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Numerical studies of the phase diagram of layered type-Il superconductors in a magnetic field
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We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework
of the lowest-Landau-level approximation. We find a first-order phase transition wWB{iTa dependence
which agrees very well with the experimental “melting” line in YB2u;O;_ 5. The transition is not associ-
ated with vortex lattice melting, but separates two vortex liquid states characterized by different degrees of
short-range crystalline order and different length scales of correlations between vortices in different layers. The
transition line ends at a critical end point at low fields. We find the magnetization discontinuity and the location
of the lower critical magnetic field to be in good agreement with experiments inGRB&®-,_ 5. Length scales
of order parameter correlations parallel and perpendicular to the magnetic field increase exponentitlt as 1/
low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation
lengths. The consistency of our numerical results with various experimental features jJC¥%Ba_;, in-
cluding the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg
peaks in neutron scattering experiments is demonstrg®€d.63-18209)02933-1

[. INTRODUCTION experimental data that are not explained by the standard vor-
tex lattice melting picture, most importantly the loss of first-

In the mean-field limit the phase diagram of type-ll su-order behavior along the transition line at highoth for
perconductors has two phases: the normal state and théBCO and BSCCQ®and low(YBCO only) fields. Note that
mixed state in which the lines of magnetic flux are arrangedn end of the first-order phase transition line at a critical end
in a triangular Abrikosov latticé. However, thermal fluctua- Point is not possible for a vortex lattice melting line, because
tions destroy the flux lattice near the mean-field transitiothe phase boundary separates phases of different symmetry.
line and a flux liquid phase enters the phase diagrémthe  Our first-order transition is not associated with any symme-
temperature is reduced the vortex liquid undergoes a firstry breaking. Thus the existence of a low-field critical end
order phase transition to what is commonly assumed to boint should be expected and is directly observed in the
the flux lattice state. This leads to a phase diagram as showgimulation.
in Fig. 1(a). The strong belief in first order melting of the ~ In the framework of a vortex lattice melting picture the
Abrikosov flux lattice rests on the experimental evidence redisappearance of the first-order melting line can be explained
viewed in Sec. | A. Much of the analytical work on vortex by the presence of a tricritical point where the first-order
lattice melting relies on the Lindemann criterion, which transition changes to a continuous one. Such behavior is
states that melting occurs if the mean fluctuation radius of £ommonly assumed to occur as an effect of sample disorder,
lattice point around its equilibrium position has reached avhich is to a certain degree present even in the best crystals.
certain fraction(usually between 0.1 and 0.®f the lattice ~ However, there is no wide consensus on the phase diagram
constant This criterion is not rigorous and does not provide in the presence of disorder. The three most important catego-
a satisfying thermodynamic melting theory. The possibilityries to distinguish are the disordered liquid, vortex glass, and
of a first-order phase transition due to decoupling of the dif-Bragg glass scenarios. For the first case there is no phase
ferent |ayers has also been investigdiedbwever, a decou- which is thermodynamically distinct from a vortex ||QU|d and
pling transition is mostly expected to occur in addition tothus no thermodynamic phase transition. However, a fairly
melting, and the lack of experimental evidence for two sepasharp crossover from fast to slow dynamics may occur
rate phase transitions has led to a widespread belief that ei-
ther there is no sharp decoupling transition or that it occurs B B
simultaneously with flux lattice melting. Our numerical re- \
sults suggest a phase diagram which is fundamentally differ- Vortex Glass \ Vortex
ent from Fig. 1a). It has a first-order phase transition in )
excellent agreement with the first-order transition line in (2
YBa,Cu;0; (YBCO) in the B-T plane(see Sec. I)l. How-
ever, this transition is a decoupling transition and not asso- Vortex Lattice
ciated with vortex lattice melting. There is only one phase in
the phase diagram: the vortex liquid phase, and a vortex T. T T. T
lattice exists only at zero temperature.

Although there is striking experimental evidence for a FIG. 1. Popular phase diagrart® in the clean case an@) in
first-order phase transition in  both YBCO and the presence of disorder. Solid and dotted lines mark first-order and
Bi,Sr,CaCyOg (BSCCO, there are certain features of the continuous transitions, respectively.

Liquid | | fe-ememmmmeesd Liquid
(b)

Bragg Glass
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within the vortex liquid state. The vortex glass scenario prewhich are not fully oxygenatetf. B, is found to increase
sented in detail in Ref. 5 relies on analogy to spin glasswith decreasing concentration of oxygen deficienciem
behavior. The vortex liquid is expected to freeze via a conyBa,Cu;0,_ 5. For =0 a latent heat can be observed up to
tinuous transition to a vortex glass state characterized byhe highest experimentally investigated fields off £ The
short-range crystalline correlations but long-range phase coend of the first-order line thus appears to be strongly corre-
relations. Such a vortex glass phase would be truly superconated with the amount of point disorder in the form of oxygen
ducting with vanishing dc resistance. A popular recent theory/acancies present in the system. The upwards shifs gf
predicts for weak disorder a first-order transition to a Braggwith increasing oxygen content fits in well with the theoret-
glass state, which is characterized by slow, at most algebraigal phase diagram in Fig.(), where it corresponds to an
decay of translational crystalline order. extension of the Bragg glass phase to higher fields with de-
With this inconclusive theoretical background, experi-creasing disorder.
mental and numerical evidence has had a major impact on Another striking feature of the experimental first-order
the picture of the phase diagram of high temperature supetransition line in YBCO is its termination at low magnetic
conductorgHTSC’s) including fluctuations and disorder. A fields, which has been consistently observed in all relevant
popular phase diagram including disorder which accounts fogalorimetric measurement$:*® The latent heat disappears
many experimental features, notably the loss of first-ordefor fields smaller than some lower critical fieB.. The
behavior at hlgh fields, but not at low fields, is shown in Fig.existence of a low-field end point is usua”y found
1(b). “puzzling.” *? The variations ofB,. for specific heat mea-
surements in different samples are large and qualitatively
A. Experimental evidence unexplained in the framework of a vortex lattice melting
This section attempts a review of the experimental evi_picture. ForB]c in near optimally dope_d samplgs with a high
I,evel of oxygen deficiency>0.06, B, is approximately 0.7

dence on which both our and more conventional pictures o[>

0 . .
the phase diagram of layered superconductors are based. We - Measurements dd,c in different samples show th&

discuss only evidence in YBCO, because this is the materid['C'éases with oxygen contetitwhich suggests at first sight

to which our numerical model applies naturally. a correlation with twin density. The value @ in fully
oxygenated, twinned samples is of the order of several

1 First-order transition tesla** The authors of Ref. 12 discuss the origin of the end
point and the variation 0B, in different samples. The fact

There is striking experimental evidence for a first-ordery ¢ detwinning does not noticeably charBg and the ex-
transition in YBCO. The earlier evidence for dlscontlnuou§istence ofB,. in naturally untwinned samples, together with

behavior suggesting a first-order transition came from resi
tive measurementsA sharp drop in resistivity was found to samples, leads them to the conclusion that an intrinsic

occur at a temperature well below thig;, line. Later itwas machanism as a cause for the end point cannot be excluded.
shown that these resistive drops coincide with a discontinuity 5, important relation for our discussion of the value of

in the magnetization, the first thermodynamic quantity foundBI in different YBCO samplegsee Sec. IIl € is that an
to be discontinuous at the transition lintMeasurements of ;.\ Caace in oxygen content corresponds not only to an in-
the latent heat which unambiguously characterizes a firstzyoa5e in natural twin density, but also to a systematic de-

g g 10 .
order transition were made by Schillingt al:™ in 1996. 10546 in the anisotropy in the samples used in Refs. 12
Since then, a latent heat at the first order vortex transition hag,q 15 our work suggests that this change in anisotropy

been observed in different crystals of Y5075 With e than the presence of twins may cause the change in
varying oxygen deficiencie8 (Refs. 11 and 1Pand for dif- g '~ our numerical work provides an explanation for the

ferent orientations of the applied field.The B(T) depen-  ¢yistance oB,. as well as a qualitatively correct prediction
dence of the first-order transition line obeys the standardy jis rapid increase wher is decreased, such as can be

continuum anisotropic scaling.rlfgésunder rotation of the  jchieved by increasing the oxygen content. Another note-
applied f'elq away fro_m the axis. o worthy point which we shall discuss in Sec. IV B 2 is that

The scaling behavior of the first-order transition lines fory,e |5cation of8,, according to magnetization measurements
samples with different oxygen deficienciésand therefore s ot a\ways in agreement with the one measured in specific
different mass anisotropiegis of some interest as it can be paat measurements. In a fully oxygenated sample in Ref. 11
easily compared to predictions of _dlfferent theorencal MOod+he |atent heat vanishes & 6 T while a magnetization dis-
els. In a range of samples the first-order lines have beeEontinuity is still observed down to a field of 4 T.

found to scale with _l)l by Roulin et a}I.;l_2 e, yB(T) col- . Transport measurements reflect the loss of the first-order
lapses on one scaling curve. This is in disagreement With5racter of the transition for low as well as for high
standard London-Lindemann-type vortex lattice meltingfie|gs7.16 The resistance only drops to zero, which would be
theory, which predicts the melting curvzesto scale inverslye expected resistance for a weakly pinned lattice at the very
with the Ginsburg numbeGi as 1Gi=1/y~." The 1y scal- oy voltages used, for a limited range of magnetic fields. For
ing form is consistent with three-dimension@D) lowest  high and low fields only a fractional drop is visible, which
Landau levellLLL ) scaling and our numerical results. disappears completely somewhat below 2 and above 7 T.
Below B, and aboveB,,. as well as in samples where no
latent heat at all is observed, a “step” in the heat capaCity
The first-order behavior at the vortex transition has beememains:®~*2> This behavior has been interpreted as evi-
observed to vanish at an upper critical fi@g. for samples dence for a second-order transition. The sharpness of this

Sthe reproducibility of B, in different fully oxygenated

2. Loss of first-order behavior
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“step” is not altogether convincingsee, e.g., Fig. 3 in Ref. B. Numerical simulations
13). However, the existence of a continuous transition to a large number of numerical Monte Carlo or Langevin

vortex glass state at high fields is expected for the theoreticqjynamiCS simulations of different three-dimensional models
phase diagram in Fig.(#). According to the same phase have with few exceptions provided evidence of first-order
diagram another line marking a field-driven phase transitionyortex lattice melting. The main disagreement between dif-
line from Bragg glass to vortex glass is expected to emergeerent simulations of layered models concerns the question
where first-order melting turns continuoughe “fishtail” whether layer decoupling coincides with this melting transi-
magnetization anomaRp,which correlates with the location tion. In this section we give an overview of different numeri-
of B,.," could be interpreted as evidence for such a transical results and point out what we consider to be the weak-
tion. A lack of sharpness of this feature makes it a candidate)jesses of the respective models used.

