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Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors

Beom Jun Kim and Petter Minnhagen
Department of Theoretical Physics, Umea˚ University, 901 87 Umea˚, Sweden

~Received 9 February 1999!

The flux-noise spectra around the Kosterlitz-Thouless transition are obtained from simulations of the two-
dimensional resistively shunted junction model. In particular the dependence on the distanced between the
pickup coil and the sample is investigated. The typical experimental situation corresponds to the large-d limit
and a simple relation valid in this limit between the complex impedance and the noise spectra is clarified.
Features, which distinguish between the large- and small-d limit, are identified and the possibility of observing
these features in experiments is discussed.@S0163-1829~99!04130-2#
be
su

is
un
a
tz
i-
t
p

m

he
im

tu
t a

ss

e
in
e
o
th

w
gh

i
II
th
a
n

o
on

a
s

rray
-
me
A.
of

cal
be

ed
e

re

dis-
n

o
he
ut

ic
I. INTRODUCTION

Spontaneously created vortices drive the transition
tween the superconducting and normal state for thin-film
perconductors and two-dimensional~2D! Josephson-junction
arrays~JJA’s!.1 This means that the physics of the vortices
responsible for the characteristic features in a region aro
the transition. One manifestation of this is the static char
teristics of the phase transition which is of the Kosterli
Thouless~KT! type.1,2 Another manifestation is the dynam
cal features around the transition. These are reflected in
flux-noise spectra and the complex impedance. In this pa
we investigate the flux-noise spectra through computer si
lations of the resistively-shunted Josephson-junction~RSJ!
model on a 2D square lattice. In particular we clarify t
relation between the flux-noise spectra and the complex
pedance.

There have been a number of recent experimental3–6 as
well as theoretical studies7–12 dealing with the flux-noise
spectra. The typical experimental setup measures the fluc
tion of the magnetic flux through a pickup coil situated a
distance above the sample.3–6 Many simulation studies, on
the other hand, have measured the vorticity fluctuation a
ciated with a fixed area of the sample itself.8–10 It has been
assumed that this would roughly correspond to the magn
flux spectra of the experiments. However, in the present
vestigation we show that there are significant differenc
The typical experimental situation corresponds to the limit
large distance between the pickup coil and the sample. In
limit there exists a simple relation7 between the flux-noise
spectra and the complex impedance of the sample, which
here verify both directly from the simulations and throu
analytic calculations.

In Sec. II we describe how the flux-noise spectrum
obtained from simulations of the RSJ model. Section
clarifies the relation between the flux-noise spectrum and
complex impedance. The results from the simulations
described and discussed in Sec. IV. Particular attentio
given to the implication for experimental measurements
flux noise and the complex impedance. Finally Sec. V c
tains some concluding remarks.

II. RSJ MODEL AND FLUX NOISE

A. RSJ model and numerical method

In our simulations we use the 2D RSJ model on a squ
lattice with periodic boundary conditions. This is usually a
PRB 600163-1829/99/60~9!/6834~10!/$15.00
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sumed to be a good model of a Josephson-junction a
~JJA!. In particular, from the point of view of vortex fluctua
tions and vortex dynamics, it is expected to have the sa
physics as a thin superconducting film, as well as a JJ1

There might, however, be some differences in the level
vortex fluctuations around the transition.13

The RSJ model incorporates the condition of the lo
current conservation and the equations of motion can
written as1

u̇ i52(
j

Gi j (
k

8 ~sinf jk1h jk!, ~1!

where Gi j is the square lattice Green function, the prim
summation is over the four nearest neighbors of the sitj,
and f jk[u j2uk with the phaseu j of the complex order
parameter at sitej. Here we measure timet in units of
\/2eRIc , whereR is the shunt resistance andI c is the critical
current of a single junction. The thermal noise currenth jk in
units of I c satisfies the conditionŝh i j (t)&50 and

^h i j ~ t !hkl~0!&52T~d ikd j l 2d i l d jk!d~ t !, ~2!

where^•••& is the ensemble average, and the temperatuT
is in units of the Josephson coupling strengthJ[\I c/2e.

The RSJ model may be used to calculate the current
tribution in the limit of a large perpendicular penetratio
lengthL5F0c/4p2I c , whereF0 is the flux quantum; This
is typically the case for a 2D superconductor.1 In this limit
one may replace the gauge-invariant phase differencef jk

[u j2uk2Ajk , whereAjk[(2p/F0)* j
kA(r )•dl is the line

integral of the vector potential, withf jk[u j2uk because the
coupling to the electromagnetic self-field is in this limit s
weak that it has little influence on the fluctuations of t
supercurrent~we are here considering the situation witho
an external magnetic field!.1

We measure the flux-noise spectrumS(v) defined by the
Fourier transformation:

S~v!5E
2`

`

dt eivtS~ t !, ~3!

whereS(t) is the time-correlation function of the magnet
flux F(t) through a pickup coil:

S~ t !5^F~ t !F~0!& ~4!
6834 ©1999 The American Physical Society
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PRB 60 6835FLUX-NOISE SPECTRA AROUND THE KOSTERLITZ- . . .
~see Sec. II B for the calculation ofF). In addition, we cal-
culate the dynamic dielectric function 1/e(v) of the vortices
in the Coulomb-gas analogy given by14

ReF 1

e~v!G5
1

e~0!
1

2pvTCG

T2 E
0

`

dt sinvtG~ t !, ~5!

