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Numerical studies of the phase diagram of layered type-II superconductors in a magnetic field

A. K. Kienappel and M. A. Moore
Department of Physics, University of Manchester, Manchester, M13 9PL, United Kingdom

~Received 25 September 1998!

We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework
of the lowest-Landau-level approximation. We find a first-order phase transition with aB(T) dependence
which agrees very well with the experimental ‘‘melting’’ line in YBa2Cu3O72d . The transition is not associ-
ated with vortex lattice melting, but separates two vortex liquid states characterized by different degrees of
short-range crystalline order and different length scales of correlations between vortices in different layers. The
transition line ends at a critical end point at low fields. We find the magnetization discontinuity and the location
of the lower critical magnetic field to be in good agreement with experiments in YBa2Cu3O72d . Length scales
of order parameter correlations parallel and perpendicular to the magnetic field increase exponentially as 1/T at
low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation
lengths. The consistency of our numerical results with various experimental features in YBa2Cu3O72d , in-
cluding the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg
peaks in neutron scattering experiments is demonstrated.@S0163-1829~99!02933-1#
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I. INTRODUCTION

In the mean-field limit the phase diagram of type-II s
perconductors has two phases: the normal state and
mixed state in which the lines of magnetic flux are arrang
in a triangular Abrikosov lattice.1 However, thermal fluctua-
tions destroy the flux lattice near the mean-field transit
line and a flux liquid phase enters the phase diagram.2 As the
temperature is reduced the vortex liquid undergoes a fi
order phase transition to what is commonly assumed to
the flux lattice state. This leads to a phase diagram as sh
in Fig. 1~a!. The strong belief in first order melting of th
Abrikosov flux lattice rests on the experimental evidence
viewed in Sec. I A. Much of the analytical work on vorte
lattice melting relies on the Lindemann criterion, whic
states that melting occurs if the mean fluctuation radius o
lattice point around its equilibrium position has reached
certain fraction~usually between 0.1 and 0.2! of the lattice
constant.3 This criterion is not rigorous and does not provi
a satisfying thermodynamic melting theory. The possibil
of a first-order phase transition due to decoupling of the
ferent layers has also been investigated.4 However, a decou-
pling transition is mostly expected to occur in addition
melting, and the lack of experimental evidence for two se
rate phase transitions has led to a widespread belief tha
ther there is no sharp decoupling transition or that it occ
simultaneously with flux lattice melting. Our numerical r
sults suggest a phase diagram which is fundamentally dif
ent from Fig. 1~a!. It has a first-order phase transition
excellent agreement with the first-order transition line
YBa2Cu3O7 ~YBCO! in the B-T plane~see Sec. III!. How-
ever, this transition is a decoupling transition and not as
ciated with vortex lattice melting. There is only one phase
the phase diagram: the vortex liquid phase, and a vo
lattice exists only at zero temperature.

Although there is striking experimental evidence for
first-order phase transition in both YBCO an
Bi2Sr2CaCu2O8 ~BSCCO!, there are certain features of th
PRB 600163-1829/99/60~9!/6795~19!/$15.00
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experimental data that are not explained by the standard
tex lattice melting picture, most importantly the loss of firs
order behavior along the transition line at high~both for
YBCO and BSCCO! and low~YBCO only! fields. Note that
an end of the first-order phase transition line at a critical e
point is not possible for a vortex lattice melting line, becau
the phase boundary separates phases of different symm
Our first-order transition is not associated with any symm
try breaking. Thus the existence of a low-field critical e
point should be expected and is directly observed in
simulation.

In the framework of a vortex lattice melting picture th
disappearance of the first-order melting line can be explai
by the presence of a tricritical point where the first-ord
transition changes to a continuous one. Such behavio
commonly assumed to occur as an effect of sample disor
which is to a certain degree present even in the best crys
However, there is no wide consensus on the phase diag
in the presence of disorder. The three most important cate
ries to distinguish are the disordered liquid, vortex glass,
Bragg glass scenarios. For the first case there is no p
which is thermodynamically distinct from a vortex liquid an
thus no thermodynamic phase transition. However, a fa
sharp crossover from fast to slow dynamics may oc

FIG. 1. Popular phase diagrams~a! in the clean case and~b! in
the presence of disorder. Solid and dotted lines mark first-order
continuous transitions, respectively.
6795 ©1999 The American Physical Society
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within the vortex liquid state. The vortex glass scenario p
sented in detail in Ref. 5 relies on analogy to spin gla
behavior. The vortex liquid is expected to freeze via a c
tinuous transition to a vortex glass state characterized
short-range crystalline correlations but long-range phase
relations. Such a vortex glass phase would be truly super
ducting with vanishing dc resistance. A popular recent the
predicts for weak disorder a first-order transition to a Bra
glass state, which is characterized by slow, at most algeb
decay of translational crystalline order.6

With this inconclusive theoretical background, expe
mental and numerical evidence has had a major impac
the picture of the phase diagram of high temperature su
conductors~HTSC’s! including fluctuations and disorder. A
popular phase diagram including disorder which accounts
many experimental features, notably the loss of first-or
behavior at high fields, but not at low fields, is shown in F
1~b!.

A. Experimental evidence

This section attempts a review of the experimental e
dence on which both our and more conventional pictures
the phase diagram of layered superconductors are based
discuss only evidence in YBCO, because this is the mate
to which our numerical model applies naturally.

1. First-order transition

There is striking experimental evidence for a first-ord
transition in YBCO. The earlier evidence for discontinuo
behavior suggesting a first-order transition came from re
tive measurements.7 A sharp drop in resistivity was found t
occur at a temperature well below theHc2 line. Later it was
shown that these resistive drops coincide with a discontin
in the magnetization, the first thermodynamic quantity fou
to be discontinuous at the transition line.8,9 Measurements o
the latent heat which unambiguously characterizes a fi
order transition were made by Schillinget al.10 in 1996.
Since then, a latent heat at the first order vortex transition
been observed in different crystals of YBa2Cu3O72d with
varying oxygen deficienciesd ~Refs. 11 and 12! and for dif-
ferent orientations of the applied field.13 The B(T) depen-
dence of the first-order transition line obeys the stand
continuum anisotropic scaling rules14 under rotation of the
applied field away from thec axis.13

The scaling behavior of the first-order transition lines
samples with different oxygen deficienciesd and therefore
different mass anisotropiesg is of some interest as it can b
easily compared to predictions of different theoretical mo
els. In a range of samples the first-order lines have b
found to scale with 1/g by Roulin et al.;12 i.e., gB(T) col-
lapses on one scaling curve. This is in disagreement w
standard London-Lindemann-type vortex lattice melti
theory, which predicts the melting curve to scale inver
with the Ginsburg numberGi as 1/Gi}1/g2.3 The 1/g scal-
ing form is consistent with three-dimensional~3D! lowest
Landau level~LLL ! scaling and our numerical results.

2. Loss of first-order behavior

The first-order behavior at the vortex transition has be
observed to vanish at an upper critical fieldBuc for samples
-
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which are not fully oxygenated.12 Buc is found to increase
with decreasing concentration of oxygen deficienciesd in
YBa2Cu3O72d . Ford50 a latent heat can be observed up
the highest experimentally investigated fields of 16T.11 The
end of the first-order line thus appears to be strongly co
lated with the amount of point disorder in the form of oxyg
vacancies present in the system. The upwards shift ofBuc
with increasing oxygen content fits in well with the theore
ical phase diagram in Fig. 1~b!, where it corresponds to a
extension of the Bragg glass phase to higher fields with
creasing disorder.

Another striking feature of the experimental first-ord
transition line in YBCO is its termination at low magnet
fields, which has been consistently observed in all relev
calorimetric measurements.10–13 The latent heat disappear
for fields smaller than some lower critical fieldBlc . The
existence of a low-field end point is usually foun
‘‘puzzling.’’ 12 The variations ofBlc for specific heat mea-
surements in different samples are large and qualitativ
unexplained in the framework of a vortex lattice meltin
picture. ForBic in near optimally doped samples with a hig
level of oxygen deficiencyd.0.06,Blc is approximately 0.7
T10. Measurements ofBlc in different samples show thatBlc
increases with oxygen content,12 which suggests at first sigh
a correlation with twin density. The value ofBlc in fully
oxygenated, twinned samples is of the order of seve
tesla.11 The authors of Ref. 12 discuss the origin of the e
point and the variation ofBlc in different samples. The fac
that detwinning does not noticeably changeBlc and the ex-
istence ofBlc in naturally untwinned samples, together wi
the reproducibility of Blc in different fully oxygenated
samples, leads them to the conclusion that an intrin
mechanism as a cause for the end point cannot be exclu

An important relation for our discussion of the value
Blc in different YBCO samples~see Sec. III C! is that an
increase in oxygen content corresponds not only to an
crease in natural twin density, but also to a systematic
crease in the anisotropyg in the samples used in Refs. 1
and 15. Our work suggests that this change in anisotr
rather than the presence of twins may cause the chang
Blc . Our numerical work provides an explanation for th
existence ofBlc as well as a qualitatively correct predictio
of its rapid increase wheng is decreased, such as can
achieved by increasing the oxygen content. Another no
worthy point which we shall discuss in Sec. IV B 2 is th
the location ofBlc according to magnetization measureme
is not always in agreement with the one measured in spe
heat measurements. In a fully oxygenated sample in Ref
the latent heat vanishes at ca 6 T while a magnetization dis
continuity is still observed down to a field of 4 T.

Transport measurements reflect the loss of the first-o
character of the transition for low as well as for hig
fields.7,16 The resistance only drops to zero, which would
the expected resistance for a weakly pinned lattice at the v
low voltages used, for a limited range of magnetic fields. F
high and low fields only a fractional drop is visible, whic
disappears completely somewhat below 2 and above 7 T

Below Blc and aboveBuc as well as in samples where n
latent heat at all is observed, a ‘‘step’’ in the heat capacityC
remains.10–12,15 This behavior has been interpreted as e
dence for a second-order transition. The sharpness of
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‘‘step’’ is not altogether convincing~see, e.g., Fig. 3 in Ref
13!. However, the existence of a continuous transition t
vortex glass state at high fields is expected for the theore
phase diagram in Fig. 1~b!. According to the same phas
diagram another line marking a field-driven phase transit
line from Bragg glass to vortex glass is expected to eme
where first-order melting turns continuous.6 The ‘‘fishtail’’
magnetization anomaly,50 which correlates with the location
of Buc,17 could be interpreted as evidence for such a tran
tion. A lack of sharpness of this feature makes it a candid
however, for a crossover rather than a phase transition. T
has also been evidence from resistive measurements
field-driven crossover line as an extension of the first-or
transition in YBCO.18

3. Evidence for a vortex lattice

A vital ingredient of the vortex lattice melting scenar
which this paper disputes is the existence of a vortex latt
Experimentally a vortex lattice is indistinguishable from
liquid or glassy phase with short-range crystalline order
length scales large compared to the vortex separation.
dence for hexagonal coordination over large distances ca
seen in YBCO for low fields in Bitter pattern decoratio
experiments.19 At high fields this technique fails because t
vortices are too close to be individually resolved. A power
method to detect long-range vortex correlations is neut
scattering.20 The Bragg peaks observed in these experime
show that vortex positions are long-range correlated in
directions. The correlation length along the field can be
hanced by twin boundaries if the field is oriented along thc
axis. However, data from experiments with different orien
tions of the applied magnetic field show similar results, a
thus indicate that the long correlation lengths along the fi
are independent of the presence of twin planes. The intri
crystalline in-plane correlation length is more difficult to d
duce from neutron scattering data, because twin bounda
and/or pinning to the underlying crystal determine prefer
orientations and can thereby strongly enhance orientati
order.21

Although neutron scattering experiments give eviden
for long-range vortex correlations, some features of the d
are unexpected in the framework of a vortex lattice melt
picture. The observed diffraction patterns suggest the e
tence of a vortex lattice or a Bragg glass, which means
the melting transition is expected to be of first order. Suc
first-order melting transition should be visible as a disco
tinuous appearance of Bragg peak intensity, as the temp
ture is reduced. However, the peaks appear continuou
which leads the authors of Ref. 20 to the conclusion that t
must be dealing with second-order vortex glass melting.

