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Microscopic theory of vortex dynamics in homogeneous superconductors
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Vortex dynamics in a type-ll superconductor is systematically investigated by the influence functional
method. The irrelevant fermionic degrees of freedom are integrated out and their effects on the dynamics are
treated in terms of the vortex coordinate. When an isolated vortex is moving against its background, forces
proportional to the first order of vortex velocity on the vortex are calculated within the present formulation.
The total transverse force on the moving vortex is explicitly shown to be proportional to the superfluid number
density and insensitive to impurities. Its equivalent expressions in terms of the Berry phase and the various
summations of transitions between quasipartiblele) states are discussed. At finite temperatures, due to the
finite population of quasiparticléhole) excitations abovébelow) the energy gap, there is a friction against
vortex motion which diverges logarithmically in the low-frequency limit. Nonmagnetic impurities give rise to
an additional friction from the core states which saturates to a value independent of the normal-state resistivity
in the dirty limit. In this limit, the coupling to the electromagnetic field does not change the conclusions if
charge neutrality in the superconductor is maintained. Macroscopic constraints on vortex dynamics by the
second law of thermodynamics and by the fluctuation-dissipation theorems are also discussed.
[S0163-18299)10129-2

[. INTRODUCTION fluid momentum change caused by the vortex motion is pro-

L . vided by an externally controlled trapping potential in the

In a type-ll superconductor, vortex motion is responsible . . .
absence of a local superfluid velocity, regardless of the exis-

for a variety of low-frequency transport phenomena. It is thetence of the normal fluifl.It is an exact consequence of the

only topological singularity whose dynamical properties are lobal topological constraint on the vortex. The normal fluid

widely accessible to experimental studies in both classical 0 . . o
at finite temperatures gives rise to friction for the vortex

and quantum regimes, and its importance has long beenotion in the longitudinal direction. Furthermore, the global

realized.™ Despite decades of research, the theoretical" : L
P . L methods used in Refs. 5 and 6 indicate that the total trans-
agreement reached so far is very limited: At zero tempera- o " : "
. . . ) verse force is insensitive to random impurities, though there
ture, in the absence of any impurity potentials, a vortex fol- " - Lo .

. ) are additional frictional effects. In this picture, in the absence

lows the local superfluid velocity. In the absence of a local . . e
of the externally controlled trapping potential, the pinning

superfluid velqcity, wher_1 a vortex_follows the motion of N and friction should be used to obtain vortex motion perpen-
external trapping potential, there is a momentum change Iréicular to the direction of an externally applied current. For

the superfluid transverse to the direction of vortex motion. In

order to provide this momentum change, a force must béhded.?therl;;lcture,.thti e?sence of tr:f re?ults |fs th?t therle are
applied by the external trapping potential to the superfluiaa tional forces in the transverse direction ot vortex veloc-

through the vortex. The vortex experiences a transverse fordd: providgd by unbounded quasiparticle excitations or the
proportional to the superfluid number density, balanced byormal fluid, by bounded vortex core states, by the substrate,

the external force from the trapping potential. Beyond thisOr Py @ certain combination of thef!! The total transverse
simplest and idealized situation many aspects of vortex dyforce is reduced, which is most clearly represented by the
namics have remained unsettled and even controversial. @leged gradual turning on the cancellation between two to-
the present paper we attempt to provide an influence fundological effects by a relaxation tinfethe spectral flow of
tional formulation of vortex dynamics from the microscopic Vortex core state transitions and the Berry phase counting far
Bardeen-Cooper-Schrieff¢éBCS) theory, and a few detailed away from the core. To discuss this controversy from a de-
microscopic calculations under realistic conditions. tailed and straightforward approach is one of the main pur-
The current microscopic understandings of vortex dynamposes of the present paper.
ics in the presence of impurities and at finite temperatures We now state precisely the physical quantities which we
may be classified into two different physical pictures, whichare going to address. In the classical limit, we are looking for
are based on different theoretical approaches and give coman effective equation of motion for a vortex. In two dimen-
tradictory results. In one picture the magnitude of the totalsions(2D), or for a straight vortex line in 3D, the equation
force experienced by the vortex in the transverse direction ifor a vortex specified by, takes the form of a Langevin
proportional to the superfluid number densi§The super-  equation:
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mv'r'\,=F(r\,,t)—Bf\,><2— ﬂfv'*'f- (1) show that.the tptal trans_verse force will not be affected.
However, impurity potentials strongly affect the core state
Herem, is the vortex massy is the friction coefficientBis  spectrum, which leads to a contribution to the vortex friction
the coefficient for the transverse force withthe direction in addition to that of extended states. In Sec. VI we show
perpendicular to the plane of vortex motion, and the fluctuthat the electromagnetic field does not affect the total trans-
ating forcef related to the friction force by the fluctuation- verse force and friction, under the condition that the charge
dissipation theorem. The fordé contains all other forces neutrality in the superconductor is maintained. In Sec. VII
which are not functions of vortex velocity: the force from the Some experimental tests are briefly discussed, and we sum-
trapping potential, pinnings, the force due to an externallynarize in Sec. VIII.
applied supercurrerit the force due to other vortices, etc.
We may classify the terms in the above equation into threq THERMODYNAMICS AND STATISTICAL MECHANICS
types, according to the order of time derivatives pf _
(i) Forces contain no explicit dependence on any time A. Force balance and thermodynamics
derivative of vortex coordinate, , represented bj. These The microscopic calculations which we will present later
types of forces may be regarded as conceptually well underare unavoidably lengthy and technical. It may be helpful to
stood, corresponding to the Born-Oppenheimer potentialssbtain an overall picture and useful informatitas much as
and are not controversial, though practically they can be difwe can under general but elementary considerations. In this
ficult to evaluate. They are contained in our formulation, butsybsection we give a thermodynamic consideration of vortex
will not be discussed in the present paper. dynamics to show that there is a constraint on the total trans-
(i) Forces have a first-order time derivative of the vortexverse force, and in the next subsection the derivation of vor-
coordinate, the vortex velocity, represented by the transversex dynamics will be put in the context of fluctuation-
and longitudinal coefficientd8 and ». Calculating those dissipation theorems.
forces explicitly is the focus of the present paper. It is our We may write down a possible equation of motion for a
purpose to clarify the physical origins behind those forcesquantized vortex in the absence of impurities, taking into
starting from a well-defined microscopic theory, the BCSaccount the possible role of the normal fluid in the motion of
theory, using a well-defined and rigorous procedure, the inthe vortex, in the limit of the vortex acceleration equal to
fluence functional methotf. We will show in detail that the zero:
total transverse force is insensitive to details, and is propor-
tional to the superfluid number density, and present calcula- .
tions leading to finite vortex friction contributions. hpszX (U, —Vs) =D (U, —V,) —D’zX (u, —v,) + F*'=0.
(iii) The term contains the second-order time derivative 2
of the vortex coordinate, the vortex masg . This is also
an unclear quantity, and the subject of the recent activeierep, is the number density of the superfluig,, v, and
study-*** Though we believe our present formulation alsoy,, are the velocities of vortex, the superfluid, and the normal
provides the framework to address the dynamical effects ofluid with respect to the substrate or the wall of the container.
the vortex mass, we will not explore them héPélhis term  Those velocities are independent variables. The velocity de-
will be ignored by assigning the vortex acceleratigs=0. pendences are only in first order in Eg). The first term in
We organize the rest of the paper as follows. In Sec. Il théhe left-hand side of Eq(2) is the Magnus forcé,whose
total transverse force is studied from a macroscopic point omagnitude is proportional to the superfluid number density.
view. We first demonstrate from a thermodynamic considerThe last term represents a possible external force on the vor-
ation that the magnitude of the total transverse force shoultex. The other two terms are possible contributions coming
be proportional to the superfluid number density. A reductiorfrom the interaction of the vortex with the normal fluid. Ini-
from this value will lead to a violation of the second law of tially, both the normal fluid and superfluid velocities are set
thermodynamics. Then we put the transverse force and fri¢o zero.
tion in the context of fluctuation-dissipation theorems, and We will demonstrate that the conditions of force balance
illustrate that the relaxation time approximation in the micro-and thermodynamics put a constraint on the valub afFor
scopic derivations of vortex dynamics should be avoided. Irthis purpose let us imagine a torus-shaped tank filled with a
Sec. Il we first present a general formulation based on theuperfluid, or a torus-shaped superconductor film. The tank
BCS theory. Then we relate this formulation to that of thecan be considered as a thermal reservoir to the superfluid.
influence functional approach which has been proved to b&his implies that at finite temperatures there is also a normal
rigorous and effective to calculate friction in quantum dissi-fluid. After creating a vortex-antivortex pair, we keep the
pative dynamics of a subsystem, where the total system igntivortex at rest and move the vortex to wind once with a
described by a Hamiltonian. A few general properties of oursmall velocityu, around one of the two circumferences of
formulation will be discussed. In Sec. IV we give detailedthe torus, say ,, in time ty, before the annihilation with
evaluations of both longitudinal and transverse correlationshe antivortex. We takgg, much longer than the relaxation
in the clean limit for arbitrary temperatures, which lead totime of the normal fluid such that the normal fluid velocity
both the friction and the total transverse force. In particularalways stays close to zero, by transferring a possible momen-
detailed evaluations of the total transverse force from eithetum gained from the vortex motion to the substrate, via the
extended state counting or core state transitions are giverlaxation process represented by the normal fluid viscosity.
there, and are explicitly shown to be equivalent. In Sec. VA physical realization may be the electron-phonon interac-
the effects of impurity potentials are considered. We willtion. Hence, the normal fluid velocity is always negligible



6852 P. AO AND X.-M. ZHU PRB 60

comparing with the vortex velocity, which is an order of =F,, i.e., D'<0, which leads to the conclusion that the
u,~Ly/tio. As a result of the vortex motion, the momen- magnitude of total transverse force cannot be reduced from
tum of circulating superfluid particles along the torus hasthat determined by the superfluid number density. The work
been changed from zero tps;=h/L,, because of the done by the external force is exactly equal to the kinetic
change of the winding number of the superfluid. This occur€nergy increase if the magnitude of the external force in the
regardless how slow the vortex motion is. The kinetic energyransverse direction is the product of the superfiuid number
of the superfluid has been changed from zero Ho density, the Planck constaht and the vortex velocity.
=Ps|-x|-yp§ (/2m* for a neutral superfluid, or when the ef- The next question is whether or not the total transverse
fective magnetic screening length is larger thanfor the force on a moving vortex can be larger than that determined
superconductor film. Here* is the effective mass of super- PY the superfluid number density. If the normal fluid would
fluid particles and_, and L, are the circumferences of the carry a vortex with a vorticity in the same direction as that of

torus. the superfluid, the answer to this question is positive. How-
The total momentum change of the superfluid requires £Ver since we have assumed that the normal fluid is viscous,
force in the transverse direction of the vortex motion the vortex of the normal fluid will eventually disappear. This

is true for a slow process whose time scale is much larger
than the relaxation time of the normal fluid assumed here.
This consideration leads to that the total transverse force can-
not be larger than the value determined by the superfluid
number density. Combining with the thermodynamic argu-
here P is the total momentum of the superfluid. Since thement we conclud®’=0.
normal fluid velocity stays zero, no kinetic energy can be The above discussion has explicitly made use of the as-
transferred from the normal fluid to the superfluid. However,sumption of a finite normal fluid viscosity. In case that the
if the normal fluid would contribute to this force to super- normal fluid relaxation time would be infinite, that is, the
fluid by changing its internal energy, an additional transverseyormal fluid viscosity would be zero, a process which gen-
force on the vortex—D’zXu,, arises. The magnitude of erates a vortex circulation in the superfluid would also gen-
the external force in the transverse direction of vortex motiorerate a vortex circulation in the normal fluid. This would be
should be equal to the total transverse force according to Edhe limiting situation of a dynamical process in which the
(2), internal relaxation time of the normal fluid is much shorter

than its relaxation time to the substrate and the time scale for

ext_ ) the process is between them. An example would be the cre-
Fi"=(hps—D")u,. ) , . :
ation of vortices by a magnetic flux in an ultraclean super-

Now we are ready to consider the thermodynamic relaconductor. In such a case, the normal fluid velocity will not
tions. The process of creating a vortex-antivortex pair and it§€lax to zero. Under this ideal conditionD’=hp,, corre-
annihilation after the vortex crossing one circumferehge ~SPONding to that the normal fluid has a vortex, which is what
of the torus leaves only a finite increase of superfluid circu1@S been discussed in Ref. 18. _ .
lation in the tank, corresponding to the change of winding !f impurities are present, a phenomenological equation of
number. The initial and final normal fluid velocities are zero,motion for the vortex may be written down if the impurities
The increase of kinetic energy of the superfluid needs to b&'€ Nomogeneously distributed and vary only at a scale much
provided from somewhere. There are only two possibleSmaller compare with the size of the vortex core. We have
sources: the external trapping potential and the normal fluifW0 more possible parameters from the vortex-impurity in-

Here we need to be reminded of a significant difference betéraction:

tween the superfluid and the normal fluid: The superfluid

carries no entropy, while the normal fluid does. Therefore, hpzX (u,— V) —D(u,—V,) —D'zX (u,—V,)—du,—d’z
according to the second law of thermodynanticthe super- oxt

fluid cannot gain kinetic energy by lowering the internal en- Xu, +F7=0. ©)

ergy or entropy of the normal fluid. . .
We need to consider the work performed on the system b\?arallel to what we have discussed for the normal fluid case,

the external force to move this vortex. In the longitudinald’ must be zero in order for the external force to provide the
direction of vortex motion, the interaction between the nor-nergy gain needed by the superfluid. The impurities cannot
mal fluid and the vortex gives rise to a vortex friction provide energy to the superfluid either by lowering their in-
—Du, . Thus the external force on the normal fluid in the ternal energy or entropy because of the second law of ther-
longitudinal direction isDu, . This friction does not dissi- Modynamics. We note that impurities introduce another con-
pate energy. Rephrased alternatively, the energy dissipatdgPution to the normal fluid viscosity.

can be arbitrarily small by taking the time to complete the "€ microscopic gI,obaI consideratidrishave already
process arbitrarily long,m— . The process is then quasi- Suggested’=0 andd’=0. The conclusion here will be
static. The normal fluid velocity is always negligible in the Porne out by detailed and independent microscopic calcula-
process because of its finite viscosity. Thus the external forcBOns in the following sections.

on the normal fluid in the longitudinal direction of vortex
motion does not provide any work to the system. The exter-
nal force acting on the superfluid will be able to provide The derivation of the equation of motion for the vortex is
enough work for the kinetic energy increase onlyFRf  different from the usual linear-response theory. In the linear-

_AP_psbabyPer
* dt ttotal s

B. Friction and fluctuation-dissipation theorems
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response theory, a driving force is given, that is, the Hamiltion. It is to obtain a resistivity or friction formula, i.e., cal-
tonian is known, and we look for the average respondingulating an electric field needed to maintain the given cur-
velocity. It is a calculation of conductivity or mobility. In the rent. The derivation of vortex dynamics belongs to the
present case the force on a moving vortex is the unknowsecond kind, where we consider a steady motion of the vor-
qguantity which we need to find out. The vortex velocity is, tex and calculate the external force acted on the vortex. Un-
however, readily defined through the vortex coordinate. It iSortunately, we do not have the choice to formulate vortex
a calculation of resistivity or friction. To appreciate this dif- dynamics in superconductors in terms of conductivity or mo-
ference, we will examine the different correlation functionsbility formula because the effective vortex Hamiltonian is
involved in these different types of calculations and theirunknowna priori.
relationships. The focus point in this subsection in on the Introducing a Laplace transform
condition for using the relaxation time approximation.

