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Critical specific heats of theN-vector spin models on the simple cubic and bcc lattices
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We have computed through orderb21 the high-temperature expansions for the nearest neighbor spin corre-
lation functionG(N,b) of the classicalN-vector model, with generalN, on the simple cubic and on the body
centered cubic lattices. For this model, also known in quantum field theory as the latticeO(N) nonlinears
model, we have presented in previous papers extended expansions of the susceptibility, of its second field
derivative, and of the second moment of the correlation function. Here we study the internal specific energy
and the specific heatC(N,b), obtaining updated estimates of the critical parameters and therefore a more
accurate direct test of the hyperscaling relationdn(N)522a(N) on a range of values of the spin dimension-
ality N, including N50 ~the self-avoiding walk model!, N51 ~the Ising spin 1/2 model!, N52 ~the XY
model!, N53 ~the classical Heisenberg model!. By the newly extended series we also compute the universal
combination of critical amplitudes usually denoted byRj

1(N), in fair agreement with renormalization group
estimates.@S0163-1829~99!04633-0#
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I. INTRODUCTION

We continue in this paper the analysis of recen
extended1–3 high-temperature~HT! expansions for the
N-vector model4 with general spin dimensionalityN. Our
computation is concerned with thed-dimensional bipartite
lattices, namely, the simple-cubic~sc! lattice, the body-
centered-cubic~bcc! lattice, and theird-dimensional gener-
alizations.

In previous papers we tabulated~i! the HT series for the
zero field susceptibilityx(N,b) and for the second momen
of the correlation functionm2(N,b) through orderb21, ~ii !
the HT series for the second field derivative of the susce
bility x4(N,b) through orderb17, and have analyzed the
critical behavior in thed52 case1 and in thed53 case.2,3

We have performed the computation using the~vertex-
renormalized! linked cluster expansion method5 and have
produced tables of series coefficients written as explicit fu
tions of the spin dimensionalityN with an extension inde-
pendent of the structure and dimensionality of the latti
More details on the derivation of the series, and on
checks of validity of our results can be found in our previo
papers.1–3

In this paper we examine the series expansions of
nearest neighbor correlation functionG(N,b) through order
b21, in order to update, on a range of values of the s
dimensionalityN, the direct estimates of the parameters d
scribing the behavior of the specific heatC(b,N) on the HT
side of the critical pointbc(N). We also update direct test
of the hyperscaling relationdn(N)522a(N) and estimate a
related universal combination of critical amplitudes intr
duced by Stauffer, Ferer, and Wortis6 and later denoted by
Rj

1(N).7–10 Here a(N) is the critical exponent of the spe
cific heat andn(N) is the critical exponent of the correlatio
length j(N,b). Estimates ofa(N) are also obtained by
studying the behavior of the extended series for the sus
tibility x(b,N) and for the second moment of the correlati
functionm2(b,N) at the symmetrically placed antiferroma
PRB 600163-1829/99/60~9!/6749~12!/$15.00
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a f(N)52bc(N).11

In order to put our work into a proper perspective, it
convenient to list the HT expansions ofG(N,b) for the sc,
bcc, and face-centered-cubic~fcc! lattices, which were pub-
lished before our extension. As is well known, forN50, the
N-vector model reduces12,13to the self-avoiding walk~SAW!
model, and the expansion of the correlation functionG(0,b),
simply related to the enumeration of the self-avoiding rin
~or polygons! had already been computed in Ref. 14 up
order b19 for the sc lattice, up to orderb15 for the bcc
lattice,14 and up tob13 for the fcc lattice. In theN51 case,
which corresponds to the spin-1/2 Ising model, an expans
of G(1,b) for the sc lattice was obtained a few years ago
Enting and Guttmann15 up to orderb21 using finite lattice
methods. More recently, within the same approach, this co
putation has been pushed to orderb23 in Ref. 16 and then to
orderb25 in Ref. 17. Also an approximate determination
the coefficient ofb27 was reported in Ref. 17. An expansio
through orderb15 for the bcc lattice, and one for the fc
lattice up to orderb12 have been tabulated in Ref. 18. F
N52 ~theXY model! the available series19 for the bcc lattice
reached the orderb11. In the N53 case ~the classical
Heisenberg model!, the series for the bcc lattice, known on
up to orderb9, was reported in Ref. 20.

Finally, let us cite an expansion ofG(N,b), valid for
generalN and for all loosely packed lattices, tabulated~with
some misprints! in Ref. 4 up to orderb9, which has been
later extended to models with general anisotropic pair in
action in Ref. 21. The expansion ofG(N,b) has been re-
cently pushed22 to orderb15 in the case of the sc lattice, bu
no comparable effort has been devoted to the bcc lattice
Ref. 23, an expansion to orderb11, valid for generalN, had
been tabulated for the fcc lattice.

We should finally call the readers’ attention to the va
able reviews in Refs. 9,10,24 and to the accurate recalc
tion, within the renormalization group~RG! approach, of the
universal critical parameters of theN-vector model per-
formed by Guida and Zinn-Justin.25 This work is based on
6749 ©1999 The American Physical Society
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6750 PRB 60P. BUTERA AND M. COMI
the recently extended field theoretic expansions of Ref.
and is also accompanied by an extensive review of the av
able numerical and experimental data.