ImF 1

e~v!G52
2pvTCG

T2 E
0

`

dt cosvtG~ t !, ~6!

where TCG5T/(2pJ^ cosf)& is the Coulomb-gas tempera
ture, and the time-correlation functionG(t) is defined by

G~ t ![
1

L2
^F~ t !F~0!&, ~7!

F~ t ![ (
^ i j &x

sinf i j , ~8!

and the sum is over all links inx direction.
The dynamic dielectric constant 1/e(v) is related to the

conductivitys(v) and the complex impedanceZ(v) by15

s~v!5Z21~v!512
T

i2pvTCG

1

e~v!
. ~9!

In the numerical simulation of anL3L array ~in most
casesL564 and occasionallyL5128 are used in the prese
paper!, we use the periodic boundary condition for the pha
variables, i.e.,u i 1L x̂5u i 1L ŷ5u i , and the thermal noise cur
rents are generated from the uniform probability distributio
For the time integration of equations of motion in Eq.~1!, we
use the Euler method with the discrete time stepDt50.05. In
practice we have calculatedS(t) up to atmax beyond which
S(t) became so small that the simulations could not be c
verged well enough to obtain further information. In o
simulations this turned out to betmax'100 for T.1.10 and
tmax'400 for lower temperatures. This means that we co
not reach frequencies belowv&0.016 directly from the
simulation data. However, when presenting the data we h
for convenience used an extrapolation to larget based on an
expected large-t behavior~this extrapolation does not chang
the behavior in frequency rangev*0.016). From the ergod
icity of the system, we can change the ensemble average
the form ^O(t)O(0)& in Eqs. ~4! and ~7! to the average
^O(t1t8)O(t8)& t8 over timet8, and averages over more tha
107 time steps were typically performed.

B. Flux noise and the dipole approximation

As mentioned above, previous numerical simulation8,9

usually calculate the noise spectra from the fluctuation of
vorticity defined by the directional sum of the gaug
invariant phase difference around each plaquette. The fl
tuations of the total vorticity over an area of the sample
then used to estimate the flux-noise spectrum. On the o
hand, in experiments3–6 the fluctuations of themagnetic flux
penetrating a pickup coil situated at a distance above
sample is measured. The relation between the vorticity n
e
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and the flux noise has so far not been studied in detail an
the subject of the present paper.

We consider three distinct cases: The first one is the fl
tuation of the magnetic flux associated with the vortices o
fixed areaA of the sample. The vortices describe the rotati
of the supercurrent on the sample.1 This means that the mag
netic flux associated with an elementary plaquette is prop
tional to the rotation of the supercurrent around t
plaquette. For the RSJ model the magnetic flux for
plaquette is then given by7,14,16

n~r ![
TCG

T (
p

sinf i j , ~10!

in units of the flux quantumf0.17 Herer is the central posi-
tion of the plaquette and the summation is around
plaquettep. Consequently the total magnetic flux associa
with the rotation of the supercurrent at a given timet is

F~ t !5E
A
d2r n~r ,t !,

where the integral over position denotes the sum over
elementary squares inside the areaA.

The second case is the fluctuation of the vorticity asso
ated with a fixed areaA of the sample. The vorticity of an
elementary plaquette is given by1

v~r ![
1

2p (
p

f i j , ~11!

where the phase differencef i j is restricted to the interval
2p,f i j <p. The total vorticityV(t) associated with the
areaA is consequently

V~ t !5E
A
d2r v~r ,t !.

The third case corresponds to the experimental situa
where one measures the magnetic flux through a pickup
situated a distanced from the sample. Note that the first cas
corresponds to the case whend50. However, in typical ex-
perimentsd is a macroscopic length~typically of the order of
0.1 mm!.4–6

In this section, we focus on the third case and use a dip
approximation to obtain an expression for the magnetic fl
through a pickup coil at a distanced from the sample where
d@L. At this distance the magnetic-field distribution from
vortex is of dipole form. In the continuum limit only the
circulation of the supercurrent around a closed loop wh
encloses a vortex core region gives a finite value. This va
can be positive or negative but has the same magnitude
all closed loops which enclose vortex cores.1 This means that
one can estimate the magnetic field atd@L from the circu-
lation of the supercurrent around small closed loops wh
cover the area of the superconductor by associating eac
these loops with a dipole field where the strength of
dipole moment is proportional to the circulation of the sup
current. This approximation is readily carried over to t
array. The circulation of the supercurrent around a plaqu
in units of I c is given by@see Fig. 1~a!#18
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ŷ
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ŷ
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D G , ~12!

