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Flux-noise spectra around the Kosterlitz-Thouless transition for two-dimensional superconductors
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The flux-noise spectra around the Kosterlitz-Thouless transition are obtained from simulations of the two-
dimensional resistively shunted junction model. In particular the dependence on the dibtastveeen the
pickup coil and the sample is investigated. The typical experimental situation corresponds to thtliarige-
and a simple relation valid in this limit between the complex impedance and the noise spectra is clarified.
Features, which distinguish between the large- and sthiihit, are identified and the possibility of observing
these features in experiments is discus$860163-18299)04130-2

[. INTRODUCTION sumed to be a good model of a Josephson-junction array
(JJA). In particular, from the point of view of vortex fluctua-

Spontaneously created vortices drive the transition betions and vortex dynamics, it is expected to have the same
tween the superconducting and normal state for thin-film suphysics as a thin superconducting film, as well as aJJA.
perconductors and two-dimensioaD) Josephson-junction There might, however, be some differences in the level of
arrays(JJA’9).! This means that the physics of the vortices isyortex fluctuations around the transitigh.
responsible for the characteristic features in a region around The RSJ model incorporates the condition of the local
the transition. One manifestation of this is the static CharaCCurrent Conservation and the equa‘[ions Of motion can be
teristics of the phase transition which is of the Kosterlitz-\yritten ad
Thouless(KT) typel? Another manifestation is the dynami-
cal features around the transition. These are reflected in the
flux-noise spectra and the complex impedance. In this paper 0,=—, GijZ’ (sinj+ 751, (@)
we investigate the flux-noise spectra through computer simu- i k
lations of the resistively-shunted Josephson-junctiasJ where G;; is the square lattice Green function, the primed

model on a 2D square lattice. In particular we clarify the o= he f iahb f the isi
relation between the flux-noise spectra and the complex jmsummation is over the four nearest neighbors of the jsite

pedance. and ¢ = 0,— 6, with the phased; of the complex order

There have been a number of recent experiméritals ~ Parameter at sitg. Here we measure time in units of
well as theoretical studiés'? dealing with the flux-noise 7/26Rlk, whereRis the shunt resistance andis the critical
spectra. The typical experimental setup measures the fluctu§drent of a single junction. The thermal noise currgptin
tion of the magnetic flux through a pickup coil situated at aUnits of I satisfies the conditiong;;(t))=0 and
distance above the sampié. Many simulation studies, on
the other hand, have measured the vorticity fluctuation asso- (715 (1) 71a(0)) = 2T (5w 1 — 8y Sjx) (1), @)
ciated with a fixed area of the sample itself’ It has been where(. - -} is the ensemble average, and the temperdiure
assumed that this would_roughly correspon_d to the magne_ti& in units of the Josephson coupling,strengﬂaﬁIC/Ze.
flux spectra of the experiments. Howe\_/erz n the present - the RSJ model may be used to calculate the current dis-
vestigation we show that there are significant dlfferencestribution in the limit of a large perpendicular penetration

The typical experimental situation corresponds to the limit of| _ 2 ; . Thi
: ; . length A =®yc/4ml ., where® is the flux quantum; This
large distance between the pickup coil and the sample. In this g oV Te 0 g

limit there exists a simple relatidrbetween the flux-noise IS typically the case for a 2D _supe_rcondudtdn th's limit
spectra and the complex impedance of the sample, which wg'¢ MY replace the gauge-invariant phase differafige
P pex imp Pie, O~ Aji, Where Ay =(2m/®) [¥A(r) -dl is the line

here verify both directly from the simulations and through.E N . .
analytic calculations integral of the vector potential, with; = 6, — 6, because the

In Sec. Il we describe how the flux-noise spectrum iscoupling to the electromagnetic self-field is in this limit so
obtained .from simulations of the RSJ model. Section jiweak that it has little influence on the fluctuations of the
clarifies the relation between the flux-noise spectrum and thgupercurrelntwe are hfgredcon&derlng the situation without
complex impedance. The results from the simulations ar@" €Xterna magr;]etlg ield defined by h
described and discussed in Sec. IV. Particular attention is W€ meaSL:cret e flux-noise spectr@fw) defined by the
given to the implication for experimental measurements of OUrer transformation:
flux noise and the complex impedance. Finally Sec. V con- .
tains some concluding remarks. s(w):j dt €ets(t), 3

Il. RSJ MODEL AND FLUX NOISE
where S(t) is the time-correlation function of the magnetic
flux ®(t) through a pickup coil:
In our simulations we use the 2D RSJ model on a square
lattice with periodic boundary conditions. This is usually as- S(t)=(P(t)P(0)) (4)

A. RSJ model and numerical method
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(see Sec. II B for the calculation d#). In addition, we cal-
culate the dynamic dielectric functionelt) of the vortices
in the Coulomb-gas analogy givenly