When the normal fluid is at rest, the vortex motion is o _
governed by a classical Langevin equation with parameters n[w]:f dte '“ty(t),
to be determined microscopically. This equation has the 0
same form as a classical electron moving in a magnetic field. S _ o
We adopt the language in transport theory to make it easidf€ mobility is given from Eq(4) in the limit to— — by
to relate to the early work in that field-22

We start by considering a classical charged particle in a plol=(imo+glw]+ic,B) " (6)
magnetic field obeying a generalized Langevin equation:

Here the mobilityu[ w] is defined through

X t
mu(t)=- J't A (=t udt) + FPO (Ulw])=n [0]Fw]
0 i - |] ] ’

—Beug(t) +i(1). (4) _ . — — .
with an applied external forcE®*{(t) =F*{ w]e'“".
Herei=x or y, u(t)=[u,(t),u,(t)] is the velocity of the Defining the velocity-velocity correlation function matrix
particle,mis the massFe{(t) =[ F(t),FS*(t)] is an exter-
nal force,f(t) =[f,(t),f,(t)] is a random force which simu- Ui (1) =(ui(to+ ) u;(to)),

lates the effect of the thermal reservoir. The Einstein conven-
tion of the repeated indices as summation has been usegith U;j(t=0)= kg T/m according to Eq(5), the mobility

Beicuk(t) represents the transverse force, the Lorentz forcgs related to the velocity-velocity correlation function
—u(t) XB in the Langevin equation with the magnetic field

taken along the direction. The matrixp(t—t")={7;} rep- Ul o]
resents friction in both longitudinal and transverse directions ulw]=——. (7)
of the particle motion. Its possible finite off-diagonal ele- kT
ments will change the effect of the original Lorentz force on
the particle. In addition, we have This is the “first” fluctuation-dissipation theorem described
by Kubo?l® equivalent to the Nakano-Kubo’s formula for the
(F,(1))=0 electrical conductivity.
: ' It is easy to demonstrate that the relaxation time approxi-
mation can be valid in the Nakano-Kubo’s formula. Without
(ui(to)fj(to+1))=0, t>0, (50 the thermal reservoir, the velocity-velocity correlation is
given by
kgT
(Uilto)uj(to)) =~ ;. Ulw]=(imw+io,B) miA(0). )

The first equation is obvious: no average fluctuating forceyvlze? ui?g i re[la)](f‘rtrl]ognt('jm:uzgt?{st)i(r']m?t“(i)nrl[obéﬂzg) stfllgdard
The second one is due to the causality and the last one is dtfj.g O lOT L . uting a0, .
Ind the velocity-velocity correlation under the relaxation

to the equipartition theorem. time approximation is aiven b
If the Hamiltonian of the particle is known, the problem P 9 y

of particle responding to a perturbation can be formulated in

two different but equivalent ways. We can calculate the ve- Ulw]=(imo+ 7] +ioB) kT,

locity of the particle while the applied force is given. In such

a case, it is to obtain a conductivity or mobility formula. The which is exactly the same as the one obtained by the rigorous
conductivity or mobility may be obtained by the Nakano- calculation, Eqs(6) and (7). Therefore, the relaxation time
Kubo’s formula, a calculation of velocity-velocity correla- approximation can be a valid one for velocity-velocity cor-
tion function. It may also be obtained by solving the Boltz- relations when used in a conductivity or mobility formula.
mann equation in the presence of an electric fiéld.  The resistivity or friction formula is known to be difficult
Otherwise, we can consider a given velocity for the particleand it is worthwhile to examine it closely=2?? First, we

and calculate the applied force needed to maintain this mosalculate the total force-force correlation function matrix



6854 P. AO AND X.-M. ZHU PRB 60

Fi () =m2(U;(to+t)Ui(tg)). However, if we are only interested in the average force

! ' : (F®Y in the dc limit, we do have an alternative resistivity

Taking the Laplace transform, using the translational invariformula. After takingw—0 and using Eqs(10) and (12),
ance in time Eq. (13) gives

. . 1 —
(Ui(to+uj(to)) = —(ui(to+ 1) uj(to)), <F$X[>[0]:@_T(Rij[o]_}-ij[o])uj[o]- (14

and the total force-velocity correlation function Taking » to be a scalar, the external force can be written into

_ a more suggestive form,
mu;(to+t)uj(to)) @]= —mif;(0) +imols;[ ],

(F*{0])=7[0]u[0] +u[0] xB, (15
we have
where the longitudinal component dependsRii®], the ran-
_ _ (Mw)? dom force-force correlation function, and the transverse
Flo]=| —iBoy+imo+: kgT. component only onF[0], the total force-force correlation

+ +i
imo+ylo]tio,B 9) function. Equation(14) is the dc resistivity formula. It pro-

vides a direct way to obtain dc resistivity from force corre-
lation functions. The straightforward interpretation of Eq.
(15) is the force balance: The externally applied force to
keep the constant velocity is equal in magnitude but opposite

In the limit w—0, it is reduced to

F[0]=—iBoy kgT, (100 in sign to the sum of the frictional and the Lorentz forces.
We will show that the relaxation time approximation is
and is independent of the frictional coefficient invalid when used in the force calculation. We start with the

The random force-force correlation matrix is defined as force-force correlations. Without thermal reservoir, the ran-
dom force correlation is zero, that ig(t) =0. If we switch
on the effect of a thermal reservoir by using a relaxation time
Rij (1) =(fi(to+1)f;(t)). (12) enect ota y using
approximation w—iw+ 7] @]/m, the random force correla-

E he L . ion. E . tion is still incorrectly set to zero. This shows that the relax-
rom the Langevin equation, E@), we can e_zxpres’R(t) N ation time approximation cannot be used to calculate the
terms of total force-force, total force-velocity, and velocity- random force correlation

velogity corrglation functions. quing the Laplace transform The total force correlation without thermal reservoir is
and integrating by part, we obtain

)2
Rlw]= [ o]mU0)= n[ w]KgT, (12 ﬁj[w]Z(—iBo'y+imw+. (M)

imo+io,B ikmukj(o)'

or n(t)=R(t)/(ksT). This is the “second” fluctuation- (16
dissipation theorem described by KubdlVe emphasize that
the generalized frictional coefficienf(t) is directly given by
the random force-force correlation. The frictional coefficient
matrix 7(t) has no off-diagonal part if the random force-
force correlation matrix has not. This fluctuation-dissipation
theorem allows us to obtain some general properties of the
generalized friction. For example, for a charged particle de-
scribed by a single relaxation time in the Boltzmann equation . 2
moving in a magnetic field, there will be no frictional effect __(imo+ nlo])
on the force in the transverse direction. imo+n[w]+io,B
Next we consider that the particle is moving at a given

velocity u(t) and find out what is the external force neededThis is a rather complicated expression. In the limit
to sustain such a motion. This is exactly the situation which< 7l @], or ©7<1, we can simplify it to

we encounter in vortex dynamics and it is equivalent to the

calculation of resistivity or friction. From Ed4), the aver-

age force is given by F[0]

When we switch on the thermal reservoir by using a relax-
ation time approximationw—iw+ 7 @w]/m in Eq. (16), we
have

.7:[(»]=( —iBoyt+imw+ 7[ 0]

keT.

:m[on_in(on)z]kBT (17)
0

(FPlol)=(imo+ glo]+ioyB)jule],  (13)  with w,=B/m. Herer=m/7[0] is a relaxation time. Let us
use the resistivity formula Eq14) to calculate the external
which is trivially identical to the reciprocal of conductivity force needed to keep the particle moving with a given veloc-
formula. Obviously, this process does not provide us an inity. With R[ w]=0 andF[ 0] given by Eq.(17), the external
dependent way of calculating resistivity. force is
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wherey,, describes electrons with spir=(1,]), wr is the
chemical potential determined by the electron number den-
sity, V(x) is the impurity potentialJ, is the trapping poten-
tial, and x=(x,y,z). A vortex at x, has been assumed
These results have no connection at all to the rigorous resultarough the trapping potential. A more explicit implementa-
shown in Eq(15). Even the sign for the longitudinal force is tion of the vortex coordinate will be discussed after B39).
wrong. Evidently, the relaxation time approximation cannotThe partition function is
be valid in such a calculation, because such an approxima-
tion in the force balance equation cannot consider the ran- 1 (i
dom force properly, and leads to results violating the z:f D{x\,,wT,zp}exp[ — _J de d3XLBCS]a (20)
fluctuation-dissipation theorems. o

By the simple and exactly solvable model, we have dem-
onstrated the essential conditions for the validity of the rewith 8=1/kgT, andd®x=dxdydz Inserting the identity in
laxation time approximation in velocity-velocity correlation the functional space,
function calculations, and for its invalidity in force-force cor-
relation function calculations. We refer readers to Refs.
19-22 for more sophisticated discussions in the context of 1:J D{A* A}
the Green’s function or Boltzmann equation.

With a redefinition of constant8 =hpg with h being the g (1B
Planck constanf being the superfluid particle number den- Xexp{ - %f drf d3x
sity, and wp= €y as the core-level spacing, this force be- 0
comes the same in magnitude as the one which appeared in
the derivation of vortex dynamics using the relaxation timeinto Eq.(20) we have
approximatior!,”®tincluding the same sign erré?.The in-
appropriate use of the relaxation time approximation in vor- 1 (B
tex dynamics ind-wave superconductors has also been sz D{x\,,z/ﬁ,z,//,A*,A}exp{ - %fo drf d3x(z//$,z,/xl)

pointed out recently® In the following we show how to
obtain the vortex friction without the relaxation time ap- U 1 (hp
-— drfdngz. (22)
wI) hgfo 4]
Here the Hamiltonian is defined as

<Fext[01>=r°7)2<—BU[01+worU[01><B>. (18)

o

1
b+ aA(X,T)

|

proximation, and demonstrate at the same time that the total ~ x(%97+ H)
transverse force remains unchanged as dictated by the topol-

ogy.

IIl. VORTEX DYNAMICS IN HOMOGENEOUS BCS

SUPERFLUID
H(AA* )=

A
x *> (22
A. Formulation of the problem A —H

We present now our microscopic derivation, from the
standard BCS Lagrangian ferwave pairing in the imagi-
nary time path-integral formulation of the influence func-
tional method. The connection of the total transverse force t
the Berry phase is straightforward in this formulation. We
believe the present formulation has some advantages:
transparent crossover from the quantum to the classical de-

with H=— (22/2m)V2— g+ V(X) + Ug(X—X, ).

Exactly integrating out the electron fieldé, and iy, first,
6hen integrating out the auxiliargpair) fields A under the
mean-field approximation, one obtains the partition function
fgr the vortex

scription via the semiclassical approximation, and a flexible Seff
treatment of the general dissipative effect arising from the Z:f D{x\,}exp{ - 7} (23
integration out of irrelevant degrees of freedom, fermionic
guasiparticles, and holes. The relevant degree of freedom is. . .
the vortex coordinaté® with the effective action

We consider a neutral fermionic superfluid first. The cou-
pling to electromagnetic fields will be discussed later. The Seff o, 1 3 )
Lagrangian is given by 7~ rinG 7+ @fo de dx|Al% (29

52 where Tr includes internal and space-time indices, and the
LBCSZZ l//T,(X,T)(MT—MF— ﬁVZJrV(x) Nambu-Gor’kov Green’s functiofs is defined by

+U0(X—Xv))¢g(X,T) (BOAHG(x7iX' 1) = 7= ) Fx=X), - (29

N . together with the BCS gap equation, or the self-consistent
=9 (X, T (X, T) i (X, T) i (X, 7), (19 equation,
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A(X,7)=hgGAX, T; X, T). (26)

In the presence of impurity potentials, the averaging over
them is implied in Eq(26), unless explicitly specified.

