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Pairing symmetry and long-range pair potential in a weak-coupling theory of superconductivity
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We study the superconducting phase with two-component order-parameter scenario, stigh,as
+el%s, , wherea=xy,x?+y?. We show that in absence of orthorhombocity, the uslyal ,» does not mix
with usuals,z,.,2 symmetry gap in an anisotropic band structure. Busifjesymmetrydoesmix with the usual
d-wave symmetry ford=0. The d-wave symmetry with higher harmonics present in it also mixes with
higher-order extendegwave symmetry. The required pair potential to obtaigher anisotropic ¢-_,2 and
extendeds-wave symmetries is derived by considering longer ranged two-body attractive potential in the spirit
of tight-binding lattice. We demonstrate that the dominant pairing symmetry changes drasticallg-ftom
slike as the attractive pair potential is obtained from longer ranged interaction. More specifically, a typical
length scale of interactiod, which could be even/odd multiples of lattice spacing, leads to predominant
s/d-wave symmetry. The role of long-range interaction on pairing symmetry has further been emphasized by
studying the typical interplay in the temperature dependencies of these highedeoraled s-wave pairing
symmetries[S0163-182¢09)12333-4

I. INTRODUCTION tetragonal group fo#=0 but not for6= 7/2. The phase of
the second condensate state is thus extremely important. We

Many experiments were performed to find clues regardinghen show that even though thawest-order ¢2_,2 cannot
the mechanism of higfi, superconductivity and the nature mix with s,2., 2, the correspondingigher-ordersymmetries
of the superconducting pair wave function. Notwithstandingcan mix freely with each other. Bpwest-ordeiwe mean the
this effort, the nature of the orbital symmetry of the orderusual d-wave (i.e., simple co&,—cosk, form), extended
parameter is not yet known completely after a decade of its'wave (i.e., simple co.+cosk, form), and so on. By
discovery although strong evidence of a majgs_,> sym- _higher—orderv_ve mean such symmetries with higher harmon-
metry exists:3 Phase- and node-sensitive experiments alsé¢®S Present in it, like the cog,*cosék, form where ¢
reported a sign reversal of the order parameter supporting "&(n=12,3 .. ) or even more complicated, like
d-wave symmetry. The most current scenario that appearstOS &0k, cosk,cos X, and so on. This will be clearer

from various experiments and theory shows that the pairin S we proceed. N.OW' in order to obtain such pairing symme-
symmetry of this family could be a mixed one likga o ry in the respective channels one needs effective attractive
-y

1 e’ wherea could be something in thewave family or pairing potentiaM (&k, £k’). We derive, in the spirit of tight-

binding longer range attraction than the usual neaftest
dyy. The electron doPed_NgXCQ‘CUO“ superconductors next-nearegtneighbor one such interaction potential. The
are, however, pure-wave-like:

. . . potential V(¢&k,&k”) therefore changes the position of its
Tunneling experiments h_ad questioned the pd_mave minimum from that of the usuadl-or swave cases fon
symmetry as the data were interpreted as a_n_ad_mmtumiL of ~1 we show, depending on the position of the pair poten-
ands-wave components due to orthorhombicity in YB&@' tial or, in other words, longer ranged attractions
Possibility (_)f a minor but finited,, symmetry lalong with —2a,3a,4a, etc. the dominant symmetry changes from
the predominand,2_,2 has also been suggestéih connec- d,2 .2 for é=a- to slike otherwise.
tion with magnetic defects or small frac_nons of a flux quan- " This study can particularly be justified based on the fol-
tum ®o=hc/2e in YBCO powders. Similar proposals came |owing grounds.i) On general grounds, long-range interac-
from various other authors in the context of magnetic field,tions arise from a decrease in screening as one approaches
magnetic impurity, interface effect, ett=**These proposals e insulator. In specific models of superconductivity like the
got the correct momentum when experimental datrilzon longispin-fluctuation mediated models, an increase in the antifer-
tudinal thermal conductivity by Krishanaet al. cl’g romagnetic correlation length occurs with underdopifig.
Bi,Sr,CaCyOg compounds and that by Movshovieh al. One of the potential theories of high-temperature supercon-
showed supportive indication to such proposals. There argyctivity that favorst-wave symmetry is the spin-fluctuation
experimental results related to interface effects as well as itheory™ The gap symmetry of the spin-fluctuation theory is,