however, for a crossover rather than a phase transition. There From the frustratedY and Villain and lattice London
has also been evidence from resistive measurements forraodels there is evidence for first-order melting and distinct

field-driven crossover line as an extension of the first-ordedecoupling” as well as, at least in the thermodynamic limit,
transition in YBCO' only one simultaneous first order melting and decoupling

transition?® Very recent simulations of the uniformly frus-
trated 3DXY model show a vortex lattice melting transition
as well as a second-, possibly first-order phase transition
A vital ingredient of the vortex lattice melting scenario within the liquid phase, at which the vortex line tension goes
which this paper disputes is the existence of a vortex latticeto zero?® In these models vortices are confined to a lattice. In
Experimentally a vortex lattice is indistinguishable from a 3D, a lattice acts as a close grid of columnar pins with infi-
liquid or glassy phase with short-range crystalline order omite pinning potential in the thermodynamic limit which may
length scales large compared to the vortex separation. Eviead to spurious phase transitions. For the LLL, alteration of
dence for hexagonal coordination over large distances can libe phase diagram by the presence of a lattice pinning poten-
seen in YBCO for low fields in Bitter pattern decoration tial which breaks translational and rotational invariance has
experiments? At high fields this technique fails because the been predicted from a theoretical analySis.
vortices are too close to be individually resolved. A powerful ~ There are also numerical models that avoid using a lattice.
method to detect long-range vortex correlations is neutrofNumerical models relying on the 2D Bose gas analogy yield
scattering® The Bragg peaks observed in these experimentsimultaneous melting and loss of phase coherence along the
show that vortex positions are long-range correlated in alt axis?® A different scenario has been seen in a simulation
directions. The correlation length along the field can be enby Wilkin and Jensef’ in which vortex pancakes in differ-
hanced by twin boundaries if the field is oriented alongahe ent layers are represented by particles with in-layer short-
axis. However, data from experiments with different orienta-range repulsive and interlayer attractive interactions. A first-
tions of the applied magnetic field show similar results, andorder transition associated with decoupling of vortices and
thus indicate that the long correlation lengths along the fieldvithout melting character is observed. At a lower tempera-
are independent of the presence of twin planes. The intrinsiture a melting crossover without noticeable thermodynamic
crystalline in-plane correlation length is more difficult to de- signature occurs. While not being affected by pinning to a
duce from neutron scattering data, because twin boundariegimerical lattice, the latter models may give unrealistic re-
and/or pinning to the underlying crystal determine preferredsults because they allow variation of vortex position only,
orientations and can thereby strongly enhance orientationaleglecting fluctuations of order parameter magnitude and in
order?! many cases having unrealistic short-range interacfions.
Although neutron scattering experiments give evidenceSimulations using the Lawrence-Doniad@D) model in the
for long-range vortex correlations, some features of the dataLL limit, which allows for these fluctuations and which has
are unexpected in the framework of a vortex lattice meltinglong-range vortex interactions, show a single first-order si-
picture. The observed diffraction patterns suggest the exisnultaneous melting and decoupling transitfori® All of the
tence of a vortex lattice or a Bragg glass, which means thatimulations mentioned in this paragraph use periodic bound-
the melting transition is expected to be of first order. Such ary conditions perpendicular to the field, which we believe
first-order melting transition should be visible as a discon<can also lead to unphysical resulsee Sec. )l
tinuous appearance of Bragg peak intensity, as the tempera- In the following sections we introduce our numerical
ture is reduced. However, the peaks appear continuouslynodel(Sec. I) and report results from our simulation. Com-
which leads the authors of Ref. 20 to the conclusion that theyparisons to experimental data on YBCO are made in each
must be dealing with second-order vortex glass melting.  section in the context of the relevant numerical results. Sec-
An additional feature of the melting line defined by the tion Ill addresses the numerical phase diagram of layered
onset of Bragg peakiavhich is not mentioned in Ref. 20s  systems in the clean limit, followed by an analysis of order
that it lies in theB-T phase diagram distinctly below the line parameter correlations in space and time in Sec. IV. The
corresponding to thermodynamically measured first-ordepaper closes with a discussion and a summary of our work.
transition lined®!? under the assumption of scaling with
mass _anisotr_opy Iik(Bocll_y_or B 1/y2. This point will be _ Il NUMERICAL MODEL
investigated in more detail in Sec. IV A 2. For the alternative
phase diagram presented in this paper, a continuous onset of Our simulation of a layered superconductor uses the LD
Bragg peak intensity somewhat below the first-order transimodel®! which consists of a stack of planes with Josephson
tion line is just the expected behavior. coupling between neighboring layers. With the supercon-

3. Evidence for a vortex lattice
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ducting order parameter in thth layer denoted ag;,, the 32 36, and 37. The magnetic potentials- BRtan(6/2) ¢,
Hamiltonian for the layered system in a magnetic field perfor which an orthonormal basis of the LLL eigenfunctions in

pendicular to the layers is each layer is given by
Bop qu:Leim"’sinm( 012)cosVab™M(/2) (1)
Hclean: En dof dzr( al ¢n|2+ T| ¢n|4 (47TR2)1/2
where A, =[ (Nap+ 1)!1/(Nyp—m)!Imi ]2 for 0=m=N,;.
. _ 1/2 . .
+ (—ihV—2A) |2+ I s 1— U2 ], Note that we use units of length,= (%/2eB)~<, which fixes
2mab| ol 1= ol the sphere radius &= (N,;/2)*2.

The order parameter in every layer is expanded in the

whered is the layer periodicityd, is the layer thickness, and above basis set as

B=VXxA, which we shall take as constant and uniform. The N

same Hamiltonian can be read as the finite difference ap- n(0,0)=Q D, Vymdm(0,d), 2)
proximation to an anisotropic continuum model with m=0 '

y(nd)=\d/do,, B=PBopd/dy, and m,=#2/2Jd%. In a
first approximationa(T)=a'(T—T.) and B,p(T) is con-
stant;a’, B5p ,J>0.

We simulate the LD model witN,,, vortices per layer in
N, layers. Along thec axis we use periodic boundary condi-
tions. In theab planes we chose a different, more unusual
approximation to the thermodynamic limit of an infinite
plane. The layers are taken to be of spherical geometry with
a radial magnetic field. The reasons for our preference of this
geometry to the more widely used geometry of a plane with
periodic boundary conditions have been discussed in detalil
by Dodgson and Moor& The main advantage is that the
spherical geometry guarantees full rotational and translawith U, ,({v, m}) as defined in Appendix A. The 2D effec-
tional symmetry, which periodic boundary conditions do not.tive temperature and field parameter for each layetjs
One example where the spherical geometry captures the (doh/2eB8,pBksT) ey,  with  ay=a(T)+eBh/myy,.
physics better than periodic boundary conditions—despitdhe scaling parametes relates to the Josephson coupling
the topological defects imposed on the triangular latticeconstant] as7=J/|ay|. We can define an effective masg
ground state on the sphéfe-is particles interacting with the via 7=%2/2m.d?| ay|. Theny/7 is the ratio of the 3D mean-
1/r*? interaction. Here simulations on a sphere show alreadyield coherence length to the layer periodicityy= & /d.
for moderate system sizes the genuine continuous transitioNote that for a HTSC material the 2D parametggg andd,
to the crystalline stat&3* while with periodic boundary are effective microscopic properties of the copper oxide lay-
conditions a spurious first-order transition occurs even fokrs and essentially unknown. However, they enter the simu-
very large system sizes. A similar situation exists for simu-ation only via apr=(27dy/BopksT) Y2y where they can
lations of particles which interact via a logarithmic repulsive be replaced by the layer periodicityand the bulk3 using
potential®* an often-used model for vortices in two dimen- the relation8=d/doX Bap -
sions. Simulations using periodic boundary conditions for The state in the LLL-LD model depends on two dimen-
this system suggest the presence of a first-order melting traionless scaling parametess and ». It is useful to have
sition, but no transition is seen at all when the particles moveéwo scaling parameters which can be thought of as some-
on the surface of a sphere. In Ref. 34 it was argued that fothing physical, e.g., one characterizing temperature and the
the logarithmic interaction the crystalline state was unstablgther coupling strength between layers. In this sensg,
at any finite temperature against proliferation of screene@nd s are not very appropriate. Becaudg<d, the tempera-
disclinations. Hence the simulation on the sphere where n@re parametetw,; goes to zero independently Bfand T in
crystalline phase at finite temperatures is found gives th%Ed—)O limit of a continuous system. The Coup"ng param-
correct behavior. This last result is especially relevant for thester 5 includes a factof1/a|, which means that it diverges
choice of boundary conditions for our model, because theyt the mean fieltH.,. For these reasons we choose as effec-
logarithmic repulsive potential is very similar to the vortex tive temperature and coupling strength two different param-
interactions in the LLL limit studied in this paper. We shall eters that depend om,r and 7.
therefore use spherical boundary conditions throughout in  For the temperature parameter in a layered model describ-
this study. ing a bulk sample, the 3D version of the LLL scaling vari-

For each layer) is expanded in eigenstates of the squaredhple o2 stands out as an appropriate candidate. It is given by
momentum operator<i%V —2eA)2. We retain eigenstates

belonging only to the lowest eigenvalueB# (the LLL ap- 32 2358 10Tl (T—-T.)+B
proximation, which is a useful procedure over a large por- @ L c2/ Tl (T~ To)
tion of the vortex liquid regimé® Our numerical model is an kge*?ug Ky (BT)??3

extension to the model of a spherical thin film used in Refs. 4)

where Q= (27kg T/ Bopdo) ¥4 Orthonormality of the LLL
eigenfunctions can now be used to express the Hamiltonian
in terms of the LLL coefficients/, ,, and only two param-
eters,a,t and 7:

Hclean Nc Nap 2Nap
— = 2 2
kBT nzl a2TmE:0 |Vn,m| + 2Nab pZo |Un,p|

Nab
+|a2T77|mE:O |Vn+1,m_Vn,m|2 ) €)

2/3

aT=
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which can be expressed in terms @§; and 7 as |a+|? B/T¢ ———
= n(2a,7)*. At low temperature$at|®? behaves as T/ A [ ., ‘ransition in simulation
good measure of coupling strength is the produgt; 7| 6 3 critical end point
which multiplies the coupling term in the Hamiltonian. It is 5L o experiment (Welp et al.)
in Sl units given by N e experiment (Schilling et al.)
pir |1 1 3
| @zt 7| (893|<BM0 Ky2d32 (BT)V2’ 5) i 3 T.
Other than the factor ¥BT, |a,77| contains only constants S ST \y
and therefore varies slowly for rather a wide rangexqf. It 8 82 84 86 88 90 92T(K)
can thus be regarded as a material constant over considerable A 4zMm/G
regions of theB-T plane. The limiting caséw,r7|—0 de- ) | o
scribes the 2D system, while smélt,r7| means strongly C $
layered characteristics. For constant, the limit |17 021 ° o
—oo is the continuum limit, in which all system properties a ° 6
depend onx; alone. Note that our model parameters depend ] LS
on the bulk material parameteks mass anisotropy, layer o1l
separatiord, aBCz/aT|T:TC, andT, as well asB andT only. "t e simulation, Ny, =72 .
All of these are for HTSC'’s more or less well known from [ W simulation, N, =100 ‘O T
experiment. [ O experiment o \ll
As in Ref. 36, our simulation follows Langevimodel A 0 81 86 88 9'6‘ 2 T

dynamics. We drive our system by the time-dependent
Ginsburg-Landau equation, discretized in time and expanded

. . ! . FIG. 2. Ph di d tization di tinuityp).
in the appropriate eigenfunctions: ase diagrarfa) and magnetization discontinuity)

Experimental data are taken from Refs. 8,(&) and 10(b). (For

N, see Sec. Il B.
IH(t)
— +Até, (1), (6) _
Nam k=60, the mass anisotropy="7.5, the slope of the mean-

field transition IinechzlaT|T=TC= —2T/K, the mean-field
{Tc=92.5 K, and the layer separatiol+11.4 A.

