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We have computed through ord@f* the high-temperature expansions for the nearest neighbor spin corre-
lation functionG(N, B8) of the classicaN-vector model, with general, on the simple cubic and on the body
centered cubic lattices. For this model, also known in quantum field theory as the @Gftidenonlinearo
model, we have presented in previous papers extended expansions of the susceptibility, of its second field
derivative, and of the second moment of the correlation function. Here we study the internal specific energy
and the specific hea®(N,B), obtaining updated estimates of the critical parameters and therefore a more
accurate direct test of the hyperscaling relatibr{N) =2 — «(N) on a range of values of the spin dimension-
ality N, including N=0 (the self-avoiding walk modgl N=1 (the Ising spin 1/2 modgl N=2 (the XY
mode), N=3 (the classical Heisenberg mogeBy the newly extended series we also compute the universal
combination of critical amplitudes usually denoted IW(N), in fair agreement with renormalization group
estimates[S0163-18209)04633-( )

I. INTRODUCTION netic singular poinf32'(N) = — B¢(N) .1
In order to put our work into a proper perspective, it is

We continue in this paper the analysis of recentlyconvenient to list the HT expansions G{N,3) for the sc,
extended® high-temperature (HT) expansions for the bcc, and face-centered-culiice) lattices, which were pub-
N-vector model with general spin dimensionaliti. Our  Jished before our extension. As is well known, fee=0, the
computation is concerned with thdtdimensional bipartite N-vector model reducé%3to the self-avoiding walkSAW)
lattices, namely, the simple-cubisg lattice, the body- model, and the expansion of the correlation funct@(®,s),
centered-cubig¢bco) lattice, and theird-dimensional gener- simply related to the enumeration of the self-avoiding rings
alizations. (or polygong had already been computed in Ref. 14 up to

In previous papers we tabulatéd the HT series for the order g*° for the sc lattice, up to ordep'® for the bcc
zero field susceptibilityy (N, 8) and for the second moment |attice* and up toB*2 for the fcc lattice. In theN=1 case,
of the correlation functionu,(N,B) through order8, (i)  which corresponds to the spin-1/2 Ising model, an expansion
the HT series for the second field derivative of the susceptiof G(1,8) for the sc lattice was obtained a few years ago by
bility x4(N,B) through orderg'’, and have analyzed their Enting and Guttmarifi up to order? using finite lattice
critical behavior in thed=2 casé and in thed=3 casé®  methods. More recently, within the same approach, this com-
We have performed the computation using theertex-  putation has been pushed to org@f in Ref. 16 and then to
renormalizedl linked cluster expansion methbdnd have order 82 in Ref. 17. Also an approximate determination of
produced tables of series coefficients written as explicit functhe coefficient of3?” was reported in Ref. 17. An expansion
tions of the spin dimensionaliti} with an extension inde- through orderp®® for the bcc lattice, and one for the fcc
pendent of the structure and dimensionality of the latticejattice up to orderd'? have been tabulated in Ref. 18. For
More details on the derivation of the series, and on they=2 (the XY mode) the available serié&for the bcc lattice
checks of validity of our results can be found in our previousreached the ordep!l. In the N=3 case (the classical

papers.”® Heisenberg modglthe series for the bcc lattice, known only
In this paper we examine the series expansions of th@p to orderp®, was reported in Ref. 20.
nearest neighbor correlation functi@(N, 8) through order Finally, let us cite an expansion @(N,g), valid for

B?, in order to update, on a range of values of the spingeneralN and for all loosely packed lattices, tabulat@dth
dimensionalityN, the direct estimates of the parameters desome misprintsin Ref. 4 up to orderg®, which has been
scribing the behavior of the specific h&a¢s,N) on the HT  |ater extended to models with general anisotropic pair inter-
side of the critical poin{3.(N). We also update direct tests action in Ref. 21. The expansion &(N,3) has been re-

of the hyperscaling relatiodv(N) =2— «a(N) and estimate a cently pushe®f to order3'° in the case of the sc lattice, but
related universal combination of critical amplitudes intro-no comparable effort has been devoted to the bcc lattice. In
duced by Stauffer, Ferer, and Woftiand later denoted by Ref. 23, an expansion to ordgt!, valid for generaN, had

R/ (N).”"*® Here a(N) is the critical exponent of the spe- been tabulated for the fcc lattice.

cific heat andv(N) is the critical exponent of the correlation ~ We should finally call the readers’ attention to the valu-
length §(N,B). Estimates ofa(N) are also obtained by able reviews in Refs. 9,10,24 and to the accurate recalcula-
studying the behavior of the extended series for the suscefion, within the renormalization groufRG) approach, of the
tibility x(B,N) and for the second moment of the correlationuniversal critical parameters of thi-vector model per-
function u,(3,N) at the symmetrically placed antiferromag- formed by Guida and Zinn-Justii.This work is based on
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the recently extended field theoretic expansions of Ref. 26 U#(N,,B):Ufeg(N,B)+Aﬁ(N)[T#(N)]1‘”(N)

and is also accompanied by an extensive review of the avail-

able numerical and experimental data. X{1+af(N)[F(N) ] M+ ...} (4)
The paper is organized as follows. In Sec. Il we set our hen #(N) | 0.

notation and define the quantities we shall study. In Sec. Y As is customary, in writing the asymptotic form E),

we discuss briefly the numerical tools used for our estimates A '
) . we have explicitly indicated the presence of the nonsingular
and present the results of our analysis of the series. The%e

results are compared with experimental data, with earlie hackgroq?du,eg(N,,B), belfause 'E[hebcrltlcal sw:lgularmes Ofk
work on shorter HT series, with measures performed in sto- € Specilic energy are known 1o be generally very weak.

