex with the normal fluid. In
tially, both the normal fluid and superfluid velocities are s
to zero.

We will demonstrate that the conditions of force balan
and thermodynamics put a constraint on the value ofD8. For
this purpose let us imagine a torus-shaped tank filled wit
superfluid, or a torus-shaped superconductor film. The t
can be considered as a thermal reservoir to the superfl
This implies that at finite temperatures there is also a nor
fluid. After creating a vortex-antivortex pair, we keep th
antivortex at rest and move the vortex to wind once with
small velocityuv around one of the two circumferences
the torus, sayLy , in time t total before the annihilation with
the antivortex. We taket total much longer than the relaxatio
time of the normal fluid such that the normal fluid veloci
always stays close to zero, by transferring a possible mom
tum gained from the vortex motion to the substrate, via
relaxation process represented by the normal fluid viscos
A physical realization may be the electron-phonon inter
tion. Hence, the normal fluid velocity is always negligib
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6852 PRB 60P. AO AND X.-M. ZHU
comparing with the vortex velocityuv which is an order of
uv'Ly /t total. As a result of the vortex motion, the mome
tum of circulating superfluid particles along the torus h
been changed from zero tops, f5h/Lx , because of the
change of the winding number of the superfluid. This occ
regardless how slow the vortex motion is. The kinetic ene
of the superfluid has been changed from zero toE
5rsLxLyps, f

2 /2m* for a neutral superfluid, or when the e
fective magnetic screening length is larger thanLy for the
superconductor film. Herem* is the effective mass of supe
fluid particles andLx and Ly are the circumferences of th
torus.

The total momentum change of the superfluid require
force in the transverse direction of the vortex motion

F'5
dP

dt
5

rsLxLyps, f

t total
5hrsuv ,

here P is the total momentum of the superfluid. Since t
normal fluid velocity stays zero, no kinetic energy can
transferred from the normal fluid to the superfluid. Howev
if the normal fluid would contribute to this force to supe
fluid by changing its internal energy, an additional transve
force on the vortex,2D8ẑ3uv , arises. The magnitude o
the external force in the transverse direction of vortex mot
should be equal to the total transverse force according to
~2!,

F'
ext5~hrs2D8!uv .

Now we are ready to consider the thermodynamic re
tions. The process of creating a vortex-antivortex pair and
annihilation after the vortex crossing one circumferenceLy
of the torus leaves only a finite increase of superfluid cir
lation in the tank, corresponding to the change of wind
number. The initial and final normal fluid velocities are ze
The increase of kinetic energy of the superfluid needs to
provided from somewhere. There are only two possi
sources: the external trapping potential and the normal fl
Here we need to be reminded of a significant difference
tween the superfluid and the normal fluid: The superfl
carries no entropy, while the normal fluid does. Therefo
according to the second law of thermodynamics,17 the super-
fluid cannot gain kinetic energy by lowering the internal e
ergy or entropy of the normal fluid.

We need to consider the work performed on the system
the external force to move this vortex. In the longitudin
direction of vortex motion, the interaction between the n
mal fluid and the vortex gives rise to a vortex friction
2Duv . Thus the external force on the normal fluid in th
longitudinal direction isDuv . This friction does not dissi-
pate energy. Rephrased alternatively, the energy dissip
can be arbitrarily small by taking the time to complete t
process arbitrarily long,t total˜`. The process is then quas
static. The normal fluid velocity is always negligible in th
process because of its finite viscosity. Thus the external fo
on the normal fluid in the longitudinal direction of vorte
motion does not provide any work to the system. The ex
nal force acting on the superfluid will be able to provi
enough work for the kinetic energy increase only ifF'

ext
s

s
y

a

e
,

e

n
q.

-
ts

-
g
.
e

e
d.
-

d
,

-

y
l
-

ed

ce

r-

>F' , i.e., D8<0, which leads to the conclusion that th
magnitude of total transverse force cannot be reduced f
that determined by the superfluid number density. The w
done by the external force is exactly equal to the kine
energy increase if the magnitude of the external force in
transverse direction is the product of the superfluid num
density, the Planck constanth, and the vortex velocity.

The next question is whether or not the total transve
force on a moving vortex can be larger than that determi
by the superfluid number density. If the normal fluid wou
carry a vortex with a vorticity in the same direction as that
the superfluid, the answer to this question is positive. Ho
ever, since we have assumed that the normal fluid is visc
the vortex of the normal fluid will eventually disappear. Th
is true for a slow process whose time scale is much lar
than the relaxation time of the normal fluid assumed he
This consideration leads to that the total transverse force
not be larger than the value determined by the superfl
number density. Combining with the thermodynamic arg
ment we concludeD850.

The above discussion has explicitly made use of the
sumption of a finite normal fluid viscosity. In case that t
normal fluid relaxation time would be infinite, that is, th
normal fluid viscosity would be zero, a process which ge
erates a vortex circulation in the superfluid would also g
erate a vortex circulation in the normal fluid. This would b
the limiting situation of a dynamical process in which th
internal relaxation time of the normal fluid is much short
than its relaxation time to the substrate and the time scale
the process is between them. An example would be the
ation of vortices by a magnetic flux in an ultraclean sup
conductor. In such a case, the normal fluid velocity will n
relax to zero. Under this ideal condition2D85hrn , corre-
sponding to that the normal fluid has a vortex, which is wh
has been discussed in Ref. 18.

If impurities are present, a phenomenological equation
motion for the vortex may be written down if the impuritie
are homogeneously distributed and vary only at a scale m
smaller compare with the size of the vortex core. We ha
two more possible parameters from the vortex-impurity
teraction:

hrsẑ3~uv2vs!2D~uv2vn!2D8ẑ3~uv2vn!2duv2d8ẑ

3uv1Fext50. ~3!

Parallel to what we have discussed for the normal fluid ca
d8 must be zero in order for the external force to provide
energy gain needed by the superfluid. The impurities can
provide energy to the superfluid either by lowering their
ternal energy or entropy because of the second law of t
modynamics. We note that impurities introduce another c
tribution to the normal fluid viscosity.

The microscopic global considerations5,6 have already
suggestedD850 and d850. The conclusion here will be
borne out by detailed and independent microscopic calc
tions in the following sections.

B. Friction and fluctuation-dissipation theorems

The derivation of the equation of motion for the vortex
different from the usual linear-response theory. In the line
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response theory, a driving force is given, that is, the Ham
tonian is known, and we look for the average respond
velocity. It is a calculation of conductivity or mobility. In th
present case the force on a moving vortex is the unkno
quantity which we need to find out. The vortex velocity
however, readily defined through the vortex coordinate. I
a calculation of resistivity or friction. To appreciate this d
ference, we will examine the different correlation functio
involved in these different types of calculations and th
relationships. The focus point in this subsection in on
condition for using the relaxation time approximation.

When the normal fluid is at rest, the vortex motion
governed by a classical Langevin equation with parame
to be determined microscopically. This equation has
same form as a classical electron moving in a magnetic fi
We adopt the language in transport theory to make it ea
to relate to the early work in that field.19–22

We start by considering a classical charged particle i
magnetic field obeying a generalized Langevin equation:

mu̇i~ t !52E
t0

t

dt8h ik~ t2t8!uk~ t8!1Fi
ext~ t !

2Be ikuk~ t !1 f i~ t !. ~4!

Here i 5x or y, u(t)5@ux(t),uy(t)# is the velocity of the
particle,m is the mass,Fext(t)5@Fx

ext(t),Fy
ext(t)# is an exter-

nal force,f(t)5@ f x(t), f y(t)# is a random force which simu
lates the effect of the thermal reservoir. The Einstein conv
tion of the repeated indices as summation has been u
Be ikuk(t) represents the transverse force, the Lorentz fo
2u(t)3B in the Langevin equation with the magnetic fie
taken along thez direction. The matrixh(t2t8)5$h i j % rep-
resents friction in both longitudinal and transverse directio
of the particle motion. Its possible finite off-diagonal el
ments will change the effect of the original Lorentz force
the particle. In addition, we have

^ f i~ t !&50,

^ui~ t0! f j~ t01t !&50, t.0, ~5!

^ui~ t0!uj~ t0!&5
kBT

m
d i j .

The first equation is obvious: no average fluctuating for
The second one is due to the causality and the last one is
to the equipartition theorem.

If the Hamiltonian of the particle is known, the proble
of particle responding to a perturbation can be formulated
two different but equivalent ways. We can calculate the
locity of the particle while the applied force is given. In su
a case, it is to obtain a conductivity or mobility formula. Th
conductivity or mobility may be obtained by the Nakan
Kubo’s formula, a calculation of velocity-velocity correla
tion function. It may also be obtained by solving the Bolt
mann equation in the presence of an electric field21

Otherwise, we can consider a given velocity for the parti
and calculate the applied force needed to maintain this
l-
g

n
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tion. It is to obtain a resistivity or friction formula, i.e., ca
culating an electric field needed to maintain the given c
rent. The derivation of vortex dynamics belongs to t
second kind, where we consider a steady motion of the v
tex and calculate the external force acted on the vortex.
fortunately, we do not have the choice to formulate vort
dynamics in superconductors in terms of conductivity or m
bility formula because the effective vortex Hamiltonian
unknowna priori.

Introducing a Laplace transform

h@v#5E
0

`

dt e2 ivth~ t !,

the mobility is given from Eq.~4! in the limit t0˜2` by

m@v#5~ imv1h@v#1 isyB!21. ~6!

Here the mobilitym@v# is defined through

^ui@v#&5m i j @v#F̄j
ext@v#,

with an applied external forceF̄ext(t)5F̄ext@v#eivt.
Defining the velocity-velocity correlation function matri

Ui j ~ t !5^ui~ t01t !uj~ t0!&,

with Ui j (t50)5d i j kBT/m according to Eq.~5!, the mobility
is related to the velocity-velocity correlation function

m@v#5
U @v#

kBT
. ~7!

This is the ‘‘first’’ fluctuation-dissipation theorem describe
by Kubo,19 equivalent to the Nakano-Kubo’s formula for th
electrical conductivity.

It is easy to demonstrate that the relaxation time appro
mation can be valid in the Nakano-Kubo’s formula. Witho
the thermal reservoir, the velocity-velocity correlation
given by

U @v#5~ imv1 isyB!21mU~0!. ~8!

When using a relaxation time approximation by the stand
rule, iv˜ iv1h@v#/m and substituting it into Eq.~8!, we
find the velocity-velocity correlation under the relaxatio
time approximation is given by

U @v#5~ imv1h@v#1 isyB!21kBT,

which is exactly the same as the one obtained by the rigor
calculation, Eqs.~6! and ~7!. Therefore, the relaxation time
approximation can be a valid one for velocity-velocity co
relations when used in a conductivity or mobility formula

The resistivity or friction formula is known to be difficul
and it is worthwhile to examine it closely.19–22 First, we
calculate the total force-force correlation function matrix



r

s

y-
rm

t

n
e-
on
th

de
io
ct

en
ed
ic
th

y
in

ce
ty

to

rse

e-
q.
to
site
.
is
he
n-

me
-
x-
the

ax-

l
oc-
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Fi j ~ t !5m2^u̇i~ t01t !u̇ j~ t0!&.

Taking the Laplace transform, using the translational inva
ance in time

^ui~ t01t !u̇ j~ t0!&52^u̇i~ t01t !uj~ t0!&,

and the total force-velocity correlation function

m^u̇i~ t01t !uj~ t0!&@v#52mUi j ~0!1 imvUi j @v#,

we have

F @v#5S 2 iBsy1 imv1
~mv!2

imv1h@v#1 isyB
D kBT.

~9!

In the limit v˜0, it is reduced to

F @0#52 iBsy kBT, ~10!

and is independent of the frictional coefficienth.
The random force-force correlation matrix is defined a

Ri j ~ t !5^ f i~ t01t ! f j~ t0!&. ~11!

From the Langevin equation, Eq.~4!, we can expressR(t) in
terms of total force-force, total force-velocity, and velocit
velocity correlation functions. Taking the Laplace transfo
and integrating by part, we obtain

R@v#5h@v#mU~0!5h@v#kBT, ~12!

or h(t)5R(t)/(kBT). This is the ‘‘second’’ fluctuation-
dissipation theorem described by Kubo.19 We emphasize tha
the generalized frictional coefficienth(t) is directly given by
the random force-force correlation. The frictional coefficie
matrix h(t) has no off-diagonal part if the random forc
force correlation matrix has not. This fluctuation-dissipati
theorem allows us to obtain some general properties of
generalized friction. For example, for a charged particle
scribed by a single relaxation time in the Boltzmann equat
moving in a magnetic field, there will be no frictional effe
on the force in the transverse direction.

Next we consider that the particle is moving at a giv
velocity ū(t) and find out what is the external force need
to sustain such a motion. This is exactly the situation wh
we encounter in vortex dynamics and it is equivalent to
calculation of resistivity or friction. From Eq.~4!, the aver-
age force is given by

^Fi
ext@v#&5~ imv1h@v#1 isyB! i j ū j@v#, ~13!

which is trivially identical to the reciprocal of conductivit
formula. Obviously, this process does not provide us an
dependent way of calculating resistivity.
i-

t

e
-
n

h
e

-

However, if we are only interested in the average for
^Fext& in the dc limit, we do have an alternative resistivi
formula. After takingv˜0 and using Eqs.~10! and ~12!,
Eq. ~13! gives

^Fi
ext&@0#5

1

kBT
~Ri j @0#2Fi j @0# !ū j@0#. ~14!