the bulk that indicates 1rgixed pairing symmetwith domi-  powever, not thesimplest éwave buthigher-order dwave,
nantd-wave symmetry— thus providing a strong threat to approximately of the form (cdg—cosk,)(cosk, +cosky)N.15
the pured-wave models. Explicit k anisotropy of the gap in spin-fluctuation mediated

In this paper our main aim is to study the possibility of a g perconductivity was obtained by Lenck and CarBéfn
mixed pairing symmetry state with(k)=Aq, ,+ e’s, BCS theory with the phenomenological spin susceptibility as
where a=xy,x?>+y? for #=0,7/2 with bothd ands on an  pairing interaction using fast-Fourier-transform technique,
equal footing. We show that,> 2 can mix withs,, in the  without any prior assumption about the symmetry of the gap.
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They concluded that the gap, although having nodal linesyhere in the first result of Eq(l) R locates nearest-
alongk,=ky , does nothave the simplest-wave symmetry neighbor and further neighbors3 labels and V,, n

but r_atherhigher-_orqler dwave symmetry with hi_gher har- =1,...,6represents strength of attraction betweenr’l the re-
monics present in It. The_refore th_|s work provides a_real'spective neighbor interaction. The first term in the above
sp(;:lcedderlvatlon of a pair .|Iootent|r;]1l that prodgceﬁ h'gheréquationv{) refers to the on-site interaction which is consid-
order d-wave symmetry similar to that present in the SPIN" o red as repulsive but can be attractive as well giving rise to

fluctuation theory.(iii) In the magnetic scenario of the . ; ) .
7 . isotropic s waves. In this paper, we shall not consider the
cuprates, one can set equal to the magnetic coherence . . . .
isotropics wave for a mixed symmetry witd wave (cf. Ref.

length Wh'Ch.'S larger than the Igttlce spac?hghe .coh_er- iL9). The form factors of the potential are obtained as
ence length in the superconducting state which is differen

for different materials may be because a short-range interac-
tion requires larger densities than a long-range one in order
to produce coherent motion that leads to superconductivity.

f9(nk) = cognk,a) — cognk,a),

(The T.—x relationship is not unique in all high; systems;
some start to superconduct with very small dopinghereas
some systems require largej (iv) The highT, systems are

in very complicated circuits and the electronic correlation

g(nk) =cognk.a)+cognk,a),
fy(nk) =2 sin(nk,a)sin(nk,a),

f>v(nk) =2 cognk,a)cognk,a),

effects may not be adequately accounted unless one consid-

ers next-nearest or further-neighbor repulsion. Therefore, i
the spirit of tight-binding lattice, the effective attraction may
only arise with more distant attractive interactigm) In a
most recent angle-resolved photoemissiiRPES experi-
ment by a well-known group® such requirement of long-

range interaction was realized. One of their essential findings
is that, as the doping decreases, the maximum gap increases,
but the slope of the gap near the nodes decreases. This par-

ticular feature, although consistent widlwave, cannot be fit
by simple cos(®) but requires a finite mixing of cos¢§ as
well, where ¢ is the angle betweerk,,k, given as
tan’l(ky/kx). The cos(@) contains higher harmonics than
simple (cok,—cosk,). The rest of the layout of the paper is
as follows: In Sec. I, we derive the pair potential required
for higher anisotropial- and extended-wave symmetries.