Vi m(t+ A —v, n(t)=—AtTl

The complex random noise variablés, are drawn inde-
pendently from a Gaussian probability distribution, so tha
their magnitude has a variance?/At=1, where ¢?
=2I'kgT, so thatAt is the only free parameter. We chose A. Continuum limit

At=0.15(see Ref. 3B . .
Notice that in our model the densif of the vortices is Fm”.‘ LLL scaling we know.that all thgrmodynamm
Rroperties depend o,y alone in the 2D limit (a1 7]

the same in each layer. If the spherical geometry is picture . X o
Y P g yISp —éO) and onay alone in the continuum limit|@ 17| —).

as having a monopole at the center of the sphere to genera]I: 3 sh how the th I f a tvoical tit
a flux No,®q, which passes through the successive layers igure 5 shows how the thermal average ol a typical quantity

Of i i @ — (|4 2\2
then the density of vortices is less for the layers further fro of Interest, h_ere the A_bnkosoy rat;@A—(|¢|_ .>/<|‘./’|.> , be- .
the center of the sphere. We believe it is better to avoid thataVes In the intermediate regime of a positive finite coupling
image and regard the problem as being generated by tha'€nNgth-

Hamiltonian for which the quartic coefficients are as given in In the h|gh—tempe_rature regime 2D scal[ng applies; in the
. low-temperature regime, however, 3D scaling becomes more
Appendix A. ! > .
appropriate. If we look at our model as a finite difference
c s G approximation to the continuum case, this means that this
lll. NUMERICAL PHASE DIAGRAM approximation is for the same layer spacdid =1/ 7 bet-

As an introduction to our numerical results we show in

Fig. 2@ our numerical phase diagram for the clean case in 4 Ba
comparison to experimental results. The only phase present y¢[ L6k oA
. . : - . C C loeml: o,
in this phase diagram is a vortex liquid. We see a first-order r [ ®0.0 o
transition line between two vortex liquid states with a critical LSE 00.05 off

. . . . . I = 0.4 | e
end point at low fields, which agrees well with the experi- 14l 039 " g
mental YBCO “melting” line. The magnetization jumps we [ A128 of
observe are shown in Fig(l®. They are in very good agree- L3F 5 of
ment with data for YBCO from Ref. 10. The magnetization N Lafe
jumps in these experimental measurements are very likelyto "™“b. ., .1, v v v b Tl vt
be of thermodynamic origin, as they are found to be consis- -8 -7 -6 -5 $ 6 4 2 0

. . . Olp Olor

tent (according to the Clausius-Clapeyron relajiovith the
latent heat data measured in the same saMptegures 2a) FIG. 3. Abrikosov ratioB, for a range of coupling strengths

and Zb) were obtained using standard YBCO values for thela,;7| plotted against the 3D and 2D effective temperature vari-
fitting parameters; viz., for the Landau-Ginsburg parameteablesa and a,7. Solid lines are guide to the eye.
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[op — | . —0 of independent 2D layers. If we approximate the transi-
[ gg‘é‘;?}im 0241 ﬂ tion value ofa as constant for differerjv,7 7|, this trans-
§;>> o2k /-e&o lates to a dependence afb on|a,r7| along the transition
o [ / line as a1 —|ayry| Y3 As the coupling is reduced to
b o 0-2:‘ (b) zero, the 2D transition temperature diverges;— —.
o OJSM This would imply that there is no finite-temperature phase
: (Symbols transition in two dimensions, in agreement with 2D simula-
(@) E oa6p  asbelow) tion results?®3"® Such behavior would be a natural for a
] -8 15 o transition of a predominantly decoupling nature, which can-
H r not occur in thin films. However, we find that direct exten-
1 » sion of our numerical transition line to even lower couplings
1o r o 081 (:Syg:fg‘l;) _Dﬁeq and thereby numerical observation of the 2D limiting behav-
: 07k PR ior are impossible due to the finite-size effects analyzed in
N,: O : i / (©) Appendix C.
< Figures 4b)—4(d) show examples of the kind of measure-
« ment used to locate the first-order transition. The system dis-
B plays hysteresis upon heating and cooling. We mark the tran-
10 5 sition in the middle of the observed hysteresis loop. The
hysteresis decreases with sweeping r@pically 10 000—
Pk 20000 time steps per data poinand for a few cases we
1 have confirmed with equilibrium measurements that the
’ equilibrium transition coincides roughly with the middle of
0.95 . () the hysteresis loop. The coupling values for which we show
0ol “:\ hysteres_i_s measurements correspond in decreasing_(_)rder first
L '0‘2%21' down_up “A“ ! to the critical end point, second the nearest to the critical end
085 7] 25 | & & ‘““h point where we have measured hysteresis, and third an arbi-
T T trary, low coupling value. The discontinuityp in the order

o parameter density, given by p=(atB/2may) X {|#|?), is

FIG. 4. Plot(a) shows the numerical phase diagram. First-orderiound 0 be more or less constant betwgepry| =0.1 and
transition points are plotted in ther-|a,77| plane. Plotsb)—(d)  1-5- A decrease idp is observed beloir,77|=0.1. How-
show order parameter densipyand the degree of layer indepen- €Ver, this decrease at low couplings is possibly due to finite-
dencel’ upon heating and cooling. Note the hysteresis in the sysSize effects, which are in detail described in the Appendix C.
tem, the clear first-order behavior foe,r7|=2 (solid lines are The rapid decrease to zero betwe¢nm,rn|=1.5 and
linear fits of p above and below the transitipnand the lack of |a,77|=2.5 appears system size independent.
first-order behavior fota,r7|=2.5. N, varies between 8 and 80 The plots of the hysteresis in the degree of independence

for |a,r 7| between 0.02 and 2.5. Fpr,r77|=2.5, p is offset by of neighboring layers, given by
—0.05.

()= y(r+dco)|?)

ter at low than at high 3D temperatures. This is a natural I'= e
result as correlations along the field direction increase in the
layered system ag; decreases. We are, however, not able toreveal more about the nature of the transition and its disap-
simulate system sizes that behave fully continuumlike apearing. For low coupling, there is a large jumplinat the
moderate temperatures. The numbers of layers used for thensition, which decreases throughout parameter space until
data in Fig. 3 are chosen to have the correlations along theit is very small just before the end point. The decoupling
axis distinctly smaller than the system size, which means focharacter of the transition gradually decreases along the tran-
|a,rm|=12.8 even at the moderate temperaturevgé — 6 sition line until it disappears at the critical end point. Further
anN. of 200. discussion predicting the existence and approximate location
of the critical end point from the decoupling character of the
transition and more detailed numerical results concerning the
critical end point will be given in Sec. Il C. The reader

Figure 4a) shows the phase diagram in terms of simula-should note that in our simulation the onset of decoupling
tion parameters, where data points mark the location of firstdoes not imply the onset of a superfluid density at the tran-
order transition points as found upon heating and cooling thsition.
system. The logarithmic scale is chosen for even data distri- The magnetization discontinuities in Fig(b2 are calcu-
bution. As|a,r7| increases and the system approaches th&ated from the discontinuities ip. The magnetization in the
continuum limit, the transition line terminates at a critical LLL model is 47M = —(uqeh/myp){|#|?), which is in
end point. Note that along the transition ling is approxi- terms of our simulation parameters 7# ==[B
mately constant, which means that the field and temperature B.,(T)]p/ ar«2, whereB is the applied magnetic field.
dependences of the transition line behave as expected forThus we can work out the magnetization discontinuity from
continuum model where: is the only scaling parameter in the discontinuity inp taken from the two linear extrapola-
the system. Another point of interest is the linit,17| tions at the transition. The data points in FigbRrepresent

B. First-order transition
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|ayrn|=1, 1.5, 2, and 2.5 foN.= 50, 60, 60/80, and 80. For Ca
these four transition points we have an average valueof i
= —7.72, which yields the transition line in Fig. 2. 10 all
The magnetization discontinuity is thermodynamically E
linked to the entropy change at the transition by the

Clausius-Clapeyron relation 2
10

dHeor
AS=—AM—>, 7

10
where dHro1/dT is the slope of the first-order transition
line. We cannot measurAS directly. However, the good
agreement iMM and the first-order transition line between
simulation and experiment on the one hand and the consis-
tency of the experimental S as calculated from magnetiza- ) ) ) )
tion and latent measurements for the samples in Ref. 10 on FIG. 5. Density-density correlations along theaxis near the
the other hand imply agreement fArS between simulation end of the first-order transition line and the critical end pdgge
and experiment. Note also the clear change in slope of th'@seb. Note the decreasing difference in correlations between

linear fits top at the transition. Locallyyt is linear inT, and i_7'6 andin: ~7.8 as the transition disappears. Hry7|
. \ . =2.5 anday= —7.8 we see evidence for a long length scale asso-
via Maxwell’s relation

ciated with fluctuations in the average order parameter density. Sys-
tem sizes areN,,=72, 220<N.<260 for ay=—7.6 and N,
=270 for ar=—7.8.