Since the effective action is a smooth function of vortexHere(()n

coordinate in the functional space ff,(7)}, we consider
that the vortex has made a small move from its original place
Xg, Which allows a small parameter expansion in terms of the
difference between the vortex positio) and xq. We look
for the long-time behavior of vortex dynamics under this

-M. ZHU PRB 60

-1 e—iwn(T—T/) :
qu’a(x)‘l’a(x )

(31)

Go(x,f;x’,r’)=2

n,a

=n/fh B, with n odd integers.
Direct substituting of Eq(31) into Eq. (28) leads to

Seit _
ho 2(hp)?

f d®xd®x'drd 7’

small parameter expansion. In the final step, the forces on

vortex are to be calculated by varying Lagrangian to this
small motion. The influence of the eliminated degrees of
freedom on the vortex dynamics will then be obtained. As an

example, for the mean-field value of the order parameter, this

small parameter expansion to the second order is

AX,7X) = 1+ 8%,(7)- Ve + %[WT)-VXO]Z Bo(X,Xo).
(27)

Here 6x,=X,—Xo. In Eq. (27) we have used the fact that

whenx, =X, the vortex is static. The effective action for the Keeping only terms relevant to vortex dynamics and assum-
vortex to the same order is, after dropping a constant termjng global rotational symmetry after summing over all the

e*iwn(rf ") e*iwn/(r’ -7)

X

ne,n’a’ |h(1)n_ Ea iﬁwn,— Ea’

XWEX) 0%, (') Vi Ho(X )W oo (X)W L, (%)

X OX,(7)- VXOHO(X)\Pa(X)

1 (hB
+%JO drf d®x %, (7) - Vy AT 8%, (7)- Vi Ag.

(32

states, we have

%—%Tr(GOE’)% %f:ﬁdrf d3x
X &%, Vy A 8%, Vi Ao, (28)
with
Uy A
E’=5XV~VXO(A3 _Uo)zﬁxv-onHo. (29)

Here the Hamiltoniaﬁ‘{oz7-l|xV=X0 for the static vortex at
Xo, Gg is the Nambu-Gor’kov Green'’s function with re-
placed byH,, the gradientVX0 is with respect tox,, and
G 1=G,+3.

Now we construct the Nambu-Gor’kov Green’s function
G, following the usual proceduré.First, we consider the

Seff 1

R 2(h)?

f d3xd®*x’drd7’

e*iwn(rf ") e*i(un/(T’ —7)
X

na,n’a’ Ihwn_ Ea ih(,()n/_ Ea/

XWX )V oHoW (X)W L () Vy HoW o(X)
X 8%,(7')+ 8%, (7) + (W LX) Vy HoW o (X)W, (%)

XV HoW o(X))- 2(8X,(7') X 8%,(7))- Z]. (33

With a rearrangement, finally we arrive at

hp

1
Seft= Efo

d’T{ hﬁdT’F”(T— )| 6%, (1) — o (7")|?
0

eigenfunctions of H,. The stationary equation, the 1p
Bogoliubov—de Gennes equation, is - dr'F (7— 7")(6%,(7) X 5xv(r’))-i (39
0
HoW (X)) =E_ ¥ ,(X), (30 with
with
Fi(r—71')=— f d3xd®x’
N (ua<x>) ” B
X)= .
(%) Vo(X) e-ion(r=7") g=ion(r' =17

No confusion with the vortex velocity in Sec. Il should arise
here.

Given the eigenfunctions of E30), G, can be expressed
as

X

na,n’a’ Ihwn_Ea iﬁwnr_E ’

XU LX)V HoW o (X)W 1, ()Y HoW o),
(35
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and Multiplying both sides of this equation bW ,|, and using
the relation tha{ ¥ ,|H=E (V¥ ,|, the Hermitian conjuga-
tion of Eq. (30), for a# a’ we have

1
F (r—7")= —ﬁﬁzf d3xd®x’
fdf’xxlfg(x)(vono)wa,(x)

e—iwn(T— ') e—iwnr(’T/ —7)

X

e’ hen™Ea iy —Eq ~(E,—E) [ VLT w00 (@8
X[ LX) Vy HoW 4 (X') _
with
XW () Vy HoW o(X)]- 2. (36) U A
(vXOHo>EVXO( N —uo)'

Equation(34) has the form of influence functional in quan-
tum dissipative dynamic§ Please note that/}#F (7
— +')d7=0. Therefore, there is no so-called “counterterm” Here we have use¥,E, =0 to get Eq.(38), under the
in Eq. (33) as discussed in Ref. 13. Here we have generalize@ssumption that the system is homogeneous. Hence, there is
the influence functional to include the transverse force as 80 vortex velocity-independent potential for the vortex aris-
response from the environment. |ng from Eq<38), that is, no Born-Oppenheimer-type poten-

Before proceeding to evaluate these correlations, we digdial, in accordance with the present purpose of looking for
cuss some properties of the wave functions of thethe effects which are first order in vortex velocity. Starting
Bogoliubov—de Gennes equation, which will be used laterfrom the Hermitian conjugate of E¢30), taking the deriva-
First, becauseH, is Hermitian, all its eigenstates form a tive with respect to the vortex coordinate we have
complete and orthonormal set, that is,

<VX0WQ|H+<\PQ|(VXOH):Ea<VXO\I’a|'

t _
f d*XW ()P 4 (X) = 8, Then multiplying this equation bj¥ ) we have

and f d3x\PL(x)(VXOHo)‘I’a/(X)

> VL, 0W(x)=1.
a =—(Ea,—Ea)f d*XV, WLV, (). (39

HereWT(x)=[u* (x),v*(x)] and the wave functio® (x) is
normalized to 1 over a cylinder of raditsand lengthL, the
box normalization. In the thermodynamic limR=c«, one
may consider the scattering states. In this case the Mirac
function normalization for extended states should be the be¥v
ter choice. Furthermore, E¢B0) has the property that if u

We note that both Eq938) and (39) are exact, following
from the general property of E¢30). They relate the tran-
sition elements of the Hamiltonian after the differentiation
ith respect to a parameter to the connections between wave
nctions. Though the wave functions have to be determined
as an eigenvalue problem, the usefulness of E8g8). and
(39 is that it allows one to concentrate on wave functions
V*(X) instead of the original Hamiltonian, which is particularly
—u*(x))’ convenient in the discussion of certain topological properties
described better by wave functions, such as a vortex in a
BCS superfluid here. In the rest of the paper, we will take the
trapping potential to be zerd),—0 unless specified, and
o o determine the vortex position self-consistently through the
HoV(x)=—EW(x). (37 gap equation, Eq26).
For the convenience of calculation, sometimes we wish to
There is no specific assumption about the Hamiltoniarkise VW ,(x) instead ofV, ¥ ,(x) in the expression. It can
H(H*) in Eq. (22) for this identity. There is another impor- be done in the following way. We split the gap function, or
tant property implied by Eq(30). Since both the Hamil- the order parameteX into
tonianH, and its eigenfunctions are the function of the vor-
tex coordinate akg, taking the derivative with respect 1g
at both sides of Eq30), we have

HoW (X)=EW(x), @(x):<

then

A=K(x—x0)+A’(x,x0),

whereA is a smooth part of the self-consistent potentil,

(VXoH)|wa’>+H|onq’a’>: Ea’|V><o\I'a’>‘ is the fluctuating part for a given impurity configuration. The
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impurity average give$A’)=0. In the presence of impurity e-ion(r=7") g=iog(r = 7)
potentials the gap function may differ fron_1the one in the
clean limit. The Hamiltonian becomég,=Hy+ 6H, with

n,n’ ifion—E, ihw, —E,

efi(wnf“)n’)(ff )

_ HO K n’n’ i(hwn_ﬁwn!)_(Ea_Ear)
Ho=| — , (40
“lar -y 1 1
ihwn/_Ear ihwn_Ea
whereH,= — (A%/2m)V?— g, and
—i(wy—wn)(r—1")
=2 Blfa—ta) ,
V(x) A’ n-n' H(hon—fwy)—(E,—Eyr)
OH=| pre ~V(x)) “1 (44)
Using after using
t t D e 'on? Bfa, 6=0"
3 — 3 _ =
j d X\PQ(X)V(HO\PaI(X))—f d X[\PQ(X)(VHo)\I’ar(X) - iﬁwn—Ea _ﬁ(l_fa)! 5:0+
+p! v,
)V o ()], with the Fermi distribution functiorf ,=1/(1+efEs). To
o complete the calculation, we also need
and (V+VXO)H0=0, and defining
cog (wn—wy)(7—17')]
VH'=(V+Vy) oK, nn i(hog—fiwy)—(E,—E,)
we have the desired relations __ B costi(E,— E)/h(hpl2—|7—7'])] b S(r— 1)
2 sini (E,—E,/)B/2]
(45)

(E—E)) | dxw]007,0,00

Here :6(7): is a periodic delta function with periatlB. The
— _(Ea’ _ Ea)f daxq’Z(X)Vq’ar(X) term Wlth Zn_,n,_sir'[(wn—wn,)(r—_ T')]/[i(ﬁwnfﬁwn.r)—(Ea -
—E,/)] is zero inside the double imaginary time integration
in Eq. (34), because the integrand is an odd functionrof
+f XV () VH' W, (X) (420  —7'. Dropping the periodicd function, whose contribution
is zero in EQ.(34), we are ready then to write down the
longitudinal correlation function as

and
1 (= coshw(hBI2—|1])]
Fi(r)= —J dwd(w) - (46)
(Ea,—Ea)fd3xvxoqf;(x)«1ra,(x) Pl sinflw(%/2)]
3 + with the spectral function
:—(Ea,—Ea)f d>xVW¥  (x)W ,(X)
aa
—f BV (O VH W i (x). (43 Jw)=7 2, S(hw—|Ea—Equ|)[for =14l
2
The last part is obtained from E¢2) by a partial integra- X f d3x‘P2(x)onH0‘Pa,(x) . (47)

tion, which can be carried through because the wave function

is normalizable, either by the box normalization or by the ) . )
Dirac delta function. It is interesting to point out that in terms of the spectral

function the longitudinal correlation function, E@L6), is in
exactly the same form of the influence functional in quantum
dissipative dynamic’® The apparent difference is that the
We now discuss the general properties of the longitudinaspectral function in Ref. 13 has been obtained by integrating
correlation function, Eq(35). We find out a set of independent harmonic oscillatdresons, while

B. Longitudinal correlation
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here it has come from the elimination of independent fermi-coefficient in terms of low-lying excitations is in accordance
onic modes determined by the Bogoliubov—de Gennes equavith Landau’s quasiparticle picture: In the zero-frequency
tion. limit the lifetime of those excitations approaches infinity.
It is important to remember that in order to have a smoothThose excitations give an exact description of the dynamics
spectral functionJ(w), the thermodynamic limit must be of the whole system in this limit. Secondly, to relate to the
taken first before the implementation of thdunction in Eq.  discussion in Sec. Il B, the spectral function given by Eq.
(47).%% Otherwise the spectral function consists of sum of(47) completely determines the spectral representation of the
discretes functions, and there would be no dissipation. Thissecond kind of fluctuation-dissipation theorems. Equation
limit procedure is in accordance with the requirement in non{47) is indeed a quantitative description of dissipation.
equilibrium statistical mechanics: The thermodynamic limit
must be taken first to have well-defined low-lying modes in C. Transverse correlation
the zero-frequency limit. After this consideration of the ther-
modynamic limit, in the low-frequency limit the spectral
function may have the following generic form:

To obtain physically more transparent expressions for the
transverse correlation function in E(6), we use Eqs(39)
and(39) to rewrite it as

J(w)=n0°, w—07, (48 1
F (r—1")= —Zf d3xd®x’
with s>1 being the super-Ohmic case>%>0 being the hp

sub-Ohmic case, ans=1 being the Ohmic case, following gion(r=7) g=io (7' =)
from the influence functional formulation of quantum dissi- X > - .
pative dynamics? For the physically important Ohmic case, nan'a’ @O~ Ea ifiw, —E,

the longitudinal force, friction, is given by nvy,, and from

_ 2 Ty ’
Eq. (47) we have the frictional coefficient X (Ba=Ba) (W o (X)) Vi, W o (X))

X (Vi WL ()W ()] 2. (50)
o f f ’

=7 S i

o' 2a Eqo—E, According to Eqs(44) and (45),

X 8(0% —[Eq—Eo )W ol Vi Hol Wur) (49

efi(wnfwn’)(‘r* ')

This equation is the familiar Fermi Golden rule for dissipa- nn' (if@n=Ea)(ihwn —Ear)

tion. The matrix elements deOHO are well behaved. If we e_i;,n(,_ )

use Eqs(38) and(39) to re-express the frictional coefficient =8>, — (for—"Ta)
7 in terms of the overlap integral between the wave func- " iho,—(E,~Ey)

tions [V, ¥,) and|¥,), we tum it into the form of ratio 52 5

0/0 whenE_,—E_,—0. Then attention should be paid to the =—|-1+——0, .
divergence of the overlap integral wheg,—E,/|—0". 2 o Ear

This limiting behavior has been discussed in Ref. 27, and we ,
refer the reader to the Appendix for a detailed discussion. XCOSH(EQ_ Eu)/h(fipl2—|7—1'])]
Equation(49) clearly shows that the coefficient of frictiom sinj (E,—E,)BI2]

is determined by low-energy excitations such as phonons,

extended quasiparticles, and bounded core quasiparticl%sec(,iu‘,;e of the symmetry with the interchangexadind a’,

when th_e|r energy spectrum s smeared out by IMpUrtieShe 1 term in the above square brackets does not contribute
The equivalence of Ec{.49) In thg context of vortex Qynam- .to the transverse correlation function, and we have
ics to a more conventional partial wave phase-shift analysis

has been discussed in Ref. 28 for a few well-defined situa-
tions. A more formal discussion can be found in Ref. 27. 1 3 3
ifdxd X’E 87.,7./

(fa’_fa)'