The paper is organized as follows. In Sec. II we set
notation and define the quantities we shall study. In Sec
we discuss briefly the numerical tools used for our estima
and present the results of our analysis of the series. Th
results are compared with experimental data, with ear
work on shorter HT series, with measures performed in s
chastic simulations and with RG estimates, obtained ei
by the fixed dimension~FD! perturbative technique10,25–31or
by the Fisher-Wilson32 e-expansion approach.10,25,29–31,33,34

Our conclusions are briefly summarized in Sec. IV.
The HT series expansion coefficients of the nearest ne

bor correlation functionG(N,b) expressed in closed form a
functions of the spin dimensionalityN, for the sc and the bcc
lattices, have been tabulated in the appendixes in orde
make each step of our work completely reproducible. F
convenience of the reader, we also have explicitly evalua
the series coefficients forN50 ~the SAW model!, N51 ~the
Ising spin-1/2 model!, N52 ~theXY model!, andN53 ~the
classical Heisenberg model!.

II. DEFINITIONS AND NOTATION

We study theN-vector model with Hamiltonian

H$v%52
1

2 (
^xW ,xW8&

v~xW !•v~xW8!, ~1!

where the variablev(xW ) represents aN-component classica
spin of unit length at the lattice site with position vectorxW ,
and the sum extends to all nearest neighbor pairs of s
The basic observables are the spin correlation functio
Here we shall be interested in the connected correlation fu
tions ^v(0)•v(xW )&c between the spin at the origin and th
spin at the sitexW . In particular, the nearest neighbor sp
correlation function is defined by

G#~N,b!5^v~0!•v~dW !&c5(
r 50

`

ar
#~N!b r , ~2!

wheredW is a nearest neighbor lattice vector and # stands
either sc or bcc, as appropriate.

Due to the bipartite structure of the sc and the bcc lattic
the connected correlations^v(0)•v(xW )&c are functions ofb
with the same parity as the lattice distance between the s
and hence alternate expansion coefficients vanish identic
in particular in our expansions ofG#(N,b) to orderb21 only
eleven coefficients are nonvanishing. This is the reason
most analyses in the literature have focused on series fo
nonbipartite fcc lattice which have no such symmetry. T
specific internal energy is defined by

U#~N,b!52
q

2
G#~N,b!, ~3!

whereq is the lattice coordination number. If we denote t
reduced inverse temperature byt#(N)512b/bc

#(N), then
U#(N,b) is expected to behave as9
6
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U#~N,b!.U reg
# ~N,b!1AU

# ~N!@t#~N!#12a(N)

3$11aU
# ~N!@t#~N!#u(N)1•••% ~4!

whent#(N)↓0.
As is customary, in writing the asymptotic form Eq.~4!,

we have explicitly indicated the presence of the nonsingu
backgroundU reg

# (N,b), because the critical singularities o
the specific energy are known to be generally very we
Here AU

# (N) denotes the critical amplitude of the specifi
energy, aU

# (N) is the amplitude of the leading singula
correction35 to scaling, andu(N) is the exponent of this cor
rection also called confluent singularity exponent. The
lipses represent higher order singular or analytic correc
terms. Unlike the critical exponenta(N), which is universal,
the critical amplitudesAU

# (N),aU
# (N), etc., are expected to

depend on the parameters of the Hamiltonian and on
lattice structure, i.e., they are nonuniversal. Similar cons
erations apply to the other thermodynamic quantities lis
below, which have different critical exponents and differe
critical amplitudes, but the same leading confluent expon
u(N). It is known thatu(N).0.5 for small values ofN.10

Having clearly indicated which quantities are universal,
shall often drop the generic superscript #~or its determina-
tion! in order to avoid overburdening the notation. Noti
also that, since there is no chance of confusion, we h
generally omitted the superscript1 usually adopted in the
literature for the amplitudes which characterize the hig
temperature side of the critical point.

The specific heat per site, at fixed magnetic fieldH, is
defined as the temperature derivative of the specific inte
energy

CH~N,b!5
d

dT
U~N,b!5

q

2
b2

d

db
G~N,b!, ~5!

whereT is the temperature. Ast(N)↓0, the critical behavior
of CH(N,b) is described by

CH~N,b!.CH
reg~N,b!1AC~N!@t~N!#2a(N)

3$11aC~N!@t~N!#u(N)1•••% ~6!

with AC(N)5@12a(N)#bc(N)AU(N) and aC(N)5$1
1u(N)/@12a(N)#%aU(N). Notice that our definition of
aC(N) conforms to general usage, but differs by a fac
a(N) from Eq. ~1.4! of Ref. 31.

We have also examined the susceptibility

x~N,b!5(
xW

^v~0!•v~xW !&c , ~7!

the second moment of the correlation function

m2~N,b!5(
xW

xW2^v~0!•v~xW !&c , ~8!

and the second-moment correlation lengthj defined,36 in
terms ofx andm2, by

j2~N,b!5
m2~N,b!

6x~N,b!
. ~9!