wheref(r 8,r 9)[u r82u r9 and u r8 is the phase of the com
plex order parameter at siter 8. The contribution to the mag
netic field at large distances from this circulation can th
approximately be described in terms of a dipole mom
mr5mr ẑ proportional to the circulation. The magnetic fie
at the observation pointx due to this vortex dipole momen
mr is given by19

B~x!5(
r

3erx~erx•mr !2mr

ux2r u3
, ~13!

whereerx[(x2r )/ux2r u is the unit vector in the direction o
x2r and the summation is over all dual lattice points~central
positions of plaquettes!. The magnetic flux through the

FIG. 1. ~a! The vortex dipole moment associated with the du
lattice point r is estimated by the circulating current around t
plaquette. The magnetic field at the observation pointx is the sum-
mation of the contributions from all such vortex dipole momen
~b! The l 3 l pickup coil is separated by the distanced from the
L3L square array of Josephson junctions.~c! The whole array is
divided into quadratic enclosures. The plaquettes surrounding
an enclosure is denoted bySn ~shaded area!. The magnetic flux due
the plaquettes belonging toSn is calculated.
n
t

pickup coil @the shaded area in Fig. 1~b!# separated by dis-
tanced from the array is given by the surface integral:

F5E
coil

B~x!•ds. ~14!

We consider the cased@a so that the magnetic field insid
the pickup coil does not vary much on a microscopic len
scalea. We may then replace the integral Eq.~14! by the
discrete summation:

F' (
r8P l 3 l

B~r 81dẑ!• ẑ

5 (
r8P l 3 l

(
rPL3L

3nrr 8~nrr 8•mr !2mr

ur 81dẑ2r u3
• ẑ

5 (
r8P l 3 l

(
rPL3L

3d22ur 81dẑ2r u2

ur 81dẑ2r u5
mr , ~15!

wherex is decomposed intox5r 81dẑ, and the two 2D vec-
tors r andr 8 denote positions on the array. The summatio
( r8 and ( r are performed on thel 3 l pickup coil and the
L3L whole array, respectively@see Fig. 1~b!#. Since Eq.
~15! containsO(L4) terms~in this work we choosel 5L/2),
the calculation of the magnetic flux in this way requires m
of the computer time in the numerical simulations. Th
time-consuming part is avoided in the approximate sche
we use in our simulation to obtain the results described
Sec. IV.

We use the following approximate scheme: The wh
array is divided into stripes formed by elementary plaque
which enclose the midpoint of the pickup coil as the sides
a square. This is illustrated in Fig. 1~c!. Each such collection
of elementary plaquettes are denoted bySn where 2n21 is
the number of plaquettes of each of the four stripes form
the sides of the square. The magnetic flux in Eq.~15! is
expressed as the summation of the contributions from e
Sn :

F5(
n

qnMn , ~16!

whereMn is the summation of the vortex dipole moments f
the plaquettes formingSn and qn is the appropriate weigh
factor:

qn[S (
rPSn

mr (
r8P l 3 l

3d22ur 81dẑ2r u2

ur 81dẑ2r u5 D S 1

(
rPSn

mr
D ,

~17!

Mn[ (
rPSn

mr . ~18!

We now assume thatmr in Eq. ~17! can to good approxima
tion be replaced by the average value for eachSn , i.e., m̃r
5(rPSnmr /An whereAn is the number of plaquettes con
tained inSn . This simplifies Eq.~17! to

l

.

ch
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qn5
1

An
(

rPSn
(

r8P l 3 l

3d22ur 81dẑ2r u2

ur 81dẑ2r u5
. ~19!

The magnetic flux in Eq.~16! can by aid of Eqs.~18! and
~19! be computed inO(L2) operations, sinceqn within this
approximation is a purely geometric quantity which is ind
pendent of time. In Fig. 2 we compare the flux noi
S(t,d)[^F(t,d)F(0,d)& from the full calculation in Eq.
~15! and theqn approximation in Eqs.~16! and ~19! for a
32332 array with a 16316 coil size and the distanced55.
It is clearly shown that the approximation made in Eq.~19! is
indeed a very good approximation.

Figure 3 showsqn as a function of the linear size (2n
21) of Sn for d50.1, 10, and 20~a 32332 pickup coil is
used for a 64364 array!. For very small values ofd, qn
becomes a step function where onlySn’s inside the pickup
coil contribute to the magnetic flux. On the other hand, ad
is increased, it is clearly seen that there is a significant c
tribution to the magnetic field caused by theSn’s outside the
pickup coil area. In previous numerical studies of the flu
noise spectra the magnetic flux has usually been appr
mated by the vorticity inside the pickup coil area~the second
case mentioned in the beginning of this subsection!.8,9 This
approximation hence does not take the contributions fr
Sn’s outside the pick-up coil area into account and in t
sense it corresponds tod50. One conclusion from the
present work is that for a more precise comparison with
periments one should instead consider the opposite cas
larged. The results of our simulations are presented in S
IV. In the following section we elucidate the relation b
tween the flux-noise spectrum and the complex impeda
or equivalently the complex conductivity.