It may also be instructive to mention here that the friction Filr=1")=
experienced by a moving object in a normal Fermi liquid

has been analyzed in the influence functional appréach. costi(E,—E ) f(hBI2—|7—7'])]
Those considerations suggests that nonzero extended states X -

friction contributions exist, as will be borne out in detail in Sinf{(E,~E.)B/2]

the next section. Finally, it should also be pointed out that S(E —E-Nfr—f M@ (xV. W (!
Eg. (49 is a special case of E¢47). It will not pick up any (BamEa) (o = Tl (Fa(x) Vg W (X))
super-Ohmic contributions, and will give infinity for any « t 5

sub-Ohmic contributions. If such cases occur, we need to ((VXO‘I}”’(X)\P“(X))] %

return to the general expressions, E@) and (47).
To close this subsection, there are two general remarks ifthe corresponding term in the effective action, E2), is
order. First, the present result of expressing the frictionathen
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2

hp

dr . d7r'F (7= 7) (8%, (1) X 8x,(7))-Z

J
0
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—E NAh(RBIR2—|1—7'])]

18 np
——f dff dr'f dxd®x’ >
4Jo 0

(Ea_Ea’)(fa’ fa)

sin (E,—E.)B/2]

XLPLX) Vo W or (XX (Vo T L OW (0] 2(8%,(7) X 9% (7')) - 2

In the last equality we have used the periodicity of the func-

tion 8x,(7) =%, (hB+ 7) to turn the hyperbolic function
into the exponential function. Now we look for the slow
motion expansion to the leading order in velocigx,(7')

= 8%, (7) + &%, (7) (7' — 7). Substituting this expansion into
Eq. (51), after the integration overr( — ) we have

1 (4B 0y -
——f dr [ d7'F (7—7") (X, (1) X X (7)) -z
2J)o 0
Y . -
=if d7 B[ 6x,(7) X dx,(7)]- Z,
0

with the quantityB which determines the transverse force
defined as

# .
B=i7 > (fa,—fa)fd3xf d3x’z-(\PZ(x’)VXO\Ifa/(x’)

XV, WL 00w (%) (52)

We demonstrate next that the contribution to the trans-

1 (8 (=
_ZJ dTJ dr’Jd3xd3x’E PR exp[—
0 - a,a’

XL LX)V W o (X)X (Vo W (0W (30)]-2(8%,(7) X 8%, (7)) - 2.

|Ea_Ea’| ’
— T SUME— Eo) (Ee—Ean)(for— )

(51)

the trace:5=0" for spin up andS=0" for spin down in
Nambu spin space. We encounter such a choice of time limit
only in the case of taking the trace of the Nambu-Gor’kov
Green'’s function directly. This choice will not be there if we
only need to take trace of higher powers of the Nambu-
Gor’kov Green'’s function, e.g., eg. This implies that the
functions containing occupation numbéfs} in their differ-
ences are well defined. Therefore, E§2) can be safely
used if we directly put in the eigenstates of the
Bogoliubov—de Gennes equation. An alternative natural way
of deriving Eq.(53) is to leave the summation oves, in
place throughout Eq50) to Eq. (53).

After substituting Eq(53) into Eq. (52), we will write it
explicitly in terms of the eigenstates of Bogoliubov—de
Gennes equation. Since

e|w5

Blﬁwn

trZ E

f d*XV W, () X Vy Wl(x)

=> f d3x{f, V Ua(X) XV U%(X)

— (1= ) Vy V() XV, VEX),

verse correlation can be evaluated by counting extende\%e obtain

states contributions. First, we regroup terms in &9):

—iwpd

22, (- >22 /m

N|:~

xf d3xf AW O LX)V W o (X)

XV, Wl (%)

iwn6

e

—|—z trE( )22 Biho"E.

X f d2X(V i W o (X)X V W1(X)), (53)

because thafV ..} form a completed set. Here tr stands for
summing over spinor indices. The replacement pby the

summation is to take care of the delicate equal-time limit in

B=—ifz- >, J’ d3x[faVXOuZ(x)>< Vi Ua(X)

—(1=1 )V Va (X)X Vi v,a(X)]. (54

After usingVX0—> —V, we evaluate Eq54) with the help of
the current definitiof?

ik
j== 5 2 AU VU, (1-f v, Vvit+ee.

Equation(54) becomes

Bzf dx z(VXj)= fﬁxx ‘_mdl-j=27rﬁpS(T).
(55
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Here we have used the fact that the current is zero at the [ A2 ot

. . . . . o e «'KB
vortex position, as the explicit calculation in Ref. 30 has Yo(T):f de
shown. It can be understood as the requirement of quantum — keT(e /62+Ai/kBT+ 1)2

mechanics: At the phase singular point, the amplitude of any

wave function carrying this singular ph m zero. In . . . L .
ave function carrying this singular phase must be zero which accounts for the quasiparticle excitations contribu-

reaching Eq(55) we have also mad_e the ass_umption that thetions. At the superconducting transition temperature
vortex does not have a normal fluid circulation. The normaLI_C’ A,=0 andYo(T.) =1, the superfluid number density is

fluid is in equilibrium with the substrate or the walls of the z6ro0 as expected. This expression is the same as that ob-

container. . >
From Eq.(55) one may conclude that when counting thetamed from the London penetration depth for a clean type-ll
superconductot.

contribution from individual states, only extended states give ; . . .
rise to the contribution to the transverse response, becauie UZ"TQ _Eq.(55), the transverse term in the effective action,
the loop of the line integral can be chosen arbitrarily large to q.(34), is
make the core state contributions arbitrarily small. It corre-
sponds to the fact that only extended states can contribute to
the Berry phase of the vortéThis result is valid even when
the trapping potential, is finite, which we demonstrate
here. Since Eq¥38) and(39) are valid in the presence of a _ / N -

finite trapping potential, the transverse correlation function _If drdr B[ ox,(7)X ox,(7)] 2

can be expressed by wave functions in exactly the same form

as that of vanishing trapping potential, up to E§4). The = _izﬂﬁpsf drox,(7)- A, (57)
wave functions, particularly those for core states, may be

strongly affected by the trapping potential, and may even

become ill defined. An example may be the trapping of awith

vortex by a physical wire. Now, one may perform the same

calculation of turning the area integration into line integra- 1 R

tions, as done in Eq55). Since the trapping potential will Ar=5 (8%, X2),

not affect the superfluid number density far away from the

vortex, anq.smce the circulation current is still zero at thewhich has the same form of the action for a charged particle
vortex position, one then gets the same result as(&4).in

. . in a uniform magnetic field. The geometric phase or the
the presence of a trapping potential.

The validity of Eq.(55) in the presence of a finite trapping ]I?eirsry phase for the vortex moving along a closed trajectory
0

potential implies that the transverse force is independent

the trapping potentidl; at the vortex center. In E¢29), the

main function of the trapping potential is to specify the vor- _ f : A — § )
tex position, a symmetry breaking in an otherwise homoge- O=2mhps | drox(7) Ac=2mips yd(ﬁx") A
neous system. This is similar to the symmetry breaking by an

- ;f drd7'F, (1= 7")[ %, (7) X 8x,(7")]-Z

infinitesimal field near a continuous phase transition in sta- =—2mhpsS(I'),
tistical mechanics. Hence, it can be effectively taken to be _
zero, as we have explicitly done in the present paper. with S(I") being the area enclosed by The total transverse

Next, we turn to the calculation of the superfluid numberforce on a vortex is then
density p;. At zero temperature, it is straightforward. It is
equal to the total fluid number densipy==2, e _~olVa(|X

—Xo| =) |?, the number of Cooper pairs per unit area. At

finite temperatures, there is a reduction of superfluid number In view of the foregoing discussions, we may rewrite our
density due to the backflow carried by quasiparticle excitageneral formulation, Eq(34), in a more suggestive form.
tions. In principle, one may directly calculate the currentThe effective action for the vortex is

density together with the gap equation, or self-consistent

equation, to find oups. This would be prohibitively diffi- hp

cult. Instead, one may proceed in the following manner: Far seﬁ:f dr[ —iZWﬁPs&V(T)'At

away from the vortex core, the current varies slowly. One 0

may take the current to be locally uniform. Following the 1 (g

same way as that in superfluid He3 using the backflow +_J dr'F(7— )| 8%, (1) — o, (7)|?} (58
contribution®! the superfluid number density can be found as 2J)o

F=—2mfipsdX, X Z.

with A,=3(8x,%x2). The rewriting of Eq.(46) for the cor-
pd(T)=pol[ 1= Yo(T)] (56) relation function is

coshw(hBI2—|7])]
sn{w(#p2)]

1 oo
. . . . FH(T):—J dod(w)
with the Yosida functionY, defined as mJo
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EZ—|A(r)2|*?

E

f(r)zﬁ [ E2—|A(I’)|2:1/2 J+ 12K (E)r).

(60)

Herek. (E)= \/kﬁi 2mVE?—|A(r)|2/h2 with K=k;—k? .
The negative energy wave functions determined by the
The thermodynamic limit must be taken first to have aBogoliubov—de Gennes equation may be constructed accord-

smooth spectral function, which is crucial for obtaining al

and the rewriting of Eq(47) for the spectral function is

aa
Jw)=7 2 8ho=|E,;—Ey|fe—1]

X

2
f AW L () Vy HoW o (X)| -

ing to Eq.(37) from the positive energy ones. We will use
finite vortex friction. the approximation that,~kg for the prefactor by assuming
that the significant contributions come from the region near
the Fermi surface. This WKB-type solution is valid wheis
IV. VORTEX DYNAMICS IN CLEAN LIMIT outside the classical turning poing=|u|/k,. Herer is the
impact parameter. A WKB-type solution also exists inside

The example of an extremely clean limit of fermionic e ning point. However, because it approaches zero as
superfluids is the superfluid He 3: The |£npur|ty Concentr"j"(rk,))|“‘/|,u|!, the contribution to the transition elements
tion can be made to be smaller than 1 it@or supercon- o this region is small, and will be set to zero. The tran-

ductors, the impurity effect can, in principle, be made arbi-gjtion elements are then given by

trarily small, but no clear experimental realization has been

reported yet. In view of this experimental situation, the dis-

cussions in this section are more relevant to He 3. However g |y 7/ |w >|22U dBX[U*, (X)(V, AV () +v*, (%)
. . . e . al ¥ xq"to a’ a' Xo a a’

from the methodological point of view, it is instructive to see

how the formulation developed in Sec. Ill works for such a 2
clean situation. X (VA" )Ua(X)]
2
A. Extended states contribution to vortex friction A%

In this subsection we first calculate the extended state, =

guasiparticle and hole excitations, contributions to the vortex 0, |u|>&k
.. . . . ’ M 50 p

friction to illustrate the usefulness of the present longitudinal
response formula. The formula, E@7) or (49), is formally (61)
exact. However, for a given problem it is difficult to obtain )
an exact detailed expression for friction, except in some rarélere A. is the value of|A(r)| far away from the vortex
cases22%28Hence a WKB-type approximation will be used ¢ore. Physically, it means that if the classical quasiparticle
below. The responses of fermions, or electrons, governing bifajectory is far away from the vortex core, it will not con-
Hamiltonian dynamics generates a finite friction for the vor-tribute to the vortex friction. The summation over states in

W%,kﬁm,#ﬂ' |u|=&ok,
F

tex. Eq. (47) or Eq.(49) is replaced by

At finite temperatures the extended states ahiietow)
the Fermi levelthe quasiparticlesholeg] are partially oc- E E’ om\ 2
cupied. The vortex motion causes transitions between these>, = >, dEdE 5 ——| 5| -
states, which gives rise to vortex friction. The transitions «'#a  u.u'k; k; VEP-AZ JEP-AZ A
between  different  single  quasiparticle  levels (62

<\Ifa|VXOHO|\Ifa,) are considered here since they dominate

the low-energy process. The quasiparticles are described lﬂﬁ
the eigenstatey), andv,, of the Bogoliubov—de Gennes
equation. Their behavior in the presence of a vortex has be
well studied in Ref. 30. We may take

er considering the density of states.

Substituting Eqs(61) and(62) into Eq.(49) and using the
eq}?asiparticle distribution functioh, = 1/(e’E«+1), the co-
efficient of friction is given by

Lm2&,A28 (= E2
Uy(X)\  glkez gilnbtiobl2 7= - gg Sﬁj dE— S
a:( a( )>: - Ho) (59 47’h3  Ja, E2—A2 cosi(BE/2)
V(X L N2

The integral in Eq(63) diverges logarithmically. It implies

that the spectral function corresponding to the vortex-
with r measured from the vortex positioé,is the azimuthal  quasiparticle coupling is not strictly Ohmic but has an extra
angle around the vortex, is the thickness of the supercon- frequency factor proportional to IN(, /Aw). WhenZw is not
ductor film (the length of the vortex line and &, is the  very small comparing td\.., which may be realized when
coherence Iength In order to obtain a concrete fOArm for th%|ose toTC, we can ignore the |Ogarithmic divergence in Eq
transition elements, we use a WKB-type solution fér) (63) by using the density of states for normal electrons to
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obtain a finite friction, i.e., replacing?/(E?—A2) with 1in ~ completely determined by the underlying Hamiltonian. Here
Eq.(63). Close taT,, the vortex friction approaches zero the they are quasiparticles determined by the Bogoliubov—de
same way as\2, which is proportional to the superfluid Gennes equation.

number densitys. When —In(Aw/A,) is large, we need to It should be pointed that the expression leading to vortex
use Eq.(47) instead. Straightforward evaluation shows thatfriction, Eq. (47) or (49), are absent in Refs. 7, 9, and 10. To
in such a case obtain a finite friction in those work, a finite relaxation time

needs to be inserted into the denominator of the force-force
correlation function® or into the denominator of the
Lm2&,A3 R 1 Nambu-Gor'’kov Green’s function at a convenient pdint,
n= >3 In(A./hwe). (64  which at the same time leads to the reduction of the total
8m*h®  cosif(BA./2) transverse force. As discussed in Sec. Il B, such a procedure
should be avoided.

