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Magnetic dynamics of bilayer cuprate superconductors
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In the present paper, we use the Heisenberg antiferromagnetic model within linear spin-wave theory to study
the magnetic dynamics of bilayer antiferromagnets such as YBa2Cu3O61x . The Zubarev’s double-time
Green’s-function formalism has been employed in order to evaluate the expressions for spin-wave dispersion,
sublattice magnetization, and specific heat. It has been shown that in these systems, the intrabilayer coupling
leads towards a ‘‘spin gap.’’ The optical mode is found to contribute significantly to the sublattice magneti-
zation only in the high-temperature regime. In the low-temperature regime, the contribution from the acoustic
mode is sensitive to the anisotropy term. We observe that the dipolar anisotropy does not produce the three-
dimensional~3D! Néel ordering, while the exchange anisotropy is essential to keep 3D Ne´el ordering in these
systems. Further, we observe a crossover from 3D to quasi-2D behavior at a certain temperature. The presence
of the optic mode does not seem to alter the quasi-2D behavior of these systems in the higher temperature
regime. The specific heat is also found to be dependent on the ratio of intrabilayer to in-plane coupling strength
~r!. These results are compared with the existing results.@S0163-1829~99!01233-3#
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I. INTRODUCTION

It is well established now that in their normal state, co
pounds such as La2CuO4 and YBa2Cu3O61x are layered an-
tiferromagnets and highly anisotropic. It has been obser
that upon doping there is a structural transition from
insulating antiferromagnetic~AFM! to the orthorhombic su-
perconducting phase and the magnetic properties bec
sensitive to the dopant concentration.1 In YBa2Cu3O61x , the
Néel temperature (TN) decreases on increasing the oxyg
concentrationx and forx.0.41, the magnetization vanishe
The magnetic dynamics of quasi-two-dimensional~2D! sys-
tems like La2CuO4 has widely been studied by various wor
ers. These studies mainly deal with the anisotropic Heis
berg model within the random-phase approximat
~RPA!,2–4 linear,5 nonlinear,6 and modified spin-wave
theory,7,8 Callen decoupling scheme,9 and the Schwinger bo
son approach,10,11 and are well documented in the revie
articles by Micnaset al.12 and Monouskis.13 It has been
shown2,6,14,15that the exchange coupling strength (Jz) along
the z direction is essential to keep the 3D Ne´el ordering in
these systems. In fact, forKBT,2Jif0 (f05Jz/Ji), the
magnetization varies asT2 while in the limitKBT.2Jif0 , it
follows a T ln T behavior. AtKBT52Jif0 , there is a cross-
over from 3D to quasi-2D behavior. However, Kopietz11 has
discussed that nearTN , T ln T behavior breaks down an
magnetization varies as (12T/TN)1/2. Recently, we have
studied the role ofJz on the magnetic dynamics of thes
systems.6 Within the nonlinear spin-wave theory, we hav
shown that various properties such as sublattice magne
tion, specific heat, parallel and perpendicular susceptibilit
and the thermal expansion are sensitive to the ratio of
coupling strengths as well as to the magnon-magnon inte
tion.

On the other hand, the experimental studies
YBa2Cu3O61x have confirmed that the system possesses
CuO2 planes within the single unit cell. The Cu spins
these two layers are strongly coupled antiferrom
PRB 600163-1829/99/60~9!/6775~6!/$15.00
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netically.16–19 Most of the above-mentioned works do n
incorporate this feature in the magnetic dynamics
YBa2Cu3O61x .