S
oH

_&M
T

H
_ S tion line with increasing coupling parametédw,r7|. Be-

the sudden change in slope pfat the transition implies a causeg;| defines the minimal extent of order parameter cor-
change in slope of the entropy and a steplike feature in thga|ations, a high-entropy state with decoupled layers is not
specific heaC=T(dS/dT)g, with a lower value on the low- possiple if&=d. And indeed, we will in the next section
temperature side of the transition. This is consistent withocate the critical end point where the transition disappears at
experiment. The relative change in slope we find from thqazm|=2-55 and a;=—7.75, which corresponds tq/7

fits in Fig. 4 is 8%, while the equivalent experimental change_ 1 g Very near the zero-field transition temperatlige

in the heat capacity as taken from Fig. 3 of Ref. 13 is of the,ere g;>d, the system can be expected to behave like a

order of 5%(for a derivation of this value see Sec. II.E on4inyum and thus a decoupling line cannot be expected to
The fact that our simulation gives evidence for a step in th eachT
.-

specific heat is consistent with results from a theoretica
analysis showing that the step seen in experiment can be

accounted for by thermal fluctuations within the LLL N i ]
approximatior?® Near a critical end point we do not only expect all discon-

tinuities to disappear, but we also expect there to be a diver-

gence of the length scale of fluctuations in the order param-

eter density of the system. We therefore looked at the
Until now we have as evidence for a critical end pointdensity-density correlations of the order parameter,

only the fact that the hysteresis along the transition line

eventually becomes unobservable. To more firmly establisiCy(r’,t")

its existence, we shall consider how the nature of the transi-

tion may lead to a critical end point. _<|z/;(r,t)|2|z/;(r+r’,t+t’)|2>—<|z/;(r)|2><|</f(r+r’)|2>

2. Divergence of length scales

C. Critical end point

1. Why does the first-order transition disappear? <| ¢|2>2

A well-known first-order phase transition which ends at a ®
critical end point is that of the ordinary liquid-gas transition. in the case where’ is a vector parallel to the axis andt’
Here the phase transition separates a liquid state with sma# 0. This correlator is expressed in terms of thermal aver-
interparticle separatiod; which takes advantage of the at- ages of the LLL coefficients in Appendix B 1. Plots of these
tractive interparticle energy which exist at distanckg,,  correlations near the critical end point can be seen in Fig. 5.
and sod,~d,;,, from a gaseous state with large interparticle  There is evidence of two length scales in the vicinity of
separationgdy which is favored by a high entropy. If the the end point. The short-distance decay of the correlation
density is increased to the point where it redudgs$o be of  function is dominated by the positional correlations of the
orderd,,,, the transition line ends. We believe that in our vortices in the different layers. This length scale is mostly
case the entropy advantage of the high-temperature phasetermined byx; and changes slowly in the vicinity of the
arises when the order parameter values in adjacent layers atgitical end point. The diverging length scale is thus not that
uncorrelated, i.e., when the layers are decoupled. The ratio @f positional correlations of the vortices, but instead is asso-
the mean-field coherence length perpendicular to the layersiated with local density fluctuations. This is not surprising if
to the layer distanceg) /d= 7, increases along the transi- the analogy of an ordinary liquid-gas transition is considered,
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where crystalline correlations on a microscopic scale corretation betweerd=0 (B||c) and 6==/2 (BLc), the transi-
spond to positional vortex correlations. A noteworthy featuretion line should scale according to anisotropic continuum
of the short-distance decay of vortex correlations is that thecalind” with 6 as

difference between curves at=—7.6 andat=—7.8 de-

creases as the coupling parameiesr 7| is raised past the B(6,T)=1v4B(0,T),
ﬁzﬁyf)omt, as one would expect for a disappearing dlsconu&vhereyﬁ is given by y,=(co€ 6+ sir? 1) Y2 This form

Density correlations diverge at the liquid-gas critical eng®f scaling has been observed for the first order transition line

13
point on a mesoscopic scale. Analogous correlations on Y YBCO. . .
larger scale appear in the numerical data between Our argument linking the nature of the transition to the
ar=—7.6 andar=— 7.8 as|a,1 7| is increased to its criti- Iocation. of_ the end point_ applies for any .ori(_antation of_ the
cal end point value. Figure 5 shows fpi,r7|=2.5 and magnetic field. The location of the end point is for all orien-
. 2T - .

at=—7.8 evidence of a second, much longer length scalé‘ations given byg.~d, where {; is the coherence length

governing the decay of the correlation function at large dis_along thec axis. ForBj|c this condition is equivalent g

. . _ 1/2 . e _
tances. This length scale is associated with the density flucs 9 Udsmg gH__ﬁ/(IEZBmgllaraD : tc:“S cond;]t.lorr: canl bel_ti:ansh
tuations at the critical end point and only becomes visibldormed to a simp (T) dependence which scales like the

once it is larger than that of the vortex correlations. Due tgransition line itself. The end point where both lines cross

the small amplitude of these density fluctuations, very |0ngtherefore equally just shifts to a higher field &(0)

simulation times are needed to see the correlations within the Y¢Bic(0)- This form of scaling has been experimentally

statistical noise. observed for the end point in YBC8.

3. Variations in By,

D. Anisotropic scaling and the value ofB. The location of the numerical critical end point agrees

The location of the numerical first-order transition is to well with the experimental data of Fig. 2. However, as al-
first approximation a line of constamt; and thus in agree- ready mentioned in Sec. | A, the experimental valueBgf
ment with 3D LLL scaling. This is, although surprising for varies widely between different samples. Approximating
very low couplings, not unnatural in YBCO, where even forand T as constant at the critical end point, we obtain from
the highest fields and lowest couplings, e.g., for a transitiorEq. (5) the scaling relatiorB,.«1/y*. The x dependence is
at B=20 T, T=65 K, |at7| is of the order 1/2 and the B, x1/x?. These two scaling relations show tiBat depends
correlation length along the axis above the transitio(see very sensitively on material parameters.

Sec. IVA of the order of ten layers. The continuum ap-  We can use the fit in Fig. 2 witg=7.5 andB,.=0.7 T as
proach can thus be expected to work fairly well for YBCO. reference point to compare the location of the critical end
point in our simulation to experimental values Bf,. For
1. Scaling with anisotropyy samples with measured anisotropiesyef 7.8 (Ref. 13 and
v=17.0, 5.9, 5.3Ref. 15 specific heat peaks have been mea-
sured down tdB,.=0.7 T(Ref. 13 andB|.=3 T,45T,6 T
(Ref. 15. The rapid increase d8,. with decreasing anisot-
ropy is in qualitative agreement with a scaling laBy;

(Te—T)32 x 1y,

- ' Quantitative analysis however yields only poor agree-
ment. The predictions using the above reference point and
scaling law deviate from the experimental value by15%
(Ref. 13 and —70%, —60%, —50% (Ref. 15. There are
many possible reasons other than variationsxiffior this
quantitative disagreement. First, the finite width of the tran-
sition due to sample inhomogeneities may lead to a spread-
ing out of the specific heat peak, which can make it unde-
fectable for the lowest fields abovB,. and lead to
overestimates oB,.. Second, any aspects of the physical
coupling which are not represented in our model could lead
to corrections in the effectivéa,r7| and should thus be

We cannot in our simulation change the orientation of theincluded for an accurate description.
applied field. We can, however, using the known properties A third, very important point is that nedr, critical fluc-
of the numerical transition discuss the expected behaviotuation effects arising from the zero-field transition are not
upon such a change in field orientation. We believe that th@egligible and especially affect the divergenceépt Such
first-order transition is predominantly of a decoupling nature effects extend to fields of the order @ixH,(0),* in
However, it is important to keep in mind that the coupling YBCO ~1 T. Up to these fields, the LLL approximation is
between layers in our simulation is not magnetic coupling ofinvalid because higher Landau levels are needed to allow for
vortex segments, but Josephson coupling of the order parargritical fluctuations. Thus the end point lies in a region where
eter. This type of coupling is independent of the orientationthe LLL approximation is inadequate, and we cannot expect
of the flux lines with respect to the axis. Under angle ro- our estimates of the position of the critical end point to be

According to Eq.(4) the B(T) dependence of a line of
constantat ban be approximated as

K2’y

Thus we expect our transition line in samples of different
anisotropies to scale &y:1/y, which is the experimentally
observed scalind? This form of scaling disagrees with a
London-Lindemann-type melting theory. The variation of the
location of the low-field critical end point with anisotropy
is discussed at the end of this section in the context of
general analysis of variations B .

2. Variation with the angle of the applied magnetic field
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guantitatively accurate. However, we can expect that such
fluctuations well makeB,. smaller than estimated from the
LLL approximation. Critical fluctuations causg to diverge
faster than in the LLL approximation, so it reaches a value
O(d) at temperatures closer . than in the LLL approxi-
mation. This in turn will reduce the value & .

In addition, despite extensive finite-size effect analysis
(see Appendix Cwe can never fully exclude the possibility
that the location of the end point would shift to lower fields
if we used much larger systems. The existence of an end FIG. 6. Schematic view of a typical experimental specific heat

point is fairly securely established by _our physical _argumentcurve without first order peathick line) with normal-state contri-
We have also made sure that the ratio of correlation lengthgtion (dashed lingand mean-field valuéhin line).

to the linear system dimensiong, /L, andl /L., decrease

rather than increase as we pass the critical end point witerences can be compared and give respective values for the
increasing|a,17|. However, the general tendency of small location, width, and height of the specific heat peak or
system sizes to decrease discontinuities at the transitiofstep.” For a clearer picture of how the experimentally mea-
could have led to an overall underestimate of the jumps dusured specific heat splits into normal and superconducting
to finite-size effects and thus to an overestimat®gf. contribution as well as how it compares to the mean-field

The presence of sample disorder can increase the value oéntribution, a schematic plot is given in Fig. 6.

B,.. YBCO samples exhibit clusters of oxygen vacancies Farrant and Gough give in Ref. 42 the superconducting
and large-scale sample inhomogeneities. Oxygen clusters p#pecific heat data already in terms of LLL scaling param-
at low fields a considerable fraction of the vortex matter, sceters. The plotted quantity i§,/Cs ;. The data in Fig. 3
that the field can be divided &=Bpjnneqt Brree- The frac-  from Ref. 13 which shows the specific heat in YBCO is
tion of pinned vortices will be increased by the presence offiven asC minus C(B=0). The latter near the “step” are
sample inhomogeneities which provide regions at an effecapproximately equal to the low-temperature valGg s
tively lower at that exhibit stronger pinning. Such a de- +C,, because forB—0, ar— —%. This approximate
crease in the effective field of the free vorticeB;.<B)  equality is also visible in Fig. 1 of the same Ref. 13. The
could considerably increase the obsengd. plotted quantity C—C(B=0) is therefore approximately

Considering that the magnetic field at the end point deequal toCs— Cg pns.
pends so sensitively on the model parameters, critical fluc- The peak inCg in niobium obeys LLL scaling and is
tuations and disorder, the good quantitative agreement witfound at ay~—7. The specific heat maximum in YBCO
the data of Refs. 10 and 13 seems more than can be reasarccurs at temperatures just above the extrapolation of the
ably expected from our model, and is probably a product ofirst-order transition line, which is located a{~ —7.8. For
chance in whictB,. is in our simulation increased by inac- the example curves f@=0.25 T andB=0.5 in Fig. 3 from
curacies of our model and/or finite-size effects by the sam®ef. 13, the center of the broad specific heat peak i§ at
amount that it is increased by disorder effects in the samples-91.4 K andT=~90.7 K, respectively, which both translate
in Refs. 10 and 13. Indeed the small crystal recently studiedvith the same previously used YBCO material constants to
in Ref. 40 has a value d,. much smaller than in Refs. 10 «t=—7.2. This is in very good agreement with niobium.
and 13 which points once more to the sensitivityByf to The width of the specific heat rise in niobiuta~2.
disorder effects. ForB=0.25 T, no sharp step feature is visible in the YBCO

data. The specific heat rise from the low-temperature value to
N _ the maximum takes place in the temperature region 91-91.4
E. Beyond the critical end point K, which corresponds td ar= 2.8, broader than in niobium.