The susceptibilityx(N,b) is expected to behave as
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x~N,b!.Ax~N!@t~N!#2g(N)$11ax~N!@t~N!#u(N)1•••%
~10!

ast(N)↓0. In the case of bipartite latticesx(N,b) has also
an antiferromagnetic singularity atbc

AF(N)52bc(N), and,

in terms of the reduced variablet̃(N)512b/bc
AF(N), we

should observe the energylike behavior

x~N,b!.x reg~N,b!1Bx~N!@ t̃~N!#12a(N)1••• ~11!

as t̃(N)↓0.
The second moment of the correlation function is e

pected to behave as

m2~N,b!.Am~N!@t~N!#2g(N)22n(N)$11am~N!@t~N!#u(N)

1•••% ~12!

ast(N)↓0. At the antiferromagnetic singularity, the beha
ior is completely similar to that of the susceptibility

m2~N,b!.m2
reg~N,b!1Bm~N!@ t̃~N!#12a(N)1•••

~13!

as t̃(N)↓0.
For the correlation length we have

j~N,b!.Aj~N!@t~N!#2n(N)$11aj~N!@t~N!#u(N)1•••%
~14!

as t(N)↓0, and also in this case we expect the energyl
behavior

j~N,b!.j reg~N,b!1Bj~N!@ t̃~N!#12a(N)1••• ~15!

as t̃(N)↓0.
The validity of the hyperscaling relation

dn~N!522a~N! ~16!

first derived by Gunton and Buckingham37 as an inequality
~with the 5 sign replaced by>), translates into the univer
sality of the amplitude combination6

Rj
1~N![@ga~N!AC~N!#1/dAj~N!, ~17!

whereg is a geometric factor defined byg5ad/v0, with v0
the volume per lattice site anda the lattice spacing. For the
sc lattice one hasg51, while for the bcc latticeg53A3/4.

Finally, it is useful to recall38 that, in the largeN limit,
Rj

1(N)'(N/4p)1/3 and that Bervillier and Godre`che39

proposed a simple approximate extension of this relations
to small nonzero values ofN in the form Rj

1(N)
'n(N)(N/4p)1/3.

III. COMMENTS ON THE ANALYSIS OF THE SERIES

A. Estimates of the specific heat exponents

The main difficulty in computing the specific heat exp
nents is thata(N) is small forN<1 and it becomes negativ
for N>2. Therefore the specific heat is very weakly dive
gent for N<1, whereas it has only a finite cusp forN>2.
The simplest Pade´ approximant~PA! techniques for estimat
ing the critical parameters are thus expected to be ineffic
in the former cases and completely inadequate in the la
-

e
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-

nt
r.

Moreover, it is not particularly helpful to differentiate th
present specific heat series with respect tob in order to
sharpen the singularity, because the extrapolations bec
more sensitive to nonasymptotic or confluent singularity
fects. In principle, the inhomogeneous differential appro
mants~DA! ~thoroughly described in Refs. 40! should per-
form much better than the PA’s since they are able to de
even weak singularities and might allow, to some extent,
the confluent corrections to scaling. However, even after
extension of the HT series, the nonzero expansion coe
cients are not sufficiently many that these numerical to
can be used effectively. In order to improve the precision
our estimates, we have mainly used simple first order D
and have biased them with the critical temperatures relia
known from our previous study of the strongly diverge
susceptibility series2 or from other sources.41,42 In the par-
ticular case of the sc spin-1/2 Ising model, we have tak
advantage in our analysis also of the two additional se
coefficients provided by Ref. 15.

An accurate measure of the scaling correction amplitu
of the specific heat presently seems beyond reach, altho
their qualitative behavior as functions ofN is clear and com-
pletely analogous to that ofax(N) and ofaj(N). More pre-
cisely, aC

# (N) is small and negative forN,2, while it is
positive and increasing forN.2. Let us recall that, for smal
values ofN, RG computations9,10 indicate that the universa
ratiosaC(N)/ax(N) andaC(N)/aj(N) are of the order of the
unity. On the other hand, our HT analysis ofx(b,N) and
j(b,N) suggested thatax(N) andaj(N) are small~negative
for N,2 and positive otherwise!, therefore it is reasonable
to neglect the corrections to scaling at the present leve
accuracy in the specific heat series analysis. We also re
that it was convincigly inferred in Ref. 43 thataC is negative
in the sc, bcc, and fcc spin-1/2 Ising models and, in the
case, it was suggested in Refs. 15,16 thataC is very small.

Our direct estimates ofa(N) from the specific heat serie
for the sc and the bcc lattices have been reported in Tab
We have also included in this table the values ofa(N) ob-
tained by studying the energylike behavior of the susce
bility Eq. ~11! at the antiferromagnetic singularity. The stud
of the second correlation moment Eq.~13! does not produce
results of comparable quality. In this computation, we ha
found most convenient to analyze the derivative ofx by
second order DA’s biased with the singularities atbc(N) and
bc

a f(N). Although the expansion ofx is effectively longer
than that of the specific heat, it is not easier to meas
accurately the exponent of the very weak antiferromagn
singularity. Therefore the estimates ofa(N) so obtained are
consistent with, but not more accurate than the others
particular, we agree with the earlier estimatesa(1)
50.105(7) anda(1)50.11(2) obtained by studies of th
susceptibility for the Ising model on the bcc lattice in Re
11,42.