III. FLUX NOISE AND CONDUCTIVITY

In this section we consider for simplicity a 2D superco
ductor in the continuum limit so that, compared to the p

FIG. 2. Comparison between the flux noise from the full calc
lation @Eq. ~15!# and from the approximate scheme@Eqs.~16!, ~18!,
and ~19!#. The figure shows the flux noise as a function of timet,
S(t,d)[^F(t,d)F(0,d)& for a 16316 coil with the distanced
55 from a 32332 array at the temperatureT51.10 ~in units of
J/kB). As seen the approximation scheme reproduces the full
culation very accurately.
-
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vious section, the limita˜0 is implied instead ofa51. The
magnetic flux associated with the aread2r aroundr is then
n(r )d2r @see Eq.~10!#. In the Coulomb-gas analogy of vor
tices, n(r ) is the charge-density.1,14,16 The charge-density
correlation function is given byc(r ,t)5^n(r ,t)n(0,0)&. We
will first relatec(r ,t) to the dielectric function 1/ê(k,v) and
the conductivitys(v) of the superconductor: The charg
density correlation functionc(r ,t) is related to the charge
density response functiong(r ,t) by

Im@ ĝ~k,v!#5
v

2TCG
ĉ~k,v!, ~20!

whereĝ and ĉ denote the Fourier transforms. The dielect
function 1/ê(k,v) is given by the usual linear-respons
relation1

1

ê~k,v!
512

2p

k2
ĝ~k,v!. ~21!

We define 1/e(v)[1/ê(k50,v) which means that Eqs
~20! and~21! for k50 corresponds to Eqs.~5! and~6! for the
RSJ model. From Eqs.~9!, ~20!, and ~21! we obtain a rela-
tion between the charge-density correlationsc(r ,t) and the
real part of the conductivitys(v):

Re@s~v!#52
T

2pTCGv
ImF 1

e~v!G , ~22!

and

ImF 1

e~v!G52
pv

TCG
lim
k˜0

ĉ~k,v!

k2
. ~23!

-

l-

FIG. 3. The weight factorqn ~in arbitrary unit! for Sn plotted
against the size 2n21 ~in numbers of plaquettes per side!. The data
are for a 64364 array with the coil size 32332 for different dis-
tancesd. When the distanced between the coil and the array is ver
small, only plaquettes inside of the pickup coil contribute to t
magnetic flux, whereas all plaquettes contribute for largerd.
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Next we relate the charge-density correlation funct
c(r ,t) to the flux-noise spectrum. From Eq.~15! we have
that the magnetic flux measured by the pickup coil is

F5E
coil

Bz~r !d2r ,

where the integral is over the area covered by the coil. T
magnetic fieldBz(r ) can be expressed as

Bz~r !5E f ~ ur 82r u,d!n~r !d2r 8,

the r 8 integration is over the whole 2D plane, and from Eq
~10! and ~15!, we have

f ~r ,d!5
T

TCG

3d22~r 21d2!

~r 21d2!5/2
. ~24!

This means that the flux-noise spectrumS(t)5^F(t)F(0)&
is given by

S~ t !5E
coil

d2r E
coil

d2r 8E d2r 9E d2r- f ~ ur 92r u,d!

3^n~r ,t !n~r 8,0!& f ~ ur 82r-u,d!. ~25!

We can now use the convolution theorem and expressS(t) in
terms of the Fourier transforms off (r ,d) and c(r ,t)
5^n(r ,t)n(0,0)&, i.e.,

S~ t !5E
coil

d2r E
coil

d2r 8E d2k

~2p!2
eik•(r2r8)u f̂ ~k,d!u2ĉ~k,t !.

Taking the Fourier transform ofS(t) and using the connec
tion betweenĉ(k,v) and 1/ê(k,v) given by Eqs.~20! and
~21! yields

S~v!52E
0

`

dk F̂~k,d!ImF 1

ê~k,v!
G , ~26!

where

F̂~k,d!5
2TCG

~2p!2v
E

coil
d2r E

coil
d2r 8eik•(r2r8)k3u f̂ ~k,d!u2,

~27!

and f̂ (k,d) is the Fourier transform off (r ,d) which de-
scribes the spreading of the magnetic field. Within the dip
approximation of Eq.~24! f̂ (k,d) is given by

f̂ ~k,d!5
T

TCG
2pke2kd. ~28!

The extreme cased50 is outside the dipole approximatio
and is given by

f̂ ~k!5
T

TCG
. ~29!

The important point to note is that the flux-noise spectr
S(v) is directly related to the response functio
e

.

e

Im@1/ê(k,v)# through a functionF̂(k,d) which contains all
the information of the spreading of the magnetic field abo
the superconductor as well as the geometry and positio
the pickup coil.

In Ref. 7 it was suggested that the relation between
flux noiseS(v) and Im@1/ê(k,v)# could be further simpli-
fied to

S~v!}
1

v U ImF 1

ê~0,v!
GU ,

or equivalently

S~v!}Re@s~v!#. ~30!