# . . e
chastic simulations and with RG estimates, obtained eithe€'® Au(N) denotes the critical amplitude of the specific

by the fixed dimensioiFD) perturbative techniqd&?-3or ~ €nergy, aﬁS(N) is the amplitude of the leading singular
by the Fisher-Wilso¥f e-expansion approaci}2>29-3133:34 corrgcuoﬁ’ to scaling, and)(N) is the exponent of this cor-
Our conclusions are briefly summarized in Sec. IV. rection also called confluent singularity exponent. The el-
The HT series expansion coefficients of the nearest neigHiPSes represent higher order singular or analytic correction
bor correlation functioiG(N, 8) expressed in closed form as terms. Unlike the critical exponewi(N), which is universal,
functions of the spin dimensionality, for the sc and the bec  the critical amplitudesAf(N),af(N), etc., are expected to
lattices, have been tabulated in the appendixes in order t@epend on the parameters of the Hamiltonian and on the
make each step of our work Comp|ete|y reproducib|e_ Fo,lattice structure, i.e., they are nonuniversal. Similar consid-
convenience of the reader, we also have explicitly evaluateg@rations apply to the other thermodynamic quantities listed
the series coefficients fot =0 (the SAW mode), N=1 (the  below, which have different critical exponents and different
Ising spin-1/2 mode| N=2 (the XY mode), andN=3 (the  critical amplitudes, but the same leading confluent exponent
classical Heisenberg model 6(N). It is known thatd(N)=0.5 for small values oN.!°
Having clearly indicated which quantities are universal, we
shall often drop the generic superscrip{af its determina-
tion) in order to avoid overburdening the notation. Notice
We study theN-vector model with Hamiltonian also that, since there is no chance of confusion, we have
generally omitted the superscript usually adopted in the
1 - >, literature for the amplitudes which characterize the high-
H{v}=- 5 2 v(x)-v(x'), (1) temperature side of the critical point.
xx’) The specific heat per site, at fixed magnetic fieldis
where the variable(x) represents &-component classical defined as the temperature derivative of the specific internal

spin of unit length at the lattice site with position vectqr energy
and the sum extends to all nearest neighbor pairs of sites. q .d
The basic observables are the spin correlation functions. CH(N’ﬁ):d_'I'U(N’ﬁ):EBZd_
Here we shall be interested in the connected correlation func- B

tions (v(0)-v(X)). between the spin at the origin and the whereT is the temperature. As(N) |0, the critical behavior
spin at the sitex. In particular, the nearest neighbor spin ©f C1(N. /) is described by

correlation function is defined b _
1on Tnetion 1s defined by Cu(N,B)=CEAN, B) +Ac(N)[ 7(N)] ™V

5 x{1+ac(N)[7(N)]" N +. .. 6
G*(N,B)=(v(0)-v(8))c= 2, a(N)g', @ {1+ac(N)[7(N)] } 6)
“ with  Ac(N)=[1— a(N)]B(N)Ay(N) and ac(N)={1
S + — i : sl
whereé is a nearest neighbor lattice vector and # stands fOEC?I(VN))/(:[(nl nfoc:r(Tg) ]t}éaléEa’:?erall\l(L)JZZZetthto(ljji;fedriﬂggl%n fa?gtor

either sc or bcc, as appropriate.

Due to the bipartite structure of the sc and the bcc Iattices?(wefrﬁgjleEgl'S% ':)Xgrnﬁga ?ﬁe susceptibility
the connected correlati0r7{s;'(0)~v()?))c are functions ofg
with the same parity as the lattice distance between the spins -
and hence alternate expansion coefficients vanish identically: X(N*IB):Z (v(0)-v(X))c @)
in particular in our expansions &"(N, 8) to order?! only X
eleven coefficients are nonvanishing. This is the reason whipe second moment of the correlation function
most analyses in the literature have focused on series for the
nonbipartite fcc lattice which have no such symmetry. The wa(N,B) =2 x3(v(0)-v(X))e, (8)
specific internal energy is defined by X

II. DEFINITIONS AND NOTATION

G(N,B), ®

and the second-moment correlation lengthdefined®® in

U#(N,,B)=—gG#(N,,6’), (3) terms ofy andu,, by
. . . . 2 IU'Z(N!B)
whereq is the lattice coordination number. If we denote the & (N,B)= m 9
reduced inverse temperature b§(N)=1—g/B%(N), then x(N.B

U*(N, B) is expected to behave‘as The susceptibilityy (N, 8) is expected to behave as
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)((N,,8)=AX(N)[T(N)]‘7(N){1+aX(N)[T(N)]"(N)+ . Moreover, it is not particularly helpful to differentiate the
(10)  present specific heat series with respectptdn order to
as7(N) 0. In the case of bipartite latticeg(N, 8) has also sharpen the singularity, because the extrapolations become