Here w. is the low-frequency cutoff. It is determined by the
size of the system for a single vortex, and by the intervortex B. Core vs extended states transitions
distance for a vortex array. for total transverse force

We discuss briefly here the connection of our results to

previous ones. The partial wave analysis has been performqg)n function in Eq.(36) or (52), with emphasis on different

for q“aZ'Pag?'g'ﬁh Scﬁttﬁ”n% offh_fa vorteg 'md @ aspects of the transition elements. In Sec. IIIC we have
superconductar. Though the phase shifts were obtained ap-gp,yn how to obtain the total transverse force from the con-
proximately, it is clear from the analysis that they are not all

Usi he f | relationshio b he ph h_Tsideration of extended states. In this subsection we show that
zero. Using t e7_cngrr31§1 relationship between the phase Shiff .o, 5150 be obtained from the consideration of core states,
and the frictior?’~2°*?the extended states have a contribu-

. h friction. i d ith | even some combination of both types of states.
tion to the vortex friction, in accordance with our results. Explicitly, we may evaluate the transverse response di-

It should be emphasized that the logarithmic divergencerectly from Eq.(36) or (52). We will show that the total

comes from the interplay between the divergence in the defyz,qyerse force can be expressed as contributions from only

sity of st_ates an_d th.e off-diagonal potgnual scatterlng_. W%ore to core transitions, or from core to extended states tran-
can consider a situation where we physically create a piNNiNgii s For a clean superconductor we replae— —V
. e— .

center to trap the vortex and guide its motion. In such a cas\(?v define followi bols for th " I i
the vortex has a diagonal potential. If the scattering is domi- e define following symbols for the transition elements:

nated by the diagonal potential, e.g., by the trapping potential
Uy, an additional factor coming frorfu,|?—|v,|? will re- _ 1.
i o i it ; a(l)a'(I")y=—ih(f,—f )=z | d®*d3k’
move this logarithmic divergence. The friction on the physi- a lally
cal trapping potential will be finite even above without
the vortex, as indicated in Refs. 27-29, and 32, though the X\PL(X’)V\PQ,(X’)xV\Ifl,(x)\Ifa(x),
total transverse force disappears becguse0. This again (65)
shows the sensitivity of the vortex friction to details.

The vortex friction from extended states exists for both

clean and dirty superconductors at finite temperatures. Closglich groups the transition elements into core state to core

to the transition temperature, it scales linearly with the syState, core state to extended states, extended state to core
perfluid density, and is exponentially small whareA., . states, and extended state to extended state transitions. Here

For intermediate temperaturesT~A,, using &g |:c,etreptrhesentj_thicomorFextendecblstates, "fmdl rep-
~ 2k /mA., andN(0)=mke /7242, p~LAN(0)AZ/ksT. resents other indicek,, w. For examplea(c)a’(c) rep-

When the impurity potential is nonzero, there is an additionaresents the elements |n_E_(($2) when¥, a_md‘l’ar are both
contribution to the friction, to be discussed in the next secOr€ states. More explicit examples will be given b_el_ow.
tion. From Eq.(52) and (65), the surr:m[ng over these transition
We mention here that there is another type of |OW_|yingeIements as well as over anda’ givesB,
excitation, phonons, which may lead to an additional contri-
bution to vortex friction. This type of excitation can be de-
scribed by the phase dynamics of the gap funcfigand has
been ignored here by the assumption of an adiabatic follow-
ing up of the gap function to the vortex coordinate. Based on +a(e)a’(e)]. (66)
general considerations we expect that the phonon contribu-
tion is super Ohmic? Hence, it is asymptotically weaker First, we note that for a core state, the sum of its transition
than the(subOhmic damping contribution from quasiparti- elements to all other states is zero:
cle excitations discussed above and the core state contribu-
tion to be discussed below.
The nonzero friction contribution from extended states > [a(c)a’(c)+a(c)a’(e)]=0. (67)
found above is in accordance with the linear-response theory o
in nonequilibrium statistical mechanics, where transport co-
efficients are related to the fluctuations near the equilibriumin fact, we have already obtained E@7) and used this
by the fluctuation-dissipation theorem. The fluctuations areédentity earlier in Sec. Ill C from Eqg52)—(55) to exclude

There are various ways to express the transverse correla-

B= >, [a(c)a’(c)+a(c)a’(e)+a(e)a’(c)

’
a,a
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the core state contribution to the circulating current far away o . .

from the vortex core in Eq(55). In Eq. (52) both extended a_ 12,17 —J rdr|A[[[FE _qo(r)f a(r)
and core state contributions are there. Then we summed over 0

all the ¥, to reach Eq(53) or (54), because they form a . X

complete set. Thus in the last expression of &§) inside 12 (DT 1a(N)],

the sum ovew, if ¥, is an extended state, its contribution to

the transverse response is actuall¥,[a(e)a’(c) and

+a(e)a’(e)], because all the:’s have been summed over.

The same procedure appliesh, is a core state. In Eq55), % ~ N

we have shown that the area integral can be converted into a D117~ —j dr AT () f - ()
line integral and we can choose the loop large enough com- 0

pared to the core size. W, is a core state, its contribution to

Eq. (55) is zero. Thus we conclude the validity of E@7). =% (D p(0)],
With the aid of Eq.(67), the transverse correlation can be
expressed in the following two additional forms: which follow the definitions in EQ4A10)—(A15) in the Ap-
pendix.
Now we evaluate Eq(70) explicitly. For the deep core
B= E [a(e)a’(c)+a(e)a’(e)] (68 states in clean superconductds- — uey with €y the core
a,a’ level spacing,f,-_1,=0 andf,_,,=1. The relation be-

tween the energy of core states and the quantum numbrer
our case is different from the one in Ref. 30 in sign because
=2 [a(e)a’(e)—a(c)a’(c)]. (69  we are considering a vortex with positive vorticity. The wave
aa' functions for deep core states take the form

In reaching Eq(69), we have used the identity(c)a’(e) i(u+1/2)0 K
=a(e)a’(c). Here Eq.(68) can be reduced to E¢55) after \PT(X)%E\/E e J 12 Ker) el (71
using the completeness of the eigenfunctions, as discussed K 2 N g\ w1203 ) (ker) '
above. Next, we present more detailed discussions on the
core-core and extended-extended transition element contriFhis leads to a_1,14E,E')~0 and b_y;,4E,E")
butions. ~A,l&,.
To be specific, we consider the zero-temperature case. For Usinog Eq.(72), it is straightforward to show
the core states, because of the topology the energy is
uniquely determined by.. The only transition elements con-
tributed to the transverse correlation functien are be- z- > (f,—f ,)f d3xf d3x’
tween stateg.=*+ 3 P

XWXV, (x )XV, ()W, (x)]=1kE.
> a(c)a’(e)=—i2#(f o 10— FLr1p0)

!
a,a

Therefore,
1.
x—z-f d3xf d3x’ 5
2 e
o , 2 a(0)a’(c)=— =B. (72)
XWX ) Vi Wi X7) aa’
XVXO‘I’I/z(X)‘I’—l/z(X)]- (700 The last equality is due to the fact that ifD2the electron

densityn,=k2/27r. The additional factor 1/2 accounts for the
The additional factor 2 accounts for the transition from thepairing. The conclusion is that at zero temperature the sum of

w=1/2 state to the.' = — 1/2 state, which gives the identical the core-core state transitions alone gives rise to the total
contribution. The transition element in E0) may be ex- transverse force. It corresponds to the fact that the core-core
pressed as state transitions are a local and differential form of the geo-

metric phase, and the Berry phase is the global and integral
form. In the next section we will show that E(/2) is un-

J d3xf d3X’[‘I’11/2(X’)on‘I’uz(X’) changed in the presence of impurities. -
Here we wish to point out an interesting feature explicitly
XV, ‘I’I/z(x)‘l’fl/ 0] manlfes.ted in Eq(72): the transverse response is insensitive
0 to the size of the system, because the core states are expo-
A a_ b a* +b* nentially localized. This implies that the thermodynamic
=—izdy ,k’( 2112+ b 112219 1/2’;/2 1/2'1/2), limit is not important for the total transverse force. We at-
o 2(E_12—Eyp) tribute this feature to the topological constraint on the trans-

verse response, corresponding to the well-known fact that the
where Berry phase exists for a discrete energy spectrum.
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There are two more interesting results which follow Eqg.the combination of double counting, treating core and ex-
(72). At zero temperature, using Eq$9) and(72), we have tended contributions to the transverse force as different quan-
tities, and the misuse of the relaxation time approximation in
the force-force correlation functions.
2 a(e)a’(e)=2B. (73 To briefly summarize this subsection, we have formulated
aa! the transverse response in terms of transitions between core
o L ) state or between core and extended states. Equivalently, we
This implies that for_g fermionic superﬂwd, the sum of all hove also formulated it in terms of a summation over the
extended state transitions lead to twice that of the total transsytended state contributions. In a clean and neutral superfluid
verse force. Combining Eq67) with Eq. (72), we have at finite temperatures, the total transverse force is given by
the product of the superfluid number density, the Planck con-
stanth, and the vortex velocity, though the vortex friction

—_— ! -
B=—2 a(e)a’(c), Z
o,a
which shows that the core-extended state transitions can also
be used to calculate the total transverse force. We believe V. EFFECTS OF IMPURITIES
that this property has been explored before in the case con- A. No effect on total transverse force

sidering the contributions from states whose energies are
around A, the interface between the core and extended The presence of impurities is unavoidable in supercon-
states? ductors. In this subsection we consider this realistic situation
In the literature, after a transverse response equivalent tf the influence of the impurity potential to the transverse
Eq. (36) or (52) was reached, it had always been assumedorce on the moving vortex. In Sec. IV B we have shown that
that only one core-to-core state transition contribdt€s. the transverse correlation function can be evaluated by either
However, as we have found out, core to extended state trafonsidering the extended states or by considering only the
sitions are of the same order. The above discussions sho@Pre states in a clean superconductor. The same also holds in
that there are many equivalent ways to compute the totdhe case with impurities, as we will demonstrate below. We
transverse force. Because of the topological constraint, thirst give a formal demonstration from the counting of indi-
total transverse force can even be evaluated by partial sunyidual state contributions, then explicitly consider the core
mations of the transition elements, expressed by E&f),  State transitions, to pave the way for the core state contribu-
(69), (72), (73), and(74). This is completely different from fuon tq yortex friction. The robust conclusion is that random
the computation of the longitudinal forcéhe friction), ~ impurities do not affect the total transverse force.
where a partial summation contributes only a part of the total It is more convenient to change the gradient froig) to
friction. The demonstration in this subsection suggests tha? when an impurity potentiaV/(x) is involved. Applying
the alleged cancellation between the core spectrum flow corEgs. (42) and (43) to Eq. (52), the transverse correlation
tribution and the Berry phase counting is a consequence dfecomes

B=—i> jd3xj d3x'(fa—fa,)gi.[\pg(x')vwa,(x’)wil,(x)qfa(x)]

+ > (fa—fa,)(Ea—Ea,)Zgi-fd3xf B WX ) VH (X)W o (X)X BT OVH ()W (x)].  (75)

!
a,a

Other terms are identically equal to zero after summing awer’ .
We first show that the second term in E@5) is zero after the impurity average. To be concrete, we expand the wave

function ¥, in terms of eigenfunctions of{y, {¢,},
V=2 Xay®y- (76)
Y

Herey,,= aayei‘Pav, anda,, ande,, are the modulus and phase of the expansion coefficients. We remind the reaa_ef that
has dependence on the impurity potential because it includes the smooth part of the self-consistentpoBattalse of the
normalization requirement, the coefficiedts, ,e' o} form a unitary matrix,

Ey aZ =1, > & -1
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The second term of Eq75) is now
f d3xf d3X'\P£(X')V'H'(X’)\Ifar(X')X\PZ,(X)VH’(X)\I’Q(X)

= > aayaa,y,aa,yiaayle‘i%wizpa'yi“%'yﬁiwayf d3xf A3 @I (X VVH' (X") s (X)X ¢7;i(x)VH’(x)q§yl(x).

vy
(77)
From the random-matrix theory,the phasg¢,,} are random numbers. The impurity average makesy; andy'=y; .
Under the assumption, i.e., the core size much larger than the average distance between impurities, the averaging over

impurities restores the homogeneity and isotropy of the spatial space. This implies that all the odd p&#&r will be
averaged to zero. Since each term in EfY),

| o] @ gl vr )6, 000 % 8L 00T H (09,00

=z f d®x f A3 {(BLX)VH (X)) by (X D], (O VH (X) (X)),

—(SLXVVH (X by (X)) (], (O VH! (X) (X)),

consists of elements of the odd powemxaindy components The above second equality is the Anderson theorem, in that
of VH’, the second term of Eq75) is zero after the impu- nonmagnetic impurities do not affect the density of states

rity average. o _ near the Fermi surface, hence there is no effect on the super-
The average transverse correlation is then, following theonducting transition temperature. We will come back to this
same procedure from Eq&2)—(55), point after the discussion of the impurity effect on vortex

friction. This result may also be reached from the envelope
_ wave function argumentatiol. Therefore Eq.(55) also

B= é Sﬁ‘x_xd_md"l- (78 holds in the presence of impurities. Thus we have shown in
general that the transverse correlation is not influenced by
impurity potentials. Physical understanding of this result is
straightforward: There is no average circulation current as-
) sociated with impurity potentials.
j=— < ih 2 [faU§VUa+(1—fa)VaVV§]> +e.c. Next, the insensitivity of the total transverse force to ran-