We also provide a brief prescription of finding coupled gap
equations for the amplitudes of such higher anisotropic sym<

N F{(2k) = cod 2ka)cog k,a) — cog kea)cog 2k,a),

?g(Zk) =sin(2k,a)sin(kya) — sin(k,a)sin(2k,a),

9:(2k) = cog 2k,a)cog kya) + cog k,a)cog 2k,a),

52(2k)=sin(2kxa)sin(kya)+sin(kxa)sin(2kya), 2
where f9(nk),g(nk) leads to usuald,2 2,822 pairing
symmetry forn=1 and unusual or higher-ordet,>_2,
Sy2+y2 pairing symmetry respectively, which results from in-
teractions along thex andy axes(i.e., first-, third-, sixth-
neighbor interaction While the usual and higher-orddy,,
Sy pairing symmetry results fronf%y(nk),fv(nk), the
fourth-neighbor interaction gives rise to unconventiodal
and extended-wave pairing symmetry throug?‘ﬁ(Zk) and

metries. In Sec. lIl, we present and discuss in detail all of thén(2K) given in Eq.(2). In deriving Egs.(1) and(2), terms
numerical results providing strong signature of change ifesponsible for triplet pairing which are not important for

dominant pairing symmetry with range of interaction. Fi-
nally, we conclude in Sec. IV.

IIl. MODEL CALCULATION

Let us consider that the overlap of orbitals in different

unit cells is small compared to the diagonal overlap. Then, i
the spirit of tight-binding lattice description, the matrix ele-
ment of the pair potential may be obtained as

V(@)= Ve tRo=Vi+ Vi fo(k) Fo(k') +Vyg(k)g(k')
)

+ V,fIy(k) Fhv(k") + Vo fSxv(k) FSxv(k")
+V,f9(2k) f9(2k") + Vag(2k)g(2k’)
+2V,f92k)Td(2k") + 2V, F9(2k) F9(2k")
+2V,401(2K)g1(2K') +2V495(2k)g2(2K')
+ Vg fhy(2k) fOxv(2k") + Vs Sv(2k) fSxv(2k")

+Vef4(3k) f9(3k’) + Veg(3k)g(3k’), )

high-T. systems are neglected. We shall discuss now the
mixed phase symmetry af2 2 with other symmetries tak-
ing two of the potential terms at a time, namely, a combi-
nation of potential terms in Eq. (1)
(2nd,3rg, (6th,7th), (14th,15th) gives rise to pairing sym-
metry A(K) =4, .(0)f(ék)+e'’Ag, .(0)g(¢k) where

rézna, a is the lattice constant and will be taken as unity.

imilarly, a combination of (2nd,4jh(6th,12th), and so on,
will give rise to pairing symmetr)A(k)=Adxzfy2(0)fd(§k)
+é gAdxy(O)fdxy(gk), etc.
Free energy of a superconductor with arbitrary pairing
symmetry may be written as

A 2
3 > In(1+e PPRy+ &
kp=* KK/

whereE,= /(e,— u)?+|A,]? are the energy eigenvalues of
a Hamiltonian that describes superconductivity. We mini-

mize the free energy, Eq) i.e., dF/d|A|=0, to get the gap
equation as

©)

Fk’k’z

BE
2

k!

A i{
—tan
Ey/

k

A= Vige 4
k’
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FIG. 1. Amplitudes of theAdey2 (solid lineg and ASX2+y2
(dashed lingsas a function of band fillinge for 6==/2 (i.e.,
dy2_2+is,2,y2) phase in various values @fa. While the usual
dy2_y2 does notmix with usuals,2, 2 (a), higher componend,z_ 2

ands,2, 2 (c) and(d) can mix with each other freely even in the
absence of orthorhombocity. It is worth noticing the change in the

dominant pairing symmetry witté/a (e.g., for ¢/a=2 the only
dominant symmetry is-wave-like.
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FIG. 2. Same as that of Fig. 1 except=0 (i.e., dy2_2
+8,24y2 symmetry. The predominant symmetry always tries to

expel (minimize) occurrence of the other symmetry at its optimum

doping.