We will here show that for the typically experimental situ
tion this proportionality between the conductivity and t
flux noise is indeed valid.

In order to establish this we assume for simplicity that t
pickup coil is circular with radiusR. In this case it is possible
to obtain an explicit expression forF̂(k,d) in Eq. ~27!, i.e.,

F̂~k,d!5
2TCG

v
R2ku f̂ ~k,d!u2@J1~kR!#2, ~31!

where J1 is the Bessel function of order one. Let us fir
consider the limit in which the dipole approximation Eq.~24!
is valid. This limit implies that the distanced to the pickup
coil is sufficiently large compared to the relevant micr
scopic lengths. For a Josephson-junction array the mic
scopic length is the lattice constanta which is typically of
the order 1–10mm whereas for a continuum superconduc
it is the size of a vortex core typically given by th
Ginzburg-Landau coherence lengthj and is of the order of
100–1000 Å close to the transition. In addition,L has to be
much larger thana for a Josephson-junction array andj for
a superconducting film. The typical size ofd is 100mm.3–6

So in practice the vortex dipole approximation may be e
pected to be valid for superconducting films but the valid
for Josephson-junction arrays may be more questiona
When the vortex dipole approximation is valid the noi
spectrum is given by@compare Eqs.~26!, ~28!, and~31!#

SR~v!52
8p2T2R2

TCGv
E

0

`

dk k3e22kd@J1~kR!#2 ImF 1

ê~k,v!
G .

~32!

One notes thatk values much larger than 1/d will not con-
tribute to the integral in Eq.~32! because of the factore22kd.
This means that ifd is sufficiently large compared to th
relevant microscopic length, then Im@1/ê(k,v)# can be re-
placed by Im@1/ê(0,v)#, demonstrating that under these co
ditionsS(v) is indeed proportional to Im@1/vê(0,v)#. In the
present case of a circular pickup coil we explicitly find

SR~v!52
C

v
ImF 1

ê~0,v!
G ,

where the proportionality constantC is given by ~after
changing the integration variable tox5kd)
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C5
8p2T2

TCG

R2

d4E0

`

dx x3e22x@J1~xR/d!#2.

In the limit R/d!1 this reduces to

C'
T2

TCG

R4

d6

15p2

4
, ~33!

and in the limitR/d@1 to

C'
T2

TCG

2pR

d3
. ~34!

We conclude from Eqs.~33! and~34! that the proportionality
constantC will always contain a temperature-dependent fa
tor T2/TCG and a dependence on the size of the coil. T
coil-size dependence reflects the relative magnitudes
tween the coil size and the distance from the sample: W
R is much larger thand, the noise amplitude is proportiona
to the perimeter of the coil 2pR, and, when it is much
smaller, it is proportional to square of the coil areaR4. In
typical experimentsR is usually much larger thand.3–6

In some previous simulations of the flux-noise spectru
based on theXY models, one has approximated the flu
noise spectrum from the fluctuation of the total vorticity f
a finite area of the model.8,9 This implies two differences in
relation to the above dipole approximation: First of all
corresponds tod50 and consequently to a constantf̂ @see
Eq. ~29!#. Secondly, it corresponds to changing the magn
flux defined by Eq.~10! to vorticity defined by Eq.~11!. Let
us first consider the first change by itself: The case o
circular area with radiusR then corresponds to the flux nois
@compare Eqs.~26!, ~29!, and~31!#

SR~v!52
2T2

vTCG
R2E

0

`

dk k@J1~kR!#2 ImF 1

ê~k,v!
G .

~35!

This means that, in this case, the flux-noise spectrum
pends on all thek values of Im@1/ê(k,v)# and is not propor-
tional to Im@1/ê(0,v)#. For example the leading large-R de-
pendence of Eq.~35! is

SR~v!}2
R

vE0

`

dk ImF 1

ê~k,v!
G .

So in this limit the flux noise is proportional to the perimet
of the pickup area just as for the large-d case, but instead o
singling out thek50 contribution allk values contribute.
The proportionality between the flux noiseS(v) and
Im@1/vê(0,v)#}Re@s(v)# can be tested by experimen
since bothS(v) and the conductivitys(v) can be indepen-
dently measured.6

The change from magnetic flux@defined by Eq.~10!# to
vorticity @defined by Eq.~11!# influences the flux-noise spec
trum in an additional significant way: Now the crossing o
vortex over the perimeter of the pickup area is described
discrete62p change of the total vorticity of the pick-u
area. The corresponding spectrum hence corresponds
random walk of discrete events over a sharp boundary. T
-
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,

ic

a

e-

a
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results in av23/2 tail of the spectrum.20 However, this con-
dition does not correspond to the experimental situat
where the pickup coil does not have a sharp boundary, is
distanced from the sample, and, most importantly, the ma
netic field from a vortex is spread out. In the next section
present numerical results of the flux-noise spectrum and
relation to the conductivity.