4 o : Fonpy e more sensitive to nonasymptotic or confluent singularity ef-
an antiferromagnetic singularity aﬁ’é (N)==B(N), and, fects. In principle, the inhomogeneous differential approxi-

in terms of the reduced variablgN)=1-8/85"(N), we  mants(DA) (thoroughly described in Refs. #8hould per-

should observe the energylike behavior form much better than the PA’s since they are able to detect
- even weak singularities and might allow, to some extent, for

X(N,B)=xred N,B)+ B (N)[7(N)]* *™M+... (1) the confluent corrections to scaling. However, even after our
as7(N) 0. extension of the HT series, the nonzero expansion coeffi-

cients are not sufficiently many that these numerical tools
can be used effectively. In order to improve the precision of
our estimates, we have mainly used simple first order DA’s
=~ —¥(N)=2»(N) 6(N) and have biased them with the critical temperatures reliably
#2(NA)=ANL7(N)] {1+a,(NL7(N)] known from our previous study of the strongly divergent
+-o-} (12 susceptibility serigsor from other source&:*? In the par-
ticular case of the sc spin-1/2 Ising model, we have taken
advantage in our analysis also of the two additional series
coefficients provided by Ref. 15.
An accurate measure of the scaling correction amplitudes
of the specific heat presently seems beyond reach, although

The second moment of the correlation function is ex-
pected to behave as

as 7(N)| 0. At the antiferromagnetic singularity, the behav-
ior is completely similar to that of the susceptibility

pa(N,B)=uFYN,B)+B,(N)[T(N) ]} *MN 4 ...

(13 their qualitative behavior as functions Nfis clear and com-
as7(N)|0. pletely analogous to that @f,(N) and ofa,(N). More pre-
For the correlation length we have cisely, a’é(N) is small and negative foN<2, while it is

N N positive and increasing foM>2. Let us recall that, for small
EN,B)=A«N)[7(N)]""™M{1+aN)[7(N)]* N+ ...} values ofN, RG computatiors'® indicate that the universal
(14 ratiosac(N)/a,(N) andac(N)/a«N) are of the order of the
as 7(N)|0, and also in this case we expect the energylike!nity. On the other hand, our HT analysis p{A,N) and
behavior £(B,N) suggested that, (N) anda,(N) are small(negative
for N<2 and positive otherwigetherefore it is reasonable
g(N,lg)zgreg(NﬁHBg(N)ﬁ.(N)]lfa(N)jL ... (15 to neglect_ the corrections to sca_llng at the_ present level of
accuracy in the specific heat series analysis. We also recall

as7(N)|0. that it was convincigly inferred in Ref. 43 that is negative
The validity of the hyperscaling relation in the sc, bce, and fce spin-1/2 Ising models and, in the sc
case, it was suggested in Refs. 15,16 tais very small.
dv(N)=2-a(N) (16) Our direct estimates af(N) from the specific heat series

first derived by Gunton and Buckinghdfras an inequality for the sc and the bcc lattices have been reported in Table I.
(with the = sign replaced by=), translates into the univer- We have also included in this table the valuesagN) ob-

sality of the amplitude combinatifn tained by studying the energylike behavior of the suscepti-
bility Eqg. (11) at the antiferromagnetic singularity. The study
Rg(N)E[ga(N)AC(N)]lfdAg(N), (17)  of the second correlation moment H@3) does not produce

) ) ] g ) results of comparable quality. In this computation, we have
whereg is a geometric factor defined ly=a"/vo, With vo  found most convenient to analyze the derivative yoby
the volume per lattice site araithe lattice spacing. For the gecond order DA’s biased with the singularitiegga¢N) and
e Igttice one hag=1, while for the b_cc Iatticeg=3\/§/4. af(N). Although the expansion of is effectively longer
+F|nally, It is lfzefm to recaff that, in the largeN I|m|t,9 than that of the specific heat, it is not easier to measure
Ry (N)=(N/4m)*® and that Bervilier and Godoh€®  accurately the exponent of the very weak antiferromagnetic
proposed a simple approximate extension of this relationshigjngularity. Therefore the estimates @fN) so obtained are
to small nonzero values ofN in the form R/(N)  consistent with, but not more accurate than the others. In

~v(N)(N/4m)*", particular, we agree with the earlier estimateg1)
=0.105(7) anda(1)=0.11(2) obtained by studies of the
Ill. COMMENTS ON THE ANALYSIS OF THE SERIES susceptibility for the Ising model on the bcc lattice in Refs.
11,42.

A. Estimates of the specific heat exponents In recent studies of thal=1 casel,G*” it has been sug-

The main difficulty in computing the specific heat expo- gested that the behavior of the specific heat series coeffi-
nents is thatr(N) is small forN=<1 and it becomes negative cients as functions of their order is sufficiently smooth that
for N=2. Therefore the specific heat is very weakly diver-the traditional(biased ratio techniques can be practically as
gent forN=<1, whereas it has only a finite cusp fb=2.  accurate as the DA procedures. This remains true only for
The simplest Padapproximant(PA) techniques for estimat- not too large values df, since an asymptotic regime seems
ing the critical parameters are thus expected to be inefficiertb set in later for largeiN. Moreover, forN>4, the ratio
in the former cases and completely inadequate in the lattesequences show an increasing curvature indicating that the
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TABLE I. In the first six lines we have reported the direct HT estimates of the critical expoaéNis
obtained in this work by various routes: by first order DA’s of the specific heat biasedgu{iN); by
similarly biased extrapolation of ratios of the specific heat series coefficients and by second order DA’s of
dyx/dp biased withB.(N) and,B@f(N). We have then reported earlier direct estimates from shorter HT series,
some direct MC determinations, and a few experimental measures. For each vhluewfestimates of
a(N) have to be compared with the quantity 2(8l) reported in the last four lines and obtained either from
our previous HT study of the correlation length series or from RG estimates-&i@ansion and via FD

perturbative expansion.