Here the average current

2 dom impurities will be illustrated by a different demonstra-
i tion. We evaluate core state transitions with impurity poten-
=—— > (a2 M[fu*Vu,+(1-f,)v Vv*¥]+c.cl, tials, a part of the first term in the right-hand side of E¢p).
2w v T First, we will explicitly consider the total transverse force
from core state contributions with a weak impurity potential.
and(- - -) stands for the impurity average over the expansiorBecause of the factorf(—f ) and the selection rule in the
coefficients. In the limir —o, we have transition elements, deep core states are the ones making the
main contributions to the total transverse force for tempera-
i5 tures well belowT .. When the iimpurities are Wea_k enough,
1==% > <a(21,7>{[fa|uy|2+ (1-f,)|v, |2l +c.cive. fp( deep core state¥ , =% a,,€ furp, th_e expansion coef-
ay ficienta,, is large only for the neighboring states aroynd
which are also deep core states. In a clean superconductor,
At zero temperature, we have core states are uniquely specified by the azimuthal number
Therefore, with weak impurity potentials, we may only con-
sider deep core states close to the Fermi surface, and ignore

> > <a§y>|7y(|x—x0|—>oo)|2 the mixing of deep core-level states with the extended states
a,E,>0 vy in Eq (75)
Substituting Eq(76) into Eq. (75) and using Eq(71) to
= > ([V o(|X—Xo| =2)|%) = py. calculate transition elements among core stdigs}, we
a,E >0 have
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In order to have a nonzero contribution at zero temperature,
we havek,E, <0, one above and one below the Fermi
surface. Because of the restriction of the band distribution
and the selection for’ and v, we have an additional con-

straint on theE,, andE,, : |E,|,|E,/|<I. The net contribu-

f d3xJ A WX )V, (X )XV, ()W ,(X)

= > 808787 1B,

V,V/,Vl,Vi . .
tion is
X e7'9°#V+'¢#’V'7"p#'v;+"p#“1(1)“(2:5,,/’,,4:15,/1 ,Vlilz.
(79)
2 (f=fu) 2 2(F)it3S, a1
Here we have used ot mooR lv—pl<l[v' —u'|<I (21+1)2 ¢
=ik2/2, (81

fd3x¢l<x>V¢w(x>~itc<ti+i9>6v.yﬂ

with t.=kg/2. If x andu’ are interchanged, there is a sign Which is approximately the same value for the clean super-
change in the right-hand side of E{.7). Including the fac- conductor. The factor of 1/2 is due to the approximation for
tor (f,—f,/) and summing over. and ', core-core state t. using same value for all transitions betweerand u*=1.

transitions become

> (fM—fM,)f d3xf Az [¥ (X )V, (X")

wop!
XV ()W ,(x)]
=2 (f=fu)
Moo b

X I REIL W

’ !
v, v vy, vy

One can check that the above result also holds for Gaussian
distribution ofa,, . This completes the discussion of the first
term in Eq.(75) in the weak impurity potential limit.

Although at zero temperature in a clean superconductor
only the core states closest to the Fermi level contribute to
Eqg. (52) or (66), the transition elements of other states are
not small. Their contributions cancel each other completely.
With impurities, more states than those closest to the Fermi
level give contributions to the transverse response. These
contributions from other core states restore the transverse
response to its original value of a clean superconductor. In
the calculations with the relaxation time approximation, the
reduction of the contribution from the two states closest to

X e 1 90 10 1,00 (5126, 1218, 4.4y, € Fermi level has been taken into accottftThe contri-
‘ 17 bution due to other core states, which arises after introducing
(80) impurities, has not been included in those calculations.
Next we consider the dirty limit, and we will again make
Because of the randomness in the phase factor ofise of arguments in the random matrix thedtye assume
e 1ew ey —ie e, the dominant contribution comes that there is no mixing between the core and extended states.
from statesv=v,,»'=v}. Equation(80) becomes In the weak impurity potential limit, it is not difficult to
justify this assumption: The band width in E@1) caused
by impurities is much smaller thah. In the dirty limit, the
number of core states remains the same, since the energy gap
away from the vortex core remains the same. Hence, there is
a conservation of the number of core states, because of the
For a given distribution ofa,, this summation can be topological nature of the vortex. We also note that there is no
evaluated. For the purpose of demonstration, let us assumegageneracy for the core states, in contrast to the extended
simple distribution centered at: a;,=1/(21+1) when|v  states. In additional, impurities do not cause an additional
—ul<l, a,,=0 otherwise, and consider only zero tempera-violation of time-reversal symmetry. For those reasons we do
ture. Here kI <N., with N being the total number of core not expect that they would mix two topologically distinct
states. With this assumption, each of the original states igypes of solutions, the core and extended states, of the
spread into a band ofl2- 1 states around it when impurities Bogoliubov—de Gennes equation.
are present. Equatio(r9) takes the value With increasing impurity potential strength, eventually
any core state¥ , in Eq.(79) consist of all the core states of

1 Ho, V¥ ,=2,x,9, . Here the summatioR, runs over core

2(F)it28, ey states only. The total number of core states does not change
after introducing impurity potentials, because the core-level
spacing for¢, only depends on the values Bf andA.,,

We note that for the pair of states= +1/2, u'==*1/2 clos- the value ofA far from the core. A specific approximate

est to the Fermi surface their contribution is reduced by aealization may still be in the form of the band distribution as

factor of 1/(2+1)2. However, all the states within the en- given in Eq. (81), with |~N., the total number of core

ergy shelllE,|<Ie, near the Fermi surface contribute now. states:

2 (f=f)2 aka,, 2(7)itdo, e
M o v,y

2 (F=fu)
e

[v—ul<l,|v = u'|<I (2' +l)2
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1 extended states. Using a distribution functmfor y such as
, ) IrvI<N2— |k defined by Eq(82), the average core state contributionAto
X 2= Ne—2|ul 82 . .
is the same as the one calculated by uging},
0, |u—v|>Ng/2—|ul.
It is widely spread for deep core statgs|<N/2. One may —g( > XWX:V,USVST‘(l—sz)>
check thats,|x,,|?=1 andu=3,|x,,/?v. The latter cor- o,y
responds to the requirement for the energy spect(Enp)
=(¥ ,|Hol¥ )=,/ x,,/°E,. The condition of= x| =—g> WOV (1-2f,).
=1 is only approximately satisfied: we have found that v H .
2 X0~ 3IN(ND/(NJ2)?— »2] which gives In2 whenw _
<N,/2 and InN; when v~N/2. The extended states also need to be self-consistent. We as-
In this limit, Eq. (79) becomes sume the impurity strength is strong enough to mix the core

states on the scale of élbut too weak to cause extended
state distortion on the scale ok}/. Then for extended states
E (f’u_fﬂ,)i. f d3xf d3x’ the _distribution of xo, is a function p(E,—E,). It ?s _
wo! straightforward to check that the extended state contribution
x[\IfL(x')V\PM,(x’)XV\PL,(X)‘P”(X)] to A is the same as that of those calculated by uging.
B. Impurity contribution to vortex friction

In the present of impurity potentials, there are two kinds
of contributions to the friction. The extended state contribu-
xz(I)itgéy, 10, a1 (83  tion remains basically the same as what we have discussed

’ L before. The main difference is that the coherence length in
Eqg. (61) will change when impurities are present. We will
ive a brief discussion here. Since the density of states re-

= E, (f/,L_f,u,’) 2 XZVX,LL’V’X;rViXp,Vl
oy

’ r
v,V vy, v

Its average value iB(,Z:/Z at zero temperature, approximately
the same as in clean superconductor, by using the distribys 5ing unchanged, we only need to evaluate (Ba) again.

tion function given_ in Eq(82). . The transition elements are given by
We have gone into great detail to calculate the total trans-

verse force from core state transitions in the presence of
impurities. Indeed, there is a reduction in transition ampIi—|<\I, |V, HolW ) |?= 2
a 0 a

2 2
tude between any pair of neighboring states. Nevertheless, Xzl et

V,V’,’y,’}//

the summation over all possible core state transitions restores

. . .. 2
the total transverse force to its value in the clean limit. A% 5 5 ik
Hence, the impurities have a negligibly small effect on the x{ 222 Tkl vl vl <&k,
total transverse force from both the core state transitions con- F
sideration and the extended state counting, though the fric- 0, [|v[>¢&k,.
tion contributions are strongly affected by impurities, to be (85)

discussed in the next subsection.

In addition, we check the self-consistent cgn_dition with Here y is the expansion coefficient in E¢76), & is the
respect toA here and show that they are satisfied for ourconerence length in the presence of impuritids,the angu-
choice ofy,,, . Because irt{, we have already assumed that lar index of the state, anl is the energy of the state. With a
the profile of A is the smooth part of the self-consistent given distribution ofy such that the expansion coefficient is
potential with impurity potentials included, we need to makeconfined to the neighborhood of its original energy, it can be
sure that the decomposition of the eigenfunction does nothown that the extended state contributions to the friction
introduce an extra term to the self-consistent potential. Wéemain unchanged, except the change of the coherence
have length of §,— €.

In the presence of impurities, the core state energy levels
are no longer monotonically arranged according to azimuthal
A:—QE Uv¥(1—2f,) number or the angular momentum. In addition, it may be-
@ come quasicontinuous under the impurity average. The mix-
ing caused by impurity potentials makes it possible to have

=—g 2 XMVXZVfUSVSf(l_Zfa) transitions into ene_rgetically nonadjacent core states, as dis_-
wov,v' cussed in the previous subsection, as well as into energeti-
cally nearly degenerate core states. Thus the core states can
-g 2 uv*(1—2f,), (84) give another contribution to the vortex friction, similar to the
a(e) residual resistance in a metal.

First, we consider the weak impurity potential limit. We
where u®,v° are the components of core eigenfunctionsassume the effect of impurities is not so strong such that we
{¢,}, and(e) denotes the extended states. In the last equazan treat their influence on core states perturbatively. Using
tion, the summation is split into those of core states and=gs.(42) and(43) we obtain
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o ? Kel |2 ke \°
| @009, 5,00 J(m:zﬁw(#o) (7 E2L)V2 WSZL)
=—(EM,—EM)f AW (x) V¥, (X) _ gmne(;tr&ZL)_ @

2
. (86)

— | &3P ()VH' W, (x
J pOOVHIY e (X) Here e;=A2/Eg is the core-level spacing, artek=mvZ/2.

In Eq. (87) keL/2mey is the approximate density of core

For the leading-order contribution, we only need to use thetates near the Fermi surface. It appears with the fadtar 2
unperturbed¥ , and A. The first term in Eq(86) will not because
give any contribution to the dissipation because of the dis-
creteness offf,, —E,) and the factob(fw—|E,—E,/|) in
J(w). After summing overw and ', this term will become > S(ho—|E,—E /DIf ,—f /]
terms of §(hw =€), which will not give any dissipation. mop
The contribution to the dissipation comes from the second
term. =j dE,dE, 8(hw—|E,—E,)|f,—f,|ni(E)

We may assume the impurity potential has a length scale
small compared with the coherence length so that we can zzﬁwng(E)
describe it by a delta potentidf(x) ==;Vy8(x—x;). We

have with no(E)~keL/(27e,). The scattering timer, is linked

to the residual resistivity by

ke |°
w2l ) m

2
<U AW () VH' ¥ /() >:ni(7-r§2L)V(2,

Ne€2 7
with the impurity concentratiom;. Under this assumption
we will make connections to the normal-state transport paz,g can be measured independently.
rameters. Note that for normal states the electronic transport 1pe gapove spectral functici ») gives the vortex friction
relaxation time and the electron scattering cross section havg the weak impurity limit
the following relations®’

3 mny(wé’L)
nN=5————.

2 Tir (88)

—1_
Ty = NiVEOy

with It has a simple interpretation. For a normal electron moving

in the metal, the friction is simplyn/ 7. Equation(88) can

be interpreted as that in the weak impurity limit, the friction
O'tr:f dQ(1-cosh)|V(6)|?. for a vortex is the friction for each electron times the total

number of electrons inside the corg(m&2L).

This vortex friction increases with impurity concentration
Here and strength. We will show that this increase eventually satu-
rates in the dirty limit. Using Eq(76), we expand localized

statesV in terms of{¢,}, the of eigenfunctions df{.
with g=k—k’, 6 is the angle betweek and k’, and vg

)
=fke/m. For our choice of impurity potentialz,-{l can be
calculated, ' = 2 ) <X;wX,u/er;leMrVi>(E,,— E,,r)(E,,l— E,,i)

’
v,V vy, Vg

m
2ah?

V()= — f d®xV(x)e 19"

< f AW LX)V HoW 0 (X)

2

3ot 3y 41
ng dQ(1—cos#h). XJ d Xd),,(X)qu,,,(x).fd X, (X)V,1(X)

1 m

=2 il X [22€3]te]?8,0 1. (89)
We emphasize here that the electronic transport relaxation v,
time 7, is directly determined by the Hamiltonian of Eq.
(22). With the distribution function given in Eq82), the average
Expressed inr,, the spectral function now becomes value
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2\ 4€dty)?
< f AW L) Vy HoW .0 (X) >= °NC° . Lacs=2 ;%7 id,— pe—ehy
1 e |2 :
Here the total number of core levels is tom TV A V) (X 1) = g¥(X,7)
T 1 2 2
kel Eg kel X%(X,T)%(X,T)%(X,T)‘*'%(E +B%) +eAyng,
Ne=2A,7—=——.
2meqg A, w 91)
Finally, the spectral function is here —en, is the charge density of the ionic background.
The coupling to the electromagnetic field is in the usual
minimum coupling form. The fermionic degrees of freedom
5 kel 246§|tc|2 3772ﬁ A, can be integrated out to give
J(w)— w 27760 Nc _wT neE—FL, (90)
S 1 (4B
. . - , —eﬁ=—TrInG‘1+—f er d3x|A|?
which gives the friction per unit length h higJo
hb 3 1 2 2
_3772h AL +fo er d XE(E +B%)+eAyny (92
[ ”eE—F-
with
This result is similar to what is obtained in Ref. 1. Hence its
microscopic base has been provided. In the low-temperature (ho, +H)G(X,7;x",7")=68(7—7")83(x—x") (93
limit, the magnitude of the vortex friction is smaller than the
total transverse force by a factor Af, /Eg . and

In the above derivation, we have ignored the localization
effect which suppresses the density of state, or the superfluid
number density. We justify our assumption here. There are B H A
three energy scales involved in the derivation of vortex dy- H= A* —H*)® (94)
namics, the Fermi energlr, the energy gap@.., and the
core-level spacing\2/Eg. The effect of impurities on vor-
tex dynamics is believed appreciable@ﬁi/ﬁ Er<1? and
the equality of Eqs(90) and(87) suggezsts that the impurity 1 1% 5
starts to be effective at,A.. /A (A /Eg)~1. They indicate _ €
that the impurity effect on vortex friction occurs at a rather H=—eAt ﬁ(i_v_ EA) ~He TV,
weak level, determined by the smallest energy scale in the
problem. The dirty limit is given byA /Ep<7,A. [A<1.