Takingh to be a scalar, the external force can be written in
a more suggestive form,

^Fext@0#&5h@0#ū@0#1ū@0#3B, ~15!

where the longitudinal component depends onR@0#, the ran-
dom force-force correlation function, and the transve
component only onF @0#, the total force-force correlation
function. Equation~14! is the dc resistivity formula. It pro-
vides a direct way to obtain dc resistivity from force corr
lation functions. The straightforward interpretation of E
~15! is the force balance: The externally applied force
keep the constant velocity is equal in magnitude but oppo
in sign to the sum of the frictional and the Lorentz forces

We will show that the relaxation time approximation
invalid when used in the force calculation. We start with t
force-force correlations. Without thermal reservoir, the ra
dom force correlation is zero, that is,R(t)50. If we switch
on the effect of a thermal reservoir by using a relaxation ti
approximationiv˜ iv1h@v#/m, the random force correla
tion is still incorrectly set to zero. This shows that the rela
ation time approximation cannot be used to calculate
random force correlation.

The total force correlation without thermal reservoir is

Fi j @v#5S 2 iBsy1 imv1
~mv!2

imv1 isyB
D

ik

mUk j~0!.

~16!

When we switch on the thermal reservoir by using a rel
ation time approximationiv˜ iv1h@v#/m in Eq. ~16!, we
have

F @v#5S 2 iBsy1 imv1h@v#

2
~ imv1h@v#!2

imv1h@v#1 isyB
D kBT.

This is a rather complicated expression. In the limitv
!h@v#, or vt!1, we can simplify it to

F @0#5
B

11~v0t!2
@v0t2 isy~v0t!2#kBT ~17!

with v05B/m. Heret5m/h@0# is a relaxation time. Let us
use the resistivity formula Eq.~14! to calculate the externa
force needed to keep the particle moving with a given vel
ity. With R@v#50 andF@0# given by Eq.~17!, the external
force is
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^Fext@0#&5
v0t

11~v0t!2
~2Bū@0#1v0tū@0#3B!. ~18!

These results have no connection at all to the rigorous res
shown in Eq.~15!. Even the sign for the longitudinal force i
wrong. Evidently, the relaxation time approximation cann
be valid in such a calculation, because such an approxi
tion in the force balance equation cannot consider the
dom force properly, and leads to results violating t
fluctuation-dissipation theorems.

By the simple and exactly solvable model, we have de
onstrated the essential conditions for the validity of the
laxation time approximation in velocity-velocity correlatio
function calculations, and for its invalidity in force-force co
relation function calculations. We refer readers to Re
19–22 for more sophisticated discussions in the contex
the Green’s function or Boltzmann equation.

With a redefinition of constantsB5hrs with h being the
Planck constant,rs being the superfluid particle number de
sity, and v05e0 as the core-level spacing, this force b
comes the same in magnitude as the one which appear
the derivation of vortex dynamics using the relaxation tim
approximation,7–9,11 including the same sign error.10 The in-
appropriate use of the relaxation time approximation in v
tex dynamics ind-wave superconductors has also be
pointed out recently.23 In the following we show how to
obtain the vortex friction without the relaxation time a
proximation, and demonstrate at the same time that the
transverse force remains unchanged as dictated by the to
ogy.

III. VORTEX DYNAMICS IN HOMOGENEOUS BCS
SUPERFLUID

A. Formulation of the problem

We present now our microscopic derivation, from t
standard BCS Lagrangian fors-wave pairing in the imagi-
nary time path-integral formulation of the influence fun
tional method. The connection of the total transverse forc
the Berry phase is straightforward in this formulation. W
believe the present formulation has some advantage
transparent crossover from the quantum to the classical
scription via the semiclassical approximation, and a flexi
treatment of the general dissipative effect arising from
integration out of irrelevant degrees of freedom, fermio
quasiparticles, and holes. The relevant degree of freedo
the vortex coordinate.24

We consider a neutral fermionic superfluid first. The co
pling to electromagnetic fields will be discussed later. T
Lagrangian is given by

LBCS5(
s

cs
†~x,t!S \]t2mF2

\2

2m
¹21V~x!

1U0~x2xv! Dcs~x,t!

2gc↑
†~x,t!c↓

†~x,t!c↓~x,t!c↑~x,t!, ~19!
lts

t
a-
n-

-
-

.
of

in

-
n

tal
ol-

to

a
e-
e
e
c
is

-
e

wherecs describes electrons with spins5(↑,↓), mF is the
chemical potential determined by the electron number d
sity, V(x) is the impurity potential,U0 is the trapping poten-
tial, and x5(x,y,z). A vortex at xv has been assume
through the trapping potential. A more explicit implement
tion of the vortex coordinate will be discussed after Eq.~39!.
The partition function is

Z5E D$xv ,c†,c%expH 2
1

\E0

\b

dtE d3xLBCSJ , ~20!

with b51/kBT, andd3x5dxdydz. Inserting the identity in
the functional space,

15E D$D* ,D%

3expH 2
g

\E0

\b

dtE d3xUc↓c↑1 1

g
D~x,t!U2J ,

into Eq. ~20! we have

Z5E D$xv ,c†,c,D* ,D%expH 2
1

\E0

\b

dtE d3x~c↑
† ,c↓!

3~\]t1H!S c↑
c↓

†D 2
1

\gE0

\b

dtE d3xuDu2J . ~21!

Here the Hamiltonian is defined as

H~D,D* !5S H D

D* 2H* D ~22!

with H52(\2/2m)¹22mF1V(x)1U0(x2xv).
Exactly integrating out the electron fieldscs

† andcs first,
then integrating out the auxiliary~pair! fields D under the
mean-field approximation, one obtains the partition funct
for the vortex

Z5E D$xv%expH 2
Seff

\ J ~23!

with the effective action

Seff

\
52Tr ln G211

1

\gE0

\b

dtE d3xuDu2, ~24!

where Tr includes internal and space-time indices, and
Nambu-Gor’kov Green’s functionG is defined by

~\]t1H!G~x,t;x8,t8!5d~t2t8!d3~x2x8!, ~25!

together with the BCS gap equation, or the self-consist
equation,
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D~x,t!5\gG12~x,t;x,t!. ~26!

In the presence of impurity potentials, the averaging o
them is implied in Eq.~26!, unless explicitly specified.

Since the effective action is a smooth function of vort
coordinate in the functional space of$xv(t)%, we consider
that the vortex has made a small move from its original pl
x0, which allows a small parameter expansion in terms of
difference between the vortex positionxv and x0. We look
for the long-time behavior of vortex dynamics under th
small parameter expansion. In the final step, the forces
vortex are to be calculated by varying Lagrangian to t
small motion. The influence of the eliminated degrees
freedom on the vortex dynamics will then be obtained. As
example, for the mean-field value of the order parameter,
small parameter expansion to the second order is

D~x,t,xv!5S 11dxv~t!•¹x0
1

1

2
@dxv~t!•¹x0

#2DD0~x,x0!.

~27!

Here dxv5xv2x0. In Eq. ~27! we have used the fact tha
whenxv5x0 the vortex is static. The effective action for th
vortex to the same order is, after dropping a constant te

Seff

\
5

1

2
Tr~G0S8!21

1

\gE0

\b

dtE d3x

3dxv•¹x0
D0* dxv•¹x0

D0 , ~28!

with

S85dxv•¹x0S U0 D0

D0* 2U0
D 5dxv•¹x0

H0 . ~29!

Here the HamiltonianH05Huxv5x0
for the static vortex at

x0 , G0 is the Nambu-Gor’kov Green’s function withH re-
placed byH0, the gradient¹x0

is with respect tox0, and

G215G0
211S8.

Now we construct the Nambu-Gor’kov Green’s functio
G0 following the usual procedure.25 First, we consider the
eigenfunctions of H0. The stationary equation, th
Bogoliubov–de Gennes equation, is

H0Ca~x!5EaCa~x!, ~30!

with

Ca~x!5S ua~x!

va~x!
D .

No confusion with the vortex velocity in Sec. II should ari
here.

Given the eigenfunctions of Eq.~30!, G0 can be expresse
as
r

e
e

n
s
f
n
is

,

G0~x,t;x8,t8!5(
n,a

21

\b

e2 ivn(t2t8)

i\vn2Ea
Ca~x!Ca

†~x8!.

~31!

Herevn5np/\b, with n odd integers.
Direct substituting of Eq.~31! into Eq. ~28! leads to

Seff

\
5

1

2~\b!2E d3xd3x8dtdt8

3 (
na,n8a8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

3Ca
†~x8!dxv~t8!•¹x0

H0~x8!Ca8~x8!Ca8
†

~x!

3dxv~t!•¹x0
H0~x!Ca~x!

1
1

\gE0

\b

dtE d3xdxv~t!•¹x0
D0* dxv~t!•¹x0

D0 .

~32!

Keeping only terms relevant to vortex dynamics and assu
ing global rotational symmetry after summing over all t
states, we have

Seff

\
5

1

2~\b!2E d3xd3x8dtdt8

3 (
na,n8a8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

3@Ca
†~x8!¹0H0Ca8~x8!•Ca8

†
~x!¹x0

H0Ca~x!

3dxv~t8!•dxv~t!1„Ca
†~x8!¹x0

H0Ca8~x8!Ca8
†

~x!

3¹x0
H0Ca~x!…• ẑ„dxv~t8!3dxv~t!…• ẑ#. ~33!

With a rearrangement, finally we arrive at

Seff5
1

2E0

\b

dtH E
0

\b

dt8F i~t2t8!udxv~t!2dxv~t8!u2

2E
0

\b

dt8F'~t2t8!„dxv~t!3dxv~t8!…• ẑJ ~34!

with

F i~t2t8!52
1

2\b2E d3xd3x8

3 (
na,n8a8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

3Ca
†~x8!¹x0

H0Ca8~x8!•Ca8
†

~x!¹x0
H0Ca~x!,

~35!
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and

F'~t2t8!5
1

\b2E d3xd3x8

3 (
na,n8a8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

3@Ca
†~x8!¹x0

H0Ca8~x8!

3Ca8
†

~x!¹x0
H0Ca~x!#• ẑ. ~36!

Equation~34! has the form of influence functional in quan
tum dissipative dynamics.13 Please note that*0

\bF i(t
2t8)dt50. Therefore, there is no so-called ‘‘counterterm
in Eq. ~33! as discussed in Ref. 13. Here we have generali
the influence functional to include the transverse force a
response from the environment.

Before proceeding to evaluate these correlations, we
cuss some properties of the wave functions of
Bogoliubov–de Gennes equation, which will be used la
First, becauseH0 is Hermitian, all its eigenstates form
complete and orthonormal set, that is,

E d3xCa
†~x!Ca8~x!5da,a8

and

(
a

Ca~x!Ca
†~x8!51.

HereC†(x)5@u* (x),v* (x)# and the wave functionC(x) is
normalized to 1 over a cylinder of radiusR and lengthL, the
box normalization. In the thermodynamic limit,R5`, one
may consider the scattering states. In this case the Dirad
function normalization for extended states should be the
ter choice. Furthermore, Eq.~30! has the property that if

H0C~x!5EC~x!, C̄~x!5S v* ~x!

2u* ~x!
D ,

then

H0C̄~x!52EC̄~x!. ~37!

There is no specific assumption about the Hamilton
H(H* ) in Eq. ~22! for this identity. There is another impor
tant property implied by Eq.~30!. Since both the Hamil-
tonianH0 and its eigenfunctions are the function of the vo
tex coordinate atx0, taking the derivative with respect tox0
at both sides of Eq.~30!, we have

~¹x0
H!uCa8&1Hu¹x0

Ca8&5Ea8u¹x0
Ca8&.
d
a

s-
e
r.

t-

n

Multiplying both sides of this equation bŷCau, and using
the relation that̂ CauH5Ea^Cau, the Hermitian conjuga-
tion of Eq. ~30!, for aÞa8 we have

E d3xCa
†~x!~¹x0

H0!Ca8~x!

5~Ea82Ea!E d3xCa
†~x!¹x0

Ca8~x! ~38!

with

~¹x0
H0![¹x0S U0 D

D* 2U0
D .

Here we have used¹x0
Ea850 to get Eq.~38!, under the

assumption that the system is homogeneous. Hence, the
no vortex velocity-independent potential for the vortex ar
ing from Eq.~38!, that is, no Born-Oppenheimer-type pote
tial, in accordance with the present purpose of looking
the effects which are first order in vortex velocity. Startin
from the Hermitian conjugate of Eq.~30!, taking the deriva-
tive with respect to the vortex coordinate we have

^¹x0
CauH1^Cau~¹x0

H!5Ea^¹x0
Cau.

Then multiplying this equation byuCa8& we have

E d3xCa
†~x!~¹x0

H0!Ca8~x!

52~Ea82Ea!E d3x¹x0
Ca

†~x!Ca8~x!. ~39!

We note that both Eqs.~38! and ~39! are exact, following
from the general property of Eq.~30!. They relate the tran-
sition elements of the Hamiltonian after the differentiati
with respect to a parameter to the connections between w
functions. Though the wave functions have to be determi
as an eigenvalue problem, the usefulness of Eqs.~38! and
~39! is that it allows one to concentrate on wave functio
instead of the original Hamiltonian, which is particular
convenient in the discussion of certain topological proper
described better by wave functions, such as a vortex i
BCS superfluid here. In the rest of the paper, we will take
trapping potential to be zero,U0˜0 unless specified, and
determine the vortex position self-consistently through
gap equation, Eq.~26!.