By considering the AFM coupling between the laye
(J'), it has been shown theoretically16 that the spin-wave
spectrum consists of two branches~i! acoustic and~ii ! optic.
In fact, this leads to a spin gap with minimum ener
2AJ'Ji. The neutron-scattering experiment conducted
Rezniket al.20 has confirmed the presence of the optic mo
with minimum energy 65–70 meV in YBa2Cu3O6.2. Further,
the Heisenberg model has itself proved to be an appropr
starting point to investigate the normal-state magnetic pr
erties of these systems. Recently, Milliset al.21 using the
Schwinger boson method, calculated the dynamical sus
tibility of these bilayer systems. These authors have sho
that the intrabilayer coupling does provide a better und
standing of the 41 meV peak observed in the neutr
scattering experiments22 on superconducting
YBa2Cu3O61x . Du et al.23 have calculated the sublattic
magnetization and Ne´el temperature of bilayer systems usin
the Green’s-function technique within RPA~random-phase
approximation!. These authors have shown that in the a
sence of intrabilayer or interbilayer exchange couplings
system does not show the long-range magnetic order and
Néel temperature becomes zero.

In the light of the above facts, it seems plausible to inv
tigate the magnetic dynamics of these bilayer systems.
this purpose, in Sec. II, we consider the Heisenberg AF
model Hamiltonian with in-plane coupling (Ji) and the in-
trabilayer coupling (J'). We use Holstein-Primakoff trans
formation within the linear spin-wave approximation to co
vert the model Hamiltonian into the boson operator for
The double-time Green’s-function formalism has been e
ployed to obtain the expressions for spin-wave dispers
and various correlation functions. In Sec. III, we focus o
attention on calculating the contribution from acoustic a
optic modes to the sublattice magnetization. It is shown t
corresponding to the optic mode, no anisotropy is requi
6775 ©1999 The American Physical Society
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while for the acoustic mode, the magnetization is sustai
only in the presence of anisotropy from whatever source.
further consider the examples of two such anisotropy te
~i! the anisotropy in exchange coupling strengths and~ii ! the
anisotropy due to dipolar interactions. In the possible te
perature regions, we discuss the different roles of th
anisotropies on the magnetic dynamics of these bilayer
tems. Finally, we compare our results with the existing o
and summarize them in Secs. IV and V.

II. THEORETICAL FORMULATION

For a bilayer system, the Heisenberg Hamiltonian may
written as

H5Ji(
i j

Si
a
•Sj

a1J'(
i

Si
1
•Si

2, ~1!

wherea51,2 are the layer indices,i,j denote the lattice site
with j being the nearest neighbor ofi, Ji andJ' are, respec-
tively, the AFM coupling constants within the plane and b
tween the planes of bilayer.

Besides the interactions considered in Hamiltonian~1!, in
a real system there may also be an interaction between
two bilayers of different unit cells and that with the Cu-
chains. However, in the present paper, we confine ourse
only to the bilayers within the unit cell and neglect the oth
interactions.

Next, we consider the four sublattice models and int
duce the following Holstein-Primakoff transformations:

Sai1
2 5~2S!1/2@bai12~2S!21bai1

1 bai1bai1#,

Sai1
1 5~2S!1/2bai1

1 ,

Sai1
z 52S1bai1

1 bai1 ,

Sb j1
2 5~2S!1/2@bb j12~2S!21bb j1bb j1

1 bb j1#,

Sb j1
1 5~2S!1/2bb j1

1 ,

Sb j1
z 5S2bb j1

1 bb j1 ,
d
e
s

-
e
s-
s

e

-

he

es
r

-

Sci2
2 5~2S!1/2@bci22~2S!21bci2bci2

1 bci2#,

Sci2
1 5~2S!1/2bci2

1 ,

Sci2
z 5S2bci2

1 bci2 ,

Sd j2
2 5~2s!1/2@bd j22~2S!21bd j2

1 bd j2bd j2#,

Sd j2
1 5~2S!1/2bd j2

1 ,

Sd j2
z 52S1bd j2

1 bd j2 .

The Fourier transformb’s are given by

bai15~2/N!1/2(
K

C1k exp~ ik•Rai1!,

bai1
1 5~2/N!1/2(

K
C1k

1 exp~2 ik•Rai1!,

bb j15~2/N!1/2(
K

d1k exp~2 ik•Rb j1!,

bb j1
1 5~2/N!1/2(

K
d1k

1 exp~ ik•Rb j1!,

bci25~2/N!1/2(
K

C2k exp~ ik•Rci2!,

bci2
1 5~2/N!1/2(

K
C2k

1 exp~2 ik•Rci2!,

bd j25~2/N!1/2(
K

d2k exp~2 ik•Rd j2!,

bd j2
1 5~2/N!1/2(

K
d2k

1 exp~ ik•Rd j2!.