It is often supposed that the first-order transition in YBCOFor B=0.5 T one might suspect a steplike feature located at
changes to second order below the end point, where no lateB0—90.5 K. This width corresponds fowr=2.3, a value in
heat is visible but a “step” in the heat capacit¢  agreement with the niobium data.
remains:>'2 We believe however that this “step” can be  For niobiumCs is at its maximum 5% larger thaBg .
identified with the onset of a small rounded peak in the suin YBCO we have to divide the plotted data I s to
perconducting specific he@,=C—C,, (n for normal statg ~ compare with this valueCs s is roughly given by the step
which is known to arise from thermal fluctuatioHsin this  in C at the zero-field transition, which we take from Fig. 1 of
section we shall examine experimental specific heat data arRef. 13 asCg ,~60 mJ/mol K. For all fields the specific
numerical data in the light of this possibility. heat “step” in YBCO is of the order of 1.5 mJ/mol &

The specific heat peak due to thermal fluctuations hasvhich gives Cq—Cg )/ Csmi=~2.5%, which we consider
been observed for example in niobium by Farrant andas reasonable agreement with in niobium. Exact agreement
Gough?? where observations are in good agreement withcannot be expected for the following reasons. The value of
theoretical prediction& We find that the location and the Csms we used for YBCO is a rather crude approximation.
height of the peak as well as the length of the (isewidth  For niobium Cg ¢ is also somewhat uncertain, because it
of the “step”) in C from the low-temperature valu€s .y  depends on the choice @, (see Fig. § which is not di-
(mf for mean field to its maximum agree well for the nio- rectly measurable but extrapolated from fits to higher-
bium and YBCO measurements taken from Refs. 42 and 13emperature data. Also the data in YBCO at fields beBw
We shall now explain in detail how the data from both ref-are in a region where the LLL approximation is inadequate.
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A. Static order parameter correlations

We have measured various different kinds of equilibrium
order parameter correlation functions, including the structure
factor as previously defined in Ref. 32 and given by the
normalized density-density correlator in E§) (below) for
0.95 Ar=0 along thec axis. The peaks in the structure factor,

; which occur at the reciprocal lattice vectors of the triangular
lattice, reflect the crystalline correlations within each layer.
To examine order parameter correlations alongcthgis, we
have measured three different correlators. First, we measured
the density-density correlations along a line parallel to the
magnetic field,C4(Ar|/c), the same correlator that gave in

FIG. 7. Plots of the order parameter denitypon heating and Sec. III.C evidence of a diverging length scale at the'critical
cooling for |a,r7|=3. Solid lines are linear fits for the regions end point. Second, we measured the decay oathEourier-

above and below the extrapolation of the first-order transition line{fansformed density-density correlations, which are for

extrapolated as dotted lineN,, =72, N.=80. Ar|lc=0 the structure factor of the system, depending on
Ar||c. Just as for the structure factéme normalize by the

If the step feature is mainly due to the increase of LLL high-temperature limit, so that the relevant quantity is
fluctuations, it should be observable in our simulation. A )
“step” in the superconducting specific heat corresponds to a Ca(Kllab,Arfle)/ lim Cq(k|ab,0), ©)
change in the slope of the magnetization, in simulation terms Ciingy
a change ofdp/dat. Figure 7 shows upon cooling and  with
heating for|a,r7|=3, well beyond the critical end point.

82 8

OCT-.

The data forar<—7.9, i.e., below the region where the first 1

order transition takes place in more layered samples, is very Ca(k[ab,Ar[c)=-———[(|4|?(k,r)|4|*(—k,r+Ar))
strongly affected by hysteresis. The sweep rate being of the (l41%)

same order as usual, this is a sign of very long fluctuation — {2k, )2 (— K r+Ar)].

time scales. We shall come back to this point in Sec. IV.

Linear fits to the data for both cooling and heating below andrhe definition of this correlator in its generalized, time-

above the extrapolated transition line;<—7.9 andar> dependent form in terms of the LLL coefficients and the

—7.8, give a change in slope of 8%, larger than in the exhigh-temperature limit are given in Appendix B 1, E¢82)

perimental data from both niobium and YBCO. and (B4). We find that this correlator decays most slowly
In summary we have seen that the specific heat “step” inwith Ar|[c for kay~G, the first reciprocal lattice vector. In

YBCO at different fields has approximately the same ampli-2ddition to Cq we also measured the phase correldfpr

tude as well as width and position when expressed in terméefined as

of a7; i.e., the “step” feature obeys LLL scalin@.LL scal- . A

ing has for the steps associated with the first order transition C.(Arc)=a B{Y™ (1) g(r +Ar)) 10

previously been established in Ref.)3&he corresponding P T 2may '

data from our numerical simulation are not equilibrated andWhich is expressed in terms of the LLL coefficients in Ap-

therefore not very accurate, but consistent with a similar endix B L. The prefactor is chosen such that 3t0) is

“step” feature. The semiquantitative agreement betwee he order parameter density In Fia. 8 we show examples of
YBCO and niobium strongly suggests that we are dealin . pe y 9. p
tatic density and phase correlations above and below the

with the same phenomenon and therefore that there really %ransition for| a7 =1, which corresponds to a transition
- : e 1y =1,
no sharp specific heat step in YBCO beyond the critical en emperature of 83 K in YBCO.

point. Figure 8a) shows examples of the structure factor with
Lorentzian fits. The inverse width at half maximus,?, of
the peak near the first reciprocal lattice vector is proportional
The existence of the critical end point implies that noto the crystalline correlation length,, within one layer?
symmetries are broken at the transition, which means it cand '=lap/2l,. No qualitative change in behavior is visible
not be a liquid-crystal transition. Investigation of the natureacross the transition, just a sharpening of the peak, which
of order parameter correlations described in this section corgorresponds to an increaselgf,. For the above fits,, /I,
firms that the state below the transition is a vortex liquid.=2.66, 3.14, 3.88, 4.94, 5.46. This is shorter than the radius
However, neutron diffraction patterns corresponding to a tri-of the sphereR/I ,=/N/2=6 and shorter than the average
angular lattice and an electrical resistance close to zero belistance between the 12 disclinations imposed by the spheri-
low the first-order transition line suggest very-long-rangecal geometry/47wR?/12~R. This means that finite-size ef-
vortex correlations. We shall argue that the extremely fasfects on this data are not expected to be too large.
growth of correlation length scales and relaxation time scales Figures 8b)—8(d) show examples of measurements of the
below the first-order transition, which has been theoreticallythree different correlators along thexis. Figure &) shows
predicted in the low-temperature regifieas well as ob- the phase correlator, Fig(@ the real space density-density
served in our simulation, can account for these effects. correlator, and Fig. @) theab Fourier-transformed density-

IV. ORDER PARAMETER CORRELATIONS
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FIG. 9. Logarithm of correlation lengths plotted agaihst
Solid lines represent the growth rate for the low-temperature regime
as predicted from perturbative expansions around zero temperature
(d) (Ref. 43. Dotted and dot-dashed lines mark the width of the first-

order phase transition from the magnetization discontinuity for

|aorm|=0.05 and a1 5| =1, respectively. Note the fast growth of

length scales fofta,t7|=1 below the phase transition. Note also

that the data below the transition fo#,77|=0.05 is strongly af-
s r/&n fected by finite-size effectd {,~10/,,>R=6l,).

above transition:

FIG. 8. Static order parameter correlations above and below the 1. Temperature dependence of correlation lengths
first-order phase transition ft,t7%|=1. (@) Structure facto(with

Lorentzian fit3, (b) phase correlations along tleaxis. Plots(c) . idth at half . f the fi K in th
and (d) show density-density correlations along thexis, where Inverse width at halt maximum of the first peak in the struc-

the correlator in(c) is in real space for points with the same coor- (Uré factor,s g which is proportlonﬂ to the length scale of
dinates in theab plane, and the correlator i) is in Fourier space  iN-plane crystalline ordetq,/1,=25"7, and on the right the
near the first reciprocal lattice vector of the triangular lattiée, €ngth scalel; as obtained from linear fits to the decay of
Note that in plots(b),(c),(d) they axes are such that parallel linear density-density correlations. The length scales have a discon-
fits correspond to the same length scale. The growth of length scalduity at the transition, which is found to grow with distance
is slowest for the phase correlations (i and fastest in(d). The  from the end point, as one would naturally expect. This dis-
system size itN,,=72, N.=270. continuity is clearly visible fol@,17|=0.05. At large cou-
plings, finite-size effects spread out the discontinuity. The

density correlator near the fir;t reciprocal lattice ve@otn oo for|ay77| =1 shows a rapid growth of the length scales
all cases we see an exponential decay of the correlation fun%l-

tion with a finite length scalé, for density correlations be tand below the transition.
. - . : .
low as well as above the transition. Only for a liquid phase. If the phase coherence of the Abrikosov state is examined

would these correlation functions all have an exponentian the presence of thermal fluctuations, one finds that in and
decay. elow three d|men_5|_ons thermal fluctuations destroy _phase
Ali three correlators decay over half the system sige CONerence atany finite temperatdeJnder the assumption
<N/2, and then rise t€(N.d)=C(0) due to the periodic that there is only_one rele\{ant length scale descnpmg phgse
boundary conditions. To extract decay length scales we fit t§der and crystalline order in the system, perturbative studies
the first portion, approximateljr < (N.d/6), of the decay, for the continuum low-temperature regime predict an expo-
as indicated by linear fits. This region of decay is least afnential growth of length scales withar[*? as I
fected by finite-size effects, statistical noise and errors due & €xp@lar[*?) and |, exp(0.3| a7|*3) ** The authors of
incomplete equilibratiorisee Appendix € The length scales Ref. 43 estimate thak may be given by its upper limit value
extracted from the linear fits are of the same order for allA=0.53. The slope of such growth behavior witk-0.53 is
three correlators. Just above the transition the diffdreate  given by the solid lines in Fig. 9. The growth rate in our
almost equal. Below the transition the Fourier transformedsimulation data is at the lowest temperatures of the same
density-density correlations clearly have the largest lengtlorder as the theoretically predicted upper limit. However, the
scale withl; 4/&=58 (d for density at ar=—8.1 and the analytical result is from an expansion around zero tempera-
phase correlator the smallest with, /£ =42 (p for phas¢  ture in the continuum limit. This regime is for numerical
at the samex. reasons described in Appendix C not accessible to our simu-
At temperatures well above the transition we find the op-ation. Therefore perfect agreement of our simulation results
posite behavior. The density-density correlation length is atvith this form cannot be expected.
temperaturesr~ — 4 little more than half of the phase cor-  The data in Fig. 9 fota,r7|=3.2, which is beyond the
relation length, which agrees with the simple high temperacritical end point and has got no phase transition, suggests
ture expectation (¢(r)* ¢(r'"))2~{|4(r)|?|¥(r")|?) and that a faster growth of length scales sets in approximately
therefore for exponential decdy ,~2l.4. However, be- where the phase transition is located in more layered
cause we find that below the transitityy is the longest and samples. The reason why we have obtained no more data at
therefore dominant length scale, we shall in the followinglower temperatures to confirm this tendency is just because
refer to the decay length scale of the correla@y(k,,  of the fact that length and time scalesee Sec. IV B grow
=G) asl;. so fast that we found it impossible to equilibrate a suffi-

