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In the present paper, we use the Heisenberg antiferromagnetic model within linear spin-wave theory to study
the magnetic dynamics of bilayer antiferromagnets such as,Q®B8s.,. The Zubarev's double-time
Green’s-function formalism has been employed in order to evaluate the expressions for spin-wave dispersion,
sublattice magnetization, and specific heat. It has been shown that in these systems, the intrabilayer coupling
leads towards a “spin gap.” The optical mode is found to contribute significantly to the sublattice magneti-
zation only in the high-temperature regime. In the low-temperature regime, the contribution from the acoustic
mode is sensitive to the anisotropy term. We observe that the dipolar anisotropy does not produce the three-
dimensional3D) Néel ordering, while the exchange anisotropy is essential to keep 2iDdveering in these
systems. Further, we observe a crossover from 3D to quasi-2D behavior at a certain temperature. The presence
of the optic mode does not seem to alter the quasi-2D behavior of these systems in the higher temperature
regime. The specific heat is also found to be dependent on the ratio of intrabilayer to in-plane coupling strength
(r). These results are compared with the existing resi#8163-18209)01233-3

. INTRODUCTION netically'5-1° Most of the above-mentioned works do not
incorporate this feature in the magnetic dynamics of
It is well established now that in their normal state, com-YBa,CusOg -
pounds such as L&uQ, and YBgaCu;0O; . are layered an- By considering the AFM coupling between the layers
tiferromagnets and highly anisotropic. It has been observedl, ), it has been shown theoreticdffythat the spin-wave
that upon doping there is a structural transition from thespectrum consists of two branch@sacoustic andii) optic.
insulating antiferromagnetiGAFM) to the orthorhombic su- In fact, this leads to a spin gap with minimum energy
perconducting phase and the magnetic properties becong/J, J,. The neutron-scattering experiment conducted by
sensitive to the dopant concentratioim YBa,CuOg. , the  Rezniket al2° has confirmed the presence of the optic mode
Neel temperature Ty) decreases on increasing the oxygenwith minimum energy 65—70 meV in YB&uOg . Further,
concentratiorx and forx>0.41, the magnetization vanishes. the Heisenberg model has itself proved to be an appropriate
The magnetic dynamics of quasi-two-dimensiofZD) sys-  starting point to investigate the normal-state magnetic prop-
tems like LaCuQ, has widely been studied by various work- erties of these systems. Recently, Milks al?! using the
ers. These studies mainly deal with the anisotropic HeisenSchwinger boson method, calculated the dynamical suscep-
berg model within the random-phase approximationtibility of these bilayer systems. These authors have shown
(RPA),>* linear? nonlinea® and modified spin-wave that the intrabilayer coupling does provide a better under-
theory/® Callen decoupling schenfeand the Schwinger bo- standing of the 41 meV peak observed in the neutron-
son approacfi®!! and are well documented in the review scattering experimerfs  on superconducting
articles by Micnaset al’® and Monouskig?® It has been YBa,Cu,Og. 4. Du etal® have calculated the sublattice
showr?®1413that the exchange coupling strengtif)(along  magnetization and Ne temperature of bilayer systems using
the z direction is essential to keep the 3D éleordering in  the Green’s-function technique within RP@#andom-phase
these systems. In fact, fdkgT<2J,¢o (Pg=JI%J;), the  approximation. These authors have shown that in the ab-
magnetization varies & while in the limitKgT>2J,¢,, it  sence of intrabilayer or interbilayer exchange couplings the
follows aT In T behavior. AtKgT=2J,¢,, there is a cross- system does not show the long-range magnetic order and the
over from 3D to quasi-2D behavior. However, Kopiéthas ~ Neel temperature becomes zero.
discussed that neafy, TInT behavior breaks down and In the light of the above facts, it seems plausible to inves-
magnetization varies as (T/Ty)Y2 Recently, we have tigate the magnetic dynamics of these bilayer systems. For
studied the role of]J* on the magnetic dynamics of these this purpose, in Sec. Il, we consider the Heisenberg AFM
system$ Within the nonlinear spin-wave theory, we have model Hamiltonian with in-plane couplingl() and the in-
shown that various properties such as sublattice magnetiz&abilayer coupling §,). We use Holstein-Primakoff trans-
tion, specific heat, parallel and perpendicular susceptibilitiesformation within the linear spin-wave approximation to con-
and the thermal expansion are sensitive to the ratio of twwert the model Hamiltonian into the boson operator form.
coupling strengths as well as to the magnon-magnon interadhe double-time Green’s-function formalism has been em-
tion. ployed to obtain the expressions for spin-wave dispersion
On the other hand, the experimental studies orand various correlation functions. In Sec. lll, we focus our
YBa,Cu;05,, « have confirmed that the system possesses twattention on calculating the contribution from acoustic and
CuG, planes within the single unit cell. The Cu spins of optic modes to the sublattice magnetization. It is shown that
these two layers are strongly coupled antiferromag-corresponding to the optic mode, no anisotropy is required
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while for the acoustic mode, the magnetization is sustained 5;2:(25)1/2[bci2_(25)—1bci2bc+izbci2],
only in the presence of anisotropy from whatever source. We
further consider the examples of two such anisotropy terms Se,=(29)Y%,,
(i) the anisotropy in exchange coupling strengths @ndhe
anisotropy due to dipolar interactions. In the possible tem- Z,=S—bbeiz,
perature regions, we discuss the different roles of these
anisotropies on the magnetic dynamics of these bilayer sys- Suj2=(25)"qbgj2— (2S) byj,bgj2bajo],
tems. Finally, we compare our results with the existing ones
and summarize them in Secs. IV and V. Suj2=(29) "0y,
Il. THEORETICAL FORMULATION dj2= — S+ bgjobajz-