Thus, within the linear spin-wave approximation, th
Hamiltonian~1! is transformed into the boson operator for
which reads
H522NS2J1J(
K

~C1k
1 C1k1C2k

1 C2k1d1k
1 d1k1d2k

1 d2k!12SJiZab(
K

g~k!~C1k
1 d1k

1 1C1kd1k1C2k
1 d2k

1 1C2kd2k!

12SJ'(
K

~C1k
1 C2k

1 1C1kC2k1d1k
1 d2k

1 1d1kd2k!, ~2!
he
whereN is the total number of lattice sites and

J52SJiZab12SJ' ,

g~k!5
1

Zab
(

d

ab

exp~ ik•d!,
whereZab54 is the number of nearest neighbors with t
CuO2 plane.

We employ the Green’s-function formalism24 to investi-
gate Hamiltonian~2!. For this, we define

G115^^C1k ; C1k
1 &&,

G215^^d1k
1 ; C1k

1 &&,
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G315^^C2k
1 ; C1k

1 &&,

and

G415^^d2k ; C1k
1 &&.

We obtain the equations of motion for the above Gree
functions and in the matrix notation these may be written

Mg5u ~3!

with

M5F v2J
Ji~k!

J'8

0

2Ji~k!

v1J
0
J'8

2J'8

0
v1J

2Ji~k!

0
J'8

Ji~k!

v2J
G , ~4!

g5F G11

G21

G31

G41

G and u5F 1/2p
0
0
0

G ~5!

with Ji(k)52SJiZabg(k) and J'852SJ' .
The spin-wave dispersion relation may be obtained ea

by solving the equation det(M)50. This gives the four roots
of v but they are 232 equal. In fact, we obtain

v1,25@J22~Ji~k!6J'8 !2#1/2. ~6!

Substituting the values ofJi(k) and J'8 for the spin-1/2
case (S51/2), Eq.~6! may be simplified as

v1,25Ji@~41r !22$2~coskxa1coskya!6r %2#1/2, ~7!

where,r 5J' /Ji .
It is important to note that the above equation~7! is simi-

lar to that obtained earlier by Rezniket al.,20 where the~1!
sign corresponds to the acoustic mode and the~2! sign cor-
responds to the optic mode. Equation~7! leads to a spin gap
with minimum energy

vopt52AJ'Ji. ~8!

Further, we solve the set of Eq.~3! to evaluate the various
Green’s functions. By the knowledge of these Green’s fu
tions, the corresponding correlations may be obtained.
lowing the standard procedure,24 we obtain

^C1k
1 C1k&521/21

J

4v1
coth~bv1/2!1

J

4v2
coth~bv2/2!,

~9!

^C1k
1 d1k

1 &5
@Ji~k!1J'8 #

4v1
coth~bv1/2!

1
@Ji~k!2J'8 #

4v2
coth~bv2/2!, ~10!

and
s
s

ly

-
l-

^C1k
1 C2k

1 &5
~Ji~k!1J'8 !

4v1
coth~bv1/2!

2
~Ji~k!2J'8 !

4v2
coth~bv2/2!. ~11!

Further, the symmetry of the system allows us to take

^C1k
1 C1k&5^C2k

1 C2k&5^d1k
1 d1k&5^d2k

1 d2k&, ~12!

^C1k
1 d1k

1 &5^C2k
1 d2k

1 &5^C1kd1k&5^C2kd2k&, ~13!

^C1k
1 C2k

1 &5^C1kC2k&5^d1k
1 d2k

1 &5^d1kd2k&, ~14!

III. MAGNETIZATION AND SPECIFIC HEAT

In this section, we use the results obtained in Sec. II
evaluate the expressions for sublattice magnetization
specific heat.