For the convenience of calculation, sometimes we wish
use¹Ca(x) instead of¹x0

Ca(x) in the expression. It can
be done in the following way. We split the gap function,
the order parameterD into

D5D̄~x2x0!1D8~x,x0!,

whereD̄ is a smooth part of the self-consistent potential,D8
is the fluctuating part for a given impurity configuration. Th
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impurity average giveŝD8&50. In the presence of impurity
potentials the gap functionD̄ may differ from the one in the
clean limit. The Hamiltonian becomesH05H̄01dH, with

H̄05S H0 D̄

D̄* 2H0*
D , ~40!

whereH052(\2/2m)¹22mF , and

dH5S V~x! D8

D8* 2V~x!
D . ~41!

Using

E d3xCa
†~x!¹„H0Ca8~x!…5E d3x@Ca

†~x!~¹H0!Ca8~x!

1Ca
†~x!H0¹Ca8~x!#,

and (¹1¹x0
)H̄050, and defining

¹H8[~¹1¹x0
!dH,

we have the desired relations

~Ea82Ea!E d3xCa
†~x!¹x0

Ca8~x!

52~Ea82Ea!E d3xCa
†~x!¹Ca8~x!

1E d3xCa
†~x!¹H8Ca8~x! ~42!

and

~Ea82Ea!E d3x¹x0
Ca

†~x!Ca8~x!

52~Ea82Ea!E d3x¹Ca
†~x!Ca8~x!

2E d3xCa
†~x!¹H8Ca8~x!. ~43!

The last part is obtained from Eq.~42! by a partial integra-
tion, which can be carried through because the wave func
is normalizable, either by the box normalization or by t
Dirac delta function.

B. Longitudinal correlation

We now discuss the general properties of the longitud
correlation function, Eq.~35!. We find
n

l

(
n,n8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

5 (
n,n8

e2 i (vn2vn8)(t2t8)

i ~\vn2\vn8!2~Ea2Ea8!

3S 1

i\vn82Ea8

2
1

i\vn2Ea
D

5 (
n2n8

b~ f a82 f a!
e2 i (vn2vn8)(t2t8)

i ~\vn2\vn8!2~Ea2Ea8!
,

~44!

after using

(
n

e2 ivnd

i\vn2Ea
5H b f a , d502

2b~12 f a!, d501

with the Fermi distribution functionf a51/(11ebEa). To
complete the calculation, we also need

(
n2n8

cos@~vn2vn8!~t2t8!#

i ~\vn2\vn8!2~Ea2Ea8!

52
b

2

cosh@~Ea2Ea8!/\~\b/22ut2t8u!#

sinh@~Ea2Ea8!b/2#
1:d~t2t!:.

~45!

Here :d(t): is a periodic delta function with period\b. The
term with (n2n8 sin@(vn2vn8)(t2t8)#/@i(\vn2\vn8)2(Ea
2Ea8)# is zero inside the double imaginary time integrati
in Eq. ~34!, because the integrand is an odd function oft
2t8. Dropping the periodicd function, whose contribution
is zero in Eq.~34!, we are ready then to write down th
longitudinal correlation function as

F i~t!5
1

pE0

`

dvJ~v!
cosh@v~\b/22utu!#

sinh@v~\b/2!#
~46!

with the spectral function

J~v!5
p

4 (
a,a8

d~\v2uEa2Ea8u!u f a82 f au

3U E d3xCa
†~x!¹x0

H0Ca8~x!U2

. ~47!

It is interesting to point out that in terms of the spect
function the longitudinal correlation function, Eq.~46!, is in
exactly the same form of the influence functional in quant
dissipative dynamics.13 The apparent difference is that th
spectral function in Ref. 13 has been obtained by integra
out a set of independent harmonic oscillators~bosons!, while
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here it has come from the elimination of independent fer
onic modes determined by the Bogoliubov–de Gennes e
tion.

It is important to remember that in order to have a smo
spectral functionJ(v), the thermodynamic limit must be
taken first before the implementation of thed function in Eq.
~47!.26 Otherwise the spectral function consists of sum
discreted functions, and there would be no dissipation. Th
limit procedure is in accordance with the requirement in n
equilibrium statistical mechanics: The thermodynamic lim
must be taken first to have well-defined low-lying modes
the zero-frequency limit. After this consideration of the the
modynamic limit, in the low-frequency limit the spectr
function may have the following generic form:

J~v!5hvs, v˜01, ~48!

with s.1 being the super-Ohmic case, 1.s.0 being the
sub-Ohmic case, ands51 being the Ohmic case, following
from the influence functional formulation of quantum dis
pative dynamics.13 For the physically important Ohmic cas
the longitudinal force, friction, is given by2hvV , and from
Eq. ~47! we have the frictional coefficient

h5
p

4 (
a8Þa

\
f a2 f a8

Ea82Ea

3d~012uEa2Ea8u!u^Cau¹x0
H0uCa8&u

2. ~49!

This equation is the familiar Fermi Golden rule for dissip
tion. The matrix elements of¹x0

H0 are well behaved. If we
use Eqs.~38! and~39! to re-express the frictional coefficien
h in terms of the overlap integral between the wave fu
tions u¹x0

Ca& and uCa8&, we turn it into the form of ratio

0/0 whenEa2Ea8˜0. Then attention should be paid to th
divergence of the overlap integral whenuEa2Ea8u˜01.
This limiting behavior has been discussed in Ref. 27, and
refer the reader to the Appendix for a detailed discuss
Equation~49! clearly shows that the coefficient of frictionh
is determined by low-energy excitations such as phono
extended quasiparticles, and bounded core quasipart
when their energy spectrum is smeared out by impurit
The equivalence of Eq.~49! in the context of vortex dynam
ics to a more conventional partial wave phase-shift anal
has been discussed in Ref. 28 for a few well-defined sit
tions. A more formal discussion can be found in Ref. 2
It may also be instructive to mention here that the fricti
experienced by a moving object in a normal Fermi liqu
has been analyzed in the influence functional approac29

Those considerations suggests that nonzero extended s
friction contributions exist, as will be borne out in detail
the next section. Finally, it should also be pointed out t
Eq. ~49! is a special case of Eq.~47!. It will not pick up any
super-Ohmic contributions, and will give infinity for an
sub-Ohmic contributions. If such cases occur, we need
return to the general expressions, Eqs.~46! and ~47!.

To close this subsection, there are two general remark
order. First, the present result of expressing the frictio
i-
a-

h

f

-
t

-

-
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les
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is
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coefficient in terms of low-lying excitations is in accordan
with Landau’s quasiparticle picture: In the zero-frequen
limit the lifetime of those excitations approaches infinit
Those excitations give an exact description of the dynam
of the whole system in this limit. Secondly, to relate to t
discussion in Sec. II B, the spectral function given by E
~47! completely determines the spectral representation of
second kind of fluctuation-dissipation theorems. Equat
~47! is indeed a quantitative description of dissipation.

C. Transverse correlation

To obtain physically more transparent expressions for
transverse correlation function in Eq.~36!, we use Eqs.~38!
and ~39! to rewrite it as

F'~t2t8!5
1

\b2E d3xd3x8

3 (
na,n8a8

e2 ivn(t2t8)

i\vn2Ea

e2 ivn8(t82t)

i\vn82Ea8

3~Ea2Ea8!
2@„Ca

†~x8!¹x0
Ca8~x8!…

3„¹x0
Ca8

†
~x!Ca~x!…#• ẑ. ~50!

According to Eqs.~44! and ~45!,

(
n,n8

e2 i (vn2vn8)(t2t8)

~ i\vn2Ea!~ i\vn82Ea8!

5b(
n

e2 i ṽn(t2t8)

i\ṽn2~Ea2Ea8!
~ f a82 f a!

5
b2

2 F211
\

Ea2Ea8

]t2t8G
3

cosh@~Ea2Ea8!/\~\b/22ut2t8u!#

sinh@~Ea2Ea8!b/2#
~ f a82 f a!.

Because of the symmetry with the interchange ofa anda8,
the21 term in the above square brackets does not contrib
to the transverse correlation function, and we have

F'~t2t8!5
1

2E d3xd3x8 (
a,a8

]t2t8

3
cosh@~Ea2Ea8!/\~\b/22ut2t8u!#

sinh@~Ea2Ea8!b/2#

3~Ea2Ea8!~ f a82 f a!@„Ca
†~x8!¹x0

Ca8~x8!…

3„~¹x0
Ca8

†
~x!Ca~x!…#• ẑ.

The corresponding term in the effective action, Eq.~34!, is
then
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2
1

2E0

\b

dtE
0

\b

dt8F'~t2t8!„dxv~t!3dxv~t8!…• ẑ

52
1

4E0

\b

dtE
0

\b

dt8E d3xd3x8 (
a,a8

]t2t8

cosh@~Ea2Ea8!/\~\b/22ut2t8u!#

sinh@~Ea2Ea8!b/2#
~Ea2Ea8!~ f a82 f a!

3@„Ca
†~x8!¹x0

Ca8~x8!…3„¹x0
Ca8

†
~x!Ca~x!…#• ẑ„dxv~t!3dxv~t8!…• ẑ

52
1

4E0

\b

dtE
2`

`

dt8E d3xd3x8 (
a,a8

]t2t8 expH 2
uEa2Ea8u

\
ut2t8uJ sgn~Ea2Ea8!~Ea2Ea8!~ f a82 f a!

3@„Ca
†~x8!¹x0

Ca8~x8!…3„¹x0
Ca8

†
~x!Ca~x!…#• ẑ„dxv~t!3dxv~t8!…• ẑ. ~51!
nc
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in

imit
ov
e
u-

e
ay

e

In the last equality we have used the periodicity of the fu
tion dxv(t)5dxv(\b1t) to turn the hyperbolic function
into the exponential function. Now we look for the slo
motion expansion to the leading order in velocity:dxv(t8)
5dxv(t)1d ẋv(t)(t82t). Substituting this expansion int
Eq. ~51!, after the integration over (t82t) we have

2
1

2E0

\b

dtE
0

\b

dt8F'~t2t8!„dxv~t!3dxv~t8!…• ẑ

5 i E
0

\b

dt B@dxv~t!3d ẋv~t!#• ẑ,

with the quantityB which determines the transverse for
defined as

B5 i
\

2 (
a,a8

~ f a82 f a!E d3xE d3x8ẑ•„Ca
†~x8!¹x0

Ca8~x8!

3¹x0
Ca8

†
~x!Ca~x!…. ~52!

We demonstrate next that the contribution to the tra
verse correlation can be evaluated by counting exten
states contributions. First, we regroup terms in Eq.~52!:

B5 i
\

2
ẑ•tr(

a,a8
~2 !2(

n

1

b

e2 ivnd

i\vn2Ea

3E d3xE d3x8Ca~x!Ca
†~x8!¹x0

Ca8~x8!

3¹x0
Ca8

†
~x!

5 i
\

2
ẑ•tr(

a
~2 !2(

n

1

b

e2 ivnd

i\vn2Ea

3E d3x„¹x0
Ca~x!3¹x0

Ca
†~x!…, ~53!

because that$Ca8% form a completed set. Here tr stands f
summing over spinor indices. The replacement off a by the
summation is to take care of the delicate equal-time limit
-

-
d

the trace:d502 for spin up andd501 for spin down in
Nambu spin space. We encounter such a choice of time l
only in the case of taking the trace of the Nambu-Gor’k
Green’s function directly. This choice will not be there if w
only need to take trace of higher powers of the Namb
Gor’kov Green’s function, e.g., trG0

2. This implies that the
functions containing occupation numbers$ f a% in their differ-
ences are well defined. Therefore, Eq.~52! can be safely
used if we directly put in the eigenstates of th
Bogoliubov–de Gennes equation. An alternative natural w
of deriving Eq.~53! is to leave the summation overvn in
place throughout Eq.~50! to Eq. ~53!.

After substituting Eq.~53! into Eq. ~52!, we will write it
explicitly in terms of the eigenstates of Bogoliubov–d
Gennes equation. Since

tr(
a

(
n

1

b

e2 ivnd

i\vn2Ea
E d3x¹x0

Ca~x!3¹x0
Ca

†~x!

5(
a

E d3x$ f a¹x0
ua~x!3¹x0

ua* ~x!

2~12 f a!¹x0
va~x!3¹x0

va* ~x!%,

we obtain

B52 i\ ẑ•(
a

E d3x@ f a¹x0
ua* ~x!3¹x0

ua~x!

2~12 f a!¹x0
va* ~x!3¹x0

va~x!#. ~54!

After using¹x0
˜2¹, we evaluate Eq.~54! with the help of

the current definition30

j52
i\

2 (
a

$ f aua* ¹ua1~12 f a!va¹va* %1c.c.

Equation~54! becomes

B5E dx ẑ•~¹3 j !5 R
ux2x0u˜`

dl• j52p\rs~T!.

~55!
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Here we have used the fact that the current is zero at
vortex position, as the explicit calculation in Ref. 30 h
shown. It can be understood as the requirement of quan
mechanics: At the phase singular point, the amplitude of
wave function carrying this singular phase must be zero
reaching Eq.~55! we have also made the assumption that
vortex does not have a normal fluid circulation. The norm
fluid is in equilibrium with the substrate or the walls of th
container.