An additional feature of the melting line defined by th
onset of Bragg peaks~which is not mentioned in Ref. 20! is
that it lies in theB-T phase diagram distinctly below the lin
corresponding to thermodynamically measured first-or
transition lines10,12 under the assumption of scaling wit
mass anisotropy likeB}1/g or B}1/g2. This point will be
investigated in more detail in Sec. IV A 2. For the alternat
phase diagram presented in this paper, a continuous ons
Bragg peak intensity somewhat below the first-order tran
tion line is just the expected behavior.
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B. Numerical simulations

A large number of numerical Monte Carlo or Langev
dynamics simulations of different three-dimensional mod
have with few exceptions provided evidence of first-ord
vortex lattice melting. The main disagreement between
ferent simulations of layered models concerns the ques
whether layer decoupling coincides with this melting tran
tion. In this section we give an overview of different nume
cal results and point out what we consider to be the we
nesses of the respective models used.

From the frustratedXY and Villain and lattice London
models there is evidence for first-order melting and disti
decoupling22 as well as, at least in the thermodynamic lim
only one simultaneous first order melting and decoupl
transition.23 Very recent simulations of the uniformly frus
trated 3DXY model show a vortex lattice melting transitio
as well as a second-, possibly first-order phase transi
within the liquid phase, at which the vortex line tension go
to zero.24 In these models vortices are confined to a lattice
3D, a lattice acts as a close grid of columnar pins with in
nite pinning potential in the thermodynamic limit which ma
lead to spurious phase transitions. For the LLL, alteration
the phase diagram by the presence of a lattice pinning po
tial which breaks translational and rotational invariance h
been predicted from a theoretical analysis.25

There are also numerical models that avoid using a latt
Numerical models relying on the 2D Bose gas analogy yi
simultaneous melting and loss of phase coherence along
c axis.26 A different scenario has been seen in a simulat
by Wilkin and Jensen,27 in which vortex pancakes in differ
ent layers are represented by particles with in-layer sh
range repulsive and interlayer attractive interactions. A fir
order transition associated with decoupling of vortices a
without melting character is observed. At a lower tempe
ture a melting crossover without noticeable thermodynam
signature occurs. While not being affected by pinning to
numerical lattice, the latter models may give unrealistic
sults because they allow variation of vortex position on
neglecting fluctuations of order parameter magnitude an
many cases having unrealistic short-range interaction28

Simulations using the Lawrence-Doniach~LD! model in the
LLL limit, which allows for these fluctuations and which ha
long-range vortex interactions, show a single first-order
multaneous melting and decoupling transition.29,30 All of the
simulations mentioned in this paragraph use periodic bou
ary conditions perpendicular to the field, which we belie
can also lead to unphysical results~see Sec. II!.

In the following sections we introduce our numeric
model~Sec. II! and report results from our simulation. Com
parisons to experimental data on YBCO are made in e
section in the context of the relevant numerical results. S
tion III addresses the numerical phase diagram of laye
systems in the clean limit, followed by an analysis of ord
parameter correlations in space and time in Sec. IV. T
paper closes with a discussion and a summary of our wo

II. NUMERICAL MODEL

Our simulation of a layered superconductor uses the
model,31 which consists of a stack of planes with Josephs
coupling between neighboring layers. With the superc
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6798 PRB 60A. K. KIENAPPEL AND M. A. MOORE
ducting order parameter in thenth layer denoted ascn , the
Hamiltonian for the layered system in a magnetic field p
pendicular to the layers is

Hclean5(
n

d0E d2r S aucnu21
b2D

2
ucnu4

1
1

2mab
u~2 i\¹22eA!cnu21Jucn112cnu2D ,

whered is the layer periodicity,d0 is the layer thickness, an
B5¹3A, which we shall take as constant and uniform. T
same Hamiltonian can be read as the finite difference
proximation to an anisotropic continuum model wi
c(nd)5Ad/d0cn , b5b2Dd/d0, and mc5\2/2Jd2. In a
first approximationa(T)5a8(T2Tc) and b2D(T) is con-
stant;a8,b2D ,J.0.

We simulate the LD model withNab vortices per layer in
Nc layers. Along thec axis we use periodic boundary cond
tions. In theab planes we chose a different, more unusu
approximation to the thermodynamic limit of an infini
plane. The layers are taken to be of spherical geometry w
a radial magnetic field. The reasons for our preference of
geometry to the more widely used geometry of a plane w
periodic boundary conditions have been discussed in d
by Dodgson and Moore.32 The main advantage is that th
spherical geometry guarantees full rotational and tran
tional symmetry, which periodic boundary conditions do n
One example where the spherical geometry captures
physics better than periodic boundary conditions—des
the topological defects imposed on the triangular latt
ground state on the sphere32—is particles interacting with the
1/r 12 interaction. Here simulations on a sphere show alre
for moderate system sizes the genuine continuous trans
to the crystalline state,33,34 while with periodic boundary
conditions a spurious first-order transition occurs even
very large system sizes. A similar situation exists for sim
lations of particles which interact via a logarithmic repulsi
potential,34 an often-used model for vortices in two dime
sions. Simulations using periodic boundary conditions
this system suggest the presence of a first-order melting t
sition, but no transition is seen at all when the particles m
on the surface of a sphere. In Ref. 34 it was argued that
the logarithmic interaction the crystalline state was unsta
at any finite temperature against proliferation of scree
disclinations. Hence the simulation on the sphere where
crystalline phase at finite temperatures is found gives
correct behavior. This last result is especially relevant for
choice of boundary conditions for our model, because
logarithmic repulsive potential is very similar to the vorte
interactions in the LLL limit studied in this paper. We sha
therefore use spherical boundary conditions throughou
this study.

For each layerc is expanded in eigenstates of the squa
momentum operator (2 i\¹22eA)2. We retain eigenstate
belonging only to the lowest eigenvalue 2eB\ ~the LLL ap-
proximation!, which is a useful procedure over a large po
tion of the vortex liquid regime.35 Our numerical model is an
extension to the model of a spherical thin film used in Re
-
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32, 36, and 37. The magnetic potential isA5BR tan(u/2)f̂,
for which an orthonormal basis of the LLL eigenfunctions
each layer is given by

fm5
Am

~4pR2!1/2
eimf sinm~u/2!cosNab2m~u/2!, ~1!

where Am5@(Nab11)!/(Nab2m)!m! #1/2 for 0<m<Nab .
Note that we use units of lengthl m5(\/2eB)1/2, which fixes
the sphere radius asR5(Nab/2)1/2.

The order parameter in every layer is expanded in
above basis set as

cn~u,f!5Q (
m50

N

vn,mfm~u,f!, ~2!

where Q5(2pkBT/b2Dd0)1/4. Orthonormality of the LLL
eigenfunctions can now be used to express the Hamilton
in terms of the LLL coefficientsvn,m and only two param-
eters,a2T andh:

Hclean

kBT
5 (

n51

Nc S a2T (
m50

Nab

uvn,mu21
1

2Nab
(
p50

2Nab

uUn,pu2

1ua2Thu (
m50

Nab

uvn11,m2vn,mu2D , ~3!

with Un,p($vn,m%) as defined in Appendix A. The 2D effec
tive temperature and field parameter for each layer isa2T
5(d0h/2eb2DBkBT)1/2aH , with aH5a(T)1eB\/mab .
The scaling parameterh relates to the Josephson couplin
constantJ ash5J/uaHu. We can define an effective massmc

via h5\2/2mcd
2uaHu. ThenAh is the ratio of the 3D mean

field coherence length to the layer periodicity,Ah5j i /d.
Note that for a HTSC material the 2D parametersb2D andd0
are effective microscopic properties of the copper oxide l
ers and essentially unknown. However, they enter the si
lation only via a2T5(2pd0 /b2DkBT)1/2aH where they can
be replaced by the layer periodicityd and the bulkb using
the relationb5d/d03b2D .

The state in the LLL-LD model depends on two dime
sionless scaling parametersa2T and h. It is useful to have
two scaling parameters which can be thought of as so
thing physical, e.g., one characterizing temperature and
other coupling strength between layers. In this sense,a2T
andh are not very appropriate. Becaused0,d, the tempera-
ture parametera2T goes to zero independently ofB andT in
thed˜0 limit of a continuous system. The coupling param
eterh includes a factoru1/aHu, which means that it diverge
at the mean fieldHc2. For these reasons we choose as eff
tive temperature and coupling strength two different para
eters that depend ona2T andh.

For the temperature parameter in a layered model desc
ing a bulk sample, the 3D version of the LLL scaling va
ableaT

2 stands out as an appropriate candidate. It is given

aT5S A2\3/2p

kBe3/2m0
D 2/3S 1

k2g
D 2/3]Bc2 /]TuTc

~T2Tc!1B

~BT!2/3
,

~4!
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which can be expressed in terms ofa2T and h as uaTu3
5h(2a2T)4. At low temperaturesuaTu3/2 behaves as 1/T. A
good measure of coupling strength is the productua2Thu
which multiplies the coupling term in the Hamiltonian. It
in SI units given by

ua2Thu5S \3p

8e3kBm0
D 1/2

1

kg2d3/2

1

~BT!1/2
. ~5!

Other than the factor 1/ABT, ua2Thu contains only constant
and therefore varies slowly for rather a wide range ofaH . It
can thus be regarded as a material constant over conside
regions of theB-T plane. The limiting caseua2Thu˜0 de-
scribes the 2D system, while smallua2Thu means strongly
layered characteristics. For constantaT , the limit ua2Thu
˜` is the continuum limit, in which all system propertie
depend onaT alone. Note that our model parameters depe
on the bulk material parametersk, mass anisotropyg, layer
separationd, ]Bc2 /]TuT5Tc

, andTc as well asB andT only.
All of these are for HTSC’s more or less well known fro
experiment.