For sublatticea in layer 1, the magnetization may be ob
tained as

M1
a~T!5^Sa1

2 &5S2~2/N!(
k

^C1k
1 C1k&. ~15!

Substituting the expression of^C1k
1 C1k& from Eq.~9! into

Eq. ~15!, we obtain

2dM ~T!5M1
a~T!2M1

a~0!52N21(
k

S J

v1~ebv121!

1
J

v2~ebv221! D ~16!

with

M1
a~0!51/22N21(

k
S J

v1
1

J

v2
21D . ~17!

In Sec. II, we have already obtained the expressions
v1,2 as Eq.~7!. For smallk values, we approximate coskxa
512kx

2a2/2; coskya512ky
2a2/2 and writekx

2a21ky
2a25up

2.
Under this approximation, Eq.~7! may be rewritten as

v15Ji@2~41r !up
2#1/2 ~18!

and

v25Ji@16r 12~42r !up
2#1/2. ~19!

Thus, substituting Eqs.~18! and ~19! into Eq. ~16!, the
reduced magnetization may be obtained easily by conver
the summation overk values into an integration. In doing so
it can be shown that the first integral in Eq.~16! correspond-
ing to the acoustic mode diverges atup50 implying the
absence of magnetic order in bilayers. We, therefore, c
clude that the intrabilayer coupling does not favor the m
netic order and the system still remains two dimensional
similar conclusion has also been drawn by Duet al.23 for the
bilayer systems. Therefore, to obtain the contribution to
sublattice magnetization from the acoustic mode, we m
include some anisotropy in Eq.~18!. Let the contribution of
such a term be incorporated throughf so that Eq.~18! reads
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v15Ji@2~41r !up
21f2#1/2. ~20!

We would like to emphasize that thoughf appears in the
above equation arbitrarily, it has some microscopic origi
For instance, if the orthorhombic distortions of the syst
are taken into account, there will be an interlayer excha
coupling (Jz) along thez direction and, therefore,f5f0(1
2coskzc)1/2, where, f05Jz/Ji and kz is the wave vector
along thez direction with lattice constantc.2,4,6Further, if we
consider the anisotropy due to the dipolar interactions wit
the CuO2 plane, in the simplest approximationf}W0 /Ji ,
where W0 is the amount of gap produced by the dipo
interactions.25–30

In fact, as will be shown below, various anisotropies m
play different roles in the magnetic dynamics of these s
tems. We, therefore, rather than considering it in the mo
Hamiltonian explicitly, choose this term phenominologica
which may originate from any known source.

Before we proceed further, it is important to mention t
numerical estimates of various parameters appearing in
present formalism. Based on the neutron-diffraction exp
ments of Tranquadaet al.,1 Singh et al.4 and Ajay et al.9

have calculatedTN5450 K for YBa2Cu3O61x . These au-
thors have shown thatTN is sensitive tof0 which further
depends on dopant concentration~x!. At x50.41, f0 van-
ishes and henceTN˜0, whileJi remains unaffected. Thef0
has been estimated to be of the order of 1023. On the other
hand, the dipolar interactions are too weak to be obser
experimentally. However, a rough estimate suggests
W0 /Ji is one or two orders weaker than that off0 .25–28

The value of intrabilayer coupling constant (J') may be
obtained using Eq.~8!. The recent experiment of Rezni
et al.20 suggests a minimum energy of the optic mode to
65–70 meV. UsingJi5120 meV, they have obtainedJ'

510 meV. Shamotoet al.18 have estimated a lower limit o
J' equal to 8 meV by takingJi5120620 meV. The band
theory calculations yield 13 meV~Ref. 31! and Millis and
Monien21 have estimatedJ'514 meV. Therefore, it is rea
sonable to consider that the ratior 5J' /Ji is of the order of
1021 in YBa2Cu3O61x .

Thus, in the light of the above numerical estimates,
may say thatf!r and therefore, its addition will not affec
v2 @Eq. ~20!# significantly, while for the acoustic mod
(v1), no matter that how smallf is, its addition is necessar
to sustain magnetization at any finite temperature.