R 1] 1 2mT°wad otG 5
(@) —€(O)+ 2 . tsinwtG(t), (5
| 1 B 27TwTCGj°°d G 5
m (@) =— T2 . tcoswtG(t), (6)

where T¢®=T/(27J( cos¢)) is the Coulomb-gas tempera-
ture, and the time-correlation functidb(t) is defined by

1
G(t)EFU:(t)F(O)), @)

F()=2, sing;, (8)

(ii)x
and the sum is over all links ir direction.
The dynamic dielectric constanteliw) is related to the
conductivity o(w) and the complex impedan@ w) by
T 1

i27wTCC €(w)

o(w)=Z2"Hw)=1— 9

In the numerical simulation of ah XL array (in most
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and the flux noise has so far not been studied in detail and is
the subject of the present paper.

We consider three distinct cases: The first one is the fluc-
tuation of the magnetic flux associated with the vortices on a
fixed areaA of the sample. The vortices describe the rotation
of the supercurrent on the sampl&his means that the mag-
netic flux associated with an elementary plaquette is propor-
tional to the rotation of the supercurrent around the
plaguette. For the RSJ model the magnetic flux for a
plaquette is then given By*1®

TCG
n(r=-— 2 sing;, (10
P
in units of the flux quantuma,.l’ Herer is the central posi-
tion of the plaquette and the summation is around the
plaquettep. Consequently the total magnetic flux associated
with the rotation of the supercurrent at a given titrie

@(t):fAdzr n(r,t),

where the integral over position denotes the sum over all
elementary squares inside the afea

The second case is the fluctuation of the vorticity associ-
ated with a fixed ared of the sample. The vorticity of an
elementary plaquette is given by

1
=52 . (1

cased =64 and occasionall =128 are used in the present
papei, we use the periodic boundary condition for the phas
variables, i.e.p; ;= 0; ;= 0;, and the thermal noise cur-
rents are generated from the uniform probability distribution
For the time integration of equations of motion in Et), we
use the Euler method with the discrete time ské¢p-0.05. In
practice we have calculateg(t) up to at,,,, beyond which
S(t) became so small that the simulations could not be con-
verged well enough to obtain further information. In our
simulations this turned out to keg,,~100 for T>1.10 and
tmax=400 for lower temperatures. This means that we coul
not reach frequencies below=0.016 directly from the
simulation data. However, when presenting the data we ha
for convenience used an extrapolation to lardpased on an 46
expected largé-behavior(this extrapolation does not change 0.1 m”?- ) ) )

the behavior in frequency range=0.016). From the ergod- In th.|s sgctlon, we fpcus on the th_lrd case and use a_dlpole
icity of the system, we can change the ensemble averages gpproximation to obtain an expression for the magnetic flux

the form (O(t)O(0)) in Egs. (4) and (7) to the average through a pickup coil at a distanckfrom the sample where
(O(t+1)O(t")), over timet’, and averages over more than d>A. At this distance the magnetic-field distribution from a

10’ time steps were typically performed. vprtex ?s of dipole form. In the continuum limit only the
circulation of the supercurrent around a closed loop which
encloses a vortex core region gives a finite value. This value
can be positive or negative but has the same magnitude for

As mentioned above, previous numerical simulatidhs all closed loops which enclose vortex cofeEhis means that
usually calculate the noise spectra from the fluctuation of th@ne can estimate the magnetic fieldda A from the circu-
vorticity defined by the directional sum of the gauge-lation of the supercurrent around small closed loops which
invariant phase difference around each plaquette. The flucover the area of the superconductor by associating each of
tuations of the total vorticity over an area of the sample isthese loops with a dipole field where the strength of the
then used to estimate the flux-noise spectrum. On the otheatipole moment is proportional to the circulation of the super-
hand, in experiments® the fluctuations of thenagnetic flux current. This approximation is readily carried over to the
penetrating a pickup coil situated at a distance above tharray. The circulation of the supercurrent around a plaquette
sample is measured. The relation between the vorticity noisi units of I is given by[see Fig. 1a)]*®

Svhere the phase differenag; is restricted to the interval
—m<d¢;j<m. The total vorticity V(t) associated with the
‘areaA is consequently

V(t)= Ldzr v(r,t).

The third case corresponds to the experimental situation
Cy\/here one measures the magnetic flux through a pickup coil
situated a distancg from the sample. Note that the first case
(éorresponds to the case whér 0. However, in typical ex-
Ve . ; : X
perimentsd is a macroscopic lengtttypically of the order of

B. Flux noise and the dipole approximation
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pickup coil [the shaded area in Fig(H)] separated by dis-
X tanced from the array is given by the surface integral:
el‘- £+£ el'+£ +£
= 2 q>=J B(x)-ds. (14)
coil
.