N 0 1 2 3 4

C{N,B) DA 0.2411) 0.1038) —0.014(9) -0.11(2)  —0.22(4)

CP9N,B) DA 0.231) 0.1059) —0.019(8) -0.13(2)  —0.25(3)

C(N, B)Ratio ext. 0.2368) 0.1046) —0.020(8) -0.15(9H  -0.27¢9

CPP(N, B)Ratio ext. 0.2338)  0.1066) -0.022(6)  —0.16(")  —0.29(}

‘i_);c (N,8) DA 0.2398) 0.133) 0.023) —-0.13(3)  —0.24(3)
bcc

dé‘ﬁ (N,8) DA 0.2336) 0.1078) -0.01(2) -0.138(8)  —0.23(2)

X™°41,8) DA Ref. 11 0.10%7)

x°°(1,8) DA Ref. 42 0.10%7)

Cy(N,B) DA Ref. 53 0.12%25) -0.02(3) —-0.22(4)

MC Refs. 45,41,46 0.27%5  0.12523) —0.23(16)

Exper. Refs. 25,41,47-50 0.107-0.112-0.01285(38) —0.135(2) —0.20(5)

2-3v(N) DA sc Ref. 2 0.236618)  0.105%24) —0.025(6)  —0.148(6) —0.277(9)

2-3v(N) DA bcc Ref. 2 0.236@8  0.107615) —0.022(6)  —0.142(6) —0.268(9)

2-3v(N) e-expans. Ref. 25 0.237%4) 0.112178) —0.0055(120) —0.115(16) —0.211(24)

2-3v(N) FD-pert. Ref. 26 0.233) 0.1094) —0.011(4)  —0.122(10) —0.223(18)

confluent corrections to scaling cannot be neglected anymorads. These studies are subject to difficulties analogous to
and therefore longer series are needed for a reliable analysihose met in HT analyses. As a consequence, for instance,
We shall use the simplest ratio formulas, since the morghe Monte Carlo(MC) determinatiof® of a(0) on the sc
elaborate variants proposed in Ref. 44 do not presently makgttice is approximately three standard deviations away from
much difference. If we se€(N,8)==;_1c,(N)5*", and  the other quoted value$We have summed the systematic

allow for the dominant corrections to scaling with exponentand the statistical errors separately reported in Ref. 45.
G(N), the ratio of the successive coefficients of the SpeCifiC Also the value Ofa(l) emerging from a most accurate

heat expansion in powers @ is expected to behave as

I B 18

rn_Cn+1_'8C N e n?) |’ 18
Thereforea can be estimated from the sequence

SEY BUNE PR ol 19

an=1— 13_5_ n=«a ﬁ ﬁ ( )

The extrapolation of these estimatoraite»c is the main
difficulty with this procedure. FoiN<4, the estimators,
when plotted versus @/ show only a small curvature. There-
fore we have neglected the scaling correctién? and have
simply taken the linear extrapolantr,— (n—1)«a,_, of the
last two estimators as our final estimateafN). We have

(see Ref. 41 MC study of the sc lattice Ising model per-
formed by a dedicated processor, shows a considerable un-
certainty. The central value, but not the error, is somewhat
improved[ «(1)=0.113+0.023 by turning to a particular
spin-1 Ising model designed to have small corrections to
scaling.

For N=2, it is even harder to determine the exponent
a(N) in MC simulations, because of the ambiguity in the
separation of the nondivergent singular part of the specific
heat from the regular background, as argued in Ref. 46. We
have also reported a few experimental measurements of the
specific heat exponeHt>°available forN=1,2,3,4.

In order to show quantitatively the validity of the hyper-
scaling relation Eq(16), our direct estimates a¥(N) have
been compared with the quantity-Bv(N) also reported in
Table | and computed either from our extended HT expan-

then assigned very conservative uncertainties to these resuliions of the correlation lengtffor the sc and the bcc lattices,

[also allowing for the errors iB;(N)] and, forN>2, we

or from the estimates of(N) obtained in the RG approach

have indicated by asymmetric errors the effects of some cumy fifth order e expansion and by seventh order FD pertur-

vature in the estimator plots.

bation expansiof>?® In conclusion, the hyperscaling rela-

In Table I, we have also included the results of a fewtion dv(N)=2— «a(N) appears to be reasonably well verified
recent direct studies of the specific heat by stochastic mettwithin the uncertainties of the data.
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TABLE Il. Estimates of the hyperuniversal quanth(N). The results of our HT series computation are
compared with RG estimates véaexpansion or via fixed-dimension perturbative expansion, with a heuristic
approximate formula and with experimental measures.