In recent studies of theN51 case,16,17 it has been sug-
gested that the behavior of the specific heat series co
cients as functions of their order is sufficiently smooth th
the traditional~biased! ratio techniques can be practically a
accurate as the DA procedures. This remains true only
not too large values ofN, since an asymptotic regime seem
to set in later for largerN. Moreover, forN.4, the ratio
sequences show an increasing curvature indicating that
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TABLE I. In the first six lines we have reported the direct HT estimates of the critical exponentsa(N)
obtained in this work by various routes: by first order DA’s of the specific heat biased withbc(N); by
similarly biased extrapolation of ratios of the specific heat series coefficients and by second order D
dx/db biased withbc(N) andbc

a f(N). We have then reported earlier direct estimates from shorter HT se
some direct MC determinations, and a few experimental measures. For each value ofN, our estimates of
a(N) have to be compared with the quantity 2-3n(N) reported in the last four lines and obtained either fro
our previous HT study of the correlation length series or from RG estimates viae-expansion and via FD
perturbative expansion.

N 0 1 2 3 4

CH
sc(N,b) DA 0.24~1! 0.103~8! 20.014(9) 20.11(2) 20.22(4)

CH
bcc(N,b) DA 0.23~1! 0.105~9! 20.019(8) 20.13(2) 20.25(3)

CH
sc(N,b)Ratio ext. 0.236~8! 0.104~6! 20.020(8) 20.15(21

14) 20.27(21
16)

CH
bcc(N,b)Ratio ext. 0.233~8! 0.106~6! 20.022(6) 20.16(21

13) 20.29(21
16)

dxsc

db
~N,b! DA 0.239~8! 0.13~3! 0.02~3! 20.13(3) 20.24(3)

dxbcc

db
~N,b! DA 0.233~6! 0.107~8! 20.01(2) 20.138(8) 20.23(2)

xbcc(1,b) DA Ref. 11 0.105~7!

xbcc(1,b) DA Ref. 42 0.105~7!

CH(N,b) DA Ref. 53 0.125~25! 20.02(3) 20.22(4)
MC Refs. 45,41,46 0.275~15! 0.125~23! 20.23(16)
Exper. Refs. 25,41,47–50 0.107-0.11220.01285(38) 20.135(2) 20.20(5)
2-3n(N) DA sc Ref. 2 0.2366~18! 0.1055~24! 20.025(6) 20.148(6) 20.277(9)
2-3n(N) DA bcc Ref. 2 0.2363~18! 0.1076~15! 20.022(6) 20.142(6) 20.268(9)
2-3n(N) e-expans. Ref. 25 0.2375~54! 0.1121~78! 20.0055(120) 20.115(16) 20.211(24)
2-3n(N) FD-pert. Ref. 26 0.235~3! 0.109~4! 20.011(4) 20.122(10) 20.223(18)
o
ys
or
a

n
ifi

,
-

su

cu

w
et

s to
nce,

om
ic

e
r-

un-
hat

to

nt
e
ific
We
f the

r-

an-
,

h
r-
-
d

confluent corrections to scaling cannot be neglected anym
and therefore longer series are needed for a reliable anal

We shall use the simplest ratio formulas, since the m
elaborate variants proposed in Ref. 44 do not presently m
much difference. If we setCH(N,b)5(n51

` cn(N)b2n, and
allow for the dominant corrections to scaling with expone
u(N), the ratio of the successive coefficients of the spec
heat expansion in powers ofb2 is expected to behave as

r n5
cn

cn11
5bc

2F11
12a

n
1

b

n11u
1OS 1

n2D G . ~18!

Thereforea can be estimated from the sequence

an512S r n

bc
2

21D n5a1
b

nu
1OS 1

nD . ~19!

The extrapolation of these estimators ton˜` is the main
difficulty with this procedure. ForN<4, the estimators
when plotted versus 1/n, show only a small curvature. There
fore we have neglected the scaling correctionb/nu and have
simply taken the linear extrapolantnan2(n21)an21 of the
last two estimators as our final estimate ofa(N). We have
then assigned very conservative uncertainties to these re
@also allowing for the errors inbc(N)] and, for N.2, we
have indicated by asymmetric errors the effects of some
vature in the estimator plots.

In Table I, we have also included the results of a fe
recent direct studies of the specific heat by stochastic m
re
is.
e
ke

t
c

lts

r-

h-

ods. These studies are subject to difficulties analogou
those met in HT analyses. As a consequence, for insta
the Monte Carlo~MC! determination45 of a(0) on the sc
lattice is approximately three standard deviations away fr
the other quoted values.~We have summed the systemat
and the statistical errors separately reported in Ref. 45.!

Also the value ofa(1) emerging from a most accurat
~see Ref. 41! MC study of the sc lattice Ising model pe
formed by a dedicated processor, shows a considerable
certainty. The central value, but not the error, is somew
improved @a(1)50.11360.023# by turning to a particular
spin-1 Ising model designed to have small corrections
scaling.

For N>2, it is even harder to determine the expone
a(N) in MC simulations, because of the ambiguity in th
separation of the nondivergent singular part of the spec
heat from the regular background, as argued in Ref. 46.
have also reported a few experimental measurements o
specific heat exponent47–50 available forN51,2,3,4.