/ *ﬁ\ We consider the cas#>a so that the magnetic field inside
the pickup coil does not vary much on a microscopic length

scalea. We may then replace the integral Ed4) by the
discrete summation:

D
-
N>
o[>
—_
[
=
D
-
i
B>
o[>

b~ > B(r'+dz)-z

r'elxl
_ 3Ny (Nr-Mp) =My .
5 peixl rebxl |r'+dz—r|®
3d?—|r'+dz—r|?
/ =2 2 5 M. (15
d rlelx] rebxtL |I’ +dz—r|
wherex is decomposed inte=r'+dz, and the two 2D vec-
2 torsr andr’ denote positions on the array. The summations

(b) © >, and X, are performed on théx| pickup coil and the
LxL whole array, respectivelysee Fig. 1b)]. Since Eq.
FIG. 1. (a) The vortex dipole moment associated with the dual (15) containsO(L?) terms(in this work we choosé=L/2),
lattice pointr is estimated by the circulating current around the the calculation of the magnetic flux in this way requires most
plaquette. The magnetic field at the observation peiistthe sum-  of the computer time in the numerical simulations. This
mation of the contributions from all such vortex dipole moments.time-consuming part is avoided in the approximate scheme
(b) The I X1 pickup coil is separated by the distandefrom the  we use in our simulation to obtain the results described in
LXL square array of Josephson junctiofs. The whole array is  Sec. |V.
divided into quadratic enclosures. The plaquettes surrounding such \We yse the following approximate scheme: The whole
an enclosure is denoted 1% (shaded argaThe magnetic flux due  garray is divided into stripes formed by elementary plaquettes
the plaquettes belonging &, is calculated. which enclose the midpoint of the pickup coil as the sides of
a square. This is illustrated in Fig(c). Each such collection
of elementary plaquettes are denotedywhere 2r—1 is
the number of plaquettes of each of the four stripes forming
the sides of the square. The magnetic flux in Ep) is

_ Xy ox v expressed as the summation of the contributions from each
+S|n_¢ r+§—§,r+§+§ - Sn:
- X,y x vl ®=3 M (16
+sm_¢ r+2+2,r 2+2_ ;qn n
_ X vy Xy ] whereM,, is the summation of the vortex dipole moments for
tsing{r—S+5r-5-3]|, (12 the plaquettes forming, and g, is the appropriate weight
- : factor:
where ¢(r',r")=6,,— 6,» and 6, is the phase of the com-
plex order parameter at sité. The contribution to the mag- 3d2—|r'+dz—r|? 1
netic field at large distances from this circulation can then ¢,= 2 m, E AT ,
approximately be described in terms of a dipole moment €S e [r'+dz-r] > m
mrzmri proportional to the circulation. The magnetic field resh 1
at the observation point due to this vortex dipole moment (17)
m, is given by”®
anrES m, . (19

B(X):Z 3ex(€x-my) —m,

Ix—r|3 ' 13

We now assume tha, in Eq. (17) can to good approxima-

wheree,, = (x—r)/|x—r| is the unit vector in the direction of tion be replaced by the average value for e&gh i.e., m,
x—r and the summation is over all dual lattice poifdentral =3r e S,m,/A, whereA,, is the number of plaquettes con-
positions of plaquett¢s The magnetic flux through the tained inS,. This simplifies Eq(17) to
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FIG. 3. The weight factog,, (in arbitrary uni} for S, plotted
against the sizer2— 1 (in numbers of plaquettes per sjd&he data
are for a 64 64 array with the coil size 3232 for different dis-

and (19)]. The figure shows the flux noise as a function of time . ; .
S(t,d)=(d(t,d)d(0d)) for a 16<16 coil with the distanced tancesd. When the dlsta_ncc_é between th_e coil an(_JI the array is very
small, only plaquettes inside of the pickup coil contribute to the

=5 from a 3232 array at the temperatuie=1.10 (in units of magnetic flux, whereas all plaguettes contribute for ladyer
J/kg). As seen the approximation scheme reproduces the full cal- 9 ’ plaq

culation very accurately.

FIG. 2. Comparison between the flux noise from the full calcu-
lation[Eg. (15)] and from the approximate scheifiggs.(16), (18),

vious section, the limia— 0 is implied instead cd=1. The

1 3d2—|r'+dz—r|? magnetic flux associated with the ar¢d aroundr is then
=7 > > —— (19 n(r)d?r [see Eq(10)]. In the Coulomb-gas analogy of vor-
nreSy ek |r'dzer| tices, n(r) is the charge-density**!® The charge-density

The magnetic flux in E(;(lG) can by aid of Eqs(18) and  correlation function is given bg(r,t)=(n(r,t)n(0,0)). We
(19) be computed iIfO(L<) operations, since, within this  will first relatec(r,t) to the dielectric function ¥k, ») and
approximation is a purely geometric quantity which is inde-the conductivityo(w) of the superconductor: The charge-
pendent of time. In Fig. 2 we compare the flux noisegyensity correlation functiow(r,t) is related to the charge-
S(t,d)E(CID(t,d)CD(O,d)} from the full calculation in Eq. density response functiog(r,t) by
(15 and theq, approximation in Eqs(16) and (19) for a
32X 32 array with a 1& 16 coil size and the distanae=5.
It is clearly shown that the approximation made in E) is - @ .
indeed a ¥/ery good approxiFr)T[])ation. o Im[g(k,w)]= ZTCGC(k,w), (20)