From Eq.~55! one may conclude that when counting t
contribution from individual states, only extended states g
rise to the contribution to the transverse response, bec
the loop of the line integral can be chosen arbitrarily large
make the core state contributions arbitrarily small. It cor
sponds to the fact that only extended states can contribu
the Berry phase of the vortex.5 This result is valid even when
the trapping potentialU0 is finite, which we demonstrate
here. Since Eqs.~38! and~39! are valid in the presence of
finite trapping potential, the transverse correlation funct
can be expressed by wave functions in exactly the same f
as that of vanishing trapping potential, up to Eq.~54!. The
wave functions, particularly those for core states, may
strongly affected by the trapping potential, and may ev
become ill defined. An example may be the trapping o
vortex by a physical wire. Now, one may perform the sa
calculation of turning the area integration into line integ
tions, as done in Eq.~55!. Since the trapping potential wil
not affect the superfluid number density far away from
vortex, and since the circulation current is still zero at t
vortex position, one then gets the same result as Eq.~55! in
the presence of a trapping potential.

The validity of Eq.~55! in the presence of a finite trappin
potential implies that the transverse force is independen
the trapping potentialU0 at the vortex center. In Eq.~29!, the
main function of the trapping potential is to specify the vo
tex position, a symmetry breaking in an otherwise homo
neous system. This is similar to the symmetry breaking by
infinitesimal field near a continuous phase transition in s
tistical mechanics. Hence, it can be effectively taken to
zero, as we have explicitly done in the present paper.

Next, we turn to the calculation of the superfluid numb
densityrs . At zero temperature, it is straightforward. It
equal to the total fluid number densityr05(a,Ea.0uva(ux
2x0u˜`)u2, the number of Cooper pairs per unit area.
finite temperatures, there is a reduction of superfluid num
density due to the backflow carried by quasiparticle exc
tions. In principle, one may directly calculate the curre
density together with the gap equation, or self-consist
equation, to find outrs . This would be prohibitively diffi-
cult. Instead, one may proceed in the following manner:
away from the vortex core, the current varies slowly. O
may take the current to be locally uniform. Following th
same way as that in superfluid He3 using the backfl
contribution,31 the superfluid number density can be found

rs~T!5r0@12Y0~T!# ~56!

with the Yosida functionY0 defined as
e
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Y0~T!5E
2`

`

de
eAe21D`

2 /kBT

kBT~eAe21D`
2 /kBT11!2

,

which accounts for the quasiparticle excitations contrib
tions. At the superconducting transition temperatu
Tc , D`50 andY0(Tc)51, the superfluid number density i
zero as expected. This expression is the same as tha
tained from the London penetration depth for a clean type
superconductor.3

Using Eq.~55!, the transverse term in the effective actio
Eq. ~34!, is

2
1

2E dtdt8F'~t2t8!@dxv~t!3dxv~t8!#• ẑ

5 i E dtdt8B@dxv~t!3d ẋv~t!#• ẑ

52 i2p\rsE dtd ẋv~t!•At ~57!

with

At5
1

2
~dxv3 ẑ!,

which has the same form of the action for a charged part
in a uniform magnetic field. The geometric phase or t
Berry phase for the vortex moving along a closed traject
G is

Q52p\rsE dtd ẋv~t!•At52p\rs R
g
d~dxv!•At

522p\rsS~G!,

with S(G) being the area enclosed byG. The total transverse
force on a vortex is then

F522p\rsd ẋv3 ẑ.

In view of the foregoing discussions, we may rewrite o
general formulation, Eq.~34!, in a more suggestive form
The effective action for the vortex is

Seff5E
0

\b

dtH 2 i2p\rsd ẋv~t!•At

1
1

2E0

\b

dt8F i~t2t8!udxv~t!2dxv~t8!u2J ~58!

with At5
1
2 (dxv3 ẑ). The rewriting of Eq.~46! for the cor-

relation function is

F i~t!5
1

pE0

`

dvJ~v!
cosh@v~\b/22utu!#

sinh@v~\b/2!#
,
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and the rewriting of Eq.~47! for the spectral function is

J~v!5
p

4 (
a,a8

d~\v2uEa2Ea8u!u f a82 f au

3U E d3xCa
†~x!¹x0

H0Ca8~x!U2

.

The thermodynamic limit must be taken first to have
smooth spectral function, which is crucial for obtaining
finite vortex friction.

IV. VORTEX DYNAMICS IN CLEAN LIMIT

The example of an extremely clean limit of fermion
superfluids is the superfluid He 3: The impurity concent
tion can be made to be smaller than 1 in 1012. For supercon-
ductors, the impurity effect can, in principle, be made ar
trarily small, but no clear experimental realization has be
reported yet. In view of this experimental situation, the d
cussions in this section are more relevant to He 3. Howe
from the methodological point of view, it is instructive to se
how the formulation developed in Sec. III works for such
clean situation.

A. Extended states contribution to vortex friction

In this subsection we first calculate the extended st
quasiparticle and hole excitations, contributions to the vor
friction to illustrate the usefulness of the present longitudi
response formula. The formula, Eq.~47! or ~49!, is formally
exact. However, for a given problem it is difficult to obta
an exact detailed expression for friction, except in some r
cases.32,29,28Hence a WKB-type approximation will be use
below. The responses of fermions, or electrons, governing
Hamiltonian dynamics generates a finite friction for the v
tex.

At finite temperatures the extended states above~below!
the Fermi level@the quasiparticles~holes!# are partially oc-
cupied. The vortex motion causes transitions between th
states, which gives rise to vortex friction. The transitio
between different single quasiparticle leve
^Cau¹x0

H0uCa8& are considered here since they domin
the low-energy process. The quasiparticles are describe
the eigenstates,ua and va , of the Bogoliubov–de Genne
equation. Their behavior in the presence of a vortex has b
well studied in Ref. 30. We may take

Ca5S ua~x!

va~x!
D 5

eikzz

AL

eimu1 iszu/2

A2p
f̂ ~r ! ~59!

with r measured from the vortex position,u is the azimuthal
angle around the vortex,L is the thickness of the supercon
ductor film ~the length of the vortex line!, and j0 is the
coherence length. In order to obtain a concrete form for
transition elements, we use a WKB-type solution forf̂ (r )
-

-
n
-
r,

e,
x
l

re

y
-

se

e
by

en

e

f̂ ~r !5
1

A2 S F16
AE22uD~r !u2

E G1/2

F17
AE22uD~r !u2

E G1/2D Jm61/2„k6~E!r ….

~60!

Herek6(E)5Akr
262mAE22uD(r )u2/\2 with kr

25kf
22kz

2 .
The negative energy wave functions determined by
Bogoliubov–de Gennes equation may be constructed acc
ing to Eq. ~37! from the positive energy ones. We will us
the approximation thatkr'kF for the prefactor by assuming
that the significant contributions come from the region n
the Fermi surface. This WKB-type solution is valid whenr is
outside the classical turning pointr t5umu/kr . Herer t is the
impact parameter. A WKB-type solution also exists insi
the turning point. However, because it approaches zero
(rkr) umu/umu!, the contribution to the transition elemen
from this region is small, and will be set to zero. The tra
sition elements are then given by

u^Cau¹x0
H0uCa8&u

25U E d3x@ua8
* ~x!~¹x0

D!va~x!1va8
* ~x!

3~¹x0
D* !ua~x!#U2

5H D`
2

2p2kF
2

dkz ,k
z8
dm8,m61 , umu<j0kr

0, umu.j0kr .

~61!

Here D` is the value ofuD(r )u far away from the vortex
core. Physically, it means that if the classical quasipart
trajectory is far away from the vortex core, it will not con
tribute to the vortex friction. The summation over states
Eq. ~47! or Eq. ~49! is replaced by

(
a8Þa

5 (
m,m8,kz ,kz8

E dEdE8
E

AE22D`
2

E8

AE822D`
2 S 2m

\2 D 2

,

~62!

after considering the density of states.
Substituting Eqs.~61! and~62! into Eq.~49! and using the

quasiparticle distribution functionf a51/(ebEa11), the co-
efficient of friction is given by

h5
Lm2j0D`

2 b

4p2\3 E
D`

`

dE
E2

E22D`
2

1

cosh2~bE/2!
. ~63!

The integral in Eq.~63! diverges logarithmically. It implies
that the spectral function corresponding to the vorte
quasiparticle coupling is not strictly Ohmic but has an ex
frequency factor proportional to ln(D` /\v). When\v is not
very small comparing toD` , which may be realized when
close toTc , we can ignore the logarithmic divergence in E
~63! by using the density of states for normal electrons
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obtain a finite friction, i.e., replacingE2/(E22D`
2 ) with 1 in

Eq. ~63!. Close toTc , the vortex friction approaches zero th
same way asD`

2 , which is proportional to the superflui
number densityrs . When2 ln(\v/D`) is large, we need to
use Eq.~47! instead. Straightforward evaluation shows th
in such a case

h5
Lm2j0D`

3 b

8p2\3

1

cosh2~bD`/2!
ln~D` /\vc!. ~64!

Herevc is the low-frequency cutoff. It is determined by th
size of the system for a single vortex, and by the intervor
distance for a vortex array.

We discuss briefly here the connection of our results
previous ones. The partial wave analysis has been perfor
for quasiparticle scattering off a vortex in
superconductor.33 Though the phase shifts were obtained a
proximately, it is clear from the analysis that they are not
zero. Using the formal relationship between the phase s
and the friction,27–29,32the extended states have a contrib
tion to the vortex friction, in accordance with our results.

It should be emphasized that the logarithmic diverge
comes from the interplay between the divergence in the d
sity of states and the off-diagonal potential scattering.
can consider a situation where we physically create a pinn
center to trap the vortex and guide its motion. In such a c
the vortex has a diagonal potential. If the scattering is do
nated by the diagonal potential, e.g., by the trapping poten
U0, an additional factor coming fromuuau22uvau2 will re-
move this logarithmic divergence. The friction on the phy
cal trapping potential will be finite even aboveTc without
the vortex, as indicated in Refs. 27–29, and 32, though
total transverse force disappears becausers50. This again
shows the sensitivity of the vortex friction to details.

The vortex friction from extended states exists for bo
clean and dirty superconductors at finite temperatures. C
to the transition temperature, it scales linearly with the
perfluid density, and is exponentially small whenT!D` .
For intermediate temperaturesT;D` , using j0

;\2kF /mD` andN(0)5mkF /p2\2, h;L\N(0)D`
2 /kBT.

When the impurity potential is nonzero, there is an additio
contribution to the friction, to be discussed in the next s
tion.

We mention here that there is another type of low-lyi
excitation, phonons, which may lead to an additional con
bution to vortex friction. This type of excitation can be d
scribed by the phase dynamics of the gap functionD, and has
been ignored here by the assumption of an adiabatic foll
ing up of the gap function to the vortex coordinate. Based
general considerations we expect that the phonon contr
tion is super Ohmic.14 Hence, it is asymptotically weake
than the~sub!Ohmic damping contribution from quasipart
cle excitations discussed above and the core state cont
tion to be discussed below.

The nonzero friction contribution from extended sta
found above is in accordance with the linear-response the
in nonequilibrium statistical mechanics, where transport
efficients are related to the fluctuations near the equilibri
by the fluctuation-dissipation theorem. The fluctuations
t
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completely determined by the underlying Hamiltonian. He
they are quasiparticles determined by the Bogoliubov–
Gennes equation.

It should be pointed that the expression leading to vor
friction, Eq. ~47! or ~49!, are absent in Refs. 7, 9, and 10. T
obtain a finite friction in those work, a finite relaxation tim
needs to be inserted into the denominator of the force-fo
correlation function,10 or into the denominator of the
Nambu-Gor’kov Green’s function at a convenient poin9

which at the same time leads to the reduction of the to
transverse force. As discussed in Sec. II B, such a proce
should be avoided.

B. Core vs extended states transitions
for total transverse force

There are various ways to express the transverse cor
tion function in Eq.~36! or ~52!, with emphasis on differen
aspects of the transition elements. In Sec. III C we ha
shown how to obtain the total transverse force from the c
sideration of extended states. In this subsection we show
it can also be obtained from the consideration of core sta
even some combination of both types of states.

Explicitly, we may evaluate the transverse response
rectly from Eq. ~36! or ~52!. We will show that the total
transverse force can be expressed as contributions from
core to core transitions, or from core to extended states t
sitions. For a clean superconductor we replace¹x0

˜2¹.
We define following symbols for the transition elements:

a~ l !a8~ l 8!52 i\~ f a2 f a8!
1

2
ẑ•E d3xd3x8

3Ca
†~x8!¹Ca8~x8!3¹Ca8

†
~x!Ca~x!,

~65!

which groups the transition elements into core state to c
state, core state to extended states, extended state to
states, and extended state to extended state transitions.
l 5c,e represents the corec or extendede states, anda rep-
resents other indices:kz , m. For example,a(c)a8(c) rep-
resents the elements in Eq.~52! whenCa andCa8 are both
core states. More explicit examples will be given belo
From Eq.~52! and ~65!, the summing over these transitio
elements as well as overa anda8 givesB,

B5 (
a,a8

@a~c!a8~c!1a~c!a8~e!1a~e!a8~c!

1a~e!a8~e!#. ~66!

First, we note that for a core state, the sum of its transit
elements to all other states is zero:

(
a8

@a~c!a8~c!1a~c!a8~e!#50. ~67!

In fact, we have already obtained Eq.~67! and used this
identity earlier in Sec. III C from Eqs.~52!–~55! to exclude
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the core state contribution to the circulating current far aw
from the vortex core in Eq.~55!. In Eq. ~52! both extended
and core state contributions are there. Then we summed
all the Ca8 to reach Eq.~53! or ~54!, because they form a
complete set. Thus in the last expression of Eq.~52! inside
the sum overa, if Ca is an extended state, its contribution
the transverse response is actually(a8@a(e)a8(c)
1a(e)a8(e)#, because all thea8s have been summed ove
The same procedure applies ifCa is a core state. In Eq.~55!,
we have shown that the area integral can be converted in
line integral and we can choose the loop large enough c
pared to the core size. IfCa is a core state, its contribution t
Eq. ~55! is zero. Thus we conclude the validity of Eq.~67!.