IV. SIMULATION RESULTS
AND EXPERIMENTAL IMPLICATIONS

A. Comparison with previous works

We first relate our simulations results to earlier ones
the RSJ model.8,9 These earlier simulations calculated th
noise spectrum of thevorticity @see Eq.~11!# over a fixed
area of the systems~the d50 case!.8,9 As explained in the
previous section, this corresponds to discrete events ov
sharp boundary and implying av23/2-tail.20 Such a tail has
indeed been found in Ref. 8 and is also verified in o
simulations.21 This is apparent from Fig. 4 which display
our data for a 64364 array with a pickup area of siz
32332 at T51.1; the lower data set shows thevorticity-
noise spectrum and the slope is23/2. However, if we in-
stead calculate themagnetic-flux-noise spectrum@see Eq.
~10!#, then the crossing of magnetic flux over the perimete
not a discrete event. This means that there is no obvi
reason for av23/2 tail and nor do we find any such tail in th
simulations, as is also apparent from Fig. 4. The exponen
Fig. 4 for this case is instead close to22 as seen from the
upper data set in Fig. 4.22

B. Flux-noise spectra with a finite distance between pickup
coil and array

As mentioned in Sec. III the typical experimental set
measures themagnetic-flux-noise spectrum with a finite dis
tanced between the array and the pickup coil.3–6 Further-
more, the typical experimental setup corresponds to

FIG. 4. Comparison between the vorticity-noise spectrumS1

and the magnetic-flux-noise spectrumS2 for d50. The data are for
a 64364 array atT51.1 with a 32332 coil size. The vorticity
spectrum has av23/2 tail, whereas the magnetic-flux spectrum
closer tov22 ~Ref. 21!.
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large-d limit where the noise spectrumS(v) is proportional
to the real part of the conductivitys(v) ~see Sec. III!.

In our simulations we investigate the flux-noise spectra
a function of the distanced to the pickup coil. Figure 5~a!
shows the flux-noise spectra calculated from Eqs.~3! and~4!
with the magnetic flux given by Eqs.~16!, ~18!, and~19! ~see
Sec. II B for details!. The data sets are shown asvS(v,d)
againstv in a log-log plot. The vertical scale is adjusted
order to compare the shapes of the curves. One notices
the spectra for the differentd’s all approachv21 for largev
and can be collapsed to a single curve in this large-v region
by a vertical adjustment. For smallv the curves become
linear with v which reflects a constant part~white noise! of
S(v,d).5,6,8,9As d increases the peak of thevS(v,d) curves
moves to the left and the peak height increases. The up
most curve in Fig. 5~a! is uIm@1/e(v)#u ~full curve in the
figure! and, as d is increased, the flux-noise spectru

FIG. 5. ~a! The dependence of the flux-noise spectrumS(v,d)
on the distanced. The full drawn uppermost curve is the imagina
part of the dielectric functionuIm@1/e(v)#u. The rest of the curves
correspond tod50.1, 5, 10, 20, and 40~from bottom to top! plotted
asvS(v,d) and the curves are shifted in the vertical direction
better comparison. The data are for a 64364 array with a 32332
pick-up coil atT51.1, except ford540 where a 1283128 array
was necessary because plaquettes further away from the cente
tribute in this case. Asd is increasedvS(v,d) approaches
uIm@1/e(v)#u. ~b! The frequency at the maxima for the curves in~a!
are plotted versus the distanced. As d is increased, this frequenc
decreases and approaches the value foruIm(1/e(v)u. ~The full line
is a guide to the eye.!
s

hat

er-

vS(v,d) approaches this uppermost curve. This verifies t
for large d one has the simple connectionS(v)
}uIm@1/ve(v)#u as discussed in Sec. III.

Figure 5~b! shows that the characteristic frequency giv
by the peak position in Fig. 5~a! decreases with increasingd.
In the limit of larged the characteristic frequency ofS(v,d)
agrees with the characteristic frequency of 1/e(v). Thus in
this limit both the shape and the characteristic frequency
S(v,d) and Im@1/ve(v)# are the same. This proportionalit
between the flux-noise spectrum and complex conducti
can be tested experimentally and indeed seems to be b
out.6

The fact that the flux-noise spectrum in the large-d limit
is proportional to real part of the conductivity means that
characteristic features of the conductivity are reflected in
flux-noise spectrum. In case of a 2D superconductor the
namical features of the conductivitys(v)}21/ive(v), are
well described by the response form14

ReF 1

e~v!G2
1

e~0!
5

1

ẽ

v

v1v0
, ~36!

and

ImF 1

e~v!G52
1

ẽ

2

p

vv0 ln v/v0

v22v0
2

, ~37!