We solve self-consistently the above three equaltji&ios.

(5) and(6)] in order to study the phase diagram of a mixed
order-parameter superconducting phase. The numerical re-
sults obtained for the gap amplitudes through E&$.and

where ¢ is the dispersion relation taken from the ARPES g) || be compared with free energy minimizations via Eq.
datd and u the chemical potential will control band filling (3) to get the phase diagrams.

through a number-conserving equation given below. For

two-component order-parameter symmetries, as mentioned

above, we substitute the required form of the potential and

the corresponding gap structure into either side of @&g.

Ill. RESULTS AND DISCUSSIONS

We present in this section our numerical results for a set

which givgs us an identity equa_tion. Thenlseparating the regds fixed parameters, e.g., a cutoff ene@y=500 K around
and imaginary parts together with comparing the momentuni,e Fermj level above which superconducting condensate
dependences on either side of it we get gap equations for thg g ot exist; a fixed ratid; /V,=0.71 in Eq.(5) between

amplitudes in different channels as

2
Ay BEk| .
Aj—zk Vj Z—Ektanl‘(T , =12, (5)

Considering mixed symmetry of the formA(k)
=Adxty2(0)fd(nk)+ASX2+Y2(0)g(nk) one identifies A,
=442 2(0),42=As, .(0) and fi=f(nk), fi=g(nk),
and, similarly, for mixed symmetries of the form(k)
=Adx27y2(0)fd(nk)+Aaxy(O)f“XV(nk) where a=s, d, A,

=Aaxy(0) and f2=f%y(nk), and so on. The potential re-

quired to get such pairing symmetries is discussed in(Eq.

the strengths of pairing interaction channels throughout. In
Figs. 1 and 2 we present results forA(k)
=Aq, yz(O)fd(gk)wLe"’ASXZWZ(O)g(gk) symmetries forf= /2
and 6=0, respectively. Such symmetries would arise from a
combination  of  two-component pair  potentials
(2nd,3rd), (6th, 7th) X4th,15th), and so on. We shall dis-
cuss only the results cf=0 and 6= /2. These two phases
of 6 can cause important differences. Figs. 3 and 4 It is
known that for anyd#0, time-reversal symmetry is locally
brokert® which corresponds to a phase transition toakn
mostfully gapped phaséexcept at the pointst 7/2,+ /2
due to common nodal points from both chanhdlem a
partially ungapped phase df._,2 symmetry. On the other
hand, thed=0 phase still remains nodeful, although the

The number-conserving equation that controls the bang,qya lines shifts a lot from the usull,=k, lines of the

filling through chemical potentigk is given by

p(,u,T)ZE 1—(6k_'u)tanh'8—Ek . (6)
k Ek 2

dy2_y2.

Tﬁe solid lines represent the amplitude of tdg 2
channel whereas the dashed lines indicate thas,of..
These Figs.(1 and 2 clearly demonstrate that thesual
dy2_y2 ands,2, 2 symmetries do not mix with each other
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FIG. 3. Amplitudes of the.‘xdxz_y2 (solid lineg andASXy (dashed

lines) as a function of band filinge for §=m/2 (i.e., dyz_y2 FIG. 4. Same as that in Fig. 3 except far0, i.e., de_2
+is,2,,2) phase in various values @fa. While the usuabl 2 + s,y phase that preserves the time reversal symmetry. The notable

does notmix with usuals,, (a), higher anisotropid,e 2 ands,, difference is that the usudlz_ 2 ands,, compor_lents_ can mix Wlth
(c) and (d) can mix with each other freely even in the absence of€ach other freely in absence of orthorhombocity, S|gn|fy|ng the im-
orthorhombocity. It is worth noticing that the change in the domi- Portance of the phasgof the nond-wave symmetry, in contrast to
nant pairing symmetry with the typical leng#fia (e.g., forg/a  F19- 3@
=2 the only dominant symmetry is wavelike. Panel(a) should
particularly be contrasted with that of Fig. 4 material. Therefore, considering models related to spin-
fluctuation mediated superconductivity, the longer range at-