With the aid of Eq.~67!, the transverse correlation can b
expressed in the following two additional forms:

B5 (
a,a8

@a~e!a8~c!1a~e!a8~e!# ~68!

5 (
a,a8

@a~e!a8~e!2a~c!a8~c!#. ~69!

In reaching Eq.~69!, we have used the identitya(c)a8(e)
5a(e)a8(c). Here Eq.~68! can be reduced to Eq.~55! after
using the completeness of the eigenfunctions, as discu
above. Next, we present more detailed discussions on
core-core and extended-extended transition element co
butions.

To be specific, we consider the zero-temperature case
the core states, because of the topology the energ
uniquely determined bym. The only transition elements con
tributed to the transverse correlation functionF' are be-
tween statesm56 1

2 :

(
a,a8

a~c!a8~c!52 i2\~ f m521/22 f m851/2!

3
1

2
ẑ•E d3xE d3x8

3@C21/2
† ~x8!¹x0

C1/2~x8!

3¹x0
C1/2

† ~x!C21/2~x!#. ~70!

The additional factor 2 accounts for the transition from t
m51/2 state to them8521/2 state, which gives the identica
contribution. The transition element in Eq.~70! may be ex-
pressed as

E d3xE d3x8@C21/2
† ~x8!¹x0

C1/2~x8!

3¹x0
C1/2

† ~x!C21/2~x!#

52 i ẑdkz ,k
z8
~a21/2,1/21b21/2,1/2!~a21/2,1/2* 1b21/2,1/2* !

2~E21/22E1/2!
2

,

where
y

er

a
-

ed
he
ri-

or
is

a21/2,1/252E
0

`

rdr uDur8@ f̂ 1,21/2* ~r ! f̂ 2,1/2~r !

1 f̂ 2,21/2* ~r ! f̂ 1,1/2~r !#,

and

b21/2,1/252E
0

`

druDu@ f̂ 1,21/2* ~r ! f̂ 2,1/2~r !

2 f̂ 2,21/2* ~r ! f̂ 1,1/2~r !#,

which follow the definitions in Eqs.~A10!–~A15! in the Ap-
pendix.

Now we evaluate Eq.~70! explicitly. For the deep core
states in clean superconductorsE52me0 with e0 the core
level spacing,f m521/250 and f m51/251. The relation be-
tween the energy of core states and the quantum numberm in
our case is different from the one in Ref. 30 in sign beca
we are considering a vortex with positive vorticity. The wa
functions for deep core states take the form

Cm
† ~x!'

1

2
AkF

j0
S ei (m11/2)uJm11/2~kFr !

ei (m21/2)uJm21/2~kFr !
D e2r /j0. ~71!

This leads to a21/2,1/2(E,E8)'0 and b21/2,1/2(E,E8)
'D` /j0.

Using Eq.~71!, it is straightforward to show

ẑ• (
m,m8

~ f m2 f m8!E d3xE d3x8

3@Cm
† ~x8!¹Cm8~x8!3¹Cm8

†
~x!Cm~x!#5 ikF

2 .

Therefore,

(
a,a8

a~c!a8~c!5
\kF

2

2
5B. ~72!

The last equality is due to the fact that in 2D, the electron
densityne5kF

2/2p. The additional factor 1/2 accounts for th
pairing. The conclusion is that at zero temperature the sum
the core-core state transitions alone gives rise to the t
transverse force. It corresponds to the fact that the core-
state transitions are a local and differential form of the g
metric phase, and the Berry phase is the global and inte
form. In the next section we will show that Eq.~72! is un-
changed in the presence of impurities.

Here we wish to point out an interesting feature explici
manifested in Eq.~72!: the transverse response is insensit
to the size of the system, because the core states are e
nentially localized. This implies that the thermodynam
limit is not important for the total transverse force. We a
tribute this feature to the topological constraint on the tra
verse response, corresponding to the well-known fact that
Berry phase exists for a discrete energy spectrum.
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There are two more interesting results which follow E
~72!. At zero temperature, using Eqs.~69! and~72!, we have

(
a,a8

a~e!a8~e!52B. ~73!

This implies that for a fermionic superfluid, the sum of a
extended state transitions lead to twice that of the total tra
verse force. Combining Eq.~67! with Eq. ~72!, we have

B52 (
a,a8

a~e!a8~c!, ~74!

which shows that the core-extended state transitions can
be used to calculate the total transverse force. We bel
that this property has been explored before in the case
sidering the contributions from states whose energies
around D` , the interface between the core and extend
states.34

In the literature, after a transverse response equivalen
Eq. ~36! or ~52! was reached, it had always been assum
that only one core-to-core state transition contributes9,10

However, as we have found out, core to extended state t
sitions are of the same order. The above discussions s
that there are many equivalent ways to compute the t
transverse force. Because of the topological constraint,
total transverse force can even be evaluated by partial s
mations of the transition elements, expressed by Eqs.~68!,
~69!, ~72!, ~73!, and ~74!. This is completely different from
the computation of the longitudinal force~the friction!,
where a partial summation contributes only a part of the to
friction. The demonstration in this subsection suggests
the alleged cancellation between the core spectrum flow c
tribution and the Berry phase counting is a consequenc
.
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the combination of double counting, treating core and
tended contributions to the transverse force as different qu
tities, and the misuse of the relaxation time approximation
the force-force correlation functions.

To briefly summarize this subsection, we have formula
the transverse response in terms of transitions between
state or between core and extended states. Equivalently
have also formulated it in terms of a summation over
extended state contributions. In a clean and neutral super
at finite temperatures, the total transverse force is given
the product of the superfluid number density, the Planck c
stant h, and the vortex velocity, though the vortex frictio
exists.

V. EFFECTS OF IMPURITIES

A. No effect on total transverse force

The presence of impurities is unavoidable in superc
ductors. In this subsection we consider this realistic situat
of the influence of the impurity potential to the transver
force on the moving vortex. In Sec. IV B we have shown th
the transverse correlation function can be evaluated by ei
considering the extended states or by considering only
core states in a clean superconductor. The same also hol
the case with impurities, as we will demonstrate below. W
first give a formal demonstration from the counting of ind
vidual state contributions, then explicitly consider the co
state transitions, to pave the way for the core state contr
tion to vortex friction. The robust conclusion is that rando
impurities do not affect the total transverse force.

It is more convenient to change the gradient from¹x0
to

¹ when an impurity potentialV(x) is involved. Applying
Eqs. ~42! and ~43! to Eq. ~52!, the transverse correlatio
becomes
ave

hat
B52 i (
a,a8

E d3xE d3x8~ f a2 f a8!
\

2
ẑ•@Ca

†~x8!¹Ca8~x8!3¹Ca8
†

~x!Ca~x!#

1 (
a,a8

~ f a2 f a8!~Ea2Ea8!
22

\

2
ẑ•E d3xE d3x8@Ca

†~x8!¹H8~x8!Ca8~x8!3Ca8
†

~x!¹H8~x!Ca~x!#. ~75!

Other terms are identically equal to zero after summing overa,a8.
We first show that the second term in Eq.~75! is zero after the impurity average. To be concrete, we expand the w

function Ca in terms of eigenfunctions ofH̄0 , $fg%,

Ca5(
g

xagfg . ~76!

Herexag5aageiwag, andaag andwag are the modulus and phase of the expansion coefficients. We remind the reader tH̄0
has dependence on the impurity potential because it includes the smooth part of the self-consistent potentialD. Because of the
normalization requirement, the coefficients$aageiwag% form a unitary matrix,

(
g

aag
2 51, (

a
aag

2 51.
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The second term of Eq.~75! is now

E d3xE d3x8Ca
†~x8!¹H8~x8!Ca8~x8!3Ca8

†
~x!¹H8~x!Ca~x!

5 (
g,g8,g1 ,g18

aagaa8g8aa8g
18
aag1

e2 iwag1 iwa8g18
2 iwa8g18

1 iwagE d3xE d3x8fg
†~x8!¹H8~x8!fg8~x8!3fg

18
†

~x!¹H8~x!fg1
~x!.

~77!

From the random-matrix theory,35 the phase$wag% are random numbers. The impurity average makesg5g1 and g85g18 .
Under the assumption, i.e., the core size much larger than the average distance between impurities, the avera
impurities restores the homogeneity and isotropy of the spatial space. This implies that all the odd power of¹H8 will be
averaged to zero. Since each term in Eq.~77!,

E d3xE d3x8fg
†~x8!¹H8~x8!fg8~x8!3fg8

†
~x!¹H8~x!fg~x!

5 ẑE d3xE d3x8$„fg
†~x8!¹H8~x8!fg8~x8!…x„fg8

†
~x!¹H8~x!fg~x!…y

2„fg
†~x8!¹H8~x8!fg8~x8!…y„fg8

†
~x!¹H8~x!fg~x!…x%,
th

io
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consists of elements of the odd power ofx andy components
of ¹H8, the second term of Eq.~75! is zero after the impu-
rity average.

The average transverse correlation is then, following
same procedure from Eqs.~52!–~55!,

B5 R rux2x0u˜`
dl• j . ~78!

Here the average current

j52K i\

2 (
a

@ f aua* ¹ua1~12 f a!va¹va* #L 1c.c.

52
i\

2 (
ag

^aa,g
2 &$@ f aug* ¹ug1~12 f a!vg¹vg* #1c.c.%,

and^•••& stands for the impurity average over the expans
coefficients. In the limitr˜`, we have

j52
i\

2 (
a,g

^aa,g
2 &$@ f auugu21~12 f a!uvgu2#1c.c.%¹u.

At zero temperature, we have

(
a,Ea.0

(
g

^aag
2 &uv̄g~ ux2x0u˜`!u2

5 (
a,Ea.0

^uva~ ux2x0u˜`!u2&5r0 .
e

n

The above second equality is the Anderson theorem, in
nonmagnetic impurities do not affect the density of sta
near the Fermi surface, hence there is no effect on the su
conducting transition temperature. We will come back to t
point after the discussion of the impurity effect on vort
friction. This result may also be reached from the envelo
wave function argumentation.36 Therefore Eq. ~55! also
holds in the presence of impurities. Thus we have shown
general that the transverse correlation is not influenced
impurity potentials. Physical understanding of this result
straightforward: There is no average circulation current
sociated with impurity potentials.

Next, the insensitivity of the total transverse force to ra
dom impurities will be illustrated by a different demonstr
tion. We evaluate core state transitions with impurity pote
tials, a part of the first term in the right-hand side of Eq.~75!.
First, we will explicitly consider the total transverse forc
from core state contributions with a weak impurity potenti
Because of the factor (f m2 f m8) and the selection rule in the
transition elements, deep core states are the ones makin
main contributions to the total transverse force for tempe
tures well belowTc . When the impurities are weak enoug
for deep core statesCm5(namneiwmnfn the expansion coef-
ficient amn is large only for the neighboring states aroundm,
which are also deep core states. In a clean supercondu
core states are uniquely specified by the azimuthal numben.
Therefore, with weak impurity potentials, we may only co
sider deep core states close to the Fermi surface, and ig
the mixing of deep core-level states with the extended st
in Eq. ~75!.

Substituting Eq.~76! into Eq. ~75! and using Eq.~71! to
calculate transition elements among core states$fn%, we
have
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E d3xE d3x8Cm
† ~x8!¹Cm8~x8!3¹Cm8

†
~x!Cm~x!

5 (
n,n8,n1 ,n18

amnam8n8am8n
18
amn1

3e2 iwmn1 iwm8n82 iwm8n18
1 iwmn1~7 !i t c

2dn8,n61dn
18 ,n161ẑ.

~79!

Here we have used

E d3xfn
†~x!¹fn8~x!' i t c~6 x̂1 i ŷ !dn8,n61

with tc5kF/2. If m andm8 are interchanged, there is a sig
change in the right-hand side of Eq.~77!. Including the fac-
tor ( f m2 f m8) and summing overm andm8, core-core state
transitions become

(
m,m8

~ f m2 f m8!E d3xE d3x8ẑ•@Cm
† ~x8!¹Cm8~x8!

3¹Cm8
†

~x!Cm~x!#

5 (
m,m8

~ f m2 f m8!

3 (
n,n8,n1 ,n18

amnam8n8am8n
18
amn1

3e2 iwmn1 iwm8n82 iwm8n18
1 iwmn12~7 !i t c

2dn8,n61dn
18 ,n161 .

~80!

Because of the randomness in the phase factor
e2 iwmn1 iwm8n82 iwm8n18

1 iwmn1, the dominant contribution come
from statesn5n1 ,n85n18 . Equation~80! becomes

(
m,m8

~ f m2 f m8!(
n,n8

amn
2 am8n8

2 2~7 !i t c
2dn8,n61 .

For a given distribution ofaam this summation can be
evaluated. For the purpose of demonstration, let us assu
simple distribution centered ata: amn

2 51/(2l 11) when un
2mu, l , amn50 otherwise, and consider only zero tempe
ture. Here 1! l !Nc , with Nc being the total number of cor
states. With this assumption, each of the original state
spread into a band of 2l 11 states around it when impuritie
are present. Equation~79! takes the value

(
m,m8

~ f m2 f m8! (
un2mu< l ,un82m8u< l

1

~2l 11!2
2~7 !i t c

2dn8,n61 .

