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Universality, frustration, and conformal invariance in two-dimensional random Ising magnets
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We consider long, finite-width strips of Ising spins with randomly distributed couplings. Frustration is
introduced by allowing both ferromagnetic and antiferromagnetic interactions. Free energy and spin-spin
correlation functions are calculated by transfer-matrix methods. Numerical derivatives and finite-size scaling
concepts allow estimates of the usual critical expone#is «/v, andv to be obtained, whenever a second-
order transition is present. Low-temperature ordering persists for suitably small concentrations of frustrated
bonds, with a transition governed by pure-Ising exponents. Contrary to the unfrustrated case, subdominant
terms do not fit a simple, logarithmic-enhancement form. Our analysis also suggests a vertical critical line at
and below the Nishimori point. Approaching this point along either the temperature axis or the Nishimori line,
one finds nondiverging specific heats. A percolationlike rati@ is found upon analysis of the uniform
susceptibility at the Nishimori point. Our data are also consistent with frustration inducing a breakdown of the
relationship between correlation-length amplitude and critical exponents, predicted by conformal invariance for
pure systemd.S0163-182609)07533-3

[. INTRODUCTION ergy can be calculated exactly, and which roughly separates
the regions in the temperature-randomness parameter space
Frustration induced by quenched randomness may hawshere either ferromagnetic or spin-glass correlations domi-
rather complex effects on the behavior of spin systéifise  nate. Accordingly, the intersection of the NL with the para-
Edwards-Anderson modefor spin glasses is one on which a ferromagnetic boundary is of special significance, eved in
great deal of theoretical effort has been concentrated, mostly¥ 2 where no spin-glass phase is expected at nonzero tem-
on account of the basic simplicity of its formulation. In the perature T#0). It has been proposgtithat such an inter-
version that will be of direct interest to us, one has Isingsection, to be referred to ad\ashimori point(NP), coincides
spins interacting through couplings of the same strength andith the multicritical point expected to exist along the
random sign {=J Ising spin glass modglFor the symmetric  boundary. Very recently, the NP has been investigated in
case of equal concentrations ef and — signs, a two- =2 and 4 by series analysi$and ind=2 also by a variant
dimensional ¢=2) system with only first-neighbor interac- of the Chalker-CoddingtdA network model® Numerical
tions is paramagnetic at all temperatutésRecent results, values of critical exponents thus obtained are very close to
according to which addition of a suitable set of second-those of percolatiof in d=2 [though not ind=4 (Ref.
neighbor couplings would stabilize a low-temperature spin-14)].
glass phasehave been disputed on grounds that the order- On the other handd=2 unfrustrated random Ising sys-
ing thus observed is a finite-size efféct. tems, such as the random-boride., bonds beingJ or
However, forasymmetricdistributions of ferromagnetic rJ, 0<r<1), and the diluted model, have been the sub-
and antiferromagnetic bonds one can have long-range ord@ct of renewed interest over the past years, for two main
in d=2 with only first-neighbor interactionsee Ref. 7 for reasons. First, different scenarios regarding the universality
references to early woykon a square lattice, for suitably class of these systems have been propasedk universality
small concentrations of frustrated plaquettésxperimental  versuslogarithmic “corrections.” In the former, critical ex-
work on frustrated magnet&,Cu,Co,_,F,, X=K (Ref. ponents are distinct from those in the pure case, but their
8) or Rb(Ref. 9, has shown the existence of an ordered stateatios tov, the correlation length exponent, remain the same
in such conditions, though direct quantitative comparisoras in the pure cas&;in the latter, the pure-system power-law
with theoretical calculations for=J Ising systems is not critical behavior is reinforced by logarithmic divergenées.
straightforward becaud@d) ferromagnetidCu-Cy bonds are  Secondly, the applicability of conformal invariance to ran-
weaker than antiferromagneti€o-Co by a factor of~8 dom spin systems has not been put on grounds as firm as
and(2) the magnetism of Cu is Heisenberg-like with a smallthose for pure systen?S thus (for instance the correspond-
Ising anisotropy, which induces additional complicationsing relationship between critical exponents and correlation
such as transverse freezing. length amplitudes needs to be checked in each case.
Estimates of the location of, and properties along, the Thus, a systematic study of the asymmettid Ising
critical line of the +=J model have been producdd'! Fur-  model on a square lattice is of interest, not only in relation to
ther, since the pioneering work of Nishimbriasymmetric ~ specific quantitative questiorisuch as the shape of the criti-
Ising spin glasses have been shown to display quite uniqueal line and its intersection with the NFbut also in relation
features, in all space dimensionalities. Among these is théo the broader context of universality classes in disordered
so-calledNishimori line (NL) along which the internal en- systems, singling out the effects of frustration. With this in
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mind, here we will focus on the following main questiofig. 12— 71T+
To what extent, if any, do logarithmic corrections to pure- 13 F (a) E
system behavior describe criticality for small degrees of frus- 1 - ]
tration?(ii) Does the connection between critical exponents >~ 1.28 | 3
and correlation length amplitudes hold in the ca§gP Can & 1.26 '_/(f"’_’\ 3
we provide evidence fdor againsk the conjecturb“that the : 3
critical behavior at thel=2 Nishimori point is percolation- 1.24 ;‘/E/H\‘E' E
like? These issues are addressed through the calculation of 1.22 f+—+—+—f—+—+—+——+—+—+—F—+
free energies and spin-spin correlation functions on long, i (b) .
finite-width strips of a square lattice. The rate of decay of i 1.34 |- ]
correlation functions determines correlation lengths along  ~_ C ]
the strip. We have already shown how averaged values of &, 1.32 ‘\;—*—N
such quantities, and their numerically calculated field and 13 _/E’_E'_ﬂ\e_ E
temperature derivatives, enable one to extract critical prop- “F /‘/*_—x_\’“ :
erties of unfrustrated disordered mod&é? For the latter Y | AP ERR B R
class of systems in particular, we gave numerical evidence in 0 0.02 0.04 0.06
favor of the logarithmic corrections scenario; we also 1 /L2