N 0 1 2 3 4
HT sc (this work) 0.2583) 0.2734) 0.361(4) 0.4315) 0.4976)
HT bcc (this work) 0.2583) 0.2724) 0.3624) 0.4335) 0.5006)
RG e-expans. Ref. 8 0.27 0.36 0.42
RG FD-pert. Refs. 9,39 0.27D 0.3612) 0.4352)
HT Refs. 51,19,6 0.26%9) 0.361) 0.42
MC Ref. 52 0.26880)
1/3

”(N)(ﬂr> Ref. 39 0.2711) 0.3631) 0.4392) 0.5064)
Exper. Refs. 6,39,24 0.25-0.32 0.40-0.45

B. Estimates of R} (N) the e expansionh or to fifth order in the FD perturbation

We have computed the hyperuniversal combination Ofex'pans_ior?.9 We have also included ea}rlier estimates ob-
critical amplitudeng(N) by two methods. In the first pro- tained in Refs. 6,19,51 from the analysis of shorter HT se-

cedure, we evaluate the HT expansion of the quantity r'ei béégitse&(g‘ds?naﬁ\(;i?ang?nfﬁemgi?]gd'mo del on

52)9/2 the sc lattice has determined the universal quantity

F(N:ﬂ):49qV(N)3[Bc(N)]9/2< fS{1)[AZ(1)]® which is closely related tdR;(1). Here

B f391) denotes the amplitude of the singular part of the free
4%\ ~3d2G(N, 8) energy. For convenience, we have translated this result into
x(—) —2 the estimate oiR;(l) reported in Table II, by using the
ds dg value «(1)=0.1076(30), obtained in Ref. 52 from the hy-
— a(N) -3 erscaling Eq(16).
=Rg(N)37'(N)2 (N)—-3 (N){1+O[T(N)0(N)]} p Ing q( )

The values from the approximate formula of Bervillier
(200  and Godrehe have been obtained assuming#0K) the FD

» ) ) ) perturbative results of Ref. 25. We are unable to give sen-
at the critical temperature. This computation also provides &jpje error estimates in this case, but it interesting to quote at

good test of hyperscaling: inde@d N, B(N)]=R; (N)®, if |east the uncertainties deriving from thoseigN). Finally,

Eq. (16) holds. Here we have found .con;/enient to use theye should mention that, to our knowledge, no other evalua-
“simplified” first order DA's, biased withB:(N) and6(N), tions of R/ (N) for N=0 andN=4 are quoted in the litera-
as described in Ref. 3, and have taken the estimaté@$Mf  tyre.
from Ref. 25. We have reported in Table Il only the results
obtained by this method which is very stable and seems to be
fairly accurate. In this case, our error estimates have to allow )
only for the spread of the approximants as well as for the !n Table lll, we have reported our estimates of some non-
uncertainties of8.(N), »(N), and 8(N). The errors quoted universal critical parameters, for various valuesNofThe
mainly derive from the uncertainties #(N), assumed to be inverse critical temperaturggf(N), which have been always
generally of the order of 10% and from the uncertainties ofused in the biased analyses of this paper were determined in
»(N). The estimates ofR;(N) obtained by PA’'s of Ref. 2 or taken from Refs. 41,42. The critical amplitudes
F[N,B.(N)] are systematically smaller by5%, indicating, A?(N) of the second-moment correlation length were deter-
in our opinion, that the “simplified” DA’s are likely to al- mined in Ref. 3.

low more accurately for the sizable negative amplitude cor- The critical specific energies*(N,8;) and the critical
rections to scaling. The usual first order DA’s biased withvalues of the regular part of the specific h&it(N,3.)

C. Estimates of nonuniversal critical parameters

B:(N) also seem to lead to less accurate estimates. have been obtained by first order DA’s biased witf(N).
In the second approach, we obtdi (N) from Eq.(17), ~ Also these data are compatible with the earlier estinTites.
after computing separatelic(N) andA(N) from the spe- We have computed the critical amplitudes of the specific

cific heat and the correlation length series respectively, bjieatAZ(N) in two ways: either indirectly, namely, from our
DA’s biased with the critical temperatures and exponentsestimates oRg(N) by using the knowledge (ﬂg(N) and of
This second method leads to results systematically smalleg(N), or directly, from the specific heat by DA'’s biased with
(by ~1—2 %), than those reported in Table Il and it is B8.(N) anda(N). The two methods yield compatible results.
subject to a larger uncertainty, due to the necessity of biasing/e have chosen to report in Table Il the results of the first
the direct computation oAc(N) also with the exponents approach. Therefore the relatively large errors AJf(N)
a(N), whose relative error may be considerable. mainly reflect the uncertainty a&(N), which, forN=2, is

In the same table we have also reported the values oo considerable that it is not useful to report any estimates in
Rg(N) computed via RGRef. 9 either to second order in this case[For the same reason we have not reported esti-
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TABLE lll. Estimates of nonuniversal parameters. We report the critical inverse temperﬁ‘i(rlﬁ$
always used in our biased procedures, the critical amplitﬂgelﬁ) andA’é(N), the critical specific energies
U*(N,B.) and the critical values of the regular part@ﬁ(N,,B).