Now, first of all, we consider the role of exchange co
pling anisotropy in the sublattice magnetization. For this,
setf5f0(12coskzc)1/2. Further, we writekzc5uz and fol-
lowing our previous paper,6 we convert the summation ove
thek values in Eq.~16! into an integration and after perform
ing the integral overup , we obtain

dM ~T!52
1

~2p!2 S KBT

2Ji
D E

2p

p

ln@12e2Y#duz

2
~41r !

2~42r ! S KBT

Ji
D ln@12e2X# ~21!

with

Y5Jif/KBT and X54JiAr /KBT.
.
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Based on the numerical estimate of various parameter
is important to note that in the limitKBT,4JiAr , the last
term of Eq. ~21! contributes negligibly and, therefore, th
major contribution arises only from the acoustic mode. T
above equation reduces to

dM ~T!52
1

~2p!2 S KBT

2Ji
D E

2p

p

ln@12e2Y#duz ~22!

and for the exchange anisotropy,

Y5Jif0~12cosuz!
1/2/KBT. ~23!

Now, it is easy to solve Eq.~22! in the two temperature
regimes~i! KBT,4Jif0 and ~ii ! 4JiAr .KBT.4Jif0 .

In the regime KBT,4Jif0 , approximating Y
'Jif0uz /KBT&, the integral~22! yields

dM ~T!5
&

12 S KBT

2Ji
D S KBT

2Jif0
D ~24!

and in the regime 4JiAr .KBT.4Jif0 , we approximate
ln(12e2Y)'ln Y and therefore, the integral~22! gives

dM ~T!5
1

4p S KBT

2Ji
D lnS KBT&

Jif0
D . ~25!

Thus in the limit KBT,4JiAr , there further exist two
temperature regimes. In the low-temperature regime (KBT
,4Jif0) magnetization follows aT2 behavior, while for
temperature 4JiAr .KBT.4Jif0 it follows a T ln T behav-
ior.

Moreover, we note that expressions~24! and ~25! differ
from the previous results only by some numerical factor. T
difference in our results with those of Refs. 2 and 6 is due
the fact that in the present paper we have considered only
functional form of anisotropyf. Because of this, the contri
bution of a numerical term (Zc52) which denotes the num
ber of nearest neighbors along thez axis could not be incor-
porated. Therefore, the discrepancy in the results may
easily removed by considering the anisotropy explicitly
the model Hamiltonian. However, it is evident that the inc
sion ofZc do not change the qualitative nature of the resu

Further, in the limitKBT.4JiAr , the second term of Eq
~21! also contributes significantly. In this limit, it is easy t
show that both the terms in Eq.~21! follow a T ln T behavior
and if r˜0, the logarithmic term approaches infinity and it
not possible to obtain the magnetization at any finite te
perature.

The above analysis leads us to conclude that in the h
temperature regionKBT.4JiAr , magnetization follows a
quasi-2D behavior while in the low-temperature regime
T2 dependence of magnetization is consistent with the
behavior. The presence of the optic mode in the hig
temperature region does not seem to change the quas
behavior of the system.

Now, we briefly outline the effects of dipolar anisotrop
in these systems. Pichet al. 27 have studied the effect o
dipolar interaction in 2D isotropic Heisenberg antiferroma
nets. These authors have shown that the dipolar interac
produces two branches and fork˜0 there is a gapW0 in the
excitation spectrum. However, the two branches can be
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solved only when the ratio of dipolar interaction and t
exchange coupling is sufficiently large. For a realistic ra
(1023) the two magnon branches practically coincide and
small k values the excitation energy may be written as

vk5A8Ji
2up

21W0
2.

Such a gap due to dipole-dipole interaction in the sp
wave excitation spectrum has been experimentally confirm
by Borovik-Romanovet al.30 in the case of easy-plane ant
ferromagnets with weak ferromagnetism. Thus for such
anisotropy, in our formalism we may setf5W0 /Ji .29 It is
important to note thatf is independent ofkz and hence in
expression~16! we convert the summation overk values into
an integration only overkx andky . Finally, integrating over
up as previously, we obtain

dM ~T!52
1

~2p! S KBT

2Ji
D ln@12e2Y#

2
~41r !