[cf. Figs. Xa) and 2a)] but the higher-order d2_2,s,2,,2  traction should be more important. In the present picture, we
symmetries do mix with each othgaf. Figs. Xc) and(d) and  showed that such longer range interaction causes change in
2(c) and (d)]. In fact, as the interaction becomes longerthe pairing symmetry which might make this study to have
ranged(i.e., é/a=1,2,3,4 as is demonstrated in Figs. 82 important bearings for the highiz compounds.
(b), (c), and (d), respectively the dominant symmetry Some interesting features of the data presented is that op-
changes drastically; as the typical lengtis odd multiple of  timal doping remains unchanged irrespective dihat causes
the lattice constant, the dominant symmetry at lower doping significantcrossoverin the dominant symmetry of the or-
is d,2_2-like whereas when thé is an even multiple of the der parameter. The position of tliewave does not change
lattice constant, the dominant symmetry at lower doping isappreciably except in the case &fa=4 while the extended
something in thesswave family (see also Figs. 3 and .4 swave region moves drastically with. In particular, for

As the typical lengtlg is increased, the predominant sym- ¢/a=1, the extendeds-wave family has finite amplitude
metry at the optimal dopirf§ changes fromd-wave até  only at densities close to zerp{0) (cf. Figs. 1—3 leading
=a to an extended-waves,2. 2,s,, for {=2a, to again a to no mixed phases except the outstanding casé=dd for
predominantd-wave symmetry a€=3a and finally for¢ s, (cf. Fig. 4). In é/a=2 case, the extendeswave family
=4a to extendeds-wave symmetry fol= 7/2. These phase completely takes over the position of tdevave that it had
diagramg(Figs. 1 — 4 drawn atT=1 mK do not change the in the case of¢{/a=1. For £&/a=3, thed wave regains its
scenario even fop=0, in the mixed phase af wave with  position although both the amplitude and width decreases to
Sx21y2 Symmetry but causes significant change for that withabout 50% to that of thé/a=1 case and the wave shifts
Sxy Symmetry(cf. Fig. 4. More significantly, the case &f  towards larger doping having its amplitude minimum at the
=2a is universal(i.e., independent ob ands,2,,2 or s,,  maximum of thed wave. Foré/a=4 the extended wave
mixing with d wave), the dominant symmetry at zero tem- dominates and thd wave either becomes a minor compo-
perature isswave-type. This work therefore has revealed innent or does not appear at all. Furthermore, in the optimal
a significant way the change in predominant pairing symmeeoping, whichever symmetry dominates causes the ampli-
try as the interaction range is changedTatO. It is to be tude of the other minimum; i.e., the dominant symmetry al-
noted that in contrast to hole doped material, the electromvays expels the other one at the optimum doping.
doped materialglike Nd,_,CeCuQ,) have no signature of Following the above discussion, it is obvious that Fig. 4
dominantd-wave symmetry. Furthermore, the antiferromag-represents an exceptional case. Figure 4 represents phase dia-
netic phase in the electron doped systems is more extendguam of superconductors having mixed phase symmetry like
or exists until larger doping in comparison to the hole dopecﬁdxz_yz(O)fd(gk)nLe' l"Asxy(O)foy(gk) with 6=0 (the case
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FIG. 5. Temperature dependencies of the superconducting gap FIG. 6. Temperature dependencies of the superconducting gap
in thed,2_y2 andds channel for their real and complex mixing for in thedz_y2 ands,z_, channel for their real and complex mixing
different band fiIIinygs(a) p=0.75 and(b) p=0.9. When thes,, for different band fillings@ p=0.75 andb) p=0.9. Unlike thes,,

component has largéf,, its thermal growth is suppressed at the c@Se(cf. Fig. 5), the temperature dependencies of the gap ampli-
onset of thed,2_,> componenfcf. (8)] but that of thed,._,> am- tudes in the respective channels do not influence each other. Similar

plitude is not influenced by the corresponding onset ofghdcf.  © that in Fig. 5, forf=0 the gaps open up at a faster rate with
(b)]. In general, forg=0 the gaps open up at a faster rate with decreasing temperature than that o 7/2.