Figure 3 showgy, as a function of the linear size (2
—1) of S, for d=0.1, 10, and 2Qa 32x 32 pickup colil is
used for a 6464 array. For very small values ofl, q,
becomes a step function where or8y's inside the pickup
coil contribute to the magnetic flux. On the other handdas
is increased, it is clearly seen that there is a significant con-
tribution to the magnetic field caused by t8¢s outside the 1 2.
pickup coil area. In previous numerical studies of the flux- = =1-—g(k ). (21

s ) . e(k,w) k
noise spectra the magnetic flux has usually been approxi-
mated by the vorticity inside the pickup coil aréhe second R
case mentioned in the beginning of this subseafiohThis We define 1¢(w)=1/e(k=0,0) which means that Egs.
approximation hence does not take the contributions from20) and(21) for k=0 corresponds to Eqg5) and(6) for the
S,’s outside the pick-up coil area into account and in thisRSJ model. From Eqg9), (20), and(21) we obtain a rela-
sense it corresponds td=0. One conclusion from the tion between the charge-density correlatias,t) and the
present work is that for a more precise comparison with exreal part of the conductivity(w):
periments one should instead consider the opposite case of
larged. The results of our simulations are presented in Sec.
IV. In the following section we elucidate the relation be- Re o(w)]=— ——-—Im
tween the flux-noise spectrum and the complex impedance, 2mT-"0
or equivalently the complex conductivity.

whereg andc denote the Fourier transforms. The dielectric

function 1k(k,w») is given by the usual linear-response
relationt

1

e(w)

: (22)

and

Il. FLUX NOISE AND CONDUCTIVITY R
7o  C(Kw)
=——lim———. (23

In this section we consider for simplicity a 2D supercon- Im 5
k—0 k

ductor in the continuum limit so that, compared to the pre-
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Next we relate the charge-density correlation function|m[1/“6(k'w)] through afunctiorf:(k,d) which contains all
c(r,t) to the flux-noise spectrum. From EQLS) we have e information of the spreading of the magnetic field above
that the magnetic flux measured by the pickup coil is the superconductor as well as the geometry and position of

the pickup coil.
cp:f B,(r)d?r, In Ref. 7 it was suggested that the relation between the
coll flux noise S(w) and Inf1/e(k,w)] could be further simpli-

where the integral is over the area covered by the coil. Théied to
magnetic fieldB,(r) can be expressed as

1
S(w)oe—|Im| = ‘
Bz(r)=f f([r'—=r|,d)n(r)d?r’, o €(0,0)
ther’ integration is over the whole 2D plane, and from Eqs.Or equivalently
(10) and(15), we have S(w)*RE o(w)]. (30)
T 3d2—(r?+d? We will here show that for the typically experimental situa-
f(r=d):T_CG (r2+d2)572 . (24 tion this proportionality between the conductivity and the
flux noise is indeed valid.
This means that the flux-noise spectr@ft) =(®d(t)®(0)) In order to establish this we assume for simplicity that the
is given by pickup coil is circular with radiuf. In this case it is possible

to obtain an explicit expression féi(k,d) in Eq. (27), i.e.,

S(t)=f dzrf dzr’f dzr”f d2rf(|r"—r|,d) G
coil coil A 2T
F(k,d)=

x(n(r,Hn(r’,0)f([r’' —r"|,d). (25) @
where J; is the Bessel function of order one. Let us first
consider the limit in which the dipole approximation Eg4)
is valid. This limit implies that the distanadto the pickup
coil is sufficiently large compared to the relevant micro-

d2k scopic lengths. For a Josephson-junction array the micro-
S(t)zf d?r dzr’J eik-(rfr’)|f(k,d)|26(k,t)_ scopic length is the lattice constaatwhich is typically of
coil coil (2m)? the order 1-1Qum whereas for a continuum superconductor
it is the size of a vortex core typically given by the
Ginzburg-Landau coherence lengihand is of the order of
100-1000 A close to the transition. In additiob,has to be
much larger thara for a Josephson-junction array aédor
1 a superconducting film. The typical size ofis 100 xm.3-°

R2k|T(k,d)[?[J1(kR) 1%, (31)

We can now use the convolution theorem and exp®¢ssin
terms of the Fourier transforms of(r,d) and c(r,t)
=(n(r,t)n(0,0)), i.e.,

Taking the Fourier transform d&(t) and using the connec-
tion betweenc(k,w) and 1E(k,w) given by Egs.(20) and
(21) yields