In order to show quantitatively the validity of the hype
scaling relation Eq.~16!, our direct estimates ofa(N) have
been compared with the quantity 223n(N) also reported in
Table I and computed either from our extended HT exp
sions of the correlation length2 for the sc and the bcc lattices
or from the estimates ofn(N) obtained in the RG approac
by fifth order e expansion and by seventh order FD pertu
bation expansion.25,26 In conclusion, the hyperscaling rela
tion dn(N)522a(N) appears to be reasonably well verifie
within the uncertainties of the data.
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TABLE II. Estimates of the hyperuniversal quantityRj
1(N). The results of our HT series computation a

compared with RG estimates viae expansion or via fixed-dimension perturbative expansion, with a heur
approximate formula and with experimental measures.

N 0 1 2 3 4

HT sc ~this work! 0.258~3! 0.273~4! 0.361~4! 0.431~5! 0.497~6!

HT bcc ~this work! 0.258~3! 0.272~4! 0.362~4! 0.433~5! 0.500~6!

RG e-expans. Ref. 8 0.27 0.36 0.42
RG FD-pert. Refs. 9,39 0.270~1! 0.361~2! 0.435~2!

HT Refs. 51,19,6 0.2659~7! 0.36~1! 0.42
MC Ref. 52 0.2685~60!

n~N!S N

4pD1/3

Ref. 39 0.271~1! 0.363~1! 0.439~2! 0.506~4!

Exper. Refs. 6,39,24 0.25-0.32 0.40-0.45
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B. Estimates ofRj
1
„N…

We have computed the hyperuniversal combination
critical amplitudesRj

1(N) by two methods. In the first pro
cedure, we evaluate the HT expansion of the quantity

F~N,b!54gqn~N!3@bc~N!#9/2S j2

b D 9/2

3S dj2

db D 23 d2G~N,b!

db2

5Rj
1~N!3t~N!22a(N)23n(N)$11O@t~N!u(N)#%

~20!

at the critical temperature. This computation also provide
good test of hyperscaling: indeedF@N,bc(N)#5Rj

1(N)3, if
Eq. ~16! holds. Here we have found convenient to use
‘‘simplified’’ first order DA’s, biased withbc

#(N) andu(N),
as described in Ref. 3, and have taken the estimates ofu(N)
from Ref. 25. We have reported in Table II only the resu
obtained by this method which is very stable and seems t
fairly accurate. In this case, our error estimates have to a
only for the spread of the approximants as well as for
uncertainties ofbc(N), n(N), andu(N). The errors quoted
mainly derive from the uncertainties inu(N), assumed to be
generally of the order of 10% and from the uncertainties
n(N). The estimates ofRj

1(N) obtained by PA’s of
F@N,bc(N)# are systematically smaller by'5%, indicating,
in our opinion, that the ‘‘simplified’’ DA’s are likely to al-
low more accurately for the sizable negative amplitude c
rections to scaling. The usual first order DA’s biased w
bc(N) also seem to lead to less accurate estimates.

In the second approach, we obtainRj
1(N) from Eq. ~17!,

after computing separatelyAC(N) andAj(N) from the spe-
cific heat and the correlation length series respectively,
DA’s biased with the critical temperatures and exponen
This second method leads to results systematically sm
~by '122 %), than those reported in Table II and it
subject to a larger uncertainty, due to the necessity of bia
the direct computation ofAC(N) also with the exponents
a(N), whose relative error may be considerable.

In the same table we have also reported the values
Rj

1(N) computed via RG~Ref. 9! either to second order in
f

a

e

be
w
e

f

r-

y
s.
er

g

of

the e expansion7 or to fifth order in the FD perturbation
expansion.39 We have also included earlier estimates o
tained in Refs. 6,19,51 from the analysis of shorter HT
ries, by the second above mentioned method.

A recent MC simulation52 of the Ising model on
the sc lattice has determined the universal quan
f s

sc(1)@Aj
sc(1)#3 which is closely related toRj

1(1). Here
f s

sc(1) denotes the amplitude of the singular part of the f
energy. For convenience, we have translated this result
the estimate ofRj

1(1) reported in Table II, by using the
value a(1)50.1076(30), obtained in Ref. 52 from the hy
perscaling Eq.~16!.

The values from the approximate formula of Bervillie
and Godre`che have been obtained assuming forn(N) the FD
perturbative results of Ref. 25. We are unable to give s
sible error estimates in this case, but it interesting to quot
least the uncertainties deriving from those ofn(N). Finally,
we should mention that, to our knowledge, no other eval
tions of Rj

1(N) for N50 andN54 are quoted in the litera
ture.

C. Estimates of nonuniversal critical parameters

In Table III, we have reported our estimates of some n
universal critical parameters, for various values ofN. The
inverse critical temperaturesbc

#(N), which have been always
used in the biased analyses of this paper were determine
Ref. 2 or taken from Refs. 41,42. The critical amplitud
Aj

#(N) of the second-moment correlation length were det
mined in Ref. 3.