For a bilayer system, the Heisenberg Hamiltonian may bé e Fourier transfornb’s are given by
written as

bair=(2IN)Y2Y, Cy explik- Raiy),
K
H:Juizj Sia'sjajLJLEi s, 1)

wherea=1,2 are the layer indicesj denote the lattice sites b;u:(Z/N)M; Civexp —ik-Raiy),
with j being the nearest neighbor iofJ, andJ, are, respec-
tively, the AFM coupling constants within the plane and be-
tween the planes of bilayer. bpjr=(2/N)Y2>, dy exp(—ik- Ryj1),
Besides the interactions considered in Hamiltor(iBn in K
a real system there may also be an interaction between the
two bilayers of different unit cells and that with the Cu-O bajy=(2IN)Y2Y, dj explik- Ryj1),
chains. However, in the present paper, we confine ourselves K
only to the bilayers within the unit cell and neglect the other
interactions. beio=(2IN)"23 Caexplik-Rep),
Next, we consider the four sublattice models and intro- K
duce the following Holstein-Primakoff transformations:
n

_ 125 ot exng —ik-R..
Sai1=(29) Y4 bai1 — (25) " *baisbaitbai ], ci2=(2IN) ; Caokexp(—ik-Rgip),

ail

Sii=(29Y7,,

byjo= (Z/N)UZE dox exp( —ik- Ryj2),
K
ni1=— St 0,1bai1,

Spj1= (29 bpj1—(2S) " bypj1bpj10pj1], bd*jz:(Z/N)”Z; dzy exp(ik - Ryjp).
Spjn=(29)"by;1 Thus, within the linear spin-wave approximation, the
, . Hamiltonian(1) is transformed into the boson operator form
Spj1=S—bpj1bpj1, which reads

H:_ZNSZJJFJ; (C1kCait CoCox+ dyidy+ d;kd2k)+28‘1\zab; Y(K)(Cid i+ Crda+ Codat Cada)

+283, 2 (CLCt CouCact didayct dudad), 2
|
whereN is the total number of lattice sites and whereZ,,=4 is the number of nearest neighbors with the
CuG, plane.
We employ the Green’s-function formaliéfto investi-
J=28JZ,pt 28], gate Hamiltonian2). For this, we define
ab G1:=((C1; Ci),

y(k)zz_abgé exp(ik - 8), Gar=((d1; Cio),
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Ga=((Ch: C)), Jy(k)+J))
31 << 2k 1k>> (kaC;k>=( H(4 1 COtf(,Bw]_/Z)
and w1
(Jy(k)—=37)
Ga1={((da; Ciy))- T de, = coth( Bw,/2). 11

We obtain the equations of motion for the above Green’d=urther, the symmetry of the system allows us to take
functions and in the matrix notation these may be written as

Mg=u 3
with

M=l o 0 wrd s @

Gll 1/27T

Gy 0
g= Gy and u= 0 (5)

Gu 0

with J,(k)=2SJZ,,y(k) and JLZZSJL .