(26) So in practice the vortex dipole approximation may be ex-

pected to be valid for superconducting films but the validity

for Josephson-junction arrays may be more questionable.
When the vortex dipole approximation is valid the noise

spectrum is given bycompare Eqs(26), (28), and(31)]

e(k,w

S(w)=— de F(k,d)Im

where

. 2TCC
F(k,d)=
(k.d) (27)%w

dk e 2% J,(kR)]% Im

f dzrf d?r’ ek O R (k,d) 2,
coil coil 8m2T2R2 [
| .
@7 () T Jo e(k,w)

and f(k,d) is the Fourier transform of (r,d) which de- (32
scribes the spreading of the magnetic field. Within the dipoIeOne notes thak values much larger thandwill not con-
approximation of Eq(24) f(k,d) is given by tribute to the integral in Eq32) because of the facta 2<d.
This means that id is sufficiently large compared to the
f(k,d)= %Zwke*kd. (28)  relevant micr0§copic length, then [ldde(k,w)] can be re-
placed by Inil/e(0,w)], demonstrating that under these con-

The extreme casé=0 is outside the dipole approximation ditionsS(w) is indeed proportional to Ifil/we(0,w)]. In the

and is given by present case of a circular pickup coil we explicitly find
f(k ! 29 Sr(w)= [
=—. w)=——Im| x :
. L @9 ® | e(0,0)

The important point to note is that the flux-noise spectrumwhere the proportionality constar® is given by (after
S(w) is directly related to the response function changing the integration variable ko= kd)
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87T2T2 szw 1000 T
=——— | dxxXe ?[J(xR/d)]%
CcG 44
T d%Jo 100 | ° ;
In the limit R/d<1 this reduces to
10 | o E
c T2 R* 1572 a3 ?
~ T_CG E —4 ) (33 U@) 1 [ ]
and in the limitR/d>1 to o1l ]
T2 2@R
C~ T—CG ? (34) 0.01 | F
We conclude from Eq<33) and(34) that the proportionality 0.001 . . .
constantC will always contain a temperature-dependent fac- 0.01 01 1 10 100
tor T?/TCC and a dependence on the size of the coil. This ©

coil-size dependence reflects the relative magnitudes be- _ o _
tween the coil size and the distance from the sample: When FIG. 4. Comparison between the vorticity-noise spect@m

to the perimeter of the coil 2R, and, when it is much a 64x64 array atT=1.1 with a 32<32 coil size. The vorticity
smaller, it is proportional to squ;ire 01: the coil arg4 In  SPectrum has @~ *? tail, whereas the magnetic-flux spectrum is

-2
typical experiments is usually much larger thad.3-° closer tow ™ (Ref. 21.
In some previous simulations of the flux-noise spectrum, , PP 0 .
based on theXY models, one has approximated the flux- results in aw tail of the spectruni® However, this con-

noise spectrum from the fluctuation of the total vorticity for dition does not correspond to the experimental situation
a finite area of the mod&® This implies two differences in Where the pickup coil does not have a sharp boundary, is at a

relation to the above dipole approximation: First of all it distanced from the sample, and, most importantly, the mag-
netic field from a vortex is spread out. In the next section we

resent numerical results of the flux-noise spectrum and its
elation to the conductivity.

corresponds tal=0 and consequently to a constanfsee
Eqg.(29)]. Secondly, it corresponds to changing the magneti
flux defined by Eq(10) to vorticity defined by Eq(11). Let
us first consider the first change by itself: The case of a

circular area with radiuR then corresponds to the flux noise IV. SIMULATION RESULTS
[compare Eqgs(26), (29), and(31)] AND EXPERIMENTAL IMPLICATIONS
o2 " A. Comparison with previous works
Sr(@)=— CGRZJ dk KJ1(kR)J? Im| - " } We first relate our simulations results to earlier ones for
oT 0 e(k,0) the RSJ modél® These earlier simulations calculated the

(39 noise spectrum of theorticity [see Eq.(11)] over a fixed
This means that, in this case, the flux-noise spectrum dearea of the systemghe d=0 case.®® As explained in the
pends on all thé values of Infi1/e(k,»)] and is not propor- previous section, this corresponds to discrete events over a

. ~ : sharp boundary and implying @ ¥*tail.2° Such a tail has
tional to Im 1/e(0,w) ]. For example the leading lardgede- . : e
pendence of Eq35) is indeed been found in Ref. 8 and is also verified in our

simulations?! This is apparent from Fig. 4 which displays
our data for a 6% 64 array with a pickup area of size
32X 32 at T=1.1; the lower data set shows therticity-
noise spectrum and the slope -s3/2. However, if we in-
stead calculate thenagnetic-fluxnoise spectrunisee Eq.
(10)], then the crossing of magnetic flux over the perimeter is
indli hek— buti Ik val i not a discrete event. This means that there is no obvious
'Sl'lf?g Ing OUtt.t N I;O gotntn Ut'ot?] a f va ue;scontr| u'ge. reason for aw % tail and nor do we find any such tail in the

e proportionality between the flux nois(w) an simulations, as is also apparent from Fig. 4. The exponent in

Im[ 1/we(0,0)]xRe o(w)] can be tested by experiments Fig. 4 for this case is instead close to2 as seen from the
since bothS(w) and the conductivityr(w) can be indepen- ypper data set in Fig. %

dently measuref.