N 0 1 2 3 4
B3(N) HT Refs. 2,41 0.2134983) 0.22165443) 0.454193) 0.6930%4)  0.936004)
BYN) HT Refs. 2,42 0.1531283) 0.1573782) 0.3204273) 0.4868204) 0.6554%3)
AS(N) HT Ref. 3 0.51013) 0.50273) 0.48143)  0.45413)  0.415%3)
AX(N) HT Ref. 3 0.48462) 0.46592) 0.43712)  0.40722)  0.36912)
AZ(N) (this work) 0.5468) 1.495) —6.06) —6.503)
AZYN) (this work) 0.4816) 1.434) —6.5(6) -7.23)
AS{(N) MC Ref. 52 1.459)

A{(N) HT Ref. 51 1.46490)

AZYN) HT Ref. 51 1.43180)

USN, B.) (this work) —-1.0043)  —0.9911)  —0.9903) —0.99%3) —0.9944)
UPYN, B.) (this work) —-1.099G2) —1.09036) —1.08968) —1.09194) —1.09512)
US(N, B;) HT Ref. 51 —-0.99021)

US(N, B.) MC Ref. 41 —0.99048)

UPYN, B,) HT Ref. 51 —1.09041)

CI®Y(N,B,) sc (this work) —0.663) —-1.673) 4.94) 4.2(3)
CI®YN,B.) MC sc Refs. 52,46 —1.6411) 5.7912)

CI*Y(N,8,) MC sc Ref. 54 5.70(12)

CiYN, B,) bcce (this work) -0.682) —1.6403) 5.2(4) 4.3(3)
CI®Y(N,8,) MC bcc Ref. 54 5.5414)

mates ofo‘eg(Z,,BC) .] On the other hand, the uncertainties of which is negative foN=0,1, has to change sign for=N,
the productSa(N)A’é(N) are more modest and therefore it in order that the maximum of the specific heat stays positive.
can be of some interest to quote our estimatesNer2,

namely,a(2)A(2)=0.42(1) anda(2)AX(2)=0.441). IV. CONCLUSIONS

We should stress that here the meaning of the errors for .
9 We have analyzed our extended HT expansio6 (¥, 3)

+ # . . . -
R; (N), Ac(N), etc, IS not the same as in ea_rller stqd|es,f0r the sc and bcc lattices in order to update the direct esti-
where the errors describe the spread of the estimates in COi5tes of the critical exponent(N) and of the hyperuniver-

putations performed at sharply fixed values @fN) and g5 combination of amplitude’; (N), over a range of values
Bc(N). If, in those computations, we allowed also for the of N pye to the smallness @f(N) and to the limited effec-
uncertainty ofa(N), then the estimates and the errors oftjye |ength of the series, the relative accuracy of our extrapo-
Ry (N), A&(N), etc., would become completely compatible Jations is still generally inferior to that already achieved in
with our results. Therefore, for instance, we have reported iour recent HT studies of the susceptibility and of the corre-
Table Ill the central values of the estimatesA§f(1) from  lation length critical exponenfsHowever, within the error
Ref. 51, based on the assignmeni$1)=0.104, 83%1) !imits, the main p_redictions of universality_, _hyperuniversal-
=0.221630, ancB2°°(1)=O.157368, but we have taken the ity, and hyperscaling appear to be well verified qnd the over-
liberty of suggesting much larger errors, which correspond t@lllagreement betweeq the HT and the RG estimates of the
an indicative 5% uncertainty af(1). universal observables is good.

Finally, it is interesting to notice that the product
a(N)Aé(N), which is derived with good accuracy from ACKNOWLEDGMENTS

+ . -y . .
R¢ (N), remains positive in the range of examjled here. This work has been partially supported by MURST. We

Therefore, when(N) changes its sign foN=N=2, the thank Professor J. Zinn-Justin for a very useful correspon-
same must happen foA&(N). Analogously C/(N,B.),  dence.

APPENDIX A: THE NEAREST NEIGHBOR CORRELATION FUNCTION ON THE SC LATTICE

The HT expansion coefficients of the nearest neighbor correlation function on the sc lattice are
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N)— 1
ay( )—'FJ,
(N) 8+ 3N
a. - 1
3 N3(2+N)
352+ 168N + 22N?
a.5 N = )
N3(2+N)(4+N)

N) 105984+ 15475 + 85056N2+ 2196N°3+ 2754N* + 135N°
a = .
! N7(2+N)3(4+N)(6+N)

For the coefficients which follow, it is typographically more convenient to &€N)=P,(N)/Q,(N) and to tabulate
separately the numerator polynomR|(N) and the denominator polynomi&l,(N),

Po(N)=12349440- 17871360 + 10010240I2+ 2751680+ 405776N* -+ 30876N°+ 954N 6,
Qo(N)=N°2+N)3(4+N)(6+N)(8+N),

P11(N)=124861808646 36456031846M + 467027804162+ 3453955891 20° + 163465120768+ 51937662978°
+11315941128°+ 16946833287+ 17141804818 +11171800°+ 42252010+ 7026\ 1Y,

Q1(N)=N¥(2+N)5(4+N)3(6+N)(8+ N)(10+N),

P13(N)=24917940633600 71794651299840+ 9109940063438+ 67066306363392%+ 318215000965112*
+10242128590848°+ 2295320471559% + 3617895637787 + 3992485651R8 + 3014946 46H°
+ 148081318110+ 424971 N1+ 538912,

Q13(N)=N¥2+N)5(4+N)3(6+N)(8+N)(10+N)(12+N),

P.s(N)=8676547211191910403616829986427633664+ 6891583739428601885 + 7957383254837821445
+6225913571872604160 + 34983346499120005N + 1460523056839888768 + 46256322359256678¢
+11252115482034995% + 2115425353168480¢ + 3076240360587 2040+ 344376491174400"*
+293392594145@0'2+ 1863409665438 3+ 85223778258 14+ 2644451 76BI'%+ 496791 1M+ 42500 N7,