We note that for the pair of statesm571/2, m8561/2 clos-
est to the Fermi surface their contribution is reduced b
factor of 1/(2l 11)2. However, all the states within the en
ergy shelluEmu< l e0 near the Fermi surface contribute now
of

e a

-

is

a

In order to have a nonzero contribution at zero temperat
we haveEmEm8,0, one above and one below the Ferm
surface. Because of the restriction of the band distribut
and the selection forn8 and n, we have an additional con
straint on theEm andEm8 : uEmu,uEm8u, l . The net contribu-
tion is

(
m,m8

~ f m2 f m8! (
un2mu< l ,un82m8u< l

1

~2l 11!2
2~7 !i t c

2dn8,n61

5 ikF
2/2, ~81!

which is approximately the same value for the clean sup
conductor. The factor of 1/2 is due to the approximation
tc using same value for all transitions betweenm andm61.
One can check that the above result also holds for Gaus
distribution ofaam . This completes the discussion of the fir
term in Eq.~75! in the weak impurity potential limit.

Although at zero temperature in a clean supercondu
only the core states closest to the Fermi level contribute
Eq. ~52! or ~66!, the transition elements of other states a
not small. Their contributions cancel each other complete
With impurities, more states than those closest to the Fe
level give contributions to the transverse response. Th
contributions from other core states restore the transv
response to its original value of a clean superconductor
the calculations with the relaxation time approximation, t
reduction of the contribution from the two states closest
the Fermi level has been taken into account.9,10 The contri-
bution due to other core states, which arises after introduc
impurities, has not been included in those calculations.

Next we consider the dirty limit, and we will again mak
use of arguments in the random matrix theory.35 We assume
that there is no mixing between the core and extended sta
In the weak impurity potential limit, it is not difficult to
justify this assumption: The band width in Eq.~81! caused
by impurities is much smaller thanD. In the dirty limit, the
number of core states remains the same, since the energ
away from the vortex core remains the same. Hence, the
a conservation of the number of core states, because o
topological nature of the vortex. We also note that there is
degeneracy for the core states, in contrast to the exten
states. In additional, impurities do not cause an additio
violation of time-reversal symmetry. For those reasons we
not expect that they would mix two topologically distin
types of solutions, the core and extended states, of
Bogoliubov–de Gennes equation.

With increasing impurity potential strength, eventua
any core statesCm in Eq. ~79! consist of all the core states o
H̄0 , Cm5(nxmnfn . Here the summation(n runs over core
states only. The total number of core states does not cha
after introducing impurity potentials, because the core-le
spacing forfn only depends on the values ofEF and D` ,
the value ofD far from the core. A specific approximat
realization may still be in the form of the band distribution
given in Eq. ~81!, with l;Nc , the total number of core
states:
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uxmnu25H 1

Nc22umu
, um2nu,Nc/22umu

0, um2nu.Nc/22umu.
~82!

It is widely spread for deep core statesumu!Nc/2. One may
check that(nuxmnu251 andm5(nuxmnu2n. The latter cor-
responds to the requirement for the energy spectrum^Em&
5^CmuH0uCm&5(nuxmnu2En . The condition of(muxmnu2
51 is only approximately satisfied: we have found th
(muxmnu2' 1

2 ln(Nc
2)/@(Nc/2)22n2# which gives ln 2 whenn

!Nc/2 and lnNc whenn;Nc/2.
In this limit, Eq. ~79! becomes

(
m,m8

~ f m2 f m8!ẑ•E d3xE d3x8

3@Cm
† ~x8!¹Cm8~x8!3¹Cm8

†
~x!Cm~x!#

5 (
m,m8

~ f m2 f m8! (
n,n8,n1 ,n18

xmn* xm8n8xm8n
18

* xmn1

32~7 !i t c
2dn8,n61dn

18 ,n161 . ~83!

Its average value isikF
2/2 at zero temperature, approximate

the same as in clean superconductor, by using the distr
tion function given in Eq.~82!.

We have gone into great detail to calculate the total tra
verse force from core state transitions in the presence
impurities. Indeed, there is a reduction in transition amp
tude between any pair of neighboring states. Neverthel
the summation over all possible core state transitions rest
the total transverse force to its value in the clean lim
Hence, the impurities have a negligibly small effect on t
total transverse force from both the core state transitions c
sideration and the extended state counting, though the
tion contributions are strongly affected by impurities, to
discussed in the next subsection.

In addition, we check the self-consistent condition w
respect toD here and show that they are satisfied for o
choice ofxmn . Because inH̄0 we have already assumed th
the profile of D̄ is the smooth part of the self-consiste
potential with impurity potentials included, we need to ma
sure that the decomposition of the eigenfunction does
introduce an extra term to the self-consistent potential.
have

D52g(
a

uava* ~122 f a!

52g (
m,n,n8

xmnxmn8
* un

0vn8
0* ~122 f a!

2g(
a(e)

uava* ~122 f a!, ~84!

where u0,v0 are the components of core eigenfunctio
$fn%, and ~e! denotes the extended states. In the last eq
tion, the summation is split into those of core states a
t

u-

s-
of
-
s,
es
.
e
n-
c-

r

ot
e

a-
d

extended states. Using a distribution functionp for x such as
defined by Eq.~82!, the average core state contribution toD
is the same as the one calculated by using$fn%,

2gK (
m,n,n8

xmnxmn8
* un

0vn8
0* ~122 f m!L

52g(
m

um
0 vm

0* ~122 f m!.

The extended states also need to be self-consistent. W
sume the impurity strength is strong enough to mix the c
states on the scale of 1/j but too weak to cause extende
state distortion on the scale of 1/kF . Then for extended state
the distribution of xag is a function p(Ea2En). It is
straightforward to check that the extended state contribu
to D is the same as that of those calculated by using$fn%.

B. Impurity contribution to vortex friction

In the present of impurity potentials, there are two kin
of contributions to the friction. The extended state contrib
tion remains basically the same as what we have discu
before. The main difference is that the coherence length
Eq. ~61! will change when impurities are present. We w
give a brief discussion here. Since the density of states
mains unchanged, we only need to evaluate Eq.~61! again.
The transition elements are given by

u^Cau¹x0
H0uCa8&u

25 (
n,n8,g,g8

uxa;ngu2uxa8;ng8u
2

3H D`
2

2p2kF
2

dkz ,k
z8
dn,n861 , unu,jkr

0, unu.jkr .

~85!

Here x is the expansion coefficient in Eq.~76!, j is the
coherence length in the presence of impurities,l is the angu-
lar index of the state, andE is the energy of the state. With
given distribution ofx such that the expansion coefficient
confined to the neighborhood of its original energy, it can
shown that the extended state contributions to the frict
remain unchanged, except the change of the cohere
length ofj0˜j.

In the presence of impurities, the core state energy lev
are no longer monotonically arranged according to azimu
number or the angular momentum. In addition, it may b
come quasicontinuous under the impurity average. The m
ing caused by impurity potentials makes it possible to ha
transitions into energetically nonadjacent core states, as
cussed in the previous subsection, as well as into energ
cally nearly degenerate core states. Thus the core states
give another contribution to the vortex friction, similar to th
residual resistance in a metal.

First, we consider the weak impurity potential limit. W
assume the effect of impurities is not so strong such that
can treat their influence on core states perturbatively. Us
Eqs.~42! and ~43! we obtain
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U E d3xCm
† ~x!¹x0

H0Cm8~x!U2

5U2~Em82Em!E d3xCm
† ~x!¹Cm8~x!

2E d3xCm
† ~x!¹H8Cm8~x!U2

. ~86!

For the leading-order contribution, we only need to use
unperturbedCm and D. The first term in Eq.~86! will not
give any contribution to the dissipation because of the d
creteness of (Em82Em) and the factord(\v2uEm2Em8u) in
J(v). After summing overm andm8, this term will become
terms of d(\v6e0), which will not give any dissipation
The contribution to the dissipation comes from the seco
term.

We may assume the impurity potential has a length sc
small compared with the coherence length so that we
describe it by a delta potentialV(x)5( iV0d(x2xi). We
have

K U E d3xCm
† ~x!¹H8Cm8~x!U2L 5ni~pj2L !V0

2S kF

pj2L
D 2

,

with the impurity concentrationni . Under this assumption
we will make connections to the normal-state transport
rameters. Note that for normal states the electronic trans
relaxation time and the electron scattering cross section h
the following relations:37

t tr
215nivFs tr

with

s tr5E dV~12cosu!uV~u!u2.

Here

V~u!52
m

2p\2E d3xV~x!e2 iq•r

with q5k2k8, u is the angle betweenk and k8, and vF

5\kF /m. For our choice of impurity potential,t tr
21 can be

calculated,

t tr
215nivFS m

2p\2D 2

V0
2E dV~12cosu!.

We emphasize here that the electronic transport relaxa
time t tr is directly determined by the Hamiltonian of Eq
~22!.

Expressed int tr , the spectral function now becomes
e

-

d

le
n

-
rt

ve

n

J~v!52\vS kFL

2pe0
D 2

ni~pj2L !V0
2S kF

pj2L
D 2

5v
3

2

mne~pj2L !

t tr
. ~87!

Heree05D`
2 /EF is the core-level spacing, andEF5mvF

2/2.
In Eq. ~87! kFL/2pe0 is the approximate density of cor
states near the Fermi surface. It appears with the factor 2\v
because

(
m,m8

d~\v2uEm2Em8u!u f m2 f m8u

5E dEmdEm8d~\v2uEm2Em8u!u f m2 f m8unc
2~E!

52\vnc
2~E!

with nc(E)'kFL/(2pe0). The scattering timet tr is linked
to the residual resistivity by

r5
m

nee
2t tr

and can be measured independently.
The above spectral functionJ(v) gives the vortex friction

in the weak impurity limit

h5
3

2

mne~pj2L !

t tr
. ~88!

It has a simple interpretation. For a normal electron mov
in the metal, the friction is simplym/t tr . Equation~88! can
be interpreted as that in the weak impurity limit, the frictio
for a vortex is the friction for each electron times the to
number of electrons inside the core,ne(pj2L).

This vortex friction increases with impurity concentratio
and strength. We will show that this increase eventually sa
rates in the dirty limit. Using Eq.~76!, we expand localized
statesC in terms of$fn%, the of eigenfunctions ofH0.

K U E d3xCm
† ~x!¹x0

H0Cm8~x!U2L
5 (

n,n8,n1 ,n18
^xmnxm8n8xmn1

xm8n
18
&~En2En8!~En1

2En
18
!

3E d3xfn
†~x!¹fn8~x!•E d3xfn1

† ~x!¹fn
18
~x!

5 (
n,n8

uxknu2uxk8n8u
22e0

2utcu2dn8,n61 . ~89!

With the distribution function given in Eq.~82!, the average
value
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K U E d3xCm
† ~x!¹x0

H0Cm8~x!U2L 5
4e0

2utcu2

Nc
.

Here the total number of core levels is

Nc52D`

kFL

2pe0
5

EF

D`

kFL

p
.

Finally, the spectral function is

J~v!5\vS kFL

2pe0
D 24e0

2utcu2

Nc
5v

3p2

8
\ne

D`

EF
L, ~90!

which gives the friction per unit length

h5
3p2

8
\ne

D`

EF
.

This result is similar to what is obtained in Ref. 1. Hence
microscopic base has been provided. In the low-tempera
limit, the magnitude of the vortex friction is smaller than th
total transverse force by a factor ofD` /EF .

In the above derivation, we have ignored the localizat
effect which suppresses the density of state, or the super
number density. We justify our assumption here. There
three energy scales involved in the derivation of vortex
namics, the Fermi energyEF , the energy gapD` , and the
core-level spacingD`

2 /EF . The effect of impurities on vor-
tex dynamics is believed appreciable att trD`

2 /\EF<1,9 and
the equality of Eqs.~90! and ~87! suggests that the impurit
starts to be effective att trD` /\(D` /EF)2;1. They indicate
that the impurity effect on vortex friction occurs at a rath
weak level, determined by the smallest energy scale in
problem. The dirty limit is given byD` /EF,t trD` /\,1.
The localization effect is only pronounced in the extrem
dirty limit, the localization regime, whent trEF /\<1.38 Be-
causeD` /EF!1, away from the localization regime the su
pression of density is indeed negligible. The unsuppres
electronic density applies, and the present results are v
well into the dirty limit of the superconductors.

To summarize this section, we have shown that the t
transverse force is insensitive to impurities by two differe
methods, but the additional core contribution to the vor
friction arises. For a weak enough impurity potential, a p
turbative calculation leads to the core friction proportional
the normal-state resistivity. In the dirty limit the core frictio
contribution saturates to a value determined only by the
ergy gap and the Fermi energy.

VI. COUPLING TO ELECTROMAGNETIC FIELD

Now let us discuss a superconductor when the penetra
depth is finite but still much larger than the coherence leng
The Lagrangian is given by
re

n
id

re
-

r
e

ed
lid

al
t
x
-

n-

on
h.

LBCS5(
s

cs
†~x,t!F\]t2mF2eA0

1
1

2m S \

i
¹2

e

c
AD 2

1V~x!Gcs~x,t!2gc↑
†~x,t!

3c↓
†~x,t!c↓~x,t!c↑~x,t!1

1

8p
~E21B2!1eA0n0 ,

~91!

here 2en0 is the charge density of the ionic backgroun
The coupling to the electromagnetic field is in the usu
minimum coupling form. The fermionic degrees of freedo
can be integrated out to give

Seff

\
52Tr ln G211

1

\gE0

\b

dtE d3xuDu2

1E
0

\b

dtE d3x
1

8p
~E21B2!1eA0n0 ~92!

with

~\]t1H!G~x,t;x8,t8!5d~t2t8!d3~x2x8! ~93!

and

H5S H D

D* 2H* D . ~94!