The change from magnetic fluxiefined by Eq(10)] to
vorticity [defined by Eq(11)] influences the flux-noise spec-
trum in an additional significant way: Now the crossing of a
vortex over the perimeter of the pickup area is described as a As mentioned in Sec. Il the typical experimental setup
discrete =27 change of the total vorticity of the pick-up measures thenagnetic-fluxnoise spectrum with a finite dis-
area. The corresponding spectrum hence corresponds totanced between the array and the pickup cbif. Further-
random walk of discrete events over a sharp boundary. Thimore, the typical experimental setup corresponds to the

S —Efxdkl
R(@) wJo m e(k,w) .

So in this limit the flux noise is proportional to the perimeter
of the pickup area just as for the lardezase, but instead of

B. Flux-noise spectra with a finite distance between pickup
coil and array
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FIG. 5. (a) The dependence of the flux-noise spectr8w,d)
on the distancel. The full drawn uppermost curve is the imaginary
part of the dielectric functionim[ 1/e(w)]|. The rest of the curves
correspond tal=0.1, 5, 10, 20, and 4@drom bottom to top plotted
aswS(w,d) and the curves are shifted in the vertical direction fo
better comparison. The data are for ax@¥ array with a 3X 32
pick-up coil atT=1.1, except fod=40 where a 128128 array
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S(w,d) approaches this uppermost curve. This verifies that
for large d one has the simple connectiors(w)
«|Im[ L/we(w)]| as discussed in Sec. Ill.

Figure 8b) shows that the characteristic frequency given
by the peak position in Fig.(8) decreases with increasimg
In the limit of larged the characteristic frequency 8 w,d)
agrees with the characteristic frequency of(#/). Thus in
this limit both the shape and the characteristic frequency of
S(w,d) and Inj 1/we(w) ] are the same. This proportionality
between the flux-noise spectrum and complex conductivity
can6be tested experimentally and indeed seems to be borne
out.

The fact that the flux-noise spectrum in the ladyémit
is proportional to real part of the conductivity means that the
characteristic features of the conductivity are reflected in the
flux-noise spectrum. In case of a 2D superconductor the dy-
namical features of the conductivitf w) e — 1/ we(w), are
well described by the response fdfm

R 1 1 1 o 36
e(w) 6(0)_§w+w0’ (36)
and
1 12 wowglnol/wg
Im =s—=z—-—— (37)
€(w) e w2—w0

which catches the dynamics of vortex fluctuations in a region
around the KT transition. From E¢37) one notices that the
peak of|Im[1/e(w)]| occurs at the characteristic frequency

wo and that the peak height is7ié. Above the KT transition
1/e increases only weakly with increasing temperature and
approaches unity for somewhat higher temperattfrézor

the flux-noise spectrum this means tiSto,) < T2/ TCew,,.
Now T/TCCx po(T) wherepy(T) is the bare superfluid den-
sity which decreases slightly with temperaturehereasT

was necessary because plaquettes further away from the center canereases so that alsb?/ T¢® depends only weakly off.

tribute in this case. Asd is increasedwS(w,d) approaches
|Im[1/e(w)]|. (b) The frequency at the maxima for the curvesan
are plotted versus the distandeAs d is increased, this frequency
decreases and approaches the valuelfo(1l/e(w)|. (The full line
is a guide to the eyg.

larged limit where the noise spectru®(w) is proportional
to the real part of the conductivity(w) (see Sec. I\

In our simulations we investigate the flux-noise spectra a
a function of the distancd to the pickup coil. Figure &)
shows the flux-noise spectra calculated from Egsand(4)
with the magnetic flux given by EqéL6), (18), and(19) (see
Sec. Il B for details. The data sets are shown a$(w,d)
againstw in a log-log plot. The vertical scale is adjusted in

order to compare the shapes of the curves. One notices th

the spectra for the different's all approachw ! for large w
and can be collapsed to a single curve in this lasgeegion
by a vertical adjustment. For smadl the curves become
linear with @ which reflects a constant pamhite noise¢ of
S(w,d).>58°As dincreases the peak of theS(w,d) curves

moves to the left and the peak height increases. The upper-

most curve in Fig. &) is |Im[1/e(w)]| (full curve in the

This means that to good approximation the flux-noise spec-
trum for different temperatures above the KT transition
should have a common tangeri/w which goes through all
the pointsS(wo(T),T). This means that the common tangent
in a log-log plot has the slope 1. This feature is illustrated

in Fig. 6 which demonstrates the existence of a common
tangent with the slope close tol both directly forS(w,d)

and for R¢o(w)]x—Im[l/lwe(w)]. The existence of a

Tommon tangent for the flux-noise spectra with the slope

—1 can be readily tested in experiments and seems to be
well borne ouf?3

One should, however, notice that the argument for a com-
mon tangent with slope-1 does not single out the response
form given by Eqgs.(36) and (37). In fact, the reasoning is
gltso valid in a region above the KT transition where the
response of the vortex fluctuations is given by the conven-

tional Drude response form

(1)2

24w

1

e(w)