which catches the dynamics of vortex fluctuations in a reg
around the KT transition. From Eq.~37! one notices that the
peak of uIm@1/e(v)#u occurs at the characteristic frequen
v0 and that the peak height is 1/pẽ. Above the KT transition
1/ẽ increases only weakly with increasing temperature a
approaches unity for somewhat higher temperatures.14 For
the flux-noise spectrum this means thatS(v0)}T2/TCGẽv0.
Now T/TCG}r0(T) wherer0(T) is the bare superfluid den
sity which decreases slightly with temperature1 whereasT
increases so that alsoT2/TCG depends only weakly onT.
This means that to good approximation the flux-noise sp
trum for different temperatures above the KT transiti
should have a common tangent}1/v which goes through all
the pointsS„v0(T),T…. This means that the common tange
in a log-log plot has the slope21. This feature is illustrated
in Fig. 6 which demonstrates the existence of a comm
tangent with the slope close to21 both directly forS(v,d)
and for Re@s(v)#}2Im@1/ve(v)#. The existence of a
common tangent for the flux-noise spectra with the slo
21 can be readily tested in experiments and seems to
well borne out.6,23

One should, however, notice that the argument for a co
mon tangent with slope21 does not single out the respon
form given by Eqs.~36! and ~37!. In fact, the reasoning is
also valid in a region above the KT transition where t
response of the vortex fluctuations is given by the conv
tional Drude response form

ReF 1

e~v!G5
1

ẽ

v2

v21v0
2

, ~38!

and

on-
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ImF 1

e~v!G52
1

ẽ

vv0

v21v0
2

. ~39!

which gives the peak height 1/2ẽ. One expects that the re
sponse form Eqs.~36! and ~37! describes the response fro
the vortex pairs in a region just above the KT transiti
whereas the conventional Drude response is obtained
higher temperatures where the response is dominated by
vortices.14 How wide these regions are depend on the deta
for a real thin superconductor the vortex-pair-response se
to dominate in a wide region.14 However, for the 2D RSJ
model on a square lattice, which we are using here,
vortex-pair-dominated region above the KT transition is n
row and the Drude response dominates in a broader re
above the KT transition. Thus, the data shown in Fig. 6
predominantly Drude-like. A practical way of determinin
which response type is at hand is to measure the com
impedance and determine the peak ratio@i.e., the ratio
Re(s)/Im(s) at the peak positionv0 of Re(s/v)#; for the
vortex-pair-dominated response, Eqs.~36! and~37!, this ratio
is 2/p'0.64 and for free vortex Drude response, Eqs.~38!
and ~39!, it is unity.14

The essential point here is that, because the flux-n
spectrum for a larged is proportional to Re@s(v)#, the noise

FIG. 6. ~a! The real part of the conductivity Re@s(v)# and ~b!
the flux-noise spectrumS(v,d520) at temperatures above the K
transition. The curves for Re@s(v)# and S(v,d520) have the
same shape; for small frequencies they have a very weakv depen-
dence, for somewhat largerv there is an approximate
v23/2-behavior, whereas for even largerv the behavior approache
v22. The curves in the log-log plot have a common tangent w
the slope20.9.
or
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spectra at a sequence of temperatures above the KT tr
tion should in a log-log plot have a common tangent w
slope21. We can substantiate this claim further by simul
ing the noise spectra for a smalld where the flux-noise spec
trum isnot proportional to Re@s(v)#. In this case there is no
particular reason for a common tangent with any slope a
as apparent from the simulation results in Fig. 7, no su
common tangent can be fitted to the data.

One may also notice from Fig. 6 that bothS(v,d) and
Re@s(v)# have intermediate regions withv21.5 followed by
a v22 tail for even largerv. However, such an intermediate
v21.5 region appears to be less discernible for the smad
case whenS(v,d) is not proportional to Re@s(v)#, as is
apparent from Fig. 7.

C. Flux-noise spectrum below KT transition

Next we investigate what happens as the temperatur
decreased towards the KT transition and below. Figure
shows data for Im@1/e(v)# andvS(v,d520) over a wider
range of temperatures~the data forT>1.1 are the same as i
Fig. 6!. Again one observes that both quantities behave
precisely the same way over the whole temperature ran
verifying that they are indeed proportional to very good a
proximation. Next one observes that the characteristic
quencyv0 ~the frequency of the peak position! decreases as
the KT transition is approached from above. This sugges
critical slowing down at the KT transition tov050.8,14 As
the temperature passes through the transition the charac
tic frequency starts to increase again~the full curves in Fig. 8
are below the KT transition!.8,14

The argument for a common 1/v tangent for the flux-
noise spectra above the KT transition is related to the
that the peak height foruIm@1/e(v)# is 1/pẽ (1/2ẽ) for the
vortex pair response, Eqs.~36! and ~37! @free vortex Drude
response, Eqs.~38! and ~39!# together with the fact that 1/ẽ
only increases very weakly withT above the KT transition
and approaches unity for somewhat higherT. Figure 8 shows

FIG. 7. Flux-noise spectrum in the small-d limit at temperatures
above the KT transition@same as Fig. 6~b! but with d50.1 instead
of d520]. In the case of smalld we find neither a common tangen
nor an appreciable range ofv21.5 behavior.
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this weak increase in a region above the KT transition;
Drude value 1/2 is approached roughly likev0.1 which ex-
plains the discrepancy between exponent 1 and the value
found in Fig. 6. Thus the existence of a common tangentv
hinges on the weakness of the temperature-dependent f
T2/TCG(T) ẽ(T) which in turn depends somewhat on the d
tails of the system. However, since the temperature dep
dence ofv0 is dramatic just above the KT transition, th
common tangent should to good approximation exist at le
in a limited region above the KT transition.