showed that the relationship between critical exponents and
correlation length amplitudes, predicted by conformal FIG. 1. Size-scaled correlation length versus?l{L is the
invariance’® remains valid provided one uses averaged corstrip width) at different inverse temperature&=J,/kgT in the
relation length$l?® The validity of conformal invariance low frustration regime:(@ p=0.95 andK=0.535 (star$, 0.534
ideas for(unfrustrated disorderedg-state Potts models has (triangleg, 0.533 (crossel and 0.532(squarey (b) p=0.92 and
also been verified+2® K=0.637 (hexagony 0.636 (star3, 0.635 (triangle3, 0.634

This paper is organized as follows. In Sec. Il we outline(squares and 0.633(crosses Lines drawn through the points are
numerical aspects of our calculational procedures, as appliedtides to the eye. See Table | for corresponding estimatés; of
to the asymmetrictJ Ising model. Results for the phase .
boundary and critical behavior above the Nishimori line aresemble of 18-10 different estimates to yielooog). The
discussed in Sec. Ill, while the Nishimori point and the re-average correlation lengté (which carries a dependence
gion below it are discussed separately in Sec. IV. Our findon T, p and strip widthL), is in turn defined by
ings are then summarized in Sec. V. I

(ooor)~exp(—R/EY), (2

Il. CALCULATIONAL METHOD and is calculated from least-squares fits of straight lines to
We have used long strips of a square lattice, of width 4sem|log plots of the average correlation function as a func-

: . : . v
<L =14 sites with periodic boundary conditions across thetlon of distance, in the range HR=50. Finally, ¢ is itself

. . ' averaged over the different realizations of disordered bonds.
strip. Only even widths were used, in order to accommodat ; . .
. . . : n this context it must be recalled that, although in-sample
possibly occurring unfrustrated antiferromagnetic groun . . . : .
. ; : . luctuations of correlation functions do not die out as strip
states. We compute spin-spin correlation functions along th

“infinite” direction by transfer-matrix method®?8extract- fength is increased, averaged values ~ converge

. . satisfactorily?® as done befor& here we make use of this
ing averaged correlation lengths. By the same methods WE 1o calmfate error bars of related quantities.

numerically obtain the free energy and its second derivatives , .
X X i . : . In contrast with the unfrustrated disordered models con-
with respect tdi) a uniform external field, which are used in _. o199 . )
sidered earlief!?? here the exact critical temperature is not

connection with finite-size scaling-SS for estimatingy/v Kknown as a function op, so our first step was to use aver-

and'(u) temperature, again ysed with FSS concepts.fc.)r eStIé1ged correlation lengths together with FSS id&=§to ob-
mating a/v. In order to provide samples that are sufficiently