- 21 (38)
0

Re{

1
€ w

figure) and, asd is increased, the flux-noise spectrum and
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(a)
g
o =
i 3
©
g
97
s ®
R
S FIG. 7. Flux-noise spectrum in the smdllimit at temperatures
<) above the KT transitiofsame as Fig. ®) but withd=0.1 instead
@ of d=20]. In the case of smatl we find neither a common tangent
nor an appreciable range af 5 behavior.
spectra at a sequence of temperatures above the KT transi-

tion should in a log-log plot have a common tangent with
slope—1. We can substantiate this claim further by simulat-
© ing the noise spectra for a smdllwhere the flux-noise spec-
FIG. 6. (a) The real part of the conductivity Re(w)] and (b) trum isnot proportional to Reo(w)]. In this case there is no
the flux-noise spectrurB(w,d=20) at temperatures above the KT Particular reason for a common tangent with any slope and,
transition. The curves for Re(w)] and S(w,d=20) have the as apparent from the simulation results in Fig. 7, no such
same shape; for small frequencies they have a very wed&pen-  COmMmon tangent can be fitted to the data.
dence, for somewhat largerw there is an approximate One may also notice from Fig. 6 that bo8{w,d) and
o~ ¥2-pehavior, whereas for even largerthe behavior approaches Rd o(w)] have intermediate regions with~ - followed by
o~ 2. The curves in the log-log plot have a common tangent witha 2 tail for even largew. However, such an intermediate-
the slope—0.9. o~ 1® region appears to be less discernible for the smhall-
case whenS(w,d) is not proportional to Rer(w)], as is
apparent from Fig. 7.

1

e(w)

1 ooy

Im (39

==
€ 0™t wp C. Flux-noise spectrum below KT transition
Next we investigate what happens as the temperature is
decreased towards the KT transition and below. Figure 8
shows data for Ifil/e(w)] and wS(w,d=20) over a wider
nge of temperaturdthe data forT=1.1 are the same as in
. 6). Again one observes that both quantities behave in

which gives the peak height 320ne expects that the re-

sponse form Eq9.36) and(37) describes the response from
the vortex pairs in a region just above the KT transition
whereas the conventional Drude response is obtained fqf

higher temperatures where the response is dominated by fr .
vortices** How wide these regions are depend on the detailsprecIsely the same way over the whole temperature range,

for a real thin superconductor the vortex-pair-response seerﬁ(?”fymg_that they are indeed proportional to very g(_)o_d ap-
to dominate in a wide regiol. However, for the 2D RSJ proximation. Next one observes that the characteristic fre-

model on a square lattice, which we are using here, th@Uencywo (the frequency of the peak positipdecreases as

vortex-pair-dominated region above the KT transition is nar-n€ KT transition is approached from above. Th'sgsﬂggeSts a
itical slowing down at the KT transition t@y=0.""" As

row and the Drude response dominates in a broader regio(ffiz h h th ition the ch .
above the KT transition. Thus, the data shown in Fig. 6 ard '€ l€mperature passes through the transition the characteris-

predominantly Drude-like. A practical way of determining ticfrsqluencr)]/ stlg_:_ts to in_c_rergi? agétine full curves in Fig. 8
which response type is at hand is to measure the complei® Pelow the KT transitior

impedance and determine the peak rafi@., the ratio The argument for a common c;/ltangent for the flux-

Re(o)/Im(o) at the peak positiom, of Re(o/w)]; for the ~ NOISe spectra above the KT transition is related to the fact

vortex-pair-dominated response, E(®6) and(37), this ratio  that the peak height fdim[1/e(w)] is 1/me (1/2€) for the

is 2/m~0.64 and for free vortex Drude response, E@8  Vortex pair response, Eq36) and (37) [free vortex Drude

and(39), it is unity* response, Eq¢38) and(39)] together with the fact that &/
The essential point here is that, because the flux-noisenly increases very weakly witfi above the KT transition

spectrum for a largd is proportional to Rer(w)], the noise  and approaches unity for somewhat higfieFigure 8 shows
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compared to the almost constant amplitude above the KT
transition, as is apparent from Fig(h8.