(C1kCu) =(CxCol) =(djidyy=(dpda), (12
(C11d1,)=(C 2 =(Cud1)=(Coda), (13
(C1kCa) =(CuCa)y =(dqdp ) =(dyydp),  (14)

IIl. MAGNETIZATION AND SPECIFIC HEAT

In this section, we use the results obtained in Sec. Il to
evaluate the expressions for sublattice magnetization and
specific heat.

For sublatticea in layer 1, the magnetization may be ob-
tained as

Mi<T>=<S§1>=S—<2/N>§ (C{Cu). (15

The spin-wave dispersion relation may be obtained easily Substituting the expression ¢€;,Cy,) from Eq.(9) into

by solving the equation de&¥{)=0. This gives the four roots
of w but they are X2 equal. In fact, we obtain
w1=[3= (3= I])*]M2 (6)
Substituting the values af (k) andJ| for the spin-1/2
case §=1/2), Eq.(6) may be simplified as

w15=J,[(4+1)?={2(cosk.a+coskja) £r}?]¥2  (7)

where,r=J,/J,.

It is important to note that the above equati@is simi-
lar to that obtained earlier by Reznék al.?° where the(+)
sign corresponds to the acoustic mode and(thesign cor-
responds to the optic mode. Equatiah leads to a spin gap
with minimum energy

Eq. (15), we obtain

J
—5|\/|(T)=|\/|iI(T)—'\/|'i‘(0)=—NflEk (m

J
T 1)) 19
with
M2(0)=1/2—-N"1>] i+i—1) 17
! k \wp W2 '

In Sec. Il, we have already obtained the expressions for
w1, as Eq.(7). For smallk values, we approximate c&g
=1-Ka’/2; coska=1-ka’/2 and writek;a®+kja?=6;.
Under this approximation, Eq7) may be rewritten as

Wopt=2VJ, Jj. 8 w1 =J[2(4+T1) 6512 (18
Further, we solve the set of E) to evaluate the various and
Green’s functions. By the knowledge of these Green’s func- B 21172
tions, the corresponding correlations may be obtained. Fol- wp=J[16r +2(4—1) 017 (19

lowing the standard procedu?‘éwe obtain Thus, substituting Eq9.18) and (19) into Eq. (16), the

reduced magnetization may be obtained easily by converting
the summation ovek values into an integration. In doing so,

J J
C1C1)=—1/2+ — coth( Bw,/2) + —— coth( Bw,/2),
(CarCuw 4wy N(Bes2) 4wy N(Be2l2) it can be shown that the first integral in E46) correspond-

©) ing to the acoustic mode diverges a§=0 implying the
absence of magnetic order in bilayers. We, therefore, con-
oo [+ 31] clude that the intrabilayer coupling does not favor the mag-
(Crdy) = 4w, coth fw,/2) netic order and the system still remains two dimensional. A
similar conclusion has also been drawn by &ual? for the
[Ji(k) =37 ] bilayer systems. Therefore, to obtain the contribution to the
+ 4—6(,200“13“’2/2)' (10 suplattice magnetization from the acoustic mode, we must

include some anisotropy in E¢L8). Let the contribution of

and such a term be incorporated througtso that Eq(18) reads
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wl:J”[z(4+r)9§+ ¢V (20) Based on the numerical estimate of various parameters, it
is important to note that in the limKgT<4J,\/r, the last
We would like to emphasize that thoughappears in the term of Eq.(21) contributes negligibly and, therefore, the
above equation arbitrarily, it has some microscopic originsmajor contribution arises only from the acoustic mode. The
For instance, if the orthorhombic distortions of the systemabove equation reduces to
are taken into account, there will be an interlayer exchange 1 KT
coupling (%) along thez direction and, thereforep= ¢q(1 __ ~Bl f” A Y
—cosk,0)2, where, ¢o=J%J, and k, is the wave vector oM(T) (277)2< ZJ) Inf1-e""]d6, (22
along thez direction with lattice constarit?*®Further, if we
consider the anisotropy due to the dipolar interactions withi

— T

ﬁamd for the exchange anisotropy,

the CuQ plane, in the simplest approximatiapecW,/J,, Y=J,60(1—coss,) Y2IKgT. (23)
where W, is the amount of gap produced by the dipolar 1o z B
interactions:>~%° Now, it is easy to solve Eq22) in the two temperature

In fact, as will be shown below, various anisotropies mayregimes(i) KgT<4J,o and (i) 43,\r>KgT>4J,¢,.

play different roles in the magnetic dynamics of these sys- |5 the regime KgT<4J,¢,, approximating Y
tems. We, therefore, rather than considering it in the modeLJ“¢ogz/KBT¢§, the integral(22) yields