In Fig. 9 we plot on the left thexy dependence of the
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ciently large system at even lower temperatufBemember vB/T

that the same system size in unitségfcorresponds to more 80 - — first order transition (Roulin et al.)

layers for largeta,r7|.) However, the onset of fast growth ™o 0 first order transition (Schilling et al.)

of length scales can be expected from the fact that in the I NG specific heat "step"” (Roulin et al.)

low-temperature regime, where length scales are so long that 60 . O' onset of neutron gﬁrﬁg’;ﬂﬁ“

the continuum approximation works well even for strongly L [(Aegereretal) |

layered materials, the data for differgat,t 7| must collapse 40 L o

onto a single curve and depend only @p. At the transition, :

length scales in the more continuous samples are in the ap- I

propriate scaling units distinctly shorter than for Ibws 7). 20 - . O

For the length scales in these systems to approach the lengths I LA N

scales of the more layered systems, rather fast growth is T

necessary not far below the transition. 0 -0.15 0.1 -0.05 T/T. -1 0
C

2. Appearance of Bragg peaks . . . .
FIG. 10. Comparison of phase diagrams obtained on different

Just below the phase transition the correlation lengttsamples from thermodynamic and neutron diffraction measure-
scales in the simulation are for the range of coupling paramments. All data is foB||c. Open circles and the solid lifextrapo-
eters that correspond to YBCO not comparable to the muclated to T, beyondB,.) correspond to specific heat peaks. The
larger length scales needed to give a signal in neutron difdashed line represents the point of steepest slope of the specific heat
fraction experiments. Although the structure factor in a lig-“step” attributed to second-order melting in samples which do not
uid is rotationally symmetric, coupling with the underlying show a specific heat peak. The data for the solid line, open circles,
lattice or preferred orientations given by twin planes may forthe dashed line, and solid circles is taken from Refs. 12, 13, 15, and
long length scales lead to the appearance of Bragg-lik@0. respectively.

46
peaks. lines.(In a scaling plot ofy?B, which should yield a collapse

r simulation hat the vortex liquid is not far . . . .
Our simulation suggests that the vortex liquid is not fa assuming London-Lindemann-type melting, the discrepancy

below the first-order transition correlated and effectively i~
crystalline over length scales comparable to the system Si%%etween the Aegerter and Schilling data would be even

or a “Larkin’-like length scale(dependent on the amount of arger, roug_hly a factor of #Very substantial differences in
disorder preseit We can extrapolate the growth in length other material parameters would be necessary to make up for

scales in Fig. 9 below the transition assuming the exponen§UCh a large deviation. In our picture the relative position of

tial growth rate estimated in Ref. 43 and indicated by thethe two features is natural, because the onset of neutron dif-

solid lines. For a decrease afat~ 1.2 for example, which fraction peglks is attributed to a crpssoﬂmlow the' first-
corresponds in YBCO to cooling by onfl K or (i/4) K order transition, when the neutron diffraction experiment be-
below the transitiontas T or 0.7 T,respectively, we obtain comes sensitive to the exponentially fast diverging length

: . . : scales.
an increase i, by a factor of 4 and an increaselinby a . N .
factor of 16. Atat~ —10.5 the crystalline correlation length . However, one might say that comparing first-order “melt-

|, has according to the same estimate reached 30 latt ing” and the onset of neutron diffraction is not a comparison

) S 'G5t like with like, because the sample in the neutron diffrac-
spacings andi; the order of 10 008, which is for magnetic tion ex erimen{ is far too dirty to exhibit a first-order phase
fields of B~5 T or 0.7 T of the order of 5000 and 10000 P y P

lavers. respectivelv. Correlation lenaths of this order can béransition. The authors of Ref. 20 estimate that their sample
e>2/ ec{ed tg lead i)r/{ real samples tc? observable neutron dhi—S comparable to samples from Ref. 15 and attribute the onset
fraF():tion peaks P of neutron diffraction peaks to second-order freezing to a

Figure 10 shows scaling plots of different experimentalvortex glass. In this case they should coincide with the line

phase diagrams in different YBCO samples. We expect aCr_narking position of the steepest slope of the specific heat

. . steps in such samples, which has been interpreted as a
cc_)rdlng to LLL scaling th_at the plots ofB(T) fm”? Sa"?p'es secrc))nd-order vortexpglass transititrHowever thepplots in
with a different mass anisotropy but otherwise identical ma-Fig 10 show that this is not the casé '
terial parameters collapgsee Sec. Ill B. Roulin et al? re- our scaling approach is based on the approximaign
port that the first-order transition lines in different cIean~1/(yB)2,3 Assuming that the first-order transition line
samples, represented by a solid line inll_:ig. 10, as ngl as th]%und by R.oulinet al12 oceurs as in our simulation at
the line of steepest slope at the specific heat step in dlSOf;_7 5 this means .that the dashed line and the onTset of
dered sample¥, represented by a dashed line in Fig. 10, -

L ; . tron diffraction in Fig. 10, for whichB is reduced by a
collapse in this way. The solid and dashed lines correspon’Peu .
to the specific heat peaks in three different samples wit actor of about 3/4 and 1/2, respectively, correspondrio

different anisotropies each. The Schilling désaaled using 2 @ndar~—10.5, respectively. Therr value for the
y=7.8 (Ref. 13] also agrees reasonably well with this scal- onset of neutron diffraction peaks is in excellent agreement

ing form. with our estimates as to whelg~1000¢ and |,,~30

According to the vortex lattice melting picture, the points lattice spacings in the clean limit.
which mark the onset of neutron diffraction peaks in Fig. 10
[scaled usingy=4.3 (Ref. 20], should coincide with the
first-order transition line. Comparison however shows that The analysis of relaxation times is numerically difficult. It
vB is roughly a factor of 2 below the first-order transition turns out that the dominant relaxation times are very large

B. Relaxation times
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In(In(t)) Figure 11 shows evidence that time scales increase dis-
LCq(t)/Cq(0) Ca(t)/Cq(0) — continuously across the transition. If activated scaling of the
26 L1 type 7~ exfc, expCylaq*®)] holds, the discontinuity in
oL jorM|=0.05 m length scales should be amplified in the time scale disconti-
T e ated i nuity. The increase inr across the transition fofa,77|
R * =0.05 is roughly a factor of 500. In the case,r7|=1 the
n time scales increase across the transition according to our fits
o . IS . o only by a factor of 4. Although we expect the discontinuity
22 a1y y O in time scales to decrease as,77| increases and the end
- poi_nt is appro_ached, it is very likely t_hat we strongly under-
003 10l 32 estimate the time scales of exponential decay below the tran-
/36 ° o sition for |a,7t7|=1, because we fit to a very small regime
N o N, 72(m [%| o of decay (see inset of Fig. )1 As in the 2D cas® the
A 7 m]a] T relaxation behavior at very early times is faster than the final,
10 12.5 15 17.5 20 225 |y 2 linear exponential decay.
As in the case of length scales, the data for|al;7|
FIG. 11. Logarithm of logarithm of relaxation times plotted .ShOL."d collapse at lowtr, |.e._, in the continuum limit. Th_|§
against|a;|%2. Dotted and dot-dashed lines mark the width of the IMplies very fast growth of time scales below the transition
first-order phase transition from the magnetization discontinuity for@T fOr_continuous systems witha,r7| beyond the end
|ayr7|=0.05 and|ayry| =1, respectively. The inset shows loga- POINt. This extremely fast growth is reflected in the behavior

rithmic plots of original relaxation data with linear fits. of the system upon heating and cooling fanr7|=3 (see
Fig. 7), where strong hysteresis due to very slow decay of
near the first-order phase transition. Accordingly thermal avthermal fluctuations is observable belawy= —8.
eraging is slow and measurements of the time decay of the
density-density correlator have large statistical errors. How-
ever, although our data on relaxation times is of rather poor Although the relevant time scales for dc resistance mea-
quality, it is still of interest for comparison with the analysis surements in YBCO are nonequilibrium pinning time scales
of the vortex dynamics in the 2D system as well as for comwhich are not directly comparable to the relaxation times
parison with nonequilibrium measurements in YBCO. measured in the simulation, some connections can be made.
As in our previous analysis of the 2D systéff* we  While our time scales are irrelevant for flux flow conductiv-
measure the relaxation time scales in the layered systeity, they are relevant in a highly viscous vortex liquid re-
from the decay of the density-density correlafty from Eq.  gime, where the time scales of thermal fluctuations or plastic
(8) in its Fourier-transformed time-dependent form deformations of the vortex structure are much larger than the
Cy(Kap.Ke,t). We observe for high temperatures linear ex-pinning time. In this case one speaks about a pinned vortex
ponential decay of this correlator to zero for llwhere the  liquid.® In such a liquid flux flow is strongly suppressed by
k., dependence of the decay time scales reflects, like ipinning. When there is a large discontinuity of relaxation
2D,*® the hexagonal order in the system. The time scale§me scales at the first-order transition, it is conceivable that
decrease monotonically with, for all k,,. For low tempera-  the flux liquid becomes suddenly pinned and discontinuities
tures, the time scales over which we measure the decay al the resistive behavior occur.
often much smaller than the longest decay time scales them- A decrease of the discontinuity in time scales as one ap-
selves, so that decay of the correlator is only observable ovdiroaches the critical end point agrees qualitatively well with
a fraction of its initial value. However, we can still, knowing the decreasing discontinuity in the resistive dataBasis
that the vortex matter is liquid, extract time scales by fittingapproached® The decrease and complete disappearance of
the data assuming linear exponential decay. The longest tini@e resistivity jump are difficult to explain with the assump-
scales in the system are in all cases given by the decay of ttion that the first order vortex lattice melting changes to a
3D Fourier component o€, at the first reciprocal lattice Vvortex glass melting transition &.. A change in resistive

o em

1. Comparison with resistivity data

vector in theab plane anck=0 along thec axis. behavior and a discontinuity in the resistivity at low currents
Figure 11 shows a plot of the dominant time scales deshould remain for such a transitidn.
pending on|a+|*? for different |a,r7|. The plots suggest In experiment a very steep drop of resistivity to zero with
very fast growth behavior, roughly, decreasing temperature is observed evenBferB ., when
there is no first-order transition. This feature can in our pic-
7~ exfd ¢, exp(cy| a7, ture be attributed to the doubly exponentially fast divergence

of decay time scales with decreasing temperature once the
wherec,; and c, are appropriate constants. We expect anextrapolation of the transition line is crossed. Although there
exponential growth of the dominant time scales with theis no time scale discontinuity, the system does a fast cross-
range of correlationsyo eprIg’b, if the dynamics is acti- over from flux flow conductivity to a strongly pinned liquid
vated, as it is in the 2D limit® The data in Fig. 11 together regime.
with the low-temperature relation Ip(e2 In(l,)oc| aq¥2%
which is approximately also valid for our numerical détae
Fig. 9), strongly suggests such activated dynamics in the A puzzling feature of the magnetization measurements
layered system. near the first-order transition in YBCO is the occurrence