decreasing temperature than that for 7/2. . . .
Sx21y2 Symmetries remain unaffected by each other as dis-

o o layed in Fig. 6. In general, however, the growth of the am-
of #=/2 is discussed in Fig. 3 and should be contraste«F

with Fig. 4). The phase diagram comprises the amplitudes of .« is faster in the case @f=0 than that ford= =/2. This

the respective symmetry channels as a function band filling, .o again emphasizes the role of the phaséemperature

p- In striking contrast to Figs. 1-3, there is strong mixing of 4o, endencies for other values éfa are qualitatively the
dyz—y2 with s,y for §/a=1, 3, and 4. In fact, mixing between ¢, e as those shown in Figs. 5 and 6.

the two symmetries is so strong that it is difficult to find out g, tar we have discussed the interplay of order param-
th_e prgdomlnant symmetry for the cas@#a=1 qnd 3.In aters in mixed phases likk,, ,+€'’s,, a=x2+y? or xy.

this mixed symmetry, fov= /2 andé/a=4 [cf. Fig. 3d)], Xy

the d-wave amplitude is practically zero whereas #+ 0
[cf. Fig. 4d)] it has strong mixing regime. This is the only
mixed phase where both of the symmetries at optimal dopin
have large value$see Figs. @) and (c)] unlike those in ; ) ; . .
Figs. 1-3. The results of this figure thus convincingly pointterms of Eq.il) can give L'Se to in(;nxed pa|r|ngs symmetries
out the role of the phase between the two mixing symmeSUCh asd(K)=Aq,, (0)F7(k)+eAs,  ,(0)G*(k) where
tries. All the experimentally observed properties of cuprated (k) = f(k)[1+ f%u(k) + (k) ], G(K)=g(K)[fh(k)

will be consistent with the scenario of Fig. 4, including the (k) —1]. These exotic symmetries are not discussed in
sign change of the order parameter as well as gap nodes. THee literature. Following the same procedure as deriving Eq.
strong interplay between the two order parameters of mixed). one can find the gap equation for the components
d—s,, symmetry has also been reflected in their thermaPa,. »(0) andAs, .(0), although a bit complicated, it ar-
behaviors(cf. Fig. 5. In Figs. 5 and 6 we display the tem- rives at the same gap equation as &j.with the pair vertex
perature dependencies of the amplitudaseV) of different Vj—V;/2 andf§=Fd(k),f2=GS(k). Solving the gap equa-
symmetry order parameters féfa=3 as maximum mixing tions together with the number E¢6) simultaneously, no

is found in this case. When tisg, component determines the mixing between these unconventionalands-wave symme-
bulk T, [e.g., atp=0.75 in Fig. %a)] the amplitude of the tries was found. Within the same parameter as in earlier fig-
Sxy component is suppressed with the onset of dhgave ures (i.e., V;/V,=0.71), d wave remains very strong at
component. However, when the bulk is determined by the lower dopings(within the range &p>0.70) whereas the

d wave, the amplitude of thd wave is not affected by the swave amplitude appears very close to zero band filling.
onset of thes,, component. In a study of mixed phase with Therefore in Fig. 7 we present the momentum anisotropy of
usuald+is phase withs as isotropics wave, it was shown the unconventionald-wave gap originated from fourth-
earlier®?! that thed-wave component gets suppressed withneighbor attraction. It is clear that gap anisotropy is undoubt-
the onset o wave but not the reverse. In contrast to Fig. 5,edly very different from theusual nearest-neighbod-wave

the temperature dependencies of the amplitudes ofitied  symmetry, although basic features of change in sign, nodes,

litudes of different symmetries with lowering in tempera-

This excluded discussion of some other exatiands,z, 2

symmetries that can arise from the fourth-neighbor attraction

@s discussed earlier in the context of E(9.and (3). More
pecifically, a combination of (8th9th) and (10th-11th)
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of orthorhombocity, the usual,>_,2> does not mix with the
0.025 - NN 0% usuals,2,y2 symmetry gap in an anisotropic band structure.
0 g XX o S ) l"/\/