Hamiltonian explicitly, choose this term phenominologically
which may originate from any known source. v2 [KgT\[ KgT
Before we proceed further, it is important to mention the oM(T)= E(ﬁ) ( 23,4 )
numerical estimates of various parameters appearing in the : 170
present formalism. Based on the neutron-diffraction experiand in the regime 3 \r>KgT>4J,¢,, we approximate
ments of Tranquadat al,> Singh et al® and Ajayetal® In(1—e Y)=~InY and therefore, the integré2?) gives
have calculatedly=450K for YBaCusOg. 4. These au-
thors have shown thaly is sensitive tog, which further SM(T) = i(@) n(KBT‘/?)
depends on dopant concentration. At x=0.41, ¢, van- 4\ 2], Jydo |
ishes and hencéy— 0, while J, remains unaffected. Theg,
has been estimated to be of the order of 100n the other Thus in the limitKgT<4J\r, there further exist two
hand, the dipolar interactions are too weak to be observetemperature regimes. In the low-temperature regitigT(
experimentally. However, a rough estimate suggests that4J;¢) magnetization follows & behavior, while for
W, /J, is one or two orders weaker than that ¢f.>>~28 temperature & \r>KgT>4J,¢, it follows a T In T behav-
The value of intrabilayer coupling constar,§ may be ior.
obtained using Eq(8). The recent experiment of Reznik ~ Moreover, we note that expressio(®4) and (25) differ
et al?° suggests a minimum energy of the optic mode to bgrom the previous results only by some numerical factor. The
65-70 meV. Usingd,=120meV, they have obtained, difference in our results with those of Refs. 2 and 6 is due to
=10meV. Shamot@t all® have estimated a lower limit of the fact that in the present paper we have considered only the
J, equal to 8 meV by taking,=120+20meV. The band functional form of anisotropyp. Because of this, the contri-
theory calculations yield 13 meYRef. 31 and Millis and ~ bution of a numerical termZ.=2) which denotes the num-
Monier?* have estimated, =14 meV. Therefore, it is rea- ber of nearest neighbors along thaxis could not be incor-
sonable to consider that the ratie-J, /J, is of the order of ~ porated. Therefore, the discrepancy in the results may be
10"t in YBa,CusOg. - easily removed by considering the anisotropy explicitly in
Thus, in the light of the above numerical estimates, wethe model Hamiltonian. However, it is evident that the inclu-
may say thatp<r and therefore, its addition will not affect Sion ofZ. do not change the qualitative nature of the results.
w, [Eq. (20)] significantly, while for the acoustic mode  Further, in the limitkgT>4J,\r, the second term of Eq.
(w1), No matter that how smaidb is, its addition is necessary (21) also contributes significantly. In this limit, it is easy to
to sustain magnetization at any finite temperature. show that both the terms in E(1) follow a T In T behavior
Now, first of all, we consider the role of exchange cou-and ifr—0, the logarithmic term approaches infinity and it is
pling anisotropy in the sublattice magnetization. For this, wenot possible to obtain the magnetization at any finite tem-
set¢= ¢o(1—cosk,c)*2 Further, we writek,c= 6, and fol- ~ perature.
lowing our previous papérwe convert the summation over ~ The above analysis leads us to conclude that in the high-
thek values in Eq(16) into an integration and after perform- temperature regioriKgT>4J, Jr, magnetization follows a
ing the integral ovew,, we obtain quasi-2D behavior while in the low-temperature regime the
T2 dependence of magnetization is consistent with the 3D
KgT\ [~ v behavior. The presence of the optic mode in the high-
2m)? 2_\]“ j In[1—e""]dé, temperature region does not seem to change the quasi-2D
behavior of the system.
KgT _x Now, we briefly outline the effects of dipolar anisotropy
3, In[1—e "] (21 in these systems. Picét al. 2’ have studied the effect of
dipolar interaction in 2D isotropic Heisenberg antiferromag-
with nets. These authors have shown that the dipolar interaction
produces two branches and for0 there is a gapV, in the
Y=J,4/KgT and X=4J,\r/KgT. excitation spectrum. However, the two branches can be re-

(29)

(25

SM(T)=
(4+r)
S 2(4-1)
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solved only when the ratio of dipolar interaction and the 2NJ, (KgT)3 NJ, KgT)\®
exchange coupling is sufficiently large. For a realistic ratio E=Eo+ ( 23 ) 77(4—r)( 23 ) . (30
(10" 3) the two magnon branches practically coincide and for ! !
small k values the excitation energy may be written as Using Eqs.(27) and (30), the expression for specific heat
0= ’—8J50§+W§. may be obtained which reads
2