2. Irreversibility and magnetization measurements
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of reversible-looking magnetization jumps without the cor-netization discontinuity is not always present, but in many
responding latent heldt which must according to the cases disappears at low fields. For the data of Schilling
Clausius-Clapeyron relatiohEq. (7)] occur for an equi- €t al1%® magnetization and specific heat data are found to
librium measurement. In Ref. 11 large magnetization jumpse in good agreement with the Clausius-Clapeyron relation.
which would correspond to entropy jumps of up to 11A possible answer may be that the size of the magnetization
kg/vortex/layer, more than 10 times higher than the largesgiscontinuity caused by nonequilibrium effects depends sen-
jumps observed in calorimetric measurements of approxisitively on the presence of sample disorder. Such effects may
mately 0.&B/vortexllayeﬁ2'13 are found without any evi- make it negligible against the thermodynamic magnetization
dence of a latent heat. discontinuity at the first-order transition in some samples like
If magnetization and specific heat data do not obey thdhe ones used by Schillingt al,'®*3but not in others.
Clausius-Clapeyron relation, this must be due to a lack of
equilibration in the system. The connection between seem- V. DISCUSSION AND SUMMARY
ingly reversible features in the magnetization data and irre- . i i
versibility has in some cases been shown experimentally. For N our numerical work we have found a first-order transi-
the vortex transition in BSCCO Farralt al*” found that the 0N which on the one hand coincides with the first-order
magnitude of the magnetization jump is for standard superU‘f"”S't'on in YBCO, bu_t on the other_hand is not_assomated
conducting quantum interference devi@QUID) measure- with vortex Iatt|ce_ _meltlng. An ana_lly3|s of what triggers the
ment techniques strongly correlated to irreversibility, even jfdeécoupling transition at the particulary where it is ob-
irreversibility only becomes obvious at temperatubesow ~ S€rved is beyond the scope of this paper. The answer to this
the magnetization jump. A similar effect in YBCO has beenduéstion could lie in the observation made by Pierson and
reported by Schillinget al,*® where a change in slope of the Valls®® that the first-order transition in YBCO coincides with

seemingly reversible magnetization is shown to be an effed'® onset of 3D LLL fluctuations. Because even strongly
of irreversibility. layered systems are 3D in nature below the first-order tran-

Very recent data in YBCO by Ishidet al. in the second sition, the onset of 3D LLL fluctuations can be expected to
reference of Ref. 49 shows magnetization jumps in a georr@CCUr at a fairly constant value afr, and this may be re-
etryB|a atB=1.5 T, while in this geometry the specific heat flécted in approximately constant along the phase transi-
jump has in similar samples been observed to disappear b&ON line. , o , . ,
tween 6 T and 4 T2 a value in good agreement with our The numerical trainsition ends in a critical end point,
simulation data, if anisotropic scaling is assumed to apply. Ifvhich corresponds to the experimentally observed low-field
Ref. 49 the ac {=390 H2 susceptibility is also measured end point (_)f the_flrst-order transition line in YBCO. Hovv_-
and found to be an almost perfect image of the dc magneti€Ve": our simulation does not capture the presence of a high-
zation jump. This analogous behavior of the jumps in dc andi€!d critical end point. This is not surprising, as the upper
ac susceptibility, of which the latter is clearly not a thermo-Ccfitical end point has been experimentally shown to be
dynamic but a dynamic phenomenon due to nonequilibriun?trongly correlated Wlth the presence of disorder. We report
pinning effect? is suggestive of irreversibility effects even 1N Ref. 44 how the introduction of quenched random point
in the de case. dlsorq_er to our nume_rl_cal system affects the first-order phase

Although our simulation does not reproduce these effectsfansition: The transition persists in the presence of weak
the relaxation time scales we measure give a clear indicatioff"dom point disorder but can be suppressed entirely by
why such irreversibility related effects can occur just belowStong disorder. The numerical phase diagram in the pres-
the extrapolation of the first-order transition line, i.e.agt ~ €nce of disorder has got only one phase, a vortex liquid, just
<—8. Let us assume that the growth in relaxation time@s in the clean limit. There is no evidence of a thermody-

scales is of the typer~ expc, expC,las¥)] and further namic transition to a Bragg glass phase or vortex glass phase.
take an estimate of the slope of Indbelow a1=—8 from Some readers may believe that the nature of the first-order

the low-temperature data in Fig. 11 for couplingy7| transition in YBCO is vortex lattice melting and dismiss the
=32 (beyond the end poi}nt. Using the esﬁ?nate absence of a vortex lattice state below the transition in our

a(Inn B/aar® ~0.09 let us consider a decrease in tem_simulation as an artifact of the spherical boundary conditions
perature fronTw _ _'8 to a7=—10. This corresponds to a we use. In this case, however, it would seem astonishing that
T T .

temperature decrease of less than 0.3 K below the extrapr.})E'S ;gzﬁ%rdiritgar?:“%n aziggfitﬁdomlt;r\éﬂfii};:\amcﬁgﬁg:
lation of the first-order line at a field dBlc=0.25 T or, segnce of a 3ortex Ia?tFi)cZ pBesides a first order vortex decou-
according to anisotropic scaling witp=7, to a fieldB| a of ) '

: . : ling transitior’ and another similat thermodynamic
1.75T. The can|dered temperature mter_val 'S.thl.Js (.:ompi%zransition?“ both not associated with vortex lattice melting,
rable to the width of the magnetization discontinuity in the

. . have also been observed in simulations of different models

data from Ref. 49. For this decreasedifi we can extrapolate . . i

i o using periodic boundary conditions.
an increase in time scales from In#2.3 to InIn7=3.1,
which is by a factor of 12 For an increase of time scales by
a further factor of 10 a further decrease of temperature by
only 0.1 K is needed. This implies that cooling by only frac-  From previous simulations using the same model, but
tions of a kelvin belowat= —8 for fieldsB<B,. can cause with periodic boundary conditions, a single vortex lattice
the system to fall out of equilibrium. melting transition is reporte®?3° We find there is a dis-

If one believes that falling out of equilibrium can lead to agreement in the location of the transition between our simu-
spurious magnetization jumps, then one may ask why a madation and Ref. 30 for weak couplings. This is certainly due

A. Comparison with previous LLL-LD simulations
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to the different choice of boundary conditions, because in thdetween two vortex liquid states. The length scales of order
2D case the two choices of boundary conditions are knowiparameter correlations parallel and perpendicular to the mag-
to yield different result§?3"52As the coupling increases, the netic field as well as the longest relaxation time scales in-
disagreement in the location of the transition between oucrease discontinuously at the transition but remain finite as
results and those from Ref. 30 disappears. For couplings higthe temperature is lowered. As the coupling strength between
enough to see the critical end point, the LLL-LD model haslayers increases, the discontinuities in length and time scales
never been investigated using periodic boundary conditionsdecrease until the transition line ends at a critical end point.
The LLL-LD model simulations using periodic boundary Shape, location, and anisotropic scaling properties of the
conditions exhibit a vortex lattice state below the transition.transition line and its end point as well as the size of the
If the transition was of the same nature for periodic boundaryeversible magnetization discontinuity are in excellent agree-
conditions as for spherical layers, the apparent vortex latticenent with the experimental first-order transition line and its
state could be accounted for by the use of system sizdsw field end point in YBCO. The approximate location of
smaller than the correlation lengthéThe largest system the end point can be predicted from a qualitative argument
sizes in these simulations were of the order of only 40 vorassuming that the transition is of a layer decoupling nature.
tices X 20 layers) Small system sizes together with the re- However, the exact quantitative agreement of the location of
strictions in degrees of freedom imposed by periodic boundthe end point with experiments by Schillig al 1° could be
ary conditions may make a vortex liquid with very long a chance result due to cancellation of inaccuracies of our

length scales indistinguishable from a vortex lattice. numerical model at low fields and/or finite-size effects with
disorder effects in real samples.
B. Relevance for BSCCO Our results suggest that the transition in YBCO, which is

. _commonly interpreted as vortex lattice melting, is of a
We have so far only compared our numerical data withjqig-liquid nature, with a low-temperature vortex liquid
experiments in YBCO. Near the phase transition in BSCCQyaq6 in which length scales grow exponentially fast and
neither the LLL approximation nor the LD model is valid. {ime scales due to activated dynamics doubly exponentially
The phase diagram of BSCCO has a first-order transitiofas; yith decreasing temperature. We argue that because not
line,** which occurs at much smaller applied magnetic fieldstyr pejow the first-order transition the vortex liquid is highly
than in YBCO. Near the BSCCO transiti¢hHe, is of the  yiscous and effectively crystalline over large length scales,
order 10 °. This means that the LLL approximation we use o picture can account for many experimental features in-
in our simulation cannot be expected to apply. The Strongl)ﬁluding resistance drops and Bragg peaks, which have so far

anisotropic character of BSCCO is such that Josephson copen taken as evidence for the vortex lattice melting sce-
pling between the layers may be negligible compared to eleGyzyio.
tromagnetic coupling effectand so BSCCO is not accu-

rately described by the LD model.

However, some qualitative points of comparison can be
made. It is for example noteworthy that in BSCCO the ma-  \we would like to thank Sai-Kong Chin and Matthew
terial parameters as well as the layer periodicity; T;, and  podgson for useful interactions. A.K.K. acknowledges fi-
dBco/dT are of the same order as in YBCO, but typical nancial support from a Manchester University Research Stu-
estimates of the mass anisotropyare between one and two dentship and EPSRC.
orders of magnitude larger. This means that the end point of
our numerical transition line translates via the relat®p
«1/y* to fields that are between four and eight orders of
magnitude lower than in YBCO. An experimental observa- The quartic coupling term in Ed3) can in each layer be
tion of a lower critical end point is therefore not to be ex- expressed in terms of the LLL eigenfunctions in the follow-
pected in BSCCO. ing way (we omit the layer numbering indices

In the low-temperature limit, where all length scales are
large, both YBCO and BSCCO should show the same uni- 3, .. 1 By L a1 2N ,
versal behavior. Should our phase diagram be valid so that T ﬁTdof dr|y| “ON Z [Upl%
there is no thermodynamic vortex lattice melting transition at B B p=0 Al
a finite temperature below the experimentally observed first- (A1)
order transition in YBCO, then BSCCO should also be in ay; — s min(p.N) _ i
vortex liquid state below the first-order transition. The con"f‘wIth U 2m=max(0p7N)f(m’p m)qu\llg_m, with f(m.n)
sequence that the first-order transition in BSCCO is not of - ArAd[B(min+ LN=m-n+1)]"", where A, as de-

; : ) . ' fined in Eq.(1) andB is the beta function.
genuine vortex lattice melting character is in agreement with
recent experimental evidence that hexagonal neutron diffrac-
tion patterns, which signify that a vortex lattice or a vortex APPENDIX B: CORRELATIONS

Ilqu”|d W'lgh IV erytrllon? Ie:[ngtg sctales,'tc':an Ibgéobserved above as To compute correlations in reciprocal space, we perform
Wwell as below the first-order transition life. the spherical equivalent of a Fourier transform, the expan-
sion in the discrete set of normalized spherical harmonics,
"Y{“(r). To a value ofl correspond«=1/R. Because the lig-

We have numerically calculated the phase diagram of aid is isotropic, the correlator ik space depends only on the
layered superconductor and found a first-order transition linenagnitude ofk, i.e., only onl and not onm. For better
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APPENDIX A: QUARTIC ENERGY TERM

C. Summary
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averaging we calculate the correlator for miland average

over the differenim.