The critical specific energiesU#(N,bc) and the critical
values of the regular part of the specific heatCreg

# (N,bc)
have been obtained by first order DA’s biased withbc(N).
Also these data are compatible with the earlier estimates.52,51

We have computed the critical amplitudes of the spec
heatAC

# (N) in two ways: either indirectly, namely, from ou
estimates ofRj

1(N) by using the knowledge ofAj
#(N) and of

a(N), or directly, from the specific heat by DA’s biased wi
bc(N) anda(N). The two methods yield compatible result
We have chosen to report in Table III the results of the fi
approach. Therefore the relatively large errors ofAC

# (N)
mainly reflect the uncertainty ofa(N), which, for N52, is
so considerable that it is not useful to report any estimate
this case.@For the same reason we have not reported e
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TABLE III. Estimates of nonuniversal parameters. We report the critical inverse temperaturesbc
#(N)

always used in our biased procedures, the critical amplitudesAj
#(N) andAC

# (N), the critical specific energies
U#(N,bc) and the critical values of the regular part ofCH

# (N,b).

N 0 1 2 3 4

bc
sc(N) HT Refs. 2,41 0.213493~3! 0.2216544~3! 0.45419~3! 0.69305~4! 0.93600~4!

bc
bcc(N) HT Refs. 2,42 0.153128~3! 0.157373~2! 0.320427~3! 0.486820~4! 0.65542~3!

Aj
sc(N) HT Ref. 3 0.5101~3! 0.5027~3! 0.4814~3! 0.4541~3! 0.4155~3!

Aj
bcc(N) HT Ref. 3 0.4846~2! 0.4659~2! 0.4371~2! 0.4072~2! 0.3691~2!

AC
sc(N) ~this work! 0.546~8! 1.49~5! 26.0~6! 26.5~3!

AC
bcc(N) ~this work! 0.481~6! 1.43~4! 26.5~6! 27.2~3!

AC
sc(N) MC Ref. 52 1.45~9!

AC
sc(N) HT Ref. 51 1.464~90!

AC
bcc(N) HT Ref. 51 1.431~80!

Usc(N,bc) ~this work! 21.004~3! 20.991~1! 20.990~3! 20.991~3! 20.994~4!

Ubcc(N,bc) ~this work! 21.0990~2! 21.0903~6! 21.0896~8! 21.0919~4! 21.0951~2!

Usc(N,bc) HT Ref. 51 20.9902~1!

Usc(N,bc) MC Ref. 41 20.9904~8!

Ubcc(N,bc) HT Ref. 51 21.0904~1!

CH
reg(N,bc) sc ~this work! 20.66~3! 21.67~3! 4.9~4! 4.2~3!

CH
reg(N,bc) MC sc Refs. 52,46 21.64~11! 5.79~12!

CH
reg(N,bc) MC sc Ref. 54 5.70~12!

CH
reg(N,bc) bcc ~this work! 20.68~2! 21.64~3! 5.2~4! 4.3~3!

CH
reg(N,bc) MC bcc Ref. 54 5.54~14!
of
it

f
es
o

e
o
le
d

e
t

ct

ive.

sti-

po-
in
re-

l-
er-
the

e
on-
mates ofCreg
# (2,bc).# On the other hand, the uncertainties

the productsa(N)AC
# (N) are more modest and therefore

can be of some interest to quote our estimates forN52,
namely,a(2)AC

sc(2)50.42(1) anda(2)AC
bcc(2)50.44(1).

We should stress that here the meaning of the errors
Rj

1(N), AC
# (N), etc., is not the same as in earlier studi

where the errors describe the spread of the estimates in c
putations performed at sharply fixed values ofa(N) and
bc(N). If, in those computations, we allowed also for th
uncertainty ofa(N), then the estimates and the errors
Rj

1(N), AC
# (N), etc., would become completely compatib

with our results. Therefore, for instance, we have reporte
Table III the central values of the estimates ofAC

# (1) from
Ref. 51, based on the assignmentsa(1)50.104, bc

sc(1)
50.221630, andbc

bcc(1)50.157368, but we have taken th
liberty of suggesting much larger errors, which correspond
an indicative 5% uncertainty ofa(1).

Finally, it is interesting to notice that the produ
a(N)AC

# (N), which is derived with good accuracy from
Rj

1(N), remains positive in the range ofN examined here.

Therefore, whena(N) changes its sign forN5N̄&2, the
same must happen forAC

# (N). Analogously Creg
# (N,bc),
or
,
m-

f

in

o

which is negative forN50,1, has to change sign forN>N̄,
in order that the maximum of the specific heat stays posit

IV. CONCLUSIONS

We have analyzed our extended HT expansion ofG(N,b)
for the sc and bcc lattices in order to update the direct e
mates of the critical exponenta(N) and of the hyperuniver-
sal combination of amplitudesRj

1(N), over a range of values
of N. Due to the smallness ofa(N) and to the limited effec-
tive length of the series, the relative accuracy of our extra
lations is still generally inferior to that already achieved
our recent HT studies of the susceptibility and of the cor
lation length critical exponents.2 However, within the error
limits, the main predictions of universality, hyperuniversa
ity, and hyperscaling appear to be well verified and the ov
all agreement between the HT and the RG estimates of
universal observables is good.
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APPENDIX A: THE NEAREST NEIGHBOR CORRELATION FUNCTION ON THE SC LATTICE

The HT expansion coefficients of the nearest neighbor correlation function on the sc lattice are
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a1~N!5
1

N
,

a3~N!5
813N

N3~21N!
,

a5~N!5
3521168N122N2

N5~21N!~41N!
,

a7~N!5
1059841154752N185056N2121960N312754N41135N5

N7~21N!3~41N!~61N!
.