Q1s(N)=N¥®2+N)"(4+N)3(6+N)3(8+ N)(10+ N)(12+N)(14+N),

P.AN)=394832226004852801536(18226598259687325433886- 38988021723789936033792
+51323869690127645147188+ 46583550742458833829988+ 30960681462370651865088
+15623251635335279411 200+ 6126114771192359944 1892+ 1895134340075627937783
+4670228089812312227R4+ 921861818644423516M3°+ 146036835964908257R8!
+18538630987151370R4?+ 187606064202660864>+ 14988669525495558 4+ 930810012214464*°
+43862323328864'%+ 1510537882599 '+ 357260754 7R 18+ 516586876119+ 34266 1M°,

Q1AN)=NY(2+N)"(4+N)5(6+N)3(8+ N)(10+ N)(12+ N)(14+ N)(16+N),

P1o(N)=3307683940770313163243520009214894928068294618382336005244352748560893054120099840
+8943585498141047607892377600- 10692857932684576404138885M0
+95337461125086677039222620(P6+ 6584053425730588600199806 %6
+3611602580377927390173593600- 1601207739146215800698830843
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+580892231405628018430836 Ke6+ 173958231237568098749120519+ 43263481821264025859260M6
+8970159797560936461959 168+ 15535633987901684283146@%+ 22478949742051157996339%
+27127717091438526734388+ 2720424198488158732288°+ 2253266792765734184867
+152765305959025853M4°+ 836884471109722496°+ 363715847042973MNF°+ 122123183160355¢*

+ 304415355645 M6°2+ 5282113357583+ 5666057 75R12*+ 2811336612,

Q1o(N)=N¥(24+N)%(4+N)5(6+N)3(8+ N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+N),

P,1(N)=12246932338796595327837143040003968135713996874968318607B60
+1902018774401482372925381148672 321283314300947562158600119964
+3807421545781558189263566143488 3367773291711700412520831385860
+2309856527527444083001140445M84 1260025811629511034804556005876
+556434796744868231529151594M86- 201462619317391517373909958556
+60352333626138484849753718RB4+ 15057212981368189621789261884
+3142458232040362531962355RI2+ 550072000489168244280950 "4
+80841983595825376237305956 + 9969253742422581036474368+ 1029177452713566097 747968
+88565456715317390606388 + 6311161666273241710582%+ 3688584807784925132R4°
+17443565419605911288°+ 65485192151001715F1+ 18987446839217536 2+ 408099174234848>
+6085840871688%*+ 5577306379R?°+ 2339665561°,

Q,1(N)=N?X2+N)°(4+N)3(6+N)3(8+N)3(10+N)(12+ N)(14+ N)(16+ N)(18+ N)(20+N).
In particular, forN=0 (the SAW mode), we have(in terms of the variablegd= 8/N)

G(0,8)=B+4B%+44B°+ 55287+ 804(0B°+ 127018+ 211232(B+ 364841 2%+ 648529398+ 1179040180B8*°

+218273957968%+ - - -
For N=1 (the spin-1/2 Ising modglwe have

G(1,8)=B+11/383+542/158°+ 123547/31B' + 14473442/283B°+ 11336607022/15592%5 '+ 605337636044/5528 53
+10976336338579019/6385128%5+ 3022947654230404442/108547188%5
+8582760723898537620322/1856156927625 15262009695163033631128084/194896477408625. - - .

For N=2 (the XY mode), we have

G(2,8)=1/2B+7/168%+97/968°+5103/204B’ + 459719/6144B°+ 218788559/884 73681+ 3579816967/412876 3>

+20154248931151/63417876480+ 4126827327908711/3424565329820
+2142771095208749011/456608710656818- 562665453010146198199/3013617490329@500 - - - .

For N=3 (the classical Heisenberg moglelve have

G(3,8) = 1/38+ 17/1353%+ 1054/850%° + 80909/63787B7 + 95738/60142B°+ 5992817408726/27152760009F
+11357358327572/34910691440688+ 156550175755271443/31157792110757§285
+190956190202826883834/237337400087308828125
+56535690823720347706912558/42645970734688086781685525
+358752594209204675460504716/160503926219644253887265625 - .
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APPENDIX B: THE NEAREST NEIGHBOR CORRELATION FUNCTION ON THE BCC LATTICE
The HT expansion coefficients of the nearest neighbor correlation function on the bcc lattice are

al(N)=N,

24+ 11N

BN= 2N

1776+ 1044\ + 152N

N) =
as(N) N5(2+N)(4+N)

1050624+ 1713024+ 1062432+ 3126003+ 4409N“ + 2395\ °
N7(2+N)3(4+N)(6+N) '

For the coefficients which follow, it is typographically more convenient tag@tl) = P,(N)/Q,(N) and to tabulate separately
the numerator polynomid?,(N) and the denominator polynomi@l,(N),

az(N)

Po(N)=237680646-391630080! + 251136960I1%+ 7999536M°+ 135724561% + 1175950 °+ 409046,
Qo(N)=N°2+N)3(4+N)(6+N)(8+N),
P,1(N)=4657615994880 14662439436288+ 20306810757129°+ 16297064577024°+ 8408736450048*