Here

H52eA01
1

2m S \

i
¹2

e

c
AD 2

2mF1V~x!,

H* 52eA01
1

2m S \

i
¹1

e

c
AD 2

2mF1V~x!,

and c is the speed of light in a vacuum. Variation with re
spect toA0 andA gives

¹•E54pe~n2n0!

and

¹3B2
1

c
]tE5

4pe

c
j

with E52¹A01(1/c)]A/]t and B5¹3A. Here en and
ej are the electric charge and current densities. They sho
be obtained through the electronic Green’s function.
the Lorentz gauge, the equations forA0 and A from the
above equations are39 adapted to the imaginary time here,
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F¹21
1

c2
]t

2GA0524p e~n2n0! ~95!

and

F¹21
1

c2
]t

2GA52
4p

c
ej . ~96!

Assuming that for a static vortex atxv the vector potential is
Ā(x2xv), then for a slow moving vortex, the correctiondA
to the vector potentialA from Ā5Ā@x2xv(t)# starts from
second order inẋv(t) and can be ignored. This can be d
rectly demonstrated from Eq.~96! to the leading order indA:

¹2dA1
1

c2
]t

2Ā50.

The same is true for the scalar potentialA0. For our purpose
of keeping to linear order ind ẋv , we may useA5Ā@x
2xv(t)#.

Now we expand

Al@x2xv~t!#5~11dxv~t!•¹x0
!Āl@x2xv~t!#,

with l 5(0,x,y,z). The effective action for the vortex is

Seff

\
5

1

2
Tr~G0S8!21

1

\gE0

\bE d3xdxv•¹x0
D0* dxv•¹x0

D0

1E
0

\b

dtE d3x
1

8p
~E21B2!1eA0n0 ~97!

with

S85dxv•¹x0S 2
e

2mc

\

i
~Ā•¹! D0

D0 2
e

2mc

\

i
~Ā•¹!

D
5dxv•¹x0

H, ~98!

where bothE andB are substituted by the stationary valu
calculated fromA050 andA5Ā@x2xv(t)#. Equation~97!
is in the same form as Eq.~36!. There is then no change o
the transverse response from the superfluid, reflecting
fact that the canonical momentum of the superfluid is
changed by the coupling to the electromagnetic field. A si
lar conclusion has also been reached by oth
phenomenologically.40

However, there are relativistic corrections to the solutio
@Eqs. ~95! and ~96!# of the Maxwell equations due to th
motion of the current and charge sources associated with
vortex. They are determined according to the Lorentz tra
formation of the four vector formed by the scalar and vec
he
t

i-
rs

s

he
s-
r

potentials, or equivalently, the four vector by the charge d
sity and current. Those relativistic corrections give rise
additional terms in the action and can, in principle, contr
ute to the total transverse force in vortex dynamics. The
evant term in the effective action takes the form

E
0

\b

dtE d3x
e

c
d ẋv•Ā~x2xv!@n~x2xv!2n0#,

arising from the relativistic correction to the scalar potenti
the Aharonov-Casher phase.41 This contribution is due to the
interaction between the moving magnetic flux carried by
vortex to the electric charges of both conducting electro
and the background charges. Since the charge neutrality
dition is maintained in a superconductor, this contribution
zero, as also been noticed in Ref. 42. Hence, we do not n
to consider it here. Other relativistic corrections do not aff
the total transverse force, and the rest of the terms have
same structure as the uncharged superconductor with th
placement of Eq.~98! by Eq. ~29!. Therefore, all the steps
from Eqs. ~24!–~36! remain unchanged. We arrive at th
same expressions@Eqs.~35! and~36!#. There are two differ-
ences, however. First, the Bogoliubov–de Gennes equa
includes a vector potential, which can be served to genera
vortex, not by a rotation of superfluid. Second, we have n
a compelling physical reason to neglect the phonon~density
fluctuation! mode compared to the neutral case, because
the plasma mode with a big energy gap.

Let us discuss the effect of including the vector poten
in the Bogoliubov–de Gennes equation to the final resu
For the extreme type-II superconductor the vector poten
near the core isAu5 1

2 rh0, here h0 is the magnetic field
along the vortex line. When the penetration depth is largeh0
is small. For smallr, when solving the vortex core structur
\c/2er.Au and we can safely ignoreAu5 1

2 rh. The core
structure is insensitive to the vector potential in the extre
type-II case. Because the total transverse force can be
pressed in core state transitions, it is insensitive to coup
to the electromagnetic field. Equivalently, when express
the transverse response in terms of the summation over
tended states, Eq.~55!, we need the large-r behavior of the
Bogoliubov–de Gennes equation. Whenr @l, Au˜0, so
that the the coupling to the electromagnetic field will n
influence the results in Eq.~55!. In the presence of impuri-
ties, the vortex friction is also insensitive to the coupling
the electromagnetic field, as noticed long ago.1

To summarize this section, in a charge neutral extre
type-II superconductor, the vortex dynamics is the same
that in an uncharged BCS superfluid. This is a known res
but we have sketched how to obtain it within the pres
formulation.

VII. EXPERIMENTS

A. Transport measurement

It had been assumed that the forces on a vortex could
extracted from transport measurements. Let us first rev
this apparently plausible proposal and discuss ideas w
are crucial to the understanding of transport measureme
Considering our previous derivations, the equation of mot
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of the i th vortex takes the form of the Langevin equati
similar to that of a charged particle in the presence o
magnetic field:

05qvrsh~vs2 ṙ i !3 ẑ2h ṙ i1Fpin1f1(
j

Fi j . ~99!

Here qv561 represent different vorticity. The total tran
verse force2qvrshṙ and viscosityh are the ones we hav
calculated in the previous sections. In addition, there ar
fluctuating forcef related to the viscosity by the fluctuation
dissipation theorem, a pinning forceFpin , and we should also
include the forces due to other vorticesFi j because of vortex
interaction. Here we have explicitly written out the extern
current term in Eq.~99!, though in a real situation its effect i
always through the rearrangement of vortices in the su
conductor. The motion of vortices is a genuine many-bo
problem. A general exact solution does not exist.

Equation~99! may be solved after a drastic simplificatio
by ignoring the pinnings. This is equivalent to the situati
that a perfect vortex lattice is sliding through the samp
Together with with the Josephson relation, we can determ
longitudinal and transverse resistivity for superconducto
The Hall angle, defined asuHall5tan21(rxy /rxx), is nearly
90° for almost all situations. However, in transport measu
ment, most of the samples show a small Hall angle and s
show a sign change in the Hall angle upon entering the
perconducting state. This simplified model certainly d
agrees with experiments.

Now let us consider whether or not this simplification c
be made by considering the magnitude of pinning. The eq
tion of motion of a vortex in a superconductor, Eq.~99!, has
the form of a particle with zero mass in a strong magne
field. Because the kinetic energy is zero, it is always c
fined to a local energy minimum in space, formed by vor
interactions and pinning potentials. An applied current t
the potential and the vortex moves by thermal activation
the applied current is so large that no minima due to pinn
and vortex interaction exist, then indeed we expect a la
Hall angle. However, in order to have a truly free vort
flow, the current should be large enough to overcome
largest pinning potential, the edge pinning. The curr
needed is on the order of 108 A/cm2, which is too large to
be relevant to experiments. Therefore, in the real exp
ments, the vortices must be helped by their many-body
teractions to overcome this energy barrier. We need to c
sider transport measurement by solving the lattice struc
formed by vortices and by what mechanism their transpo
made possible. It has been quantitatively suggested that
tex many-body effects can be responsible for the Hall effe
in agreement with recent experimental indications.43

B. Direct measurement of total transverse force

The total transverse force on a moving vortex in th
Y-Ba-Cu-O films has been directly measured via a mech
cal device.44 This experiment used a small vibrating magn
mounted above the center of a superconducting film to g
erate moving vortices in the film. The vortices follow th
motion of the magnet for samples with less twin boundar
a
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The experiments were performed on those samples.
force was measured by measuring the motion of the su
conducting film in response to the vibration of the magn
The experimental results have provided a qualitative con
mation of the insensitivity of the total transverse force
impurities.

C. Measurement of friction

In a rf resistance measurement, the vortices are m
ing around their local minima, rather than over potential b
riers in a dc measurement. In such a case, it is possibl
observe intrinsic friction after using a potential to descri
the periodic vortex interaction and making some assumpti
about the pinning. The rf resistance was analyzed early w
a vortex dynamics model without transverse force.45 In order
to compare with our theory, the total transverse force ne
to be included. We will not go into any detail other than
suggest this possibility.

VIII. CONCLUSIONS

We summarize here what we have achieved in the pre
paper. With respect to the microscopic derivation, we ha
developed an influence functional formulation started fro
the BCS theory. This formulation has allowed us to discu
several difficult questions regarding vortex dynamics. O
question has been whether the total transverse force o
nates from core states, extended states, or from both.
question is unique to a fermionic superfluid because of
vortex core structure. We have shown that the total tra
verse force can be calculated equivalently by consider
exclusively transitions between core states, by transitions
tween core and extended states, or by counting contribut
from extended states. The total core-state transition contr
tion to the total transverse force is shown not to be affec
by impurities when calculated by using random matrices
stead of the relaxation time approximation.

On the thermodynamics and statistical mechanics le
we need to consider the increase of the superfluid kin
energy associated with the increase of superfluid momen
due to the vortex motion. This kinetic energy needs to
provided from somewhere. If there are no normal fluid a
no impurities, this kinetic energy is provided from the wo
done by the external trapping potential on the vortex. Wh
either the normal fluid or impurities, or both, are prese
there is a question whether or not a vortex can extract
internal energy from the normal fluid or substrate, whi
carries entropy, and can transfer it into kinetic energy of
superfluid, which carries no entropy. If not allowed, the i
crease of superfluid kinetic energy due to vortex motion c
only be provided by an external force and the transve
force on a vortex cannot be reduced by the normal fluid
random impurities. We have discussed this question
demonstrated that thermodynamics gives a powerful c
straint on phenomenological models of vortex dynamics: T
total transverse force cannot be reduced.

We have located the source for contradicting theoret
results in the two pictures: the use of the relaxation ti
approximation in the force calculation. This problem
rather subtle. It is well known that the relaxation time a
proximation has been used successfully in some applicati
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particularly in calculations of conductivity or mobility
where the average velocity is computed under a given d
ing force, through velocity-velocity correlations. Howeve
the special feature of vortex dynamics is that it belongs to
same category as resistivity or friction formulas in transp
theory, where the average force is computed with a gi
velocity. The direct calculation of resistivity is known to b
difficult. To derive vortex dynamics microscopically, th
vortex velocity-velocity correlation is not calculable directl
because the effective vortex Hamiltonian is unknown and
precisely what we are looking for. We are forced to aband
the usual approaches of the Nakano-Kubo type, and to ta
the problem from the difficult side. Nevertheless, in the
limit, the transverse force on a moving vortex can be cal
lated from the force-force correlation function, in analogy
a dc resistivity formula. This limit makes the relaxation tim
approximation invalid, because a significant part of the f
quency dependence is lost, and the common way of introd
ing the relaxation time approximation by substitutingiv
˜ iv11/t requires the correct frequency dependence.
example, in transport theory, the relaxation time approxim
tion is used in an ac conductivity formula, then taking the
limit subsequently. In addition, the relaxation time appro
mation in a force-force correlation function is always err
neous. With an exactly solvable model, we have shown
when the relaxation time approximation is used in a dc
sistivity formula, it leads to results violating fluctuation
dissipation theorems.

Introducing the relaxation time approximation, even do
correctly, is not a necessary step in obtaining dissipat
One of the goals of nonequilibrium statistical mechanics is
compute various transport coefficients, including the rel
ation time, for a given Hamiltonian system. In a Hamiltoni
system, dissipation appears after irrelevant degrees of f
dom are integrated out. What determines dissipation
quantities like temperature and strength of impurity pot
tials, as well as the density of state of low-frequency mo
of irrelevant degrees of freedom. In the present paper, ir
evant degrees of freedom are the fermionic quasipartic
When those quasiparticle degrees of freedom are elimina
one obtains the vortex friction. The friction formula obtain
here follows the one used in dissipative quantum dynamic13

where it has been explicitly shown that the friction obtain
by eliminating irrelevant degrees of freedom is equivalen
an evaluation of the random force-force correlation functi
It also corresponds to the familiar Fermi Golden rule
dissipation. We believe that a rather detailed study of vor
dynamics based on the BCS theory have been prese
here, with the key issue of the sources for the vortex fricti
We have shown that the vortex friction can come from t
contributions: At finite temperatures, the finite population
quasiparticles above and quasiholes below the energy
give rise to a friction which diverges logarithmically at lo
frequency; The nonmagnetic impurities give rise to an ex
friction which saturates to a value independent of
normal-state resistivity in the dirty limit. This core state co
tribution corresponds to the phenomenological value
tained in Ref. 1. We have also considered the effect of c
pling to the electromagnetic field and have found that it d
not change the neutral superfluid conclusions when the
-
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perconductor is charge neutral, consistent with earlier p
nomenological treatments.