For the coefficients which follow, it is typographically more convenient to setar(N)5Pr(N)/Qr(N) and to tabulate
separately the numerator polynomialPr(N) and the denominator polynomialQr(N),

P9~N!512349440117871360N110010240N212751680N31405776N4130876N51954N6,

Q9~N!5N9~21N!3~41N!~61N!~81N!,

P11~N!51248618086401364560318464N1467027804160N21345395589120N31163465120768N4151937662976N5

111315941120N611694683328N71171418048N8111171800N91422520N1017026N11,

Q11~N!5N11~21N!5~41N!3~61N!~81N!~101N!,

P13~N!524917940633600171794651299840N191099400634368N2167066306363392N3131821500096512N4

110242128590848N512295320471552N61361789563776N7139924856512N813014946464N9

1148081312N1014249712N11153892N12,

Q13~N!5N13~21N!5~41N!3~61N!~81N!~101N!~121N!,

P15~N!586765472111919104013616829986427633664N16891583739428601856N217957383254837821440N3

16225913571872604160N413498334649912000512N511460523056889888768N61462563223592566784N7

1112521154820349952N8121154253531684864N913076240360587264N101344376491174400N11

129339259414560N1211863409665456N13185223778256N1412644451768N15149679114N161425007N17,

Q15~N!5N15~21N!7~41N!3~61N!3~81N!~101N!~121N!~141N!,

P17~N!53948322260048528015360118226598259687325433856N138988021723789936033792N2

151323869690127645147136N3146583550742458833829888N4130960681462370651865088N5

115623251635335279411200N616126114771192359944192N711895134340075627937792N8

1467022808981231222784N9192186181864442351616N10114603683596490825728N11

11853863098715137024N121187606064202660864N13114988669525495552N141930810012214464N15

143862323328864N1611510537882592N17135726075472N181516586876N1913426610N20,

Q17~N!5N17~21N!7~41N!5~61N!3~81N!~101N!~121N!~141N!~161N!,

P19~N!533076839407703131632435200011921489492806829461838233600N15244352748560893054120099840N2

18943585498141047607892377600N3110692857932684576404138885120N4

19533746112508667703922262016N516584053425730588600199806976N6

13611602580377927390173593600N711601207739146215800698830848N8
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1580892231405628018430836736N91173958231237568098749120512N10143263481821264025859260416N11

18970159797560936461959168N1211553563398790168428314624N131224789497420511579963392N14

127127717091438526734336N1512720424198488158732288N161225326679276573418496N17

115276530595902585344N181836884471109722496N19136371584704297344N2011221231831603552N21

130441535564576N221528211335752N2315666057752N24128113366N25.

Q19~N!5N19~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!,

P21~N!51224693233879659532783714304001703968135713996874968318607360N

11902018774401482372925381148672N213212833143009475621586001199104N3

13807421545781558189263566143488N413367773291711700412520831385600N5

12309856527527444083001140445184N611260025811629511034804556005376N7

1556434796744868231529151594496N81201462619317391517373909958656N9

160352333626138484849753718784N10115057212981368189621789261824N11

13142458232040362531962355712N121550072000489168244280950784N13

180841983595825376237305856N1419969253742422581036474368N1511029177452713566097747968N16

188565456715317390606336N1716311161666273241710592N181368858480778492513280N19

117443565419605911296N201654851921510017152N21118987446839217536N221408099174234848N23

16085840871680N24155773063792N251233966556N26,

Q21~N!5N21~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!~201N!.

In particular, forN50 ~the SAW model!, we have~in terms of the variableb̃5b/N)

G~0,b̃ !5b̃14b̃3144b̃51552b̃718040b̃91127016b̃1112112320b̃13136484128b̃151648529392b̃17111790401800b̃19

1218273957968b̃211•••.

For N51 ~the spin-1/2 Ising model!, we have

G~1,b!5b111/3b31542/15b51123547/315b7114473442/2835b9111336607022/155925b111605337636044/552825b13

110976336338579019/638512875b1513022947654230404442/10854718875b17

18582760723898537620322/1856156927625b19115262009695163033631128084/194896477400625b211•••.

For N52 ~the XY model!, we have

G~2,b!51/2b17/16b3197/96b515103/2048b71459719/61440b91218788559/8847360b1113579816967/41287680b13

120154248931151/63417876480b1514126827327908711/3424565329920b17

12142771095208749011/456608710656000b191562665453010146198199/30136174903296000b211•••.

For N53 ~the classical Heisenberg model!, we have

G~3,b!51/3b117/135b311054/8505b5180909/637875b7195738/601425b915992817408726/27152760009375b11

111357358327572/34910691440625b131156550175755271443/311577921107578125b15

1190956190202826883834/237337400087308828125b17

156535690823720347706912558/42645970734688086781640625b19

1358752594209204675460504716/160503926219644253887265625b211•••.
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APPENDIX B: THE NEAREST NEIGHBOR CORRELATION FUNCTION ON THE BCC LATTICE

The HT expansion coefficients of the nearest neighbor correlation function on the bcc lattice are

a1~N!5
1

N
,

a3~N!5
24111N

N3~21N!
,

a5~N!5
177611044N1152N2

N5~21N!~41N!
,

a7~N!5
105062411713024N11062432N21312600N3144090N412395N5

N7~21N!3~41N!~61N!
.