The localization effect is only pronounced in the extremely
dirty limit, the localization regime, whem,Er /A <1 38 Be-
causel ., /Eg<1, away from the localization regime the sup-
pression of density is indeed negligible. The unsuppresseghqc is the speed of light in a vacuum. Variation with re-
electronic density applies, and the present results are valighect toA, andA gives

well into the dirty limit of the superconductors.

To summarize this section, we have shown that the total
transverse force is insensitive to impurities by two different V-E=4me(n—no)
methods, but the additional core contribution to the vortex
friction arises. For a weak enough impurity potential, a per-and
turbative calculation leads to the core friction proportional to
the normal-state resistivity. In the dirty limit the core friction
contribution saturates to a value determined only by the en- _ E _Aie-

; VXB——=d,E= j
ergy gap and the Fermi energy. c c

Here

2

c —pETV(X),

H*= + ! ﬁV+eA
~ At oml

with E=—VAy+(1/c)dAl/dr and B=V XA. Hereen and

ej are the electric charge and current densities. They should
Now let us discuss a superconductor when the penetratiobpe obtained through the electronic Green’s function. In

depth is finite but still much larger than the coherence lengththe Lorentz gauge, the equations f8g and A from the

The Lagrangian is given by above equations afeadapted to the imaginary time here,

VI. COUPLING TO ELECTROMAGNETIC FIELD
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\Y +?af Ao=—4me(n—ng) (95
and
5 1 5 4
Vit S| A=——gj. (96)
c C

Assuming that for a static vortex &}, the vector potential is
A(x—x,), then for a slow moving vortex, the correctieow
to the vector potential from A=A[x—x,(7)] starts from

second order irx,(7) and can be ignored. This can be di-

rectly demonstrated from E6) to the leading order idA:
2 1 2.
VEoA+ —d7A=0.
c

The same is true for the scalar potenfigl For our purpose
of keeping to linear order ix,, we may useA=A[X

—xy(7)].

Now we expand
ALX=X,(1)]= (14 8%,(7) - Vi JALX—X,(7)],

with | =(0X,y,z). The effective action for the vortex is

Seff 1 "2 1 hp 3 *

? = ETr(GoE ) + %J;) f d X(SXV' VXOAO &(v' VXOAO
hp 3 1 2. Rp2
+f0 de dxg—(E*+B?)+eAng ©7)
with
e h —
—_—  (A. A
, 2mce i (A-V) °
3 :&(V.on e h —
Ao “ameT AV

= 8%, Vy 1, (98
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potentials, or equivalently, the four vector by the charge den-
sity and current. Those relativistic corrections give rise to
additional terms in the action and can, in principle, contrib-
ute to the total transverse force in vortex dynamics. The rel-
evant term in the effective action takes the form

hp e . _—
f drf d3x=6x, - A(X— X, )[N(X—X,) —No],
0 C

arising from the relativistic correction to the scalar potential,
the Aharonov-Casher pha&eThis contribution is due to the
interaction between the moving magnetic flux carried by a
vortex to the electric charges of both conducting electrons
and the background charges. Since the charge neutrality con-
dition is maintained in a superconductor, this contribution is
zero, as also been noticed in Ref. 42. Hence, we do not need
to consider it here. Other relativistic corrections do not affect
the total transverse force, and the rest of the terms have the
same structure as the uncharged superconductor with the re-
placement of Eq(98) by Eg. (29). Therefore, all the steps
from Egs. (24)—(36) remain unchanged. We arrive at the
same expressiof&qgs.(35) and(36)]. There are two differ-
ences, however. First, the Bogoliubov—de Gennes equation
includes a vector potential, which can be served to generate a
vortex, not by a rotation of superfluid. Second, we have now
a compelling physical reason to neglect the phofaensity
fluctuation) mode compared to the neutral case, because it is
the plasma mode with a big energy gap.

Let us discuss the effect of including the vector potential
in the Bogoliubov—de Gennes equation to the final results.
For the extreme type-Il superconductor the vector potential
near the core isA,=3rh,, hereh, is the magnetic field
along the vortex line. When the penetration depth is lange,
is small. For small, when solving the vortex core structure,
hcl2er>A, and we can safely ignor@,=3rh. The core
structure is insensitive to the vector potential in the extreme
type-Il case. Because the total transverse force can be ex-
pressed in core state transitions, it is insensitive to coupling
to the electromagnetic field. Equivalently, when expressing
the transverse response in terms of the summation over ex-
tended states, E@55), we need the large-behavior of the
Bogoliubov—de Gennes equation. Whem\, A;,—0, so
that the the coupling to the electromagnetic field will not
influence the results in E@55). In the presence of impuri-
ties, the vortex friction is also insensitive to the coupling to
the electromagnetic field, as noticed long ago.

To summarize this section, in a charge neutral extreme

where bothE andB are substituted by the stationary valuestype-Il superconductor, the vortex dynamics is the same as

calculated fromAy=0 andA=K[x—x\,(r)]. Equation(97)

that in an uncharged BCS superfluid. This is a known result,

the transverse response from the superfluid, reflecting thormulation.

fact that the canonical momentum of the superfluid is not
changed by the coupling to the electromagnetic field. A simi-
lar conclusion has also been reached by others
phenomenologicall§°

However, there are relativistic corrections to the solutions It had been assumed that the forces on a vortex could be
[Egs. (95) and (96)] of the Maxwell equations due to the extracted from transport measurements. Let us first review
motion of the current and charge sources associated with this apparently plausible proposal and discuss ideas which
vortex. They are determined according to the Lorentz transare crucial to the understanding of transport measurements.
formation of the four vector formed by the scalar and vectorConsidering our previous derivations, the equation of motion

VII. EXPERIMENTS

A. Transport measurement
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of the ith vortex takes the form of the Langevin equation The experiments were performed on those samples. The

similar to that of a charged particle in the presence of dorce was measured by measuring the motion of the super-

magnetic field: conducting film in response to the vibration of the magnet.
The experimental results have provided a qualitative confir-
mation of the insensitivity of the total transverse force to

0=quph(Ve— 1)) X2 i+ Font 4+, Fyj. (99  Impurities.
J

C. Measurement of friction

Hereq,==1 represent different vorticity. The total rans- |5 3 (f resistance measurement, the vortices are mov-
verse force—q,pshr and viscosityz are the ones we have ing around their local minima, rather than over potential bar-
calculated in the previous sections. In addition, there are @ers in a dc measurement. In such a case, it is possible to
fluctuating forcef related to the viscosity by the fluctuation- observe intrinsic friction after using a potential to describe
dissipation theorem, a pinning forég;,, and we should also the periodic vortex interaction and making some assumptions
include the forces due to other vortices because of vortex about the pinning. The rf resistance was analyzed early with
interaction. Here we have explicitly written out the externala vortex dynamics model without transverse fotti order
current term in Eq(99), though in a real situation its effectis to compare with our theory, the total transverse force needs
always through the rearrangement of vortices in the supetto be included. We will not go into any detail other than to
conductor. The motion of vortices is a genuine many-bodysuggest this possibility.
problem. A general exact solution does not exist.

Equation(99) may be solved after a drastic simplification VIIl. CONCLUSIONS
by ignoring the pinnings. This is equivalent to the situation
that a perfect vortex lattice is sliding through the sample. We summarize here what we have achieved in the present
Together with with the Josephson relation, we can determingaper. With respect to the microscopic derivation, we have
longitudinal and transverse resistivity for superconductorsdeveloped an influence functional formulation started from
The Hall angle, defined aBHaII:tanil(pxy/pxx)v is nearly the BCS theory. This formulation has allowed us to discuss
90° for almost all situations. However, in transport measureseveral difficult questions regarding vortex dynamics. One
ment, most of the samples show a small Hall angle and som@uestion has been whether the total transverse force origi-
show a sign change in the Hall angle upon entering the sulates from core states, extended states, or from both. This
perconducting state. This simplified model certainly dis-question is unique to a fermionic superfluid because of the
agrees with experiments. vortex core structure. We have shown that the total trans-

Now let us consider whether or not this simplification canverse force can be calculated equivalently by considering
be made by considering the magnitude of pinning. The equaeXclusively transitions between core states, by transitions be-

tion of motion of a vortex in a superconductor, Eg9), has  tween core and extended states, or by counting contributions
the form of a particle with zero mass in a strong magnetidrom extended states. The total core-state transition contribu-

field. Because the kinetic energy is zero, it is always contion to the total transverse force is shown not to be affected

fined to a local energy minimum in space, formed by vortexPy impurities when calculated by using random matrices in-
interactions and pinning potentials. An applied current tiltsstead of the relaxation time approximation.

the potential and the vortex moves by thermal activation. If On the thermodynamics and statistical mechanics level,
the applied current is so large that no minima due to pinningve need to consider the increase of the superfluid kinetic
and vortex interaction exist, then indeed we expect a largé€nergy associated with the increase of superfluid momentum
Hall angle. However, in order to have a truly free vortexdue to the vortex motion. This kinetic energy needs to be
flow, the current should be large enough to overcome th@rovided from somewnhere. If there are no normal fluid and
largest pinning potential, the edge pinning. The currenino impurities, this kinetic energy is provided from the work
needed is on the order of 40A/cm?, which is too large to  done by the external trapping potential on the vortex. When
be relevant to experiments. Therefore, in the real experi€ither the normal fluid or impurities, or both, are present,
ments, the vortices must be helped by their many-body inthere is a question whether or not a vortex can extract the
teractions to overcome this energy barrier. We need to corinternal energy from the normal fluid or substrate, which
sider transport measurement by solving the lattice structuréarries entropy, and can transfer it into kinetic energy of the
formed by vortices and by what mechanism their transport iguperfluid, which carries no entropy. If not allowed, the in-
made possible. It has been quantitatively suggested that vogrease of superfluid kinetic energy due to vortex motion can

tex many-body effects can be responsible for the Hall effectonly be provided by an external force and the transverse
in agreement with recent experimental indicatiéhs. force on a vortex cannot be reduced by the normal fluid or

random impurities. We have discussed this question and

demonstrated that thermodynamics gives a powerful con-

straint on phenomenological models of vortex dynamics: The
The total transverse force on a moving vortex in thintotal transverse force cannot be reduced.

Y-Ba-Cu-O films has been directly measured via a mechani- We have located the source for contradicting theoretical

4 This experiment used a small vibrating magnetresults in the two pictures: the use of the relaxation time

B. Direct measurement of total transverse force

cal device:
mounted above the center of a superconducting film to germapproximation in the force calculation. This problem is
erate moving vortices in the film. The vortices follow the rather subtle. It is well known that the relaxation time ap-
motion of the magnet for samples with less twin boundariesproximation has been used successfully in some applications,
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particularly in calculations of conductivity or mobility, perconductor is charge neutral, consistent with earlier phe-
where the average velocity is computed under a given drivhomenological treatments.

ing force, through velocity-velocity correlations. However, Finally, we expect that the method developed here to for-
the special feature of vortex dynamics is that it belongs to thénulate the vortex dynamics in aswave superconductor
same category as resistivity or friction formulas in transportwill find applications in other systems represented by dy-
theory, where the average force is computed with a give,ﬁ]amics of collective variables, such as vortex dynamics in
velocity. The direct calculation of resistivity is known to be d-wave superconductors, fission and fusion in atomic nuclei,
difficult. To derive vortex dynamics microscopically, the @nd even the quasiparticle dynamics in quantum Hall sys-

vortex velocity-velocity correlation is not calculable directly, €MS:
because the effective vortex Hamiltonian is unknown and is
precisely what we are looking for. We are forced to abandon ACKNOWLEDGMENTS

the usual approaches of the Nakano-Kubo type, and to tackle We are very grateful to David Thouless for many valuable

the problem from the difficult side. Nevertheless, in the dc . . . .