..-0""’\‘\ H H
"iﬁW‘ But thes,, symmetrydoesmix with the usuald-wave sym-

090 ‘4;:'3:000‘0”@:,‘\\, metry for #=0. Even in absence of orthorhombocity, the
-0,0 ‘3::::0‘0’0‘,\",\\\“.\‘ higher anisotropic ewave symmetry mixes withigher an-
_5008 “t&‘&\f@f@’\.‘\z’\x\ isotropic extendeds-wave symmetry. This is obtained by
_6% SRR considering longer ranged two-body attractive potential in
the spirit of tight-binding lattice than the usual nearest neigh-
-3 3 bor. This study revealed that the dominant pairing symmetry
changes drastically frond- to s-like as the attractive pair
~T3 potential is obtained from longer ranged attraction — if the

interaction is sufficiently short ranged that can be mapped
into a nearest-neighbor potential, at low doping, the system
FIG. 7. Momentum anisotropy of tiegher anisotropic d-wave s described byure d,2_,2 order parameter. Such consider-
symmetry. This higher anisotropitz>_,» symmetry originates from  ation of longer range attraction has also been revealed by
the fourth-neighbor attraction in an anisotropic latice V, terms  acent ARPES dat¥ The role of longer range pair potential
in Eqg. (1)]. The remarkable difference in theanisotropy. of this g, pairing symmetry within weak-coupling theory of super-
d-wave symmetry compared to theual dwave symmetry is worth - nqyctivity has thus been established. We showed that the
noticing. Thisd wave has 2 (k)max/kgTc=5 atp=0.8. momentum distribution of thénigher anisotropic ewave
] ] ) symmetries is quite different from the uswhlvave symme-
etc., remain the same as that of the ordirdwyave. This gap  tries. We found that the typical interplay in the temperature
symmetry at p=0.8 gives rise to a BCS gap ratio dependencies of these higher-ordkrand swave pairing
2A(K)max/kgTc=5.0 against 4.29 in the case abual d  symmetries can be different from what is known. In brief, we
wave. Such higher anisotropiswave symmetries will have pelieve such study of higher anisotropic symmetries is po-
the advantage of avoiding electronic repulsion in stronglytentially important and will stimulate further studies in con-
correlated systems like the cuprates. trast to the usuad- ands-wave symmetries.

IV. CONCLUSIONS ACKNOWLEDGMENTS

We have studied the superconducting phase with the two- A large part of this work was carried out at UFF, Nitgro
component order-parameter scenario, such dg_y2 Rio de Janeiro and was financially supported by the Brazilian
+e'%s,, wherea=xy,x?>+y?. We showed, that in absence agency FAPERJ, Project No. E-26/150.925/96-BOLSA.

ID.L. Cox and M.B. Maple, Phys. Toda48 (2), 32 (1995. 10\, Sigrist, D.B. Bailey, and R.B. Laughlin, Phys. Rev. Lét4,

2D.J. Van Harlingen, Rev. Mod. Phy&7, 515 (1995. 3249(1995.

3D.J. Scalapino, Phys. Rep50, 329 (1995. 1R B. Laughlin, Phys. Rev. LetB0, 5188(1998.