As in Ref. 36, our simulation follows Langevin~model A!
dynamics. We drive our system by the time-depend
Ginsburg-Landau equation, discretized in time and expan
in the appropriate eigenfunctions:

vn,m~ t1Dt !2vn,m~ t !52DtG
]H~ t !

]vn,m*
1Dtjn,m~ t !. ~6!

The complex random noise variablesjn,m are drawn inde-
pendently from a Gaussian probability distribution, so th
their magnitude has a variances2/Dt51, where s2

52GkBT, so thatDt is the only free parameter. We chos
Dt50.15 ~see Ref. 36!.

Notice that in our model the densityB of the vortices is
the same in each layer. If the spherical geometry is pictu
as having a monopole at the center of the sphere to gen
a flux NabF0, which passes through the successive lay
then the density of vortices is less for the layers further fr
the center of the sphere. We believe it is better to avoid
image and regard the problem as being generated by
Hamiltonian for which the quartic coefficients are as given
Appendix A.

III. NUMERICAL PHASE DIAGRAM

As an introduction to our numerical results we show
Fig. 2~a! our numerical phase diagram for the clean case
comparison to experimental results. The only phase pre
in this phase diagram is a vortex liquid. We see a first-or
transition line between two vortex liquid states with a critic
end point at low fields, which agrees well with the expe
mental YBCO ‘‘melting’’ line. The magnetization jumps w
observe are shown in Fig. 2~b!. They are in very good agree
ment with data for YBCO from Ref. 10. The magnetizati
jumps in these experimental measurements are very like
be of thermodynamic origin, as they are found to be con
tent ~according to the Clausius-Clapeyron relation! with the
latent heat data measured in the same sample.10 Figures 2~a!
and 2~b! were obtained using standard YBCO values for
fitting parameters; viz., for the Landau-Ginsburg parame
ble
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k560, the mass anisotropyg57.5, the slope of the mean
field transition line]Bc2 /]TuT5Tc

522T/K, the mean-field

Tc592.5 K, and the layer separationd511.4 Å.

A. Continuum limit

From LLL scaling2 we know that all thermodynamic
properties depend ona2T alone in the 2D limit (ua2Thu
˜0) and onaT alone in the continuum limit (ua2Thu˜`).
Figure 3 shows how the thermal average of a typical quan
of interest, here the Abrikosov ratiobA5^ucu4&/^ucu2&2, be-
haves in the intermediate regime of a positive finite coupl
strength.

In the high-temperature regime 2D scaling applies; in
low-temperature regime, however, 3D scaling becomes m
appropriate. If we look at our model as a finite differen
approximation to the continuum case, this means that
approximation is for the same layer spacingd/j uu51/Ah bet-

FIG. 2. Phase diagram~a! and magnetization discontinuity~b!.
Experimental data are taken from Refs. 8, 10~a!, and 10~b!. ~For
Nc see Sec. III B.!

FIG. 3. Abrikosov ratiobA for a range of coupling strength
ua2Thu plotted against the 3D and 2D effective temperature va
ablesaT anda2T . Solid lines are guide to the eye.
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ter at low than at high 3D temperaturesaT . This is a natural
result as correlations along the field direction increase in
layered system asaT decreases. We are, however, not able
simulate system sizes that behave fully continuumlike
moderate temperatures. The numbers of layers used fo
data in Fig. 3 are chosen to have the correlations along tc
axis distinctly smaller than the system size, which means
ua2Thu512.8 even at the moderate temperature ofaT526
an Nc of 200.

B. First-order transition

Figure 4~a! shows the phase diagram in terms of simu
tion parameters, where data points mark the location of fi
order transition points as found upon heating and cooling
system. The logarithmic scale is chosen for even data di
bution. As ua2Thu increases and the system approaches
continuum limit, the transition line terminates at a critic
end point. Note that along the transition lineaT is approxi-
mately constant, which means that the field and tempera
dependences of the transition line behave as expected
continuum model whereaT is the only scaling parameter i
the system. Another point of interest is the limitua2Thu

FIG. 4. Plot~a! shows the numerical phase diagram. First-ord
transition points are plotted in theaT-ua2Thu plane. Plots~b!–~d!
show order parameter densityr and the degree of layer indepen
denceG upon heating and cooling. Note the hysteresis in the s
tem, the clear first-order behavior forua2Thu52 ~solid lines are
linear fits of r above and below the transition!, and the lack of
first-order behavior forua2Thu52.5. Nc varies between 8 and 8
for ua2Thu between 0.02 and 2.5. Forua2Thu52.5, r is offset by
20.05.
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˜0 of independent 2D layers. If we approximate the tran
tion value ofaT as constant for differentua2Thu, this trans-
lates to a dependence ofa2T on ua2Thu along the transition
line as a2T}2ua2Thu21/3. As the coupling is reduced to
zero, the 2D transition temperature diverges,a2T˜2`.
This would imply that there is no finite-temperature pha
transition in two dimensions, in agreement with 2D simu
tion results.32,37,36 Such behavior would be a natural for
transition of a predominantly decoupling nature, which ca
not occur in thin films. However, we find that direct exte
sion of our numerical transition line to even lower couplin
and thereby numerical observation of the 2D limiting beha
ior are impossible due to the finite-size effects analyzed
Appendix C.

Figures 4~b!–4~d! show examples of the kind of measur
ment used to locate the first-order transition. The system
plays hysteresis upon heating and cooling. We mark the t
sition in the middle of the observed hysteresis loop. T
hysteresis decreases with sweeping rate~typically 10 000–
20 000 time steps per data point!, and for a few cases we
have confirmed with equilibrium measurements that
equilibrium transition coincides roughly with the middle o
the hysteresis loop. The coupling values for which we sh
hysteresis measurements correspond in decreasing orde
to the critical end point, second the nearest to the critical
point where we have measured hysteresis, and third an a
trary, low coupling value. The discontinuityDr in the order
parameter densityr, given by r5(aTb/2paH)3^ucu2&, is
found to be more or less constant betweenua2Thu50.1 and
1.5. A decrease inDr is observed belowua2Thu50.1. How-
ever, this decrease at low couplings is possibly due to fin
size effects, which are in detail described in the Appendix
The rapid decrease to zero betweenua2Thu51.5 and
ua2Thu52.5 appears system size independent.

The plots of the hysteresis in the degree of independe
of neighboring layers, given by

G5
^uc~r !2c~r1dĉ!u2&

^ucu2&
,

reveal more about the nature of the transition and its dis
pearing. For low coupling, there is a large jump inG at the
transition, which decreases throughout parameter space
it is very small just before the end point. The decoupli
character of the transition gradually decreases along the t
sition line until it disappears at the critical end point. Furth
discussion predicting the existence and approximate loca
of the critical end point from the decoupling character of t
transition and more detailed numerical results concerning
critical end point will be given in Sec. III C. The reade
should note that in our simulation the onset of decoupl
does not imply the onset of a superfluid density at the tr
sition.

The magnetization discontinuities in Fig. 2~b! are calcu-
lated from the discontinuities inr. The magnetization in the
LLL model is 4pM52(m0e\/mab)^ucu2&, which is in
terms of our simulation parameters 4pM5p@B
2Bc2(T)#r/aTk2, where B is the applied magnetic field
Thus we can work out the magnetization discontinuity fro
the discontinuity inr taken from the two linear extrapola
tions at the transition. The data points in Fig. 2~b! represent

r
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ua2Thu51, 1.5, 2, and 2.5 forNc550, 60, 60/80, and 80. Fo
these four transition points we have an average value ofaT
527.72, which yields the transition line in Fig. 2.

The magnetization discontinuity is thermodynamica
linked to the entropy change at the transition by t
Clausius-Clapeyron relation

DS52DM
dHFOT

dT
, ~7!

where dHFOT /dT is the slope of the first-order transitio
line. We cannot measureDS directly. However, the good
agreement inDM and the first-order transition line betwee
simulation and experiment on the one hand and the con
tency of the experimentalDS as calculated from magnetiza
tion and latent measurements for the samples in Ref. 10
the other hand imply agreement forDS between simulation
and experiment. Note also the clear change in slope of
linear fits tor at the transition. LocallyaT is linear inT, and
via Maxwell’s relation

]S

]H UT5
]M

]T U
H

,

the sudden change in slope ofr at the transition implies a
change in slope of the entropy and a steplike feature in
specific heatC5T(]S/]T)B , with a lower value on the low-
temperature side of the transition. This is consistent w
experiment. The relative change in slope we find from
fits in Fig. 4 is 8%, while the equivalent experimental chan
in the heat capacity as taken from Fig. 3 of Ref. 13 is of
order of 5%~for a derivation of this value see Sec. III E!.
The fact that our simulation gives evidence for a step in
specific heat is consistent with results from a theoret
analysis showing that the step seen in experiment can
accounted for by thermal fluctuations within the LL
approximation.38

C. Critical end point

Until now we have as evidence for a critical end po
only the fact that the hysteresis along the transition l
eventually becomes unobservable. To more firmly estab
its existence, we shall consider how the nature of the tra
tion may lead to a critical end point.

1. Why does the first-order transition disappear?

A well-known first-order phase transition which ends a
critical end point is that of the ordinary liquid-gas transitio
Here the phase transition separates a liquid state with s
interparticle separationdl which takes advantage of the a
tractive interparticle energy which exist at distancesdmin ,
and sodl'dmin , from a gaseous state with large interpartic
separationsdg which is favored by a high entropy. If th
density is increased to the point where it reducesdg to be of
order dmin , the transition line ends. We believe that in o
case the entropy advantage of the high-temperature p
arises when the order parameter values in adjacent layer
uncorrelated, i.e., when the layers are decoupled. The rat
the mean-field coherence length perpendicular to the la
to the layer distance,j uu /d5Ah, increases along the trans
is-
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tion line with increasing coupling parameterua2Thu. Be-
causej uu defines the minimal extent of order parameter c
relations, a high-entropy state with decoupled layers is
possible ifj uu>d. And indeed, we will in the next section
locate the critical end point where the transition disappear
ua2Thu52.55 andaT527.75, which corresponds toAh
51.06. Very near the zero-field transition temperatureTc ,
wherej uu@d, the system can be expected to behave lik
continuum and thus a decoupling line cannot be expecte
reachTc .

2. Divergence of length scales

Near a critical end point we do not only expect all disco
tinuities to disappear, but we also expect there to be a di
gence of the length scale of fluctuations in the order para
eter density of the system. We therefore looked at
density-density correlations of the order parameter,

Cd~r 8,t8!

5
^uc~r ,t !u2uc~r1r 8,t1t8!u2&2^uc~r !u2&^uc~r1r 8!u2&

^ucu2&2
,

~8!

in the case wherer 8 is a vector parallel to thec axis andt8
50. This correlator is expressed in terms of thermal av
ages of the LLL coefficients in Appendix B 1. Plots of the
correlations near the critical end point can be seen in Fig

There is evidence of two length scales in the vicinity
the end point. The short-distance decay of the correla
function is dominated by the positional correlations of t
vortices in the different layers. This length scale is mos
determined byaT and changes slowly in the vicinity of th
critical end point. The diverging length scale is thus not th
of positional correlations of the vortices, but instead is as
ciated with local density fluctuations. This is not surprising
the analogy of an ordinary liquid-gas transition is consider

FIG. 5. Density-density correlations along thec axis near the
end of the first-order transition line and the critical end point~see
inset!. Note the decreasing difference in correlations betweenaT

527.6 and aT527.8 as the transition disappears. Forua2Thu
52.5 andaT527.8 we see evidence for a long length scale as
ciated with fluctuations in the average order parameter density.
tem sizes areNab572, 220,Nc,260 for aT527.6 and Nc

5270 for aT527.8.
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where crystalline correlations on a microscopic scale co
spond to positional vortex correlations. A noteworthy featu
of the short-distance decay of vortex correlations is that
difference between curves ataT527.6 andaT527.8 de-
creases as the coupling parameterua2Thu is raised past the
end point, as one would expect for a disappearing disco
nuity.

Density correlations diverge at the liquid-gas critical e
point on a mesoscopic scale. Analogous correlations o
larger scale appear in the numerical data betw
aT527.6 andaT527.8 asua2Thu is increased to its criti-
cal end point value. Figure 5 shows forua2Thu52.5 and
aT527.8 evidence of a second, much longer length sc
governing the decay of the correlation function at large d
tances. This length scale is associated with the density fl
tuations at the critical end point and only becomes visi
once it is larger than that of the vortex correlations. Due
the small amplitude of these density fluctuations, very lo
simulation times are needed to see the correlations within
statistical noise.

D. Anisotropic scaling and the value ofBlc

The location of the numerical first-order transition is
first approximation a line of constantaT and thus in agree
ment with 3D LLL scaling. This is, although surprising fo
very low couplings, not unnatural in YBCO, where even f
the highest fields and lowest couplings, e.g., for a transi
at B520 T, T565 K, uaThu is of the order 1/2 and the
correlation length along thec axis above the transition~see
Sec. IV A 1! of the order of ten layers. The continuum a
proach can thus be expected to work fairly well for YBCO

1. Scaling with anisotropyg

According to Eq.~4! the B(T) dependence of a line o
constantaT ban be approximated as

B}
~Tc2T!3/2

k2g
.

Thus we expect our transition line in samples of differe
anisotropies to scale asB}1/g, which is the experimentally
observed scaling.12 This form of scaling disagrees with
London-Lindemann-type melting theory. The variation of t
location of the low-field critical end point with anisotropyg
is discussed at the end of this section in the context o
general analysis of variations inBlc .

2. Variation with the angle of the applied magnetic field

We cannot in our simulation change the orientation of
applied field. We can, however, using the known proper
of the numerical transition discuss the expected beha
upon such a change in field orientation. We believe that
first-order transition is predominantly of a decoupling natu
However, it is important to keep in mind that the couplin
between layers in our simulation is not magnetic coupling
vortex segments, but Josephson coupling of the order pa
eter. This type of coupling is independent of the orientat
of the flux lines with respect to thec axis. Under angle ro-
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tation betweenu50 (Bic) and u5p/2 (B'c), the transi-
tion line should scale according to anisotropic continuu
scaling14 with u as

B~u,T!5guB~0,T!,

wheregu is given bygu5(cos2 u1 sin2 u/g2)21/2. This form
of scaling has been observed for the first order transition
in YBCO.13

Our argument linking the nature of the transition to t
location of the end point applies for any orientation of t
magnetic field. The location of the end point is for all orie
tations given byjc'd, where jc is the coherence length
along thec axis. ForBic this condition is equivalent toj uu
'd. Usingj uu5\/(2mcuaHu)1/2, this condition can be trans
formed to a simpleB(T) dependence which scales like th
transition line itself. The end point where both lines cro
therefore equally just shifts to a higher field asBlc(u)
5guBlc(0). This form of scaling has been experimenta
observed for the end point in YBCO.13

3. Variations in Blc

The location of the numerical critical end point agre
well with the experimental data of Fig. 2. However, as
ready mentioned in Sec. I A, the experimental value ofBlc
varies widely between different samples. Approximatingk
and T as constant at the critical end point, we obtain fro
Eq. ~5! the scaling relationBlc}1/g4. The k dependence is
Blc}1/k2. These two scaling relations show thatBlc depends
very sensitively on material parameters.

We can use the fit in Fig. 2 withg57.5 andBlc50.7 T as
reference point to compare the location of the critical e
point in our simulation to experimental values ofBlc . For
samples with measured anisotropies ofg57.8 ~Ref. 13! and
g57.0, 5.9, 5.3~Ref. 15! specific heat peaks have been me
sured down toBlc50.7 T ~Ref. 13! andBlc53 T, 4.5 T, 6 T
~Ref. 15!. The rapid increase ofBlc with decreasing anisot
ropy is in qualitative agreement with a scaling lawBlc
}1/g4.

Quantitative analysis however yields only poor agre
ment. The predictions using the above reference point
scaling law deviate from the experimental value by215%
~Ref. 13! and 270%, 260%, 250% ~Ref. 15!. There are
many possible reasons other than variations ink for this
quantitative disagreement. First, the finite width of the tra
sition due to sample inhomogeneities may lead to a spre
ing out of the specific heat peak, which can make it un
tectable for the lowest fields aboveBlc and lead to
overestimates ofBlc . Second, any aspects of the physic
coupling which are not represented in our model could le
to corrections in the effectiveua2Thu and should thus be
included for an accurate description.

A third, very important point is that nearTc critical fluc-
tuation effects arising from the zero-field transition are n
negligible and especially affect the divergence ofj uu . Such
effects extend to fields of the order ofGi3Hc2(0),39 in
YBCO ;1 T. Up to these fields, the LLL approximation
invalid because higher Landau levels are needed to allow
critical fluctuations. Thus the end point lies in a region whe
the LLL approximation is inadequate, and we cannot exp
our estimates of the position of the critical end point to



uc
e

lu

si
y
ds
en
n
th

wi
all
iti
du

e
ie

p
s

o
fe
e-

de
u
wi
s

t o
-
m

pl
ie

0

O
te

e
su

a

ha
n
it

e

-
1
f-

r the
or
a-
ting
eld

ing
m-

is

he

the

t
e
to

O
e to
1.4

.
at

of

ent
of

n.
it

er-

te.

eat

PRB 60 6803NUMERICAL STUDIES OF THE PHASE DIAGRAM OF . . .
quantitatively accurate. However, we can expect that s
fluctuations well makeBlc smaller than estimated from th
LLL approximation. Critical fluctuations causej uu to diverge
faster than in the LLL approximation, so it reaches a va
O(d) at temperatures closer toTc than in the LLL approxi-
mation. This in turn will reduce the value ofBlc .

In addition, despite extensive finite-size effect analy
~see Appendix C! we can never fully exclude the possibilit
that the location of the end point would shift to lower fiel
if we used much larger systems. The existence of an
point is fairly securely established by our physical argume
We have also made sure that the ratio of correlation leng
to the linear system dimensions,l ab /Lab andl c /Lc , decrease
rather than increase as we pass the critical end point
increasingua2Thu. However, the general tendency of sm
system sizes to decrease discontinuities at the trans
could have led to an overall underestimate of the jumps
to finite-size effects and thus to an overestimate ofBlc .

The presence of sample disorder can increase the valu
Blc . YBCO samples exhibit clusters of oxygen vacanc
and large-scale sample inhomogeneities. Oxygen clusters
at low fields a considerable fraction of the vortex matter,
that the field can be divided asB5Bpinned1Bf ree . The frac-
tion of pinned vortices will be increased by the presence
sample inhomogeneities which provide regions at an ef
tively lower aT that exhibit stronger pinning. Such a d
crease in the effective field of the free vortices (Bf ree,B)
could considerably increase the observedBlc .

Considering that the magnetic field at the end point
pends so sensitively on the model parameters, critical fl
tuations and disorder, the good quantitative agreement
the data of Refs. 10 and 13 seems more than can be rea
ably expected from our model, and is probably a produc
chance in whichBlc is in our simulation increased by inac
curacies of our model and/or finite-size effects by the sa
amount that it is increased by disorder effects in the sam
in Refs. 10 and 13. Indeed the small crystal recently stud
in Ref. 40 has a value ofBlc much smaller than in Refs. 1
and 13 which points once more to the sensitivity ofBlc to
disorder effects.

E. Beyond the critical end point

It is often supposed that the first-order transition in YBC
changes to second order below the end point, where no la
heat is visible but a ‘‘step’’ in the heat capacityC
remains.13,12 We believe however that this ‘‘step’’ can b
identified with the onset of a small rounded peak in the
perconducting specific heatCs5C2Cn (n for normal state!,
which is known to arise from thermal fluctuations.41 In this
section we shall examine experimental specific heat data
numerical data in the light of this possibility.

The specific heat peak due to thermal fluctuations
been observed for example in niobium by Farrant a
Gough,42 where observations are in good agreement w
theoretical predictions.41 We find that the location and th
height of the peak as well as the length of the rise~or width
of the ‘‘step’’! in C from the low-temperature valueCs,m f
(m f for mean field! to its maximum agree well for the nio
bium and YBCO measurements taken from Refs. 42 and
We shall now explain in detail how the data from both re
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3.

erences can be compared and give respective values fo
location, width, and height of the specific heat peak
‘‘step.’’ For a clearer picture of how the experimentally me
sured specific heat splits into normal and superconduc
contribution as well as how it compares to the mean-fi
contribution, a schematic plot is given in Fig. 6.

Farrant and Gough give in Ref. 42 the superconduct
specific heat data already in terms of LLL scaling para
eters. The plotted quantity isCs /Cs,m f . The data in Fig. 3
from Ref. 13 which shows the specific heat in YBCO
given asC minus C(B50). The latter near the ‘‘step’’ are
approximately equal to the low-temperature valueCs,m f
1Cn , because forB˜0, aT˜2`. This approximate
equality is also visible in Fig. 1 of the same Ref. 13. T
plotted quantity C2C(B50) is therefore approximately
equal toCs2Cs,m f .

The peak inCs in niobium obeys LLL scaling and is
found at aT'27. The specific heat maximum in YBCO
occurs at temperatures just above the extrapolation of
first-order transition line, which is located ataT'27.8. For
the example curves forB50.25 T andB50.5 in Fig. 3 from
Ref. 13, the center of the broad specific heat peak is aT
'91.4 K andT'90.7 K, respectively, which both translat
with the same previously used YBCO material constants
aT527.2. This is in very good agreement with niobium.

The width of the specific heat rise in niobiumDaT'2.
For B50.25 T, no sharp step feature is visible in the YBC
data. The specific heat rise from the low-temperature valu
the maximum takes place in the temperature region 91–9
K, which corresponds toDaT52.8, broader than in niobium
For B50.5 T one might suspect a steplike feature located
90–90.5 K. This width corresponds toDaT52.3, a value in
agreement with the niobium data.

For niobiumCs is at its maximum 5% larger thanCs,m f .
In YBCO we have to divide the plotted data byCs,m f to
compare with this value.Cs,m f is roughly given by the step
in C at the zero-field transition, which we take from Fig. 1
Ref. 13 asCs,m f'60 mJ/mol K2. For all fields the specific
heat ‘‘step’’ in YBCO is of the order of 1.5 mJ/mol K2,
which gives (Cs2Cs,m f)/Cs,m f'2.5%, which we consider
as reasonable agreement with in niobium. Exact agreem
cannot be expected for the following reasons. The value
Cs,m f we used for YBCO is a rather crude approximatio
For niobium Cs,m f is also somewhat uncertain, because
depends on the choice ofCn ~see Fig. 6!, which is not di-
rectly measurable but extrapolated from fits to high
temperature data. Also the data in YBCO at fields belowBlc
are in a region where the LLL approximation is inadequa

FIG. 6. Schematic view of a typical experimental specific h
curve without first order peak~thick line! with normal-state contri-
bution ~dashed line! and mean-field value~thin line!.
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If the step feature is mainly due to the increase of L
fluctuations, it should be observable in our simulation.
‘‘step’’ in the superconducting specific heat corresponds t
change in the slope of the magnetization, in simulation te
a change of]r/]aT . Figure 7 showsr upon cooling and
heating for ua2Thu53, well beyond the critical end point
The data foraT,27.9, i.e., below the region where the fir
order transition takes place in more layered samples, is v
strongly affected by hysteresis. The sweep rate being of
same order as usual, this is a sign of very long fluctuat
time scales. We shall come back to this point in Sec.
Linear fits to the data for both cooling and heating below a
above the extrapolated transition line,aT,27.9 andaT.
27.8, give a change in slope of 8%, larger than in the
perimental data from both niobium and YBCO.

In summary we have seen that the specific heat ‘‘step’
YBCO at different fields has approximately the same am
tude as well as width and position when expressed in te
of aT ; i.e., the ‘‘step’’ feature obeys LLL scaling~LLL scal-
ing has for the steps associated with the first order transi
previously been established in Ref. 38!. The corresponding
data from our numerical simulation are not equilibrated a
therefore not very accurate, but consistent with a sim
‘‘step’’ feature. The semiquantitative agreement betwe
YBCO and niobium strongly suggests that we are dea
with the same phenomenon and therefore that there real
no sharp specific heat step in YBCO beyond the critical e
point.

IV. ORDER PARAMETER CORRELATIONS

The existence of the critical end point implies that
symmetries are broken at the transition, which means it c
not be a liquid-crystal transition. Investigation of the natu
of order parameter correlations described in this section c
firms that the state below the transition is a vortex liqu
However, neutron diffraction patterns corresponding to a
angular lattice and an electrical resistance close to zero
low the first-order transition line suggest very-long-ran
vortex correlations. We shall argue that the extremely f
growth of correlation length scales and relaxation time sca
below the first-order transition, which has been theoretica
predicted in the low-temperature regime43 as well as ob-
served in our simulation, can account for these effects.

FIG. 7. Plots of the order parameter densityr upon heating and
cooling for ua2Thu53. Solid lines are linear fits for the region
above and below the extrapolation of the first-order transition li
extrapolated as dotted lines.Nab572, Nc580.
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A. Static order parameter correlations

We have measured various different kinds of equilibriu
order parameter correlation functions, including the struct
factor as previously defined in Ref. 32 and given by t
normalized density-density correlator in Eq.~9! ~below! for
Dr 50 along thec axis. The peaks in the structure facto
which occur at the reciprocal lattice vectors of the triangu
lattice, reflect the crystalline correlations within each lay
To examine order parameter correlations along thec axis, we
have measured three different correlators. First, we meas
the density-density correlations along a line parallel to
magnetic field,Cd(Dr ic), the same correlator that gave
Sec. III C evidence of a diverging length scale at the criti
end point. Second, we measured the decay of theab Fourier-
transformed density-density correlations, which are
Dr ic50 the structure factor of the system, depending
Dr ic. Just as for the structure factor32 we normalize by the
high-temperature limit, so that the relevant quantity is

Cd~kiab,Dr ic!/ lim
a2T˜`

Cd~kiab,0!, ~9!

with

Cd~kiab,Dr ic!5
1

^ucu2&2
@^ucu2~k,r !ucu2~2k,r1Dr !&

2^ucu2~k,r !&^ucu2~2k,r1Dr &# .

The definition of this correlator in its generalized, tim
dependent form in terms of the LLL coefficients and t
high-temperature limit are given in Appendix B 1, Eqs.~B2!
and ~B4!. We find that this correlator decays most slow
with Dr ic for kab'G, the first reciprocal lattice vector. In
addition to Cd we also measured the phase correlatorCp
defined as

Cp~Dr ic!5aT

b^c* ~r !c~r1Dr !&
2paH

, ~10!

which is expressed in terms of the LLL coefficients in A
pendix B 1. The prefactor is chosen such that thatCp(0) is
the order parameter densityr. In Fig. 8 we show examples o
static density and phase correlations above and below
transition for ua2Thu51, which corresponds to a transitio
temperature of 83 K in YBCO.

Figure 8~a! shows examples of the structure factor wi
Lorentzian fits. The inverse width at half maximum,d21, of
the peak near the first reciprocal lattice vector is proportio
to the crystalline correlation lengthl ab within one layer,32

d215 l ab/2l m . No qualitative change in behavior is visibl
across the transition, just a sharpening of the peak, wh
corresponds to an increase ofl ab . For the above fitsl ab / l m
52.66, 3.14, 3.88, 4.94, 5.46. This is shorter than the rad
of the sphereR/ l m5AN/256 and shorter than the averag
distance between the 12 disclinations imposed by the sph
cal geometry,A4pR2/12'R. This means that finite-size ef
fects on this data are not expected to be too large.

Figures 8~b!–8~d! show examples of measurements of t
three different correlators along thec axis. Figure 8~b! shows
the phase correlator, Fig. 8~c! the real space density-densi
correlator, and Fig. 8~d! theab Fourier-transformed density

,
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density correlator near the first reciprocal lattice vectorG. In
all cases we see an exponential decay of the correlation f
tion with a finite length scalel c for density correlations be
low as well as above the transition. Only for a liquid pha
would these correlation functions all have an exponen
decay.

All three correlators decay over half the system sizen
,Nc/2, and then rise toC(Ncd)5C(0) due to the periodic
boundary conditions. To extract decay length scales we fi
the first portion, approximatelyDr ,(Ncd/6), of the decay,
as indicated by linear fits. This region of decay is least
fected by finite-size effects, statistical noise and errors du
incomplete equilibration~see Appendix C!. The length scales
extracted from the linear fits are of the same order for
three correlators. Just above the transition the differentl c are
almost equal. Below the transition the Fourier transform
density-density correlations clearly have the largest len
scale withl c,d /j uu558 (d for density! at aT528.1 and the
phase correlator the smallest withl c,p /j uu542 (p for phase!
at the sameaT .

At temperatures well above the transition we find the o
posite behavior. The density-density correlation length is
temperaturesaT'24 little more than half of the phase co
relation length, which agrees with the simple high tempe
ture expectation ^c(r )* c(r 8)&2;^uc(r )u2uc(r 8)u2& and
therefore for exponential decayl c,p'2l c,d . However, be-
cause we find that below the transitionl c,d is the longest and
therefore dominant length scale, we shall in the followi
refer to the decay length scale of the correlatorCd(kab
5G) as l c .

FIG. 8. Static order parameter correlations above and below
first-order phase transition atua2Thu51. ~a! Structure factor~with
Lorentzian fits!, ~b! phase correlations along thec axis. Plots~c!
and ~d! show density-density correlations along thec axis, where
the correlator in~c! is in real space for points with the same coo
dinates in theab plane, and the correlator in~d! is in Fourier space
near the first reciprocal lattice vector of the triangular lattice,G.
Note that in plots~b!,~c!,~d! the y axes are such that parallel linea
fits correspond to the same length scale. The growth of length sc
is slowest for the phase correlations in~b! and fastest in~d!. The
system size isNab572, Nc5270.
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1. Temperature dependence of correlation lengths

In Fig. 9 we plot on the left theaT dependence of the
inverse width at half maximum of the first peak in the stru
ture factor,d21, which is proportional to the length scale o
in-plane crystalline order,l ab / l m52d21, and on the right the
length scalel c as obtained from linear fits to the decay
density-density correlations. The length scales have a dis
tinuity at the transition, which is found to grow with distanc
from the end point, as one would naturally expect. This d
continuity is clearly visible forua2Thu50.05. At large cou-
plings, finite-size effects spread out the discontinuity. T
data forua2Thu51 shows a rapid growth of the length scal
at and below the transition.

If the phase coherence of the Abrikosov state is exami
in the presence of thermal fluctuations, one finds that in
below three dimensions thermal fluctuations destroy ph
coherence at any finite temperature.45 Under the assumption
that there is only one relevant length scale describing ph
order and crystalline order in the system, perturbative stud
for the continuum low-temperature regime predict an ex
nential growth of length scales withuaTu3/2 as l c
} exp(AuaTu3/2) and l ab} exp(0.5AuaTu3/2).43 The authors of
Ref. 43 estimate thatA may be given by its upper limit value
A50.53. The slope of such growth behavior withA50.53 is
given by the solid lines in Fig. 9. The growth rate in o
simulation data is at the lowest temperatures of the sa
order as the theoretically predicted upper limit. However,
analytical result is from an expansion around zero tempe
ture in the continuum limit. This regime is for numeric
reasons described in Appendix C not accessible to our si
lation. Therefore perfect agreement of our simulation res
with this form cannot be expected.

The data in Fig. 9 forua2Thu53.2, which is beyond the
critical end point and has got no phase transition, sugg
that a faster growth of length scales sets in approxima
where the phase transition is located in more laye
samples. The reason why we have obtained no more da
lower temperatures to confirm this tendency is just beca
of the fact that length and time scales~see Sec. IV B! grow
so fast that we found it impossible to equilibrate a su

e

les

FIG. 9. Logarithm of correlation lengths plotted againstuaTu3/2.
Solid lines represent the growth rate for the low-temperature reg
as predicted from perturbative expansions around zero temper
~Ref. 43!. Dotted and dot-dashed lines mark the width of the fir
order phase transition from the magnetization discontinuity
ua2Thu50.05 andua2Thu51, respectively. Note the fast growth o
length scales forua2Thu51 below the phase transition. Note als
that the data below the transition forua2Thu50.05 is strongly af-
fected by finite-size effects (l ab'10l m.R56l m).
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ciently large system at even lower temperatures.~Remember
that the same system size in units ofj uu corresponds to more
layers for largerua2Thu.! However, the onset of fast growt
of length scales can be expected from the fact that in
low-temperature regime, where length scales are so long
the continuum approximation works well even for strong
layered materials, the data for differentua2Thu must collapse
onto a single curve and depend only onaT . At the transition,
length scales in the more continuous samples are in the
propriate scaling units distinctly shorter than for lowua2Thu.
For the length scales in these systems to approach the len
scales of the more layered systems, rather fast growt
necessary not far below the transition.

2. Appearance of Bragg peaks

Just below the phase transition the correlation len
scales in the simulation are for the range of coupling para
eters that correspond to YBCO not comparable to the m
larger length scales needed to give a signal in neutron
fraction experiments. Although the structure factor in a l
uid is rotationally symmetric, coupling with the underlyin
lattice or preferred orientations given by twin planes may
long length scales lead to the appearance of Bragg-
peaks.46

Our simulation suggests that the vortex liquid is not
below the first-order transition correlated and effective
crystalline over length scales comparable to the system
or a ‘‘Larkin’’-like length scale~dependent on the amount o
disorder present!. We can extrapolate the growth in leng
scales in Fig. 9 below the transition assuming the expon
tial growth rate estimated in Ref. 43 and indicated by
solid lines. For a decrease ofDaT'1.2 for example, which
corresponds in YBCO to cooling by only 1 K or ~1/4! K
below the transition at 5 T or 0.7 T,respectively, we obtain
an increase inl ab by a factor of 4 and an increase inl c by a
factor of 16. AtaT'210.5 the crystalline correlation lengt
l ab has according to the same estimate reached 30 la
spacings andl c the order of 10 000j uu , which is for magnetic
fields of B'5 T or 0.7 T of the order of 5000 and 10 00
layers, respectively. Correlation lengths of this order can
expected to lead in real samples to observable neutron
fraction peaks.

Figure 10 shows scaling plots of different experimen
phase diagrams in different YBCO samples. We expect
cording to LLL scaling that the plots ofgB(T) from samples
with a different mass anisotropy but otherwise identical m
terial parameters collapse~see Sec. III B!. Roulin et al.12 re-
port that the first-order transition lines in different cle
samples, represented by a solid line in Fig. 10, as well as
the line of steepest slope at the specific heat step in di
dered samples,15 represented by a dashed line in Fig. 1
collapse in this way. The solid and dashed lines corresp
to the specific heat peaks in three different samples w
different anisotropies each. The Schilling data@scaled using
g57.8 ~Ref. 13!# also agrees reasonably well with this sc
ing form.

According to the vortex lattice melting picture, the poin
which mark the onset of neutron diffraction peaks in Fig.
@scaled usingg54.3 ~Ref. 20!#, should coincide with the
first-order transition line. Comparison however shows t
gB is roughly a factor of 2 below the first-order transitio
e
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lines.~In a scaling plot ofg2B, which should yield a collapse
assuming London-Lindemann-type melting, the discrepa
between the Aegerter and Schilling data would be ev
larger, roughly a factor of 4.! Very substantial differences in
other material parameters would be necessary to make u
such a large deviation. In our picture the relative position
the two features is natural, because the onset of neutron
fraction peaks is attributed to a crossoverbelow the first-
order transition, when the neutron diffraction experiment b
comes sensitive to the exponentially fast diverging len
scales.

However, one might say that comparing first-order ‘‘me
ing’’ and the onset of neutron diffraction is not a comparis
of like with like, because the sample in the neutron diffra
tion experiment is far too dirty to exhibit a first-order pha
transition. The authors of Ref. 20 estimate that their sam
is comparable to samples from Ref. 15 and attribute the o
of neutron diffraction peaks to second-order freezing to
vortex glass. In this case they should coincide with the l
marking position of the steepest slope of the specific h
steps in such samples, which has been interpreted a
second-order vortex glass transition.15 However, the plots in
Fig. 10 show that this is not the case.

Our scaling approach is based on the approximationaT
;1/(gB)2/3. Assuming that the first-order transition lin
found by Roulinet al.12 occurs as in our simulation ataT
'27.5, this means that the dashed line and the onse
neutron diffraction in Fig. 10, for whichgB is reduced by a
factor of about 3/4 and 1/2, respectively, correspond toaT
'29, andaT'210.5, respectively. TheaT value for the
onset of neutron diffraction peaks is in excellent agreem
with our estimates as to wherel c'10 000j uu and l ab'30
lattice spacings in the clean limit.

B. Relaxation times

The analysis of relaxation times is numerically difficult.
turns out that the dominant relaxation times are very la

FIG. 10. Comparison of phase diagrams obtained on differ
samples from thermodynamic and neutron diffraction measu
ments. All data is forBic. Open circles and the solid line~extrapo-
lated to Tc beyond Blc) correspond to specific heat peaks. T
dashed line represents the point of steepest slope of the specific
‘‘step’’ attributed to second-order melting in samples which do n
show a specific heat peak. The data for the solid line, open circ
the dashed line, and solid circles is taken from Refs. 12, 13, 15,
20, respectively.
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near the first-order phase transition. Accordingly thermal
eraging is slow and measurements of the time decay of
density-density correlator have large statistical errors. Ho
ever, although our data on relaxation times is of rather p
quality, it is still of interest for comparison with the analys
of the vortex dynamics in the 2D system as well as for co
parison with nonequilibrium measurements in YBCO.

As in our previous analysis of the 2D system,36,44 we
measure the relaxation time scales in the layered sys
from the decay of the density-density correlatorCd from Eq.
~8! in its Fourier-transformed time-dependent for
Cd(kab ,kc ,t). We observe for high temperatures linear e
ponential decay of this correlator to zero for allk, where the
kab dependence of the decay time scales reflects, like
2D,36 the hexagonal order in the system. The time sca
decrease monotonically withkc for all kab . For low tempera-
tures, the time scales over which we measure the decay
often much smaller than the longest decay time scales th
selves, so that decay of the correlator is only observable o
a fraction of its initial value. However, we can still, knowin
that the vortex matter is liquid, extract time scales by fitti
the data assuming linear exponential decay. The longest
scales in the system are in all cases given by the decay o
3D Fourier component ofCd at the first reciprocal lattice
vector in theab plane andk50 along thec axis.

Figure 11 shows a plot of the dominant time scales
pending onuaTu3/2 for different ua2Thu. The plots suggest
very fast growth behavior, roughly,

t; exp@c1 exp~c2uaTu3/2!#,

where c1 and c2 are appropriate constants. We expect
exponential growth of the dominant time scales with t
range of correlations,t} expFlab

c , if the dynamics is acti-
vated, as it is in the 2D limit.36 The data in Fig. 11 togethe
with the low-temperature relation ln(lc)}2 ln(lab)}uaTu3/2,43

which is approximately also valid for our numerical data~see
Fig. 9!, strongly suggests such activated dynamics in
layered system.

FIG. 11. Logarithm of logarithm of relaxation times plotte
againstuaTu3/2. Dotted and dot-dashed lines mark the width of t
first-order phase transition from the magnetization discontinuity
ua2Thu50.05 andua2Thu51, respectively. The inset shows loga
rithmic plots of original relaxation data with linear fits.
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Figure 11 shows evidence that time scales increase
continuously across the transition. If activated scaling of
type t; exp@c1 exp(c2uaTu3/2)# holds, the discontinuity in
length scales should be amplified in the time scale disco
nuity. The increase int across the transition forua2Thu
50.05 is roughly a factor of 500. In the caseua2Thu51 the
time scales increase across the transition according to ou
only by a factor of 4. Although we expect the discontinui
in time scales to decrease asua2Thu increases and the en
point is approached, it is very likely that we strongly unde
estimate the time scales of exponential decay below the t
sition for ua2Thu51, because we fit to a very small regim
of decay ~see inset of Fig. 11!. As in the 2D case36 the
relaxation behavior at very early times is faster than the fin
linear exponential decay.

As in the case of length scales, the data for allua2Thu
should collapse at lowaT , i.e., in the continuum limit. This
implies very fast growth of time scales below the transiti
aT for continuous systems withua2Thu beyond the end
point. This extremely fast growth is reflected in the behav
of the system upon heating and cooling forua2Thu53 ~see
Fig. 7!, where strong hysteresis due to very slow decay
thermal fluctuations is observable belowaT528.

1. Comparison with resistivity data

Although the relevant time scales for dc resistance m
surements in YBCO are nonequilibrium pinning time sca
which are not directly comparable to the relaxation tim
measured in the simulation, some connections can be m
While our time scales are irrelevant for flux flow conducti
ity, they are relevant in a highly viscous vortex liquid r
gime, where the time scales of thermal fluctuations or pla
deformations of the vortex structure are much larger than
pinning time. In this case one speaks about a pinned vo
liquid.3 In such a liquid flux flow is strongly suppressed b
pinning. When there is a large discontinuity of relaxati
time scales at the first-order transition, it is conceivable t
the flux liquid becomes suddenly pinned and discontinuit
in the resistive behavior occur.

A decrease of the discontinuity in time scales as one
proaches the critical end point agrees qualitatively well w
the decreasing discontinuity in the resistive data asBlc is
approached.16 The decrease and complete disappearance
the resistivity jump are difficult to explain with the assum
tion that the first order vortex lattice melting changes to
vortex glass melting transition atBlc . A change in resistive
behavior and a discontinuity in the resistivity at low curren
should remain for such a transition.3

In experiment a very steep drop of resistivity to zero w
decreasing temperature is observed even forB,Blc , when
there is no first-order transition. This feature can in our p
ture be attributed to the doubly exponentially fast divergen
of decay time scales with decreasing temperature once
extrapolation of the transition line is crossed. Although the
is no time scale discontinuity, the system does a fast cro
over from flux flow conductivity to a strongly pinned liqui
regime.

2. Irreversibility and magnetization measurements

A puzzling feature of the magnetization measureme
near the first-order transition in YBCO is the occurren
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of reversible-looking magnetization jumps without the co
responding latent heat11 which must according to the
Clausius-Clapeyron relation@Eq. ~7!# occur for an equi-
librium measurement. In Ref. 11 large magnetization jum
which would correspond to entropy jumps of up to
kB/vortex/layer, more than 10 times higher than the larg
jumps observed in calorimetric measurements of appr
mately 0.8kB/vortex/layer,12,13 are found without any evi-
dence of a latent heat.

If magnetization and specific heat data do not obey
Clausius-Clapeyron relation, this must be due to a lack
equilibration in the system. The connection between se
ingly reversible features in the magnetization data and i
versibility has in some cases been shown experimentally.
the vortex transition in BSCCO Farrellet al.47 found that the
magnitude of the magnetization jump is for standard sup
conducting quantum interference device~SQUID! measure-
ment techniques strongly correlated to irreversibility, even
irreversibility only becomes obvious at temperaturesbelow
the magnetization jump. A similar effect in YBCO has be
reported by Schillinget al.,48 where a change in slope of th
seemingly reversible magnetization is shown to be an ef
of irreversibility.

Very recent data in YBCO by Ishidaet al. in the second
reference of Ref. 49 shows magnetization jumps in a ge
etryBia atB51.5 T, while in this geometry the specific he
jump has in similar samples been observed to disappea
tween 6 T and 4 T,13 a value in good agreement with ou
simulation data, if anisotropic scaling is assumed to apply
Ref. 49 the ac (f 5390 Hz! susceptibility is also measure
and found to be an almost perfect image of the dc magn
zation jump. This analogous behavior of the jumps in dc a
ac susceptibility, of which the latter is clearly not a therm
dynamic but a dynamic phenomenon due to nonequilibri
pinning effects,49 is suggestive of irreversibility effects eve
in the dc case.

Although our simulation does not reproduce these effe
the relaxation time scales we measure give a clear indica
why such irreversibility related effects can occur just bel
the extrapolation of the first-order transition line, i.e., ataT
<28. Let us assume that the growth in relaxation tim
scales is of the typet; exp@c1 exp(c2uaTu3/2)# and further
take an estimate of the slope of ln lnt below aT528 from
the low-temperature data in Fig. 11 for couplingua2Thu
53.2 ~beyond the end point!. Using the estimate
](ln ln t)/](uaTu3/2)'0.09 let us consider a decrease in te
perature fromaT528 to aT5210. This corresponds to
temperature decrease of less than 0.3 K below the extr
lation of the first-order line at a field ofBic50.25 T or,
according to anisotropic scaling withg57, to a fieldBia of
1.75 T. The considered temperature interval is thus com
rable to the width of the magnetization discontinuity in t
data from Ref. 49. For this decrease inaT we can extrapolate
an increase in time scales from ln lnt'2.3 to ln lnt'3.1,
which is by a factor of 105. For an increase of time scales b
a further factor of 105 a further decrease of temperature
only 0.1 K is needed. This implies that cooling by only fra
tions of a kelvin belowaT528 for fieldsB,Blc can cause
the system to fall out of equilibrium.

If one believes that falling out of equilibrium can lead
spurious magnetization jumps, then one may ask why a m
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netization discontinuity is not always present, but in ma
cases disappears at low fields. For the data of Schil
et al.10,13 magnetization and specific heat data are found
be in good agreement with the Clausius-Clapeyron relat
A possible answer may be that the size of the magnetiza
discontinuity caused by nonequilibrium effects depends s
sitively on the presence of sample disorder. Such effects m
make it negligible against the thermodynamic magnetizat
discontinuity at the first-order transition in some samples l
the ones used by Schillinget al.,10,13 but not in others.

V. DISCUSSION AND SUMMARY

In our numerical work we have found a first-order tran
tion which on the one hand coincides with the first-ord
transition in YBCO, but on the other hand is not associa
with vortex lattice melting. An analysis of what triggers th
decoupling transition at the particularaT where it is ob-
served is beyond the scope of this paper. The answer to
question could lie in the observation made by Pierson
Valls38 that the first-order transition in YBCO coincides wit
the onset of 3D LLL fluctuations. Because even stron
layered systems are 3D in nature below the first-order tr
sition, the onset of 3D LLL fluctuations can be expected
occur at a fairly constant value ofaT , and this may be re-
flected in approximately constantaT along the phase transi
tion line.

The numerical trainsition ends in a critical end poin
which corresponds to the experimentally observed low-fi
end point of the first-order transition line in YBCO. How
ever, our simulation does not capture the presence of a h
field critical end point. This is not surprising, as the upp
critical end point has been experimentally shown to
strongly correlated with the presence of disorder. We rep
in Ref. 44 how the introduction of quenched random po
disorder to our numerical system affects the first-order ph
transition: The transition persists in the presence of w
random point disorder but can be suppressed entirely
strong disorder. The numerical phase diagram in the p
ence of disorder has got only one phase, a vortex liquid,
as in the clean limit. There is no evidence of a thermod
namic transition to a Bragg glass phase or vortex glass ph

Some readers may believe that the nature of the first-o
transition in YBCO is vortex lattice melting and dismiss th
absence of a vortex lattice state below the transition in
simulation as an artifact of the spherical boundary conditio
we use. In this case, however, it would seem astonishing
this first-order transition associated with vortex lattice me
ing should quite happily persist in our simulation in the a
sence of a vortex lattice. Besides, a first order vortex dec
pling transition27 and another similar51 thermodynamic
transition,24 both not associated with vortex lattice meltin
have also been observed in simulations of different mod
using periodic boundary conditions.

A. Comparison with previous LLL-LD simulations

From previous simulations using the same model,
with periodic boundary conditions, a single vortex latti
melting transition is reported.29,30 We find there is a dis-
agreement in the location of the transition between our sim
lation and Ref. 30 for weak couplings. This is certainly d
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to the different choice of boundary conditions, because in
2D case the two choices of boundary conditions are kno
to yield different results.32,37,52As the coupling increases, th
disagreement in the location of the transition between
results and those from Ref. 30 disappears. For couplings
enough to see the critical end point, the LLL-LD model h
never been investigated using periodic boundary conditio

The LLL-LD model simulations using periodic bounda
conditions exhibit a vortex lattice state below the transitio
If the transition was of the same nature for periodic bound
conditions as for spherical layers, the apparent vortex lat
state could be accounted for by the use of system s
smaller than the correlation lengths.~The largest system
sizes in these simulations were of the order of only 40 v
tices3 20 layers.! Small system sizes together with the r
strictions in degrees of freedom imposed by periodic bou
ary conditions may make a vortex liquid with very lon
length scales indistinguishable from a vortex lattice.

B. Relevance for BSCCO

We have so far only compared our numerical data w
experiments in YBCO. Near the phase transition in BSC
neither the LLL approximation nor the LD model is valid
The phase diagram of BSCCO has a first-order transi
line,53 which occurs at much smaller applied magnetic fie
than in YBCO. Near the BSCCO transitionH/Hc2 is of the
order 1023. This means that the LLL approximation we u
in our simulation cannot be expected to apply. The stron
anisotropic character of BSCCO is such that Josephson
pling between the layers may be negligible compared to e
tromagnetic coupling effects54 and so BSCCO is not accu
rately described by the LD model.

However, some qualitative points of comparison can
made. It is for example noteworthy that in BSCCO the m
terial parametersk as well as the layer periodicityd, Tc , and
]Bc2 /]T are of the same order as in YBCO, but typic
estimates of the mass anisotropyg are between one and tw
orders of magnitude larger. This means that the end poin
our numerical transition line translates via the relationBlc
}1/g4 to fields that are between four and eight orders
magnitude lower than in YBCO. An experimental observ
tion of a lower critical end point is therefore not to be e
pected in BSCCO.

In the low-temperature limit, where all length scales a
large, both YBCO and BSCCO should show the same u
versal behavior. Should our phase diagram be valid so
there is no thermodynamic vortex lattice melting transition
a finite temperature below the experimentally observed fi
order transition in YBCO, then BSCCO should also be in
vortex liquid state below the first-order transition. The co
sequence that the first-order transition in BSCCO is not o
genuine vortex lattice melting character is in agreement w
recent experimental evidence that hexagonal neutron diff
tion patterns, which signify that a vortex lattice or a vort
liquid with very long length scales, can be observed abov
well as below the first-order transition line.55

C. Summary

We have numerically calculated the phase diagram o
layered superconductor and found a first-order transition
e
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between two vortex liquid states. The length scales of or
parameter correlations parallel and perpendicular to the m
netic field as well as the longest relaxation time scales
crease discontinuously at the transition but remain finite
the temperature is lowered. As the coupling strength betw
layers increases, the discontinuities in length and time sc
decrease until the transition line ends at a critical end po
Shape, location, and anisotropic scaling properties of
transition line and its end point as well as the size of
reversible magnetization discontinuity are in excellent agr
ment with the experimental first-order transition line and
low field end point in YBCO. The approximate location o
the end point can be predicted from a qualitative argum
assuming that the transition is of a layer decoupling natu
However, the exact quantitative agreement of the location
the end point with experiments by Schillinget al.10 could be
a chance result due to cancellation of inaccuracies of
numerical model at low fields and/or finite-size effects w
disorder effects in real samples.

Our results suggest that the transition in YBCO, which
commonly interpreted as vortex lattice melting, is of
liquid-liquid nature, with a low-temperature vortex liqui
phase in which length scales grow exponentially fast a
time scales due to activated dynamics doubly exponenti
fast with decreasing temperature. We argue that because
far below the first-order transition the vortex liquid is high
viscous and effectively crystalline over large length scal
our picture can account for many experimental features
cluding resistance drops and Bragg peaks, which have so
been taken as evidence for the vortex lattice melting s
nario.
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APPENDIX A: QUARTIC ENERGY TERM

The quartic coupling term in Eq.~3! can in each layer be
expressed in terms of the LLL eigenfunctions in the follo
ing way ~we omit the layer numbering indices!:

Hquartic

kBT
5

1

kBT

b2D

2
d0E d2r ucu45

1

2N (
p50

2N

uUpu2,

~A1!

with Up5(m5max(0,p2N)
min(p,N) f(m,p2m)vmvp2m, with f (m,n)

5AmAn@B(m1n11,2N2m2n11)#1/2, where An as de-
fined in Eq.~1! andB is the beta function.

APPENDIX B: CORRELATIONS

To compute correlations in reciprocal space, we perfo
the spherical equivalent of a Fourier transform, the exp
sion in the discrete set of normalized spherical harmon
Ỹl

m(r ). To a value ofl correspondsk5 l /R. Because the liq-
uid is isotropic, the correlator ink space depends only on th
magnitude ofk, i.e., only on l and not onm. For better
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averaging we calculate the correlator for allm and average
over the differentm.

1. Density-density correlations along thec axis

The real space density-density correlator forDt50 and
Dr i ĉ, Dr 5nd is given by

Cd~nd!5
^uc~r !u2uc~r1ndĉ!u2&

^ucu2&2
21.

Taking the spatial average over allr in one layer involves the
same integrals over LLL eigenfunctions as the calculation
the quartic energy term. Together with spatial averaging o
different layers this yields
ri

.
ts

n-
f
er

Cd~nd!5

(
p51

Nc K (
q50

2Nab

Ũp,q
n* Ũp,q

n L
(
p51

Nc K (
q50

Nab

vp,q* vp,qL 2 21, ~B1!

where

Ũp,q
n 5 (

m5max(0,q2Nab)

min(q,Nab)

f ~m,q2m!vp,mvp1n,q2m ,

with f (m,q2m) as defined in Appendix A.
The 2D density-density correlator ink space from Ref. 32

is easily generalized to three dimensions as
Cd~ l /R,nd,Dt !5
2pNab

~2l 11! (
p51

Nc K (
q50

Nab

vp,q* vp,qL 22

(
m52 l

l

(
p51

Nc

3K (
q5max(0,2m)

min(Nab ,Nab2m)

vp,q1m* ~ t !vp,q~ t !I l ,q
umu (

q85max(0,2m)

min(Nab ,Nab2m)

vp1n,q81m~ t8!vp1n,q8
* ~ t8!I l ,q8

umu L
c

, ~B2!
ich
u-

ail-
en
s-
n
ded
ber
e

tem
ich
re-

here
la-
ical
gi-

r in
wherec signifies the connected average and theI l ,n
m are de-

fined for 0<m< l and 0<q<N2m as

I l ,q
m 5E d2rỸmfq1m* fq5AqAq1mA~2l 11!~ l 1m!

2pN~ l 2m!!

~21!m

m!

3B~N2q11,q1m11!3F2

3~m2 l ,m1 l 11,q1m11;m11,N1m12;1! ~B3!

where 3F2 is a generalized hypergeometric function.
The high-temperature limit of this correlator is fort5n

50 easily calculated analytically32 as

lim
a2T˜`

Cd~ l /R,0,0!5
~N! !2

~N2 l !! ~N1 l 11!!
. ~B4!

For analysis of relaxation times this correlator is nume
cally Fourier transformed in thec direction. To make
Cd( l /R,nd,t) converge in the continuum limit we choosej uu
as unit of length when integrating along thec axis:

Cd~ l /R,q,t !5
1

Ah
(
n51

Nc

Cd~ l /R,nd,t !cos~q3nd!,

~B5!

whereq takes valuesq52pm/(Ncd) for m50, . . . ,Nc/2.

2. Phase correlations along thec axis

The phase correlations along thec axis as defined in Eq
~10! are easily expressed in terms of the LLL coefficien
using the orthonormality of the LLL functions and the ide
tity aT52paH /bQ2:
-

Cp~nd!5
aTb

2paH
K 1

4pR2E d2rc* ~r !c~r 1nd!L
5

aT

a2T

1

2pNabNc
K (

p50

Nab

(
q51

Nc

vp,q* vp,q1nL .

~B6!

APPENDIX C: FINITE-SIZE EFFECTS

The limitations in the region of parameter space for wh
we can run our simulation as well as the limitations in acc
racy of our measurements are mainly due to limited av
ability of processor time. The simulation time grows, as se
in Sec. IV B, roughly doubly exponentially fast with decrea
ing aT . The ratio of CPU time to simulation time, give
essentially by the number of floating point operations nee
for one update of the state, depends linearly on the num
of layersNc , but due to the quartic energy term for larg
systems quadratically on the number of vorticesNab . Finite-
size effects become important and therefore large sys
sizes necessary when correlation lengths grow large, wh
is unfortunately just in the regime of phase space where
laxation times also grow large, namely, at lowaT .

1. Effects of limited Nab

Most of our data have been taken usingNab572. For high
temperatures finite-size effects are negligible, because t
is little in-plane order and the range of crystalline corre
tions in any one layer is much smaller than the spher
dimensions. The topological disorder due to the 12 topolo
cal defects imposed by spherical geometry32 becomes at high
temperatures negligible against the strong thermal disorde
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the system. With decreasingaT and growingl ab , finite-size
effects due to finiteNab become important. For any oneaT ,
the effects of the limited number of vortices are the mo
severe the lower the coupling strengthua2Thu and the 2D
effective temperaturea2T are, because outside the continuu
limit in-plane order increases with decreasing coupl
strength, indicated by a smaller correlation lengthl ab ~see
Fig. 9! and smallerbA ~see Fig. 3!. As a consequence of to
small Nab , we see a decrease in length scales of crystal
correlations as previously observed in 2D systems32 as well
as a decrease of correlations along thec axis. We interpret
agreement of measurements taken withNab572 and Nab
5144 as an indication that withNab572 we are already
close to the thermodynamic limit.

2. Effects of limited Nc

Finite-size effects due to limited numbers of layers are
equilibrium measurements not a severe problem, becaus
increase ofNc increases the CPU time only linearly, an
improves the rate of thermal averaging by the same amo
Therefore the disadvantage of increasingNc is only the in-
crease in equilibration time as long as enough memor
available. If Nc/2, the distance over which correlations d
cay, is not distinctly larger than the correlation length alo
the layers~see Sec. IV!, we find that correlations both para
lel and perpendicular to thec axis are artificially enhanced
and slower than exponential decay behavior is observed
visible in Fig. 12 forNc530. For equilibrium measuremen
of length and time scales, we always haveNc.103 l c /d,
which required on occasion usingNc up to 300 layers with
144 vortices per layer.

3. Thermal averaging and initial relaxation

Initial relaxation has proved a very difficult problem
our 3D simulations, where relaxation times are so long t
the entire simulation time is often limited to only few time
the longest relaxation time. In principle, the relaxation can
started from an arbitrary state, where obvious choices a
random state or a ground state. The relaxation from a gro
state has the disadvantage that it is very slow for lowaT . On
the other hand, it is fairly easy to judge how far the syst
has relaxed when started with the same state in every la
Because our system is always in a liquid state, a slower t
exponential decay of correlations in thec direction~which is
in a sufficiently large system always removable by furth
equilibration! is a reliable sign of insufficient equilibration
A case of insufficient relaxation can be seen in Fig. 12
Nc5180. When using systems started from a ground st
they are always allowed to relax for longer than the long
relaxation timet, in most cases longer than 5t. Relaxation
from a random state has got the advantage of being fa
than from a ground state. However, we found measurem
from an insufficiently equilibrated random state often ind
tinguishable from equilibrium measurements at a higher te
perature, and therefore avoided starting equilibrium meas
ments from a random state.

The most efficient way to obtain a well equilibrated sy
tem is to cool down or heat up a configuration obtained fo
similar temperature and coupling strength and identical s
tem size. We used this method whenever such configurat
e
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were available. The cooling or heating rates in these ca
are similar to those used in our hysteresis measurement

4. Loss of first-order behavior

The change of the hysteresis at the first-order transi
for decreasing numbers of layers can be seen in Fig. 13.
correlation length along thec axis ~see Sec. IV! just above
the transition is forua2Thu50.4 approximately six layers
For Nc520, correlations along thec axis are enhanced sig
nificantly just above the transition. The system does not
main in the high-entropy, decoupled state, and the hyster
is lost. This effect is visible in Fig. 13 in the reduction of th
layer independence parameterG ~defined in Sec. III B! just
above the transition in case of the smaller system size.
loss of hysteresis with decreasing system size is rather
den. Further increase in system size beyond 5–6 times
range ofc-axis correlations affects the hysteresis measu
ments very little.

In all cases the system sizes used for the hysteresis m
surements are more than 5 times the correlation lengthc
direction just above the transition. The correlation leng
are for selected values ofua2Thu known from equilibrium
measurements in large systems and otherwise estimate
interpolation. We are aware that the system sizes used fo
sweep measurements are in most cases not distinctly la
than the range of correlationsbelowthe transition. However,
the observed size of the jumps does not seem much affe
by this; the discontinuities in the order parameter magnitu
seen in equilibrium measurements in much larger syste
for selectedua2Thu agree well with the results from swee
measurements.

A very important point to verify is that the loss of hyste
esis at the critical point is not an effect of insufficient num

FIG. 12. Typical measurements of static correlations along thc
axis. Open symbols are density correlations; solid symbols
phase correlations. Note for squares that correlations are enha
by insufficient system size and for triangles the incomplete rel
ation of the system. Statistical noise can for larger suggest slower
than exponential decay~circles! as well as faster than exponenti
decay~stars!. For all systemsNab572.
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bers of layers. We have made sure that the system sizes
near the critical point are not only more than 5 times t
correlation length, but also that the loss of the transition
ua2Thu52.5 occurs in a system that is not only in terms
layers, but also in terms of the natural length scalej uu , larger
than the system forua2Thu52, where a transition is still
visible. Forua2Thu52 andNcd/j uu565 we see a clear tran
sition, while for ua2Thu52.5 andNcd/j uu580 there is no
sign of a transition in the range28.3,aT,27.3.

If the number of vortices per layerNab is reduced, the
hysteresis at the transition first decreases and then di
pears. For the general reasons outlined in Appendix C 1
effect becomes stronger asua2Thu decreases. Below som

FIG. 13. Order parameter densityr and the measure of laye
independenceG upon heating and cooling. For insufficient numb
of layers,G is reduced on the high-temperature side of the transit
and the first-order behavior is lost. ForNc520, r andG are offset
by 20.05 ~equal levels marked by solid lines!. Nab572 and
ua2Thu50.4.
n,

r,
sed
e
t

f

p-
e

critical Nab , which increases with decreasingua2Thu, the
in-plane order below the transition, reflected in the Abrik
sov ratiobA , is so much affected by the spherical topolo
that the discontinuity inbA vanishes and the transition dis
appears. This behavior is shown in Fig. 14 forua2Thu
50.05. The size of the discontinuities decreases noticea
betweenNab572 andNab566. For Nab554 the transition
has disappeared. ForNab572, we still measure a transitio
at ua2Thu50.02, but not atua2Thu50.01. Thus the need o
increasingNab limits the exploration of the phase diagra
for very low ua2Thu.

We estimate that the limitation of the number of vortic
we study toNab572 affects our hysteresis measurements
ua2Thu<0.05. We can detect size dependence in the loca
of the phase transition for system sizesNab572 andNab
5144 only for ua2Thu,0.05 ~see the phase diagram in Fig
4!. The hysteresis measurements plotted in the same fi
show that the size of the discontinuities at the phase tra
tion does not change noticeably betweenNab572 andNab
5144 for ua2Thu50.14. Forua2Thu@0.14, which applies to
the region near the critical point, the system should at
phase transition be well simulated usingNab572. This is
confirmed by the agreement in the magnetization discont
ity between Nab572 and Nab5144 in Fig. 2~b! for T
589.3.

n

FIG. 14. Order parameter densityr and Abrikosov numberbA

upon heating and cooling. For an insufficient number of vortices
layer,bA is increased on the low-temperature side of the transit
and the first-order behavior is lost. ForNab566 andNab554, r is
offset by 20.05 and 20.1, respectively, andbA is offset by
20.015 and20.03, respectively~equal levels marked by solid
lines!. Nc512 andua2Thu50.05.
nd
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