Finally, there is in Fig. &) an indication that the curves
develop a plateau as the KT transition is approached from
above (compare the curve fof=0.95). Such a plateau
would suggest thaB(w,d) is proportional to 1b in an in-
termediate region just above the KT transition. The same
development of a plateau can be anticipated in Fig) &r
|Im[1/e(w)]| and has also been found for they model with
the time-dependent Ginzburg-Landau dynamfcs.

172

107

Im [1/e(w)]

102

L L L L V. CONCLUDING REMARKS

In the present paper we have explored the fact that the
typical experimental setup for measuring the magnetic-flux
s noise for a superconductor, or JJA, corresponds to the case

! when the distancd to the pickup coil is much larger than the
relevant microscopic lengths. In this limit the flux-noise
spectrum and the real part of the conductivity are propor-
tional. This proportionality seems first to have been antici-
pated in Ref. 7 and has also been experimentally veriflad.
this paper we have studied this connection in some more
detail.

We have also demonstrated that both the shape and the
characteristic frequency of the spectrum depend on the dis-
tanced to the pickup coil. This means that no detailed con-
clusions can be drawn from simulations which presumhes

FIG. 8. (a) The imaginary part of the dielectric function, =0. Furthermore, there is a qualitative difference between
[Im[1/e(w)]|, and (b) the flux-noise spectrum multiplied by the the vorticity-noise spectrum, which corresponds to discrete
frequency,wS(w,d=20), at temperatures above and below the KT events over a sharp boundary, and thagnetic-fluxhoise
transition. This again illustrates that both quantities behave in thepectrum which corresponds to spread-out objects over a
same way. As the temperature is increased far above the KT trarsoundary. The experimental situation corresponds to a
sition, the maximum ofim[ 1/e(w)]| approaches the limit value 1/2  spread-out magnetic fluand a pickup coil at a large distance
(this corresponds to the Drude limit with=1) as denoted by the d, which is very different from some earlier simulations
horizontal line in(a). The curves seem to develop a plateau as thewhich calculated thevorticity-noise spectrum fod=02°
KT transition is approached from above, as is suggested byl the Nevertheless thevorticity-noise spectrum fod=0 has a
=0.95 curves. As the temperature drops below the KT transitiony,~3/2 t5i| for higher frequencies which seems to match the
the amplitude of the flux noise rapidly decreases whereas the Chaéxperimental results® whereas the magnetic-fluxnoise
acteristic frequency increases, as is illustrated by the curvds at spectra ford=0 does not have such a tail. In accordance
=0.85. with the present simulations, we suggest that the resolution
é)f this dichotomy is that in the largg-limit the magnetic-
flux-noise spectrum does have imtermediateregion with a
vy~ > behavior and that it is this intermediate region which is

S(o, d=20)

Siwti it

A
(oY=

-
<
n

1072

this weak increase in a region above the KT transition; th
Drude value 1/2 is approached roughly liké! which ex-
plains the discrepancy between exponent 1 and the value 0 . .
found in Fig. 6. Thus the existence of a common tangeat 1/ seen in the experiments. . .
hinges on the weakness of the temperature-dependent factorThe proportionality between the magr)etl_c—flux—nmse
T2/TCS(TYZ(T) which in turn depends somewhat on the de_spectrum and the real part of the conductivity implies that

. : the noise spectra for a sequence of temperatures just above
tails of the system. However, since the temperature depeqr1e KT transition should in a log-log plot have a common

dence ofw, is dramatic just above the_ KT _transi;ion, the tangent with the slope-1. The existence of such a common
common tangent should to good approximation exist at leaghygent has also to be verified in experiménas, well as in
in a limited region above the KT transition.

» . the present simulations. We also explicitly demonstrated
Below the KT transition there are no free vortices and th

&hrough our simulations that for smadl there is no such
response is given by the vortex pairs E¢36) and (37).1° comn?on tangent

However, in this case the factor e#1—1/e(w=0) de- The existence of a common tangent is by itself not nec-
creases rapidly towards zero as the temperature is decreasgskarily conclusive. For example, the experimental data for
below the KT transitiorjr.“ This means that while the charac- the JJA’s in Ref. 5 Correspond to the |arg&;ase and the
teristic frequency rapidly increases, as the temperature is dgata have indeed a common tangent with slepk. How-
Creased beIOW the KT transition, the amplitude Of the ﬂUXever, the Spectra at a fixed temperature seem to have a 1/
noise, which is proportional to @~1— 1/e(w=0), rapidly ~ behavior over a very large region, which differ markedly
decreases. The KT transition is B&0.9 and already al  from the spectra obtained in our simulations for the RSJ
=0.85 the amplitude ofvS(w,d) has dropped dramatically model.
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The present simulations also suggest that immediatelgcteristic frequency increases. It should also be possible to
above the KT transition there should be a very small tem-observe this effect in experiments.
perature region where the noise spectrum has an intermediate
interval with a 1/ behavior?® It has been suggested that the
data in Ref. 5 might perhaps be related to this temperature ACKNOWLEDGMENTS
region closest to the transitidi.However, at the moment .
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