Finally, we expect that the method developed here to f
mulate the vortex dynamics in ans-wave superconducto
will find applications in other systems represented by d
namics of collective variables, such as vortex dynamics
d-wave superconductors, fission and fusion in atomic nuc
and even the quasiparticle dynamics in quantum Hall s
tems.
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APPENDIX: DIVERGENT OVERLAP INTEGRALS
AND VORTEX FRICTION

There have been some questions above the implication
Eqs. ~38! and ~39!, repeatedly raised by referees as well
by others during private discussions, in particular on the
verging nature of the overlap integrals on the right-hand s
of Eqs. ~38! and ~39!, when the energy difference betwee
two eigenfunctions vanishes. This question may have alre
been addressed in the literature. Nevertheless, we belie
is helpful to give it an explicit discussion in the present co
text.

We note that Eqs.~38! and~39! are exact consequences
the fact that the HamiltonianH0 is the function of the pa-
rameterx0. To make the connection to the scattering proble
of quasiparticles scattered off a vortex, the thermodyna
limit must be taken first to allow the existence of the co
tinuous spectrum. This implies that it is appropriate to u
the Dirac delta function normalization for extended states

Ca5S ua~x!

va~x!
D 5

eikzz

AL

eimu

A2p
S ei (u/2) f̂ 1,m,E~x!

e2 i (u/2) f̂ 2,m,E~x!
D , ~A1!

the same normalization condition as in Ref. 30. The funct
satisfies the Bogoliubov–de Gennes equation, Eq.~30!,

\2

2mF2
d2

dr2
2

1

r

d

dr
1

~m1 1
2 !2

r 2
2kr

2G f̂ 1,m,E~x!

1uD~r !u f̂ 2,m,E~x!5E f̂1,m,E~x! ~A2!
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and

2
\2

2mF2
d2

dr2
2

1

r

d

dr
1

~m2 1
2 !2

r 2
2kr

2G f̂ 2,m,E~x!

1uD~r !u f̂ 1,m,E~x!5E f̂2,m,E~x!. ~A3!

Herer 5ux2x0u andkz
21kr

25kF
2 . Inside the vortex core, we

may set the energy gap to zero,uD(r )u50. There are two
independent solutions in this region, which we may cho
to be the following forms:

f̂ 1,m,E~x!5
1

A2
S 1

0D Jm11/2~Akr
212muEu/\2r ! ~A4!

and

f̂ 2,m,E~x!5
1

A2
S 0

1D Jm21/2~Akr
222muEu/\2r !. ~A5!

Here Jm61/2 are Bessel functions. Away from the zer
energy gap region, the corresponding solutions may take
forms

f̂ 1,m,E~x!5
1

A2
S A11AE22uDu2/E

A12AE22uDu2/E
D Jm11/2„k1~E!r …

~A6!

and

f̂ 2,m,E~x!5
1

A2
S A12AE22uDu2/E

A11AE22uDu2/E
D Jm21/2„k2~E!r …,

~A7!

wherek6(E)5Akr
262mAE22uDu2/\2. One may check tha

Eqs. ~A6! and ~A7! give the asymptotically exact solution
when r 5`. They are WKB-type solutions connected to t
solutions atr 50 and r 5`, valid under the condition tha
the energy gapuDu is smooth on the scale of 1/kF . Exact
solutions may be difficult to find. However, for the prese
purpose of demonstration of the diverging overlap integr
they are good enough. The solutions for a negative ene
2E can be constructed by using Eq.~37!:

f̂ 1,2m,2E~x!5
1

A2
S A12AE22uDu2/E

2A11AE22uDu2/E
D Jm11/2„k1~E!r …

~A8!

and

f̂ 2,2m,2E~x!5
1

A2
S A11AE22uDu2/E

2A12AE22uDu2/E
D Jm21/2„k2~E!r ….

~A9!
e

he

t
ls
y

The immediate conclusion of the thermodynamic limit is th
there is an infinite degeneracy for a given energy charac
ized bym, corresponding to the angular momenta of qua
particles. Those states form the base functions for the pa
wave analysis of the quasiparticle scattering, and make
transitions between states with the same energy meanin

We now consider the left-hand side of Eq.~38! with an
arbitrary small energy difference,

I[E d3xCa
†~x!~¹x0

H0!Ca8~x!. ~A10!

We will show that it can be a finite value~nonzero!. For the
vanishing small trapping potentialU0,

~¹x0
H0!5S 0 ¹x0

D

¹x0
D* 0

D . ~A11!

Since

¹x0
D~x!52eiuuD~r !ur8~ x̂ cosu1 ŷ sinu!

2 i eiuuD~r !u
2 x̂ sinu1 ŷ cosu

r
, ~A12!

the integralI may be expressed as

I5dkz ,k
z8E0

`

rdr E
0

2p du

2p
e2 i (m2m8)u

3@ f̂ 1,m,E* ~r !¹x0
D f̂ 2,m8,E8~r !

1 f̂ 2,m,E* ~r !¹x0
D* f̂ 1,m8,E8~r !#

5
1

2
dkz ,k

z8
dm8,m61@ x̂„am,m8~E,E8!6bm,m8~E,E8!…

1 i ŷ„6am,m8~E,E8!1bm,m8~E,E8!…#, ~A13!

wherex̂( ŷ) is the unit vector in thex(y) direction,

am,m8~E,E8!52E
0

`

rdr uDur8@ f̂ 1,m,E* ~r ! f̂ 2,m8,E8~r !

1 f̂ 2,m,E* ~r ! f̂ 1,m8,E8~r !# ~A14!

and

bm,m8~E,E8!52E
0

`

druDu@ f̂ 1,m,E* ~r ! f̂ 2,m8,E8~r !

2 f̂ 2,m,E* ~r ! f̂ 1,m8,E8~r !#. ~A15!

The cosu and sinu inside the integral give rise to the sele
tion rule for the transition elements:*0

2pdue2 i (m2m8)u cosu
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5pdm8,m61 and *0
2pdue2 i (m2m8)u sinu56ipdm8,m61. Only

the transition between neighboringm8s, that is,m85m61,
can be nonzero.

For those nonzeroam,m61(E,E8), the only possible place
which may give rise to an infinite value for the integral is t
region far away from the vortex core. In this region, t
eigenfunctions are given in the form of Bessel functio
Eqs. ~A6!–~A9! @cf. Eq. ~4.10! of Ref. 30#, which are well
behaved. Away from the coreuD(r )ur8 goes to zero rapidly,
we conclude that the integralam,m8(E,E8) containing
uD(r )ur8 is finite. It may be instructive to give an estimatio
of am,m61(E,E8). For this purpose we considerm.0 and
m85m11 for positive energy states. The negativem and
negative energy cases give similar results. We will also
strict to the case thatE andE8 are close to each other, i.e
uE2E8u,D` , and that both are sufficiently close to the e
ergy gap, i.e.,E;D` . In this case the integral has the large
value, and it incorporates the equal energy limit implied
Eqs.~47! and ~49!. First, we note that sincek6(E)'kF and
Jm„k6(E)r …5„k6(E)r …m/m! for small k(E)r , the Bessel
function is negligible small ifr ,r t5m/kF and m is large.
The integral for regionr ,r t is negligible. Second, we als
neglect the integral in the regionr .j0, becauseuD(r )ur8 is
small. The integral now becomes

al ,m'5 2E
r t

j0
rdr uDur8[ f̂ 1,m,E* ~r ! f̂ 2,m11,E8~r !

1 f̂ 2,m,E* ~r ! f̂ 1,m11,E8~r !], r t,j0

0, r t.j0 .

~A16!

Here we have usedl to denote the various combinations fro
the solutions, Eqs.~A6!–~A9!, specified below. In the region
r ,j0 , uDur8'D` /j0 in the above integral. Fo
k1(E),k1(E8) @k2(E),k2(E8) can be considered in th
same manner#, following Eqs.~A16! and ~A6! we have

a1,m52E
r t

j0
rdr

D`

j0

1

2

3FAS 11
AE22uDu2

E D S 12
AE822uDu2

E8
D

1AS 12
AE22uDu2

E D S 11
AE822uDu2

E8
D G

3Jm11/2„k1~E!r …Jm13/2„k1~E8!r …. ~A17!

Using the asymptotic form of Bessel function,Jn(z)
5A2/pz cos(z2np/22p/4), and approximating the factor i
the square bracket by 2, we find

a1,m'2
D`

j0

1

2pkF
E

r t

j0
dr sin@Dk r#52

D`

2pkF
Dkj0/2.

~A18!

HereDk[k1(E)2k1(E8). In reaching Eq.~A18! we have
dropped a smaller contribution from* r

j0dr cos@„k1(E)

t

,

-

-
t

1k1(E8)…r 2(2m13)p/2#, becausek1(E)r t5m.1, and
have also used the fact thatuk1(E)2k1(E8)uj0,1. Equa-
tion ~18! gives uam,m11(E,E8)u,D` /kF .

For k1(E),k2(E8), following Eqs.~A16!, ~A6!, and~A7!
we have

a2,m52E
r t

j0
rdr

D`

j0

1

2

3FAS 11
AE22uDu2

E D S 11
AE822uDu2

E8
D

1AS 12
AE22uDu2

E D S 12
AE822uDu2

E8
D G

3Jm11/2„k1~E!r …Jm11/2„k2~E8!r …. ~A19!

Please note the difference between Eqs.~A17! and ~A19! in
the indices of the Bessel functions. Sincek1(E)2k2(E8)
'1/j0, and again approximating the factor in the squa
bracket by 2, we find that

a2,m5
D`

j0

1

2pkF
E

r t

j0
dr cos@„k1~E!2k2~E8!…r #'2

D`

2pkF
.

~A20!

Now we consider the phase integral part ofI , the integral
bm,m8(E,E8). For r 5ux2x0u˜`, uDu˜D` . We may ig-
nore the integral in the regionr ,r t , but not whenr t.j0.
Keeping the leading contribution,bm,m8(E,E8) may be ex-
pressed as

bl ,m'2D`E
r t

`

dr@ f̂ 1,m,E* ~r ! f̂ 2,m8,E8~r !

2 f̂ 2,m,E* ~r ! f̂ 1,m8,E8~r !#. ~A21!

The Bessel functions will be replaced by their asympto
forms inside Eq.~A21!. In the following we consider four
cases as done foram,m8(E,E8). For k1(E),k1(E8), follow-
ing Eqs.~A21! and ~A6! we have

b1,m52D`E
r t

`

dr
1

2

3FAS 11
AE22uDu2

E D S 12
AE822uDu2

E8
D

2AS 12
AE22uDu2

E D S 11
AE822uDu2

E8
D G

3Jm11/2„k1~E!r …Jm13/2„k1~E8!r …. ~A22!

SinceE8˜E and both are close to the energy gap, the fac
inside the square bracket is always an order of unity, and
approximate by 2. However, we note that whenE5E8, the
term in the square bracket approaches to zero whenr @j0.
Using the asymptotic form of the Bessel functions,
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b1,m'2D`E
r t

`

dr
1

2pkF

sin@Dk11r #

r
5

2
D`

2pkF
H sgn~Dk!p/2, uDkur t,1

1/Dkrt , uDkur t.1.
~A23!

Here Dk[k1(E)2k1(E8). Again, the contribution from
* r t

`dr cos@„k1(E)1k1(E8)…r 2(2m13)p/2#/r has been ig-

nored, becausek1(E)r t.1. Sinceuk1(E)2k1(E8)uj0,1,
the conditionuk1(E)2k1(E8)ur t,1 will be satisfied ifr t
,j0.

For k1(E),k2(E8), following Eqs.~A21!, ~A6!, and~A7!
we have

b2,m52D`E
r t

`

dr
1

2

3FAS 11
AE22uDu2

E D S 11
AE822uDu2

E8
D

2AS 12
AE22uDu2

E D S 12
AE822uDu2

E8
D G

3Jm11/2„k1~E!r …Jm11/2„k2~E8!r …. ~A24!

Using a similar procedure forb1,m we find

b2,m'2D`E
r t

`

dr
1

2pkF

cos@„k1~E!2k2~E8!…r #

r

52
D`

2pkF
H O~1!, r t /j0,1

j0 /r t , r t /j0.1.
~A25!

We have usedk1(E)2k2(E8)'1/j0 in Eq. ~A29!. If one is
concerned about the logarithmic divergence of the cos
ic

te
. B

G.
e

integral whenk1(E)2k2(E8)˜0, we point out that it only
occurs when bothuEu and uE8u are approaching the energ
gap D` . In this limit the factor inside the square brack
goes to zero linearly, and completely removes the logar
mic factor from the cosine integral.

The conclusion which one may draw from Eqs.~A23! and
~A25! is that the integralbm,m861(E,E8) is finite. Together
with what we have obtained foram,m861(E,E8), the integral
I , therefore, the left side of Eq.~38!, is finite.

Using Eq.~38!, we have the overlap integral,

II [E d3xCa
†¹x0

Ca8~x!5
I

Ea82Ea

. ~A26!

Since I is finite for the case ofm85m61 when Ea82Ea
˜0, II diverges as 1/(Ea82Ea). Because asymptotically
from the vortex core the wave functionsCa always ap-
proaches a Bessel function, this diverging behavior may
directly deduced from the right-hand side of Eq.~38! with
the aid of the recurrence relations of the Bessel functio
The advantage of the demonstration here is that the ri
hand side of Eq.~49! is finite when two energies are exact
equal, without the explicit consideration of the diverging b
havior of the overlap integral.

There are two comments worthwhile to make.
~1! The existence of the limit at the left-hand side of E

~38! in the zero-energy difference indicates that the spec
function of Eq.~49! is a smooth function for small frequen
cies, and it may be characterized by a power of the f
quency.

~2! This limiting behavior also removes the paradox th
the frictional coefficient involves inelastic processes, bu
may be obtained by calculating the elastic-scattering cros
tion of quasiparticles implied in the thermodynamic limitin
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