For the coefficients which follow, it is typographically more convenient to setar(N)5Pr(N)/Qr(N) and to tabulate separatel
the numerator polynomialPr(N) and the denominator polynomialQr(N),

P9~N!52376806401391630080N1251136960N2179995360N3113572456N411175956N5140904N6,

Q9~N!5N9~21N!3~41N!~61N!~81N!,

P11~N!54657615994880114662439436288N120306810757120N2116297064577024N318408736450048N4

12927305709568N51701958299776N61116098602304N7113001482080N81940546304N9139618896N10

1737112N11,

Q11~N!5N11~21N!5~41N!3~61N!~81N!~101N!,

P13~N!5180439217602560015660420904714240N17838369893122048N216320116029308928N3

13299174287417344N411173899872406016N51292101988094976N6151294669578688N7

16322737698272N81534749498288N9129520640808N101956957440N11113799232N12,

Q13~N!5N13~21N!5~41N!3~61N!~81N!~101N!~121N!,

P15~N!51220025102483691929601543062014542747795456N11106788272284626845696N2

11369759313298192334848N311151523649799700086784N41697153536634263011328N5

1314532460294909476864N61107981066371807617024N7128558819799096193024N8

15854384426156062720N91930798833517987840N101114224602657806848N11110696888031248800N12

1749147616393328N13137927213609168N1411309142853624N15127530444114N161265776699N17,

Q15~N!5N15~21N!7~41N!3~61N!3~81N!~101N!~121N!~141N!,

P17~N!5107817665776674863579136015311087820388289065517056N112134778449671899486093312N2

117084121119131816471560192N3116608988472236389552881664N4111844719796924403830226944N5

16426005983019854016544768N612714739161543420662382592N71906815315440850230886400N8

1241845902161952176398336N9151782172208072962975744N1018918298897939850518528N11

11233687735206166823424N121136374954925264681472N13111933805821587623936N14

1814292868353822272N15142326351689562720N1611615854325367776N17142636630380712N18

1693565371332N1915232689960N20,

Q17~N!5N17~21N!7~41N!5~61N!3~81N!~101N!~121N!~141N!~161N!,
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P19~N!517543383833845276297259909120011078203808265217149807540305920N

13116173607652516436321480212480N215633274990887456528054857236480N3

17147764845163022335548483174400N416772123960394212475971911548928N5

14976697709965417132847811002368N612909196906278057822968464015360N7

11376618167955575605597824876544N81533877242182341657037822230528N9

1171186415133933732406244147200N10145658929843087077741062520832N11

110169112743416038967608705024N1211894893729303875646595006464N13

1295461155711988902515834880N14138487351224017884772339712N1514173283404716049615550464N16

1374483776338165994216448N17127568453015797659725824N1811644491785569570191872N19

178098433373280888576N2012878619676002249280N21179247785021379008N2211531012629840624N23

118487394459632N241104841714952N25,

Q19~N!5N19~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!,

P21~N!5~1261755008880393488192080183296001771182011973845295293568951255040N

12217488378116952516842355989413888N213990433665646539615566917678399488N3

15043598010921343492445826797535232N414763919940749294277936547050291200N5

13493715661682982610876998803783680N612040596945264227996384033763229696N7

1966223362153625194801269330411520N81375629302981996871057940890517504N9

1120996637012851297773150580768768N10132504072855072819274267570733056N11

17314027149319445947024024403968N1211382157562600983080851995279360N13

1219565426180384061435124916224N14129302944828757838601074274304N15

13278043851101943224116459520N161306114536101034343439527936N17

123712149887809097730532352N1811509817181912122244980224N19178017870011349442092288N20

13213483265751133834688N211102816420657321623712N2212458334158401005552N23

141257373964220632N241432739125346952N2512130772922816N26,

Q21~N!5N21~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!~201N!.

In particular, forN50 ~the SAW model!, we have~in terms of the variableb̃5b/N)

G~0,b̃ !5b̃112b̃31222b̃515472b̃71154740b̃914737972b̃111152960220b̃1315130099672b̃151177095284092b̃17

16253425298080b̃191224879383796232b̃211•••.

For N51 ~the spin-1/2 Ising model!, we have

G~1,b!5b135/3b312972/15b51279011/63b7146439636/405b91100877055128/31185b11

1587703506650264/6081075b13110981652882712713/3648645b15

11049923978894758374012/10854718875b1711182698210781462071363672/371231385525b19

12980059927747623321534851312/27842353914375b211•••.

For N52 ~the XY model!, we have
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G~2,b!51/2b123/16b31559/96b51187645/6144b7111417419/61440b9110934199853/8847360b11

11081218105839/123863040b1314085878131871327/63417876480b15

11683908448367350071/3424565329920b171753925204192677068291/195689447424000b19

1929152049503798552678997/30136174903296000b211•••.

For N53 ~the classical Heisenberg model!, we have

G~3,b!51/3b119/45b312092/2835b51349939/212625b712147444/505197b91108732988464808/9050920003125b11

19339742669288/258597714375b13135412600932786885263/311577921107578125b15

135816645375345371477924/96693014850385078125b17

15880568448944900843943527784/4738441192743120753515625b19

11137371495914136837811604445344/267506543699407089812109375b211•••.
a
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