4D.A. Wollman, D.J. Van Harlingen, W.C. Lee, D.M. Ginsberg, 12K Krishana, N.P. Ong, Q. Li, G.D. Gu, and N. Koshizuka, Sci-
and A.J. Leggett, Phys. Rev. Let?1, 2134 (1993; D.A. ence277, 83 (1997; K.A. Kouznetsovet al, Phys. Rev. Lett.
Brawner and H.R. Ott, Phys. Rev. B0, 6530 (1994; C.C. 79, 3050 (1997; A.V. Balatsky, ibid. 80, 1972 (1998; R.
Tsuei, J.R. Kirtley, C.C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Movshvich, M.A. Hubbard, M.B. Salamon, A.V. Balatsky, R.
Shaw, J.Z. Sn, and M.B. Ketchen, Phys. Rev. L&8, 593 Yoshizaki, J.L. Sarrao, and M. Jaimiid. 80, 1968 (1998;
(1994); W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, and K. R.B. Laughlin, ibid. 80, 5188 (1998; T.V. Ramakrishnan,
Zhang,ibid. 70, 3999(1990; L.A. de Vaulchier, J.P. Vieren, Y. cond-mat/9803069unpublishedt Haranath Ghosh, Europhys.
Guldner, N. Bontemps, R. Combescot, Y. Letrai and J.C. Lett. 43, 707 (1998.
Image, Europhys. Let83, 153(1996. 3M. Covington, G. Aprili, E. Paraoanu, L.H. Greene, F. Xu, J.

5Dong Ho Wu, J. Mao, S.N. Mao, J.L. Pong, X.X. Xi, T. Venkate- Zhu, and C.A. Mirkin, Phys. Rev. Let?.9, 277(1997; M. For-
san, R.L. Greene, and S.M. Anlage, Phys. Rev. L&i. 85 gelstran, D. Rainer, and J.A. Sauliid. 79, 281 (1997); M.E.

(1993; S.M. Anlage, Dong-Ho Wu, J. Mao, S.N. Mao, X.X. Xi, Zhitomirsky and M.B. Walker,ibid. 79, 1734 (1997; R.J.
T. Venkatasan, J.L. Peng, and R.L. Greene, Phys. Re®0,B Kelley, C. Quitmann, M. Onellion, H. Berger, P. Almeras, and
523(1994; A.F. Annett, N. Goldenfield, and A.J. Leggett, Jr., G. Margaritondo, Scienc@71, 1255 (1996; J. Ma, C. Quit-

Low Temp. Phys105 473(1996. mann, R.J. Kelley, H. Berger, G. Margaritondo, and M. Onel-
6A.G. Sun, D.A. Gajensk, M.B. Maple, and R.C. Dynes, Phys. lion, ibid. 267, 862 (1995.

Rev. Lett.72, 2267(1994. 14p. Monthoux, A.V. Balatsky, and D. Pines, Phys. Rev. L&T.
"M.B. Walker, Phys. Rev. B3, 5835(1996. 3448(199)).
8C. O'Donovan, D. Branch, J.P. Carbotte, and J.S. Preston, Phy$®Haranath Ghosh, J. Phys.: Condens. MatterL371 (1999.

Rev. B51, 6588(1995. 185t Lenck and J.P. Carbotte, Phys. RevA® 4176(1994.

®M.R. Norman, M. Randeria, H. Ding, and J.C. Campuzano, Phys’A.V. Chukov, D. Pinest al, J. Phys.: Condens. Matt8y 10 017
Rev. B52, 615(1995. (1996.



6820 HARANATH GHOSH PRB 60

183, Mesot, M.R. Norman, H. Ding, M. Randeriaet al. 59, 3357(1999.
cond-mat/981237funpublisheal 203.L. Tallonet al, Phys. Rev. B51, 12 911(1995.

%For a mixed phase symmetry that breaks time-reversal symmetrstM. Mitra, Haranath Ghosh, and S.N. Behera, Eur. Phys. 2, B
locally, like d+e'?a, where a=1so-s or d,, see last Ref. 12, 371(1998.

Haranath Ghosh, Europhys. Le#3, 707 (1998; Phys. Rev.B