limit, the transverse force on a moving vortex can be calcu-dlscusSIOnS at various stages O.f the work, which have deep-
' ) o ened our understanding of physics, sharpened our arguments,

lated from the force-force correlation function, in analogy to

d istivity f la. This limi kes the rel .27 "“and lead to a better presentation of our results. Discussions
a dc resistivity formula. This limit makes the relaxation time ;;, Tony Leggett on several issues of dissipation greatly

approximation invalid, because a significant part of the fre-|arified our thoughts. We appreciate the communications
quency dependence is lost, and the common way of introdugom Mike Stone informing us of his work and helping us to
ing the relaxation time approximation by substituting  ynderstand the relevant work better. We thank Rmiel
—iw+1/7 requires the correct frequency dependence. Fofor the detailed discussion of Eq&8) and(49). Discussions
example, in transport theory, the relaxation time approximawith Jung Hoon Han and Qian Niu are also acknowledged.
tion is used in an ac conductivity formula, then taking the dewe also acknowledge the hospitality of the Department of
limit subsequently. In addition, the relaxation time approxi-Physics and the Institute for Nuclear Thedqi.A) at the
mation in a force-force correlation function is always erro-University of Washington, where a part of the work was
neous. With an exactly solvable model, we have shown thaflone. This work was financially supported by the Swedish
when the relaxation time approximation is used in a dc reNatural Science Research Coun®FR).
sistivity formula, it leads to results violating fluctuation-
dissipation theorems. APPENDIX: DIVERGENT OVERLAP INTEGRALS
Introducing the relaxation time approximation, even done AND VORTEX FRICTION
correctly, is not a necessary step in obtaining dissipation.
One of the goals of nonequilibrium statistical mechanics is to_ There have been some questions above the implications of
compute various transport coefficients, including the relaxEas- (38) and (39), repeatedly raised by referees as well as
ation time, for a given Hamiltonian system. In a Hamiltonian PY others during private discussions, in particular on the di-
system, dissipation appears after irrelevant degrees of fred€rging nature of the overlap integrals on the right-hand side

dom are integrated out. What determines dissipation ar8f EdS-(38) and(39), when the energy difference between

quantities like temperature and strength of impurity poten_two eigenfunctions vanishes. This question may have already

tials, as well as the density of state of low-frequency mode?ee” address_ed _in the Iite_rgtur_e. Ne\_/ertheless, we believe it
of irrelevant degrees of freedom. In the present paper, irrel'S helpful to give it an explicit discussion in the present con-
evant degrees of freedom are the fermionic quasiparticleé?Xt'

When those quasiparticle degrees of freedom are eliminated, /& note that Eq438) and(39) are exact consequences of
one obtains the vortex friction. The friction formula obtained the fact that the Hamiltoniafit, is the function of the pa-
here follows the one used in dissipative quantum dynafdics, "ametex,. To make the connection to the scattering problem
where it has been explicitly shown that the friction obtained®f quasiparticles scattered off a vortex, the thermodynamic
by eliminating irrelevant degrees of freedom is equivalent tdiMit must be taken first to allow the existence of the con-
an evaluation of the random force-force correlation function finuous spectrum. This implies that it is appropriate to use
It also corresponds to the familiar Fermi Golden rule forthe Dirac delta function normalization for extended states,
dissipation. We believe that a rather detailed study of vortex

dynamics based on the BCS theory have been presented Kz oind | @i(02)F

here, with the key issue of the sources for the vortex friction. _ ( ua(x)) _ e e e +.mEX)
We have shown that the vortex friction can come from two “ Al v(x) JL 27\ e-ito2F Le(X)
contributions: At finite temperatures, the finite population of ”
guasiparticles above and quasiholes below the energy gaﬁ L . i i
give rise to a friction which diverges logarithmically at low t e same normallzgtlon condition as in Ref.. 30. The function
frequency; The nonmagnetic impurities give rise to an extraatisfies the Bogoliubov—de Gennes equation, (B0,

friction which saturates to a value independent of the
normal-state resistivity in the dirty limit. This core state con-
tribution corresponds to the phenomenological value ob-
tained in Ref. 1. We have also considered the effect of cou- 2m
pling to the electromagnetic field and have found that it does R R
not change the neutral superfluid conclusions when the su- +|A(r)|f,,MYE(x)=Ef+YM’E(x) (A2)

. (A1)

@2 1d  (ptp)? |,
drz rdr+r—2_kp f+yM,E(X)
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The immediate conclusion of the thermodynamic limit is that
there is an infinite degeneracy for a given energy character-

h? 2 1d (u—3)? ol ized by u, corresponding to the angular momenta of quasi-

T oml ﬁ T rdr + r2 Ko | e particles. Those states form the base functions for the partial
wave analysis of the quasiparticle scattering, and make the
+ |A(r)|f+ L= E} LX) (A3) transitions between states with the same energy meaningful.

We now consider the left-hand side of E88) with an

Herer =|x—xo| andk+k2=KkZ . Inside the vortex core, we arbitrary small energy difference,

may set the energy gap to zeld(r)|=0. There are two
independent solutions in this region, which we may choose _ 3ot
to be the following forms: I_f d*XW o (X) (Vi Ho) W o (X). (A10)

A 1 /1 We will show that it can be a finite valu@onzerg. For the
1 e(X)= ﬁ(o)J“”z( \/k§+ 2m|E|/h%r) (A4)  vanishing small trapping potential,,

0 Vi A
and Xo
\Y = All
( XOHO) VXOA* 0 ( )
z 1 0 N2 2
quU«aE(X):E 1 ‘],u,*l/Z( kp_2m|E|/ﬁ r). (AS) Since
Here J,.q, are Bessel functions. Away from the zero- VXOA(X):—e“’|A(r)|r’(§<cos¢9+§/sin0)
energy gap region, the corresponding solutions may take the
forms o —Xsin#+y cosé
—ie'A(r)] : . (A12)
P o L (\/1+\/E2—|A|2/E ke
1u,E(X)= T w+ 120K (E)T the integrall may be expressed as
2\ V1—-VE2—|A|YE
(A6) s J‘w q J‘Z'ﬂ'de Ci(u—p")6
and — ek 0r ' 0 Ee

1 [ V1-E2-|AJ%E XIFL L eV AT e
fZ,M,E(X)z_( )‘]M—llz(k—(E)r), 1 (), A*E (0]
V2 \ 1+ VEZ—[AJ%E (VAT e

2

(AT)
== 10, .+ X(Aa ’ E,E, *b ’ E,E,
wherek.. (E) = Vk3+ 2m{E*~[A[*/4°. One may check that 2 %% 2 et DX =B )
Egs. (A6) and (A7) give the asymptotically exact solutions N , ,
whenr=c. They are WKB-type solutions connected to the Hiy(ra,  (BE)+b, . (BED)] (A13)
solutions atr=0 andr =, valid under the condition that R
the energy gapA| is smooth on the scale of K/. Exact Wherex(y) is the unit vector in thex(y) direction,
solutions may be difficult to find. However, for the present
purpose of demonstration of the diverging overlap integrals o R R
they are good enough. The solutions for a negative energy  a, ,/(E,E")= —f rdr|A[[[F% , e(Df - L e(r)
—E can be constructed by using E&7): 0

. 1 Vi-VE2—|A|YE
fl,—M,—E(X):ﬁ _m JM+1/2(k+(E)r) and

(A8)

+f’i’MYE(r)f+‘M,’E,(r)] (A14)

and b (EE)=— fo dr|A|[F% e L e(r)

-t e e (D], (A15)

: 1 V1+VE?—|A]?E y
—p—e(X)=—= N —(B)r).
2= w(X) V21— VEZ—|A|YE w-vk-(E)T) The cosd and sing inside the integral give rise to the selec-

(A9) tion rule for the transition element§2”dge'(*~#)? cosp
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=m0, 41 and f%”dee‘i(_’““')"_sin O==im6, =1 ONly
the transition between neighboring's, that is,u'=u*+1,
can be nonzero.

For those nonzera,, ,.1(E,E"), the only possible place
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tion (18) gives|a
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+k, (E"))r—(2u+3)m/2], becausek, (E)ri=u>1, and
have also used the fact thix, (E)—k, (E')|&<1. Equa-
wn+1(ESEN[<ALTKe.

Fork.(E),k_(E"), following Egs.(A16), (A6), and(A7)

which may give rise to an infinite value for the integral is the We have

region far away from the vortex core. In this region, the

eigenfunctions are given in the form of Bessel functions,

Egs. (A6)—(A9) [cf. Eq. (4.10 of Ref. 30, which are well
behaved. Away from the corle\(r)|; goes to zero rapidly,
we conclude that the integrad, ,(E,E’) containing
|[A(r)|; is finite. It may be instructive to give an estimation
of a, ,~1(E,E"). For this purpose we consider>0 and
un'=pu+1 for positive energy states. The negatixeand

negative energy cases give similar results. We will also re-

strict to the case thd andE’ are close to each other, i.e.,
|[E-E’|<A., and that both are sufficiently close to the en-
ergy gap, i.e.E~A., . In this case the integral has the largest
value, and it incorporates the equal energy limit implied in
Egs.(47) and(49). First, we note that sinck..(E)~kg and

J, (k=(E)r)=(k-(E)r)*/u! for small k(E)r, the Bessel
function is negligible small ifr <r,=u/kg and u is large.
The integral for regiorr <r, is negligible. Second, we also
neglect the integral in the regian>§&,, becausdA(r)|, is
small. The integral now becomes

% ITEx z
- r.dr|A|r[ +,,u,E(r)f—,;L+l,E’(r)
Mt

T

a (Al 6)

+f’j’M'E(r)f+'#+1,Er(l’)], r’[<§0

0, r>é.

Here we have usddo denote the various combinations from
the solutions, EqgA6)—(A9), specified below. In the region

r<é&, |Al;~A.l& in the above integral. For

k. (E),k,(E") [k_(E),k_(E’') can be considered in the
same mannéy following Egs.(A16) and (A6) we have

f§od Al
a,,=—| rdr—=:
Lu re o 2

(N
- EE T

X 412K (B)N)J 1 zia(k i (ET)T). (A17)
Using the asymptotic form of Bessel functiord,(z)

= \/2/7z cosg—vm/2— w/4), and approximating the factor in
the square bracket by 2, we find

©

A, 1 éo
al 2 ’7Tkp

~——_——| drsifAkr]=—
* §o 2mke )y, "t ]

AKE2.
(A18)

Here Ak=k,(E)—k,(E’). In reaching Eq(A18) we have
dropped a smaller contribution fron]’ftodr cog (k, (E)

J‘fo q A, 1
2 re o 2
X 14— 1+ —
E E’
JEAR\ [ JEZ AP
+ 1——E 1_—E’

X J 412Ky (E)N)J 112K (E")r). (A19)

Please note the difference between E@d.7) and (A19) in

the indices of the Bessel functions. Sinke(E)—k_(E’)
~1/¢y,, and again approximating the factor in the square
bracket by 2, we find that

_Aoc
,,u_g_o 27TkF r

o)

27Tk|: '
(A20)

§°drco§t(k+(E)—k_(E’))r]~

t

a,

Now we consider the phase integral part pthe integral
b, . (E,E"). For r=|x—Xo| -, |[A|=A.. We may ig-
nore the integral in the region<r,, but not whenr,>§&,.
Keeping the leading contributiom,, ,-(E,E") may be ex-
pressed as

b"lﬁ_A“’fr dr[f% , e(Df_ L e(n)
t

= et e (D] (A21)
The Bessel functions will be replaced by their asymptotic
forms inside Eq.(A21). In the following we consider four
cases as done fa, , (E,E"). Fork,(E),k.(E"), follow-

ing Egs.(A21) and (A6) we have

A de !
3 r
e 2

lu™

b

o BT, T

/E2_|A|2

E

E/

A

X34 12Ky (E)N)J 132K (ET)r).

|

SinceE’ —E and both are close to the energy gap, the factor
inside the square bracket is always an order of unity, and we
approximate by 2. However, we note that wHes E’, the
term in the square bracket approaches to zero wixet.
Using the asymptotic form of the Bessel functions,

(A22)
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o 1 simAk,,r]
bly#N_Aoofrtdrzﬂ_kF r =

A, [sgriAk)w/2, |AK|r<1
_2’7Tk|:

1/AKry, |AK|r>1.

Here Ak=k,(E)—k, (E"). Again, the contribution from
Jydrcog(k. (E)+k(E")r—(2u+3)m/2]/r has been ig-
nored, becausg, (E)r,.>1. Sincelk, (E)—k, (E")|&<1,
the condition|k, (E)—k.,(E")|r,<1 will be satisfied ifr,
<&p.

Fork,(E),k_(E"), following Egs.(A21), (A6), and(A7)
we have

(A23)

b, ,=—A fwd !
2u— T R 5 rz

A/ 1+@)(1+_¢E' II)
T

X+ 12K (E)r)d g 12K (E")r). (A24)

Using a similar procedure fds, , we find

= 1 cog(ki(E)—k_(E")r]
bz'“N_A”’frterWKF ;
A, [O(1), ré<1
—— (A25)
27Tk|: §0/rt, rt/§0>1

We have usedt, (E) —k_(E")=1/&, in Eq. (A29). If one is

P. AO AND X.-M. ZHU

PRB 60

integral wherk  (E) —k_(E’)—0, we point out that it only
occurs when bothE| and |E’| are approaching the energy
gap A... In this limit the factor inside the square bracket
goes to zero linearly, and completely removes the logarith-
mic factor from the cosine integral.

The conclusion which one may draw from E¢423) and
(A25) is that the integrab,, ,...(E,E") is finite. Together
with what we have obtained fa&, , -1(E,E’), the integral
I, therefore, the left side of E@38), is finite.

Using EQq.(38), we have the overlap integral,

|
Il EJ d3x\IfLVXD\Ifa,(x)=E— (A26)

!

a a

Sincel is finite for the case ofu'=u*1 whenE, —E,
—0, Il diverges as 1K, —E,). Because asymptotically
from the vortex core the wave function®, always ap-
proaches a Bessel function, this diverging behavior may be
directly deduced from the right-hand side of E§8) with

the aid of the recurrence relations of the Bessel functions.
The advantage of the demonstration here is that the right-
hand side of Eq(49) is finite when two energies are exactly
equal, without the explicit consideration of the diverging be-
havior of the overlap integral.

There are two comments worthwhile to make.

(1) The existence of the limit at the left-hand side of Eq.
(38) in the zero-energy difference indicates that the spectral
function of Eqg.(49) is a smooth function for small frequen-
cies, and it may be characterized by a power of the fre-
guency.

(2) This limiting behavior also removes the paradox that
the frictional coefficient involves inelastic processes, but it
may be obtained by calculating the elastic-scattering crossec-
tion of quasiparticles implied in the thermodynamic limiting

concerned about the logarithmic divergence of the cosin@rocedure.
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