Below the KT transition there are no free vortices and
response is given by the vortex pairs Eqs.~36! and ~37!.15

However, in this case the factor 1/ẽ'121/e(v50) de-
creases rapidly towards zero as the temperature is decre
below the KT transition.14 This means that while the chara
teristic frequency rapidly increases, as the temperature is
creased below the KT transition, the amplitude of the fl
noise, which is proportional to 1/ẽ'121/e(v50), rapidly
decreases. The KT transition is atT'0.9 and already atT
50.85 the amplitude ofvS(v,d) has dropped dramaticall

FIG. 8. ~a! The imaginary part of the dielectric function
uIm@1/e(v)#u, and ~b! the flux-noise spectrum multiplied by th
frequency,vS(v,d520), at temperatures above and below the K
transition. This again illustrates that both quantities behave in
same way. As the temperature is increased far above the KT
sition, the maximum ofuIm@1/e(v)#u approaches the limit value 1/

~this corresponds to the Drude limit withẽ51) as denoted by the
horizontal line in~a!. The curves seem to develop a plateau as
KT transition is approached from above, as is suggested by thT
50.95 curves. As the temperature drops below the KT transit
the amplitude of the flux noise rapidly decreases whereas the c
acteristic frequency increases, as is illustrated by the curvesT
50.85.
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compared to the almost constant amplitude above the
transition, as is apparent from Fig. 8~b!.

Finally, there is in Fig. 8~b! an indication that the curve
develop a plateau as the KT transition is approached fr
above ~compare the curve forT50.95). Such a plateau
would suggest thatS(v,d) is proportional to 1/v in an in-
termediate region just above the KT transition. The sa
development of a plateau can be anticipated in Fig. 8~a! for
uIm@1/e(v)#u and has also been found for theXY model with
the time-dependent Ginzburg-Landau dynamics.14,23

V. CONCLUDING REMARKS

In the present paper we have explored the fact that
typical experimental setup for measuring the magnetic-fl
noise for a superconductor, or JJA, corresponds to the
when the distanced to the pickup coil is much larger than th
relevant microscopic lengths. In this limit the flux-nois
spectrum and the real part of the conductivity are prop
tional. This proportionality seems first to have been ant
pated in Ref. 7 and has also been experimentally verified.6 In
this paper we have studied this connection in some m
detail.

We have also demonstrated that both the shape and
characteristic frequency of the spectrum depend on the
tanced to the pickup coil. This means that no detailed co
clusions can be drawn from simulations which presumed
50. Furthermore, there is a qualitative difference betwe
the vorticity-noise spectrum, which corresponds to discr
events over a sharp boundary, and themagnetic-flux-noise
spectrum which corresponds to spread-out objects ove
boundary. The experimental situation corresponds to
spread-out magnetic fluxand a pickup coil at a large distanc
d, which is very different from some earlier simulation
which calculated thevorticity-noise spectrum ford50.8,9

Nevertheless thevorticity-noise spectrum ford50 has a
v23/2 tail for higher frequencies which seems to match t
experimental results,4,6 whereas the magnetic-flux-noise
spectra ford50 does not have such a tail. In accordan
with the present simulations, we suggest that the resolu
of this dichotomy is that in the large-d limit the magnetic-
flux-noise spectrum does have anintermediateregion with a
w23/2 behavior and that it is this intermediate region which
seen in the experiments.

The proportionality between the magnetic-flux-noi
spectrum and the real part of the conductivity implies th
the noise spectra for a sequence of temperatures just a
the KT transition should in a log-log plot have a comm
tangent with the slope21. The existence of such a commo
tangent has also to be verified in experiments,6 as well as in
the present simulations. We also explicitly demonstra
through our simulations that for smalld there is no such
common tangent.

The existence of a common tangent is by itself not n
essarily conclusive. For example, the experimental data
the JJA’s in Ref. 5 correspond to the large-d case and the
data have indeed a common tangent with slope21. How-
ever, the spectra at a fixed temperature seem to have av
behavior over a very large region, which differ marked
from the spectra obtained in our simulations for the R
model.
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The present simulations also suggest that immedia
above the KT transition there should be a very small te
perature region where the noise spectrum has an interme
interval with a 1/v behavior.23 It has been suggested that th
data in Ref. 5 might perhaps be related to this tempera
region closest to the transition.23 However, at the momen
there seems to be no accepted explanation for the 1/v behav-
ior found in Ref. 5.8

Finally, we showed that the amplitude of the flux-noi
spectrum drops dramatically as the temperature is decre
below the KT transition, and that at the same time the ch
ca

y

ys

nd

el

J.
ly
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ate

re

ed
r-

acteristic frequency increases. It should also be possibl
observe this effect in experiments.
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