4p~42r ! S KBT

Ji
D ln@12e2X# ~26!

with Y5Jif/KBT, X54JiAr /KBT, andf5W0 /Ji.
Clearly, if the KBT.4JiAr , both terms follow aT ln T

behavior while in the low-temperature limit,T2 behavior
may not be obtained. This leads us to conclude that tho
the dipolar interactions do establish the AFM long-range
der in 2D systems, they do not seem to produce 3D N´el
ordering at low temperatures as observed
YBa2Cu3O61x .14 However, expression~26! may be useful to
estimate the strength of dipolar interaction in these syste

IV. SPECIFIC HEAT

Now, we calculated the specific heat which may be o
tained from

C5dE/dT, ~27!

where E is the internal energy of the system and may
obtained by thermally averaging the Hamiltonian~2!. Thus,
we get

E5E012(
k

S @J21$Ji~k!1J'8 %2#

v1~ebv121!
1

@J21$Ji~k!2J'8 %2#

v2~ebv221!
D

~28!

with

E0522NS2J22J1(
k

S @J21$Ji~k!1J'8 %2#

v1

1
@J21$Ji~k!2J'8 %2#

v2
G . ~29!

Further, the summation overk values are converted int
an integration and for the 2D case in the low-temperat
limit, the solution yields
r

-
d

n

h
-

s.

-

e

e

E5E01
2NJi

p S KBT

2Ji
D 3

1
NJi

p~42r ! S KBT

2Ji
D 3

. ~30!

Using Eqs.~27! and~30!, the expression for specific hea
may be obtained which reads

C5
3NKB

2p

~122r !

~162r 2! S KBT

Ji
D 2

. ~31!

Thus, the specific heat of these systems follows aT2 be-
havior.

V. CONCLUSION

We have performed a study of magnetic dynamics of
layer antiferromagnets within the framework of the usu
spin-wave theory. It is shown that in the presence of
intrabilayer coupling (J'), the spin-wave spectrum consis
of acoustic and optic modes. The minimum energy gap
found to be 2AJ'Ji. This result is similar to the previou
theoretical predictions16 as well as experimenta
observation.20

Further, we have investigated the role of intrabilayer co
pling in the sublattice magnetization of YBa2Cu3O61x . It is
shown that corresponding to the optic mode no extra ani
ropy term is required to sustain magnetization at finite te
peratures while for the acoustic mode, in the absence of
isotropy the magnetization vanishes. To obtain t
contribution from the acoustic mode, we introduce the a
isotropy term phenomenologically and show that anisotro
terms, such as dipolar interactions, only establish the A
long-range order in 2D systems, while thez-direction cou-
pling (Jz) is necessary to keep the observed 3D Ne´el order-
ing in these systems.

Moreover, in the low-temperature regime, magnetizat
follows aT2 behavior which is characteristic of a 3D syste
and in the high-temperature regime the contributions fr
both the modes~acoustic and optic! give a T ln T behavior
which is characteristic of a quasi-2D system. Thus, over
entire temperature range, 3D to quasi-2D crossover is
pected atKBT52Jif0 in these systems. Further, in the a
sence ofr, it is not possible to sustain the magnetizatio
This suggests that besidesf0 ,r also plays an important role
in the magnetic dynamics of bilayer systems.

The specific heat of these systems has no linear term
the expression. This is in accordance with the previous t
oretical calculations5,6 and the experimental observations
Kumagaiet al.32

Finally, we emphasize that in the present formalism
have not considered the effects of magnon-magnon inte
tion. In fact, it has been shown by us6 that the effect of (1
1a), wherea is the manifestation of magnon-magnon i
teraction, is more pronounced in quasi-2D systems than
of the 3D case. Therefore, it will be fruitful to incorpora
the role of such interactions in the magnetic dynamics
these bilayer systems.
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