+2927305709568°+ 7019582997 7K %+ 11609860230M 7+ 130014820888+ 940546304°+ 396188961 °
+ 737110,

Q11(N)=NY(2+N)>(4+N)3(6+N)(8+N)(10+N),
P,3(N)=18043921760256005660420904714240+ 783836989312204% + 6320116029308928°

+32991742874173MNF + 117389987240601 + 2921019880949 7° + 51294669578698’
+632273769827128 4 534749498288° 4 29520640808 1°+ 95695744011+ 1379923N 12,

Q13(N)=N¥(2+N)3(4+N)3(6+N)(8+ N)(10+N)(12+N),

P1s(N)=12200251024836919296(43062014542747795486- 11067882722846268456M96
+13697593132981923348M8+ 11515236497997000867R4+ 6971535366342630113R8
+314532460294909476864+ 107981066371807617084+ 285588197990961930R4
+58543844261560627R0 -+ 930798833517987840°+ 114224602657806848 1+ 10696888031248800+
+749147616393328'°+ 37927213609168“+ 13091428536 2415+ 2753044411415+ 2657766987,

Q15(N)=N¥2+N)"(4+N)3(6+N)3(8+N)(10+ N)(12+ N)(14+N),

P.AN)=1078176657766748635791366311087820388289065517086 12134778449671899486093N2
+1708412111913181647156018%2+ 16608988472236389552881 064+ 118447197969244038302269M%
+6426005983019854016544 18+ 2714739161543420662382392+ 90681531544085023088640D
+24184590216195217639838%+ 51782172208072962975M#+ 8918298897939850518588"
+1233687735206166823484%+ 1363749549252646814M3°+ 119338058215876239B83*
+8142928683538222 R+ 423263516895627 205+ 16158543253677 16"+ 426366303807 1218
+ 6935653713389+ 52326899601%°,

Q1AN)=NY(2+N)"(4+N)>(6+N)3(8+ N)(10+N)(12+ N)(14+ N)(16+N),
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P1o(N)=175433838338452762972599091200078203808265217149807540305820
+3116173607652516436321480212M86 5633274990887456528054857236M80
+7147764845163022335548483174M06 6772123960394212475971911548858
+4976697709965417132847811002868 2909196906278057822968464015R60
+1376618167955575605597824876844 533877242182341657037822230658
+171186415133933732406244147R0B+ 45658929843087077741062520852
+10169112743416038967608705084+ 1894893729303875646595006484
+295461155711988902515834880+ 38487351224017884772339 NP+ 4173283404716049615550464
+374483776338165994216448 + 2756845301579765972588%+ 16444917855695701918%2°
+780984333732808885RB°+ 2878619676002249285+ 7924778502137900& %+ 15310126298406 N>
+184873944596322%+ 104841714958%°,

Q1o(N)=N¥(2+N)°(4+N)5(6+N)3(8+ N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+N),

P,1(N)=(12617550088803934881920801832960011820119738452952935689512550940
+2217488378116952516842355989413888 3990433665646539615566917678399488
+5043598010921343492445826797539282 476391994074929427793654705029 1200
+3493715661682982610876998803783686 2040596945264227996384033763229696
+96622336215362519480126933041 1826 37562930298199687105794089051 71804
+120996637012851297773150580768968- 325040728550728192742675707330%6
+7314027149319445947024024403868+ 138215756260098308085199527 986
+219565426180384061435124916RBA+ 29302944828757838601074274804
+3278043851101943224116459586+ 306114536101034343439527986
+2371214988780909773053236F+ 15098171819121222449802¢%+ 7801787001134944209228%
+3213483265751133834688'+ 1028164206573216237M3%+ 2458334158401005558°
+4125737396422063%*+ 432739125346999%°+ 2130772922818,

Q,1(N)=N?Y(2+N)°(4+N)5(6+N)3(8+N)3(10+N)(12+ N)(14+ N)(16+ N)(18+N)(20+ N).
In particular, forN=0 (the SAW mode), we have(in terms of the variablgd= 8/N)
G(0,8) = B+12B%+222B%+ 547237 + 15474(B°+ 473797 B+ 1529602233+ 51300996 78>+ 177095284098

+ 6253425298080 %+ 224879383796232% + - - - .

For N=1 (the spin-1/2 Ising modglwe have

G(1,8)=B+35/333+2972/158°+279011/6 B’ + 46439636/40B°+ 100877055128/31 1§85
+587703506650264/6081085°+ 10981652882712713/3648645
+1049923978894758374012/108547188Y5 1182698210781462071363672/37123138%525
+2980059927747623321534851312/278423539183%75. - - .

For N=2 (the XY mode), we have
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G(2,8)=1/2B+23/163%+ 559/963°+ 187645/6148" +11417419/61448° + 10934199853/884 733"
+1081218105839/123863088+ 4085878131871327/63417876480
+1683908448367350071/3424565329850- 753925204192677068291/1956894474248/50
+929152049503798552678997/30136174903296860- - - .

For N= 3 (the classical Heisenberg moglelve have

G(3,8)=1/3B+19/4533+ 2092/283B°+ 349939/21262B" + 2147444/505198°+ 108732988464808/9050920003 325

+9339742669288/258597714375+ 3541260093

2786885263/31157792110757®L25

+35816645375345371477924/96693014850385078125
+5880568448944900843943527784/4738441192743120753535625
+1137371495914136837811604445344/267506543699407089812838375 - .
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