1. Density-density correlations along thec axis

The real space density-density correlator &r=0 and
Arllc, Ar=nd is given by

(I ?[(r+ndo)|?)

(e

Taking the spatial average over giin one layer involves the

Ng /2Ngp
nx N
pil <q_0 Up,qu,q>
Ca(nd)= g, 7z~ 1, (B1)

pil <q=0 Vp.aVp q>

where
min(d,Nap)
UB,q: E f(qu_m)vp,mVern‘qu’

m=max(0g—Ngp)

same integrals over LLL eigenfunctions as the calculation ofvith f(m,q—m) as defined in Appendix A.
the quartic energy term. Together with spatial averaging over The 2D density-density correlator knspace from Ref. 32

different layers this yields

27N N¢ Nab -2
b
Cal/RNAAD = gy 2, <§O Vz,qvp,q>

min(Ngp ,Nap—m)
>< <

g=max(0;,—m)

wherec signifies the connected average and kfieare de-
fined for 0=m=I and 0<gq<N-m as

. o [+ D +m) (-1)"
l.,q=fd2rY ParmPa=AdReem N ZoNi—myr  mi

XB(N—q+1,4g+m+1)3F,

X(m—=I,m+I+1g+m+1;m+1N+m+2;1) (B3)

where 3F, is a generalized hypergeometric function.
The high-temperature limit of this correlator is forn
=0 easily calculated analyticaffyas

(N1)?

apT—*

(B4)

is easily generalized to three dimensions as

min(Nap ,Ngp—m)

Iq
q’ =max(0;-m)

VigrmOVp @Iy X vp+n,qf+m<t'>v;+n,q/<t')|'m',>, (B2)
Cc

Co(nd)= aTﬂ< ! szrw*(r)t//(r+nd)>

2may \ 47R?

Nap N¢

o 1
1 —< > > v;,qvp,q+n> :

ar 2mNgpNe | p=0 =1

(B6)

APPENDIX C: FINITE-SIZE EFFECTS

The limitations in the region of parameter space for which
we can run our simulation as well as the limitations in accu-
racy of our measurements are mainly due to limited avail-
ability of processor time. The simulation time grows, as seen
in Sec. IV B, roughly doubly exponentially fast with decreas-
ing at. The ratio of CPU time to simulation time, given

_essentially by the number of floating point operations needed

For analysis of relaxation times this correlator is numeri-zo. one update of the state, depends linearly on the number

cally Fourier transformed in the direction. To make
Cq(l/R,nd,t) converge in the continuum limit we choogg
as unit of length when integrating along thexis:

1 N
C4(I/R,q,t)= — >, C4(I/R,nd,t)coggxnd),
1

Vo

(B5)
whereq takes valueg|=2m7m/(N.d) for m=0, ... N./2.

2. Phase correlations along the axis

The phase correlations along thexis as defined in Eq.

of layersN., but due to the quartic energy term for large
systems quadratically on the number of vortidgg . Finite-

size effects become important and therefore large system
sizes necessary when correlation lengths grow large, which
is unfortunately just in the regime of phase space where re-
laxation times also grow large, namely, at lawvy.

1. Effects of limited N,

Most of our data have been taken ushkig,= 72. For high
temperatures finite-size effects are negligible, because there
is little in-plane order and the range of crystalline correla-
tions in any one layer is much smaller than the spherical

(10) are easily expressed in terms of the LLL coefficientsdimensions. The topological disorder due to the 12 topologi-
using the orthonormality of the LLL functions and the iden- cal defects imposed by spherical geom&thecomes at high

tity ar=2may/BQ%

temperatures negligible against the strong thermal disorder in
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the system. With decreasing; and growingl ,,,, finite-size p
effects due to finitéN,, become important. For any one;,

the effects of the limited number of vortices are the more
severe the lower the coupling strendta,tn| and the 2D
effective temperature,t are, because outside the continuum
limit in-plane order increases with decreasing coupling
strength, indicated by a smaller correlation lengih (see
Fig. 9 and smalleiB, (see Fig. 3. As a consequence of too
smallN,,, we see a decrease in length scales of crystalline
correlations as previously observed in 2D syst&mas well

as a decrease of correlations along thaxis. We interpret
agreement of measurements taken with,=72 and N,y
=144 as an indication that with,,=72 we are already
close to the thermodynamic limit.

2. Effects of limited N [ Jozmldown up

09014 @ ©

Finite-size effects due to limited numbers of layers are for 99 08 m O
equilibrium measurements not a severe problem, because an 085- 19 4 & |
-8 75 -7
T

increase ofN, increases the CPU time only linearly, and

improves the rate of thermal averaging by the same amount.

Therefore the disadvantage of increasMgis only the in- FIG. 12. Typical measurements of static correlations alongthe

crease in equilibration time as long as enough memory jgxis. Open symbols are density correlations; solid symbols are

available. IfN./2. the distance over which correlations de-Phase correlations. Note for squares that correlations are enhanced
. C 1 . . . . . .

cay, is not distinctly larger than the correlation length alonng insufficient system S|.ze.and fqr triangles the incomplete relax-

the layers(see Sec. IV, we find that correlations both paral- 2tion of the system. Statistical noise can for largaiggest slower

lel and perpendicular to the axis are artificially enhanced than exponential decafgircles as well as faster than exponential

. . d targ. F Il temdN,,=72.
and slower than exponential decay behavior is observed, asecay(S arg. For all systemday

visible in Fig. 12 forN.= 30. For equilibrium measurements \ere available. The cooling or heating rates in these cases
of length and time scales, we always haNg>10xIc/d,  are similar to those used in our hysteresis measurements.
which required on occasion usid;, up to 300 layers with

144 vortices per layer. 4. Loss of first-order behavior

The change of the hysteresis at the first-order transition
for decreasing numbers of layers can be seen in Fig. 13. The

Initial relaxation has proved a very difficult problem in correlation length along the axis (see Sec. IV just above
our 3D simulations, where relaxation times are so long thathe transition is for|a,t7|=0.4 approximately six layers.
the entire simulation time is often limited to only few times For N.= 20, correlations along the axis are enhanced sig-
the longest relaxation time. In principle, the relaxation can benificantly just above the transition. The system does not re-
started from an arbitrary state, where obvious choices are main in the high-entropy, decoupled state, and the hysteresis
random state or a ground state. The relaxation from a grounid lost. This effect is visible in Fig. 13 in the reduction of the
state has the disadvantage that it is very slow foréaw On  layer independence paramefér(defined in Sec. Ill B just
the other hand, it is fairly easy to judge how far the systemabove the transition in case of the smaller system size. The
has relaxed when started with the same state in every layeloss of hysteresis with decreasing system size is rather sud-
Because our system is always in a liquid state, a slower thaden. Further increase in system size beyond 5-6 times the
exponential decay of correlations in thelirection(which is  range ofc-axis correlations affects the hysteresis measure-
in a sufficiently large system always removable by furtherments very little.
equilibration is a reliable sign of insufficient equilibration. In all cases the system sizes used for the hysteresis mea-
A case of insufficient relaxation can be seen in Fig. 12 forsurements are more than 5 times the correlation length in
N.=180. When using systems started from a ground statejirection just above the transition. The correlation lengths
they are always allowed to relax for longer than the longestre for selected values df, 17| known from equilibrium
relaxation timer, in most cases longer thanr5Relaxation  measurements in large systems and otherwise estimated by
from a random state has got the advantage of being fastémterpolation. We are aware that the system sizes used for the
than from a ground state. However, we found measurementsveep measurements are in most cases not distinctly larger
from an insufficiently equilibrated random state often indis-than the range of correlatiot®lowthe transition. However,
tinguishable from equilibrium measurements at a higher temthe observed size of the jumps does not seem much affected
perature, and therefore avoided starting equilibrium measurdsy this; the discontinuities in the order parameter magnitude
ments from a random state. seen in equilibrium measurements in much larger systems

The most efficient way to obtain a well equilibrated sys-for selected a,17| agree well with the results from sweep
tem is to cool down or heat up a configuration obtained for aneasurements.
similar temperature and coupling strength and identical sys- A very important point to verify is that the loss of hyster-
tem size. We used this method whenever such configuratioresis at the critical point is not an effect of insufficient num-

3. Thermal averaging and initial relaxation
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'l'é-éééé %3 near clean Limit transition: critical Nap, Which increases with decreasn1192Tr;|, the
ll" agéz W0 =-724 in-plane order below the transition, reflected in the Abriko-
08 | '!!, | - . sov ratioB,, is so much affected by the spherical topology
l! above clean limit transition: . S . .. .
. _ that the discontinuity in3, vanishes and the transition dis-
0 0002000 @O =-1.06

appears. This behavior is shown in Fig. 14 far,;7|
_ =0.05. The size of the discontinuities decreases noticeably
FIG. 13. Order parameter densityand the measure of layer betweenN,,=72 andN,,=66. ForN,,=54 the transition

independencé’ upon heating and cooling. For insufficient number has disappeared. Fot,,=72, we still measure a transition
of layers,I" is reduced on the high-temperature side of the transition _ ) a ' _
and the first-order behavior is lost. Fg=20, p andI" are offset at|a,r7|=0.02, but not afa,ry|=0.01. Thus the need of

by —0.05 (equal levels marked by solid linesN,,=72 and increasingN,, limits the exploration of the phase diagram

lapry|=0.4. for very low [a,77]. o _
We estimate that the limitation of the number of vortices

bers of layers. We have made sure that the system sizes use@ study toN,,= 72 affects our hysteresis measurements for
near the critical point are not only more than 5 times the|a,17|<0.05. We can detect size dependence in the location
correlation length, but also that the loss of the transition abf the phase transition for system sizhg,=72 andN,,
|aorm7|=2.5 occurs in a system that is not only in terms of =144 only for|a,77|<0.05 (see the phase diagram in Fig.
layers, but also in terms of the natural length s@lelarger  4). The hysteresis measurements plotted in the same figure
than the system fofa,r7|=2, where a transition is still show that the size of the discontinuities at the phase transi-
visible. For|a,rn|=2 andN.d/ & =65 we see a clear tran- tion does not change noticeably betwedg,=72 andN,,
sition, while for |a,77|=2.5 andN.d/£=80 there is no =144 for|a,77|=0.14. For|a,rn|>0.14, which applies to
sign of a transition in the range 8.3<a1<—7.3. the region near the critical point, the system should at the

If the number of vortices per layeM,,, is reduced, the phase transition be well simulated usiig,=72. This is
hysteresis at the transition first decreases and then disapenfirmed by the agreement in the magnetization discontinu-
pears. For the general reasons outlined in Appendix C 1 thiey between N,,=72 and N,,=144 in Fig. Zb) for T
effect becomes stronger &a,77| decreases. Below some =89.3.
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