. . i .2 tain an approximate critical curv&;(p). This approach is
trepirce;”en;?g;]/e fé d('iggdr?éé;’vtiét?\lr;t;?tiégestr:;ifesr ndirix safe because the only underlying assumption is that a
ypically 9 . . pacings. second-order phase transition occurs, without further hypoth-

At each step, the respective vertical and horizontal bond

between first-neiahbor spinsandi were drawn from a prob- S¢S N its universality class. In the usual phenomenological
tween first-neig P J P renormalization recipe, used for pure systems, one looks for
ability distribution

the fixed pointT* of &Y(L,T*,p)/L=&ML",T*,p)/L’ (in
P(Jij)=pa(Jij—Jo) + (1~ p) 8(Jjj + o). (1) the case one would us€ = L—2)_. For di_sord_ered systems it
should be stressed that, even if logarithmic corrections are
For a square lattice the phase diagram inThep plane is  present in the bulk limit, théaverageyicorrelation length at
invariant with respect to the symmetps—1—p; thus we the critical point should still scale linearly with the strip
shall restrict ourselves to 0Bp<1, meaning that bulk an- width L, to leading ordef* Thus, here we produce estimates
tiferromagnetic order will play no part in what follows. of T.(p) by scanning a range of temperatures for fipednd
The direct calculation of correlation functioqergor),  bracketing the interval for whick®/L appears to approach a
goes according to Sec. 1.4 of Ref. 28, with the correspondingjnite value ad. —«. The width of such temperature interval
adaptations for an inhomogeneous systéror fixed dis- gives the respective error bar, as illustrated in Fig. 1. Two
tances up toR=50, and for strips with lengths as given remarks are in order in relation to this approach. First, this is
above, the correlation functions are averaged over an emore convenient here than the standard fixed-point search,
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since (1) intrinsic uncertainties associated to the individual TABLE I. Inverse critical temperatures for low frustration. The
£ are amplified when estimatinf* (L,L’) and(2) it isthe  pure-system value of/L is 4/m=1.272 . .., from conformal in-
extrapolation ad_,L’—o that matters in the end. As the variance.

range of available strip widths is not very broad, it is impor-

tant that, for givenT, the sequence of data from individual p Ke(p) lim _..¢/L

L’s has one more point, and also slightly smaller error bars, (5 gg 0.4555 0.0005 1.2750.015
than that of T*(L,L’). Second, with our procedure one al- 0.95 0.534-0.001 1,285 0015
ready gains an insight into corrections to scaling: by varying g, 0.6366-0.0015 13250015

the power of 1l against which&?Y/L is plotted, one can
check how better to produdénclined) straight lines within

scan. It must be stressed that the location and width of thgasg: significant differences arise only in the corrections to
bracketed range itself, separating ttégh-temperaturere-  scajing, which are relevant for extrapolation to the thermo-
gime in which one is certain tha™/L—0 and that(low-  gynamic limit3 In Refs. 10,11, the model considered here
temperaturgin which £*7L diverges, are practically insen- \as studied with the aid of typical correlation lengt
sitive to the choice of power. Indeed, though in Fig. 1 weg|so calculated on strip geometries, but disregarding correc-
plotted £&/L vs L2, inspired by results for pufand un-  tions to scaling; below, we will comment on some of the
frustrated randoft systems, we have also checked that us-ifferences between our results and theirs.

ing &L vsL™t, L/&vsL ™! orL 2 changes no sig-
nificant digits of our extrapolated estimates.

Once, for fixedp, one has an estimate @f.(p), the next
step is to calculate the critical free energy and its appropriate We start by applying the above-described procedure to
derivatives. This is done by evaluating the largest Lyapunoscale correlation lengths, fqr close to 1. Figure 1 displays
exponentA ? for strips of widthL and lengtiN>13%%2The  &/L vs 1L2 at different temperatures, f¢a) p=0.95 and(b)
average free energy per sitefig(T)= — (kg T/JoL)A?, in p=0.92. The corresponding estimates for the critical tem-
units of Jo. The initial susceptibility and specific heat of a peratures are shown in Table I, and compare rather well with

Ill. ABOVE THE NISHIMORI POINT

strip are then given by those of Refs. 10 and 11. Using exact and approximate data,