Such a gap due to dipole-dipole interaction in the spin- _ 3NKg (12—) KBT) (31)

wave excitation spectrum has been experimentally confirmed 27 (16—-r?) |\ J, | -

by Borovik-Romanovwet al° in the case of easy-plane anti-

ferromagnets with weak ferromagnetism. Thus for such an Thus, the specific heat of these systems follovi de-
anisotropy, in our formalism we may sét=W,/J,.?° Itis  havior.

important to note that is independent ok, and hence in

expressior(16) we convert the summation ovkwvalues into V. CONCLUSION
an integration only ovek, andk, . Finally, integrating over
6, as previously, we obtain We have performed a study of magnetic dynamics of bi-
layer antiferromagnets within the framework of the usual
KgT v spin-wave theory. It is shown that in the presence of the
M(T)=—5—|5=—]|In[1—e""] . . : : f
(2m)\ 23, intrabilayer coupling J,), the spin-wave spectrum consists

of acoustic and optic modes. The minimum energy gap is
_ (44r1) [KgT In[1—eX] (2¢)  found to be 23, J;. This result is similar to the previous
4a(d—r)\ J theoretical predictio§ as well as experimental

: observatiorf®
with Y:J||¢/KBT, X:4J\Nr/KBT, and¢):W0/J”. . . . . )
Clearly, if the KgT>4J,,r, both terms follow aT InT Further, we have investigated the role of intrabilayer cou

: S § Lo . pling in the sublattice magnetization of YBaU,Og, . It is
behavior while in the low-temperature limif,* behavior ﬁhown that corresponding to the optic mode no extra anisot-

may not be obtained. This leads us to conclude that thoug : . . o o i
the dipolar interactions do establish the AFM long-range or- PY term is required to sustain magnetization at finite tem

der in 2D systems, they do not seem to produce 3@INe peratures while for the'acqustic mo_de, in the absenqe of an-
ordering  at Iov(/ temperatures  as  observed in|sotr0_py _ the magnetization vanishes. _To obtain the
YBa,Cl0 14 However, expressiof26) may be useful to pontnbutmn from the acoustl_c mode, we introduce _the an-
estir%ate tﬁgxétrength of dipolar interaction in these system'smrOpy term phe_nomenologlca_lly and show thé.lt anisotropy
?erms, such as dipolar interactions, only establish the AFM
long-range order in 2D systems, while tkalirection cou-
pling (J%) is necessary to keep the observed 3CeN=der-
Now, we calculated the specific heat which may be obJnd in these systems. _ o
tained from Moreover, in the low-temperature regime, magnetization
follows aT? behavior which is characteristic of a 3D system
C=dE/dT, (27 and in the high-temperature regime the contributions from

where E is the internal energy of the system and may bebOIh the modegacoustic and opticgive aTInT behavior

obtained by thermally averaging the Hamiltonié. Thus, Whl_ch is characteristic of a quasi-2D system. Thus, over the
we get entire temperature range, 3D to quasi-2D crossover is ex-

pected aKgT=2J,¢, in these systems. Further, in the ab-
[I2+{3,(K)+J1}2]  [I2+{3,(k)— I }2] sence off, it is not possible to sustain the magnetization.
For_1 For_1 This suggests that besidég,r also plays an important role
wa(e ) wz(e ) in the magnetic dynamics of bilayer systems.
(28) The specific heat of these systems has no linear term in
with the expression. This is in accordance with the previous the-
oretical calculatior’s® and the experimental observations of
[32+{3,(k)+J]}?] Kumagaiet al*?
wy Finally, we emphasize that in the present formalism we
have not considered the effects of magnon-magnon interac-
tion. In fact, it has been shown by %that the effect of (1
. (29 +a), wherea is the manifestation of magnon-magnon in-
teraction, is more pronounced in quasi-2D systems than that
Further, the summation ovdsvalues are converted into of the 3D case. Therefore, it will be fruitful to incorporate
an integration and for the 2D case in the low-temperaturéhe role of such interactions in the magnetic dynamics of
limit, the solution yields these bilayer systems.

IV. SPECIFIC HEAT

E=Eo+2>,
k

Eo= —2NSJ—2J+ >,
k

[I2+{3,(k)—J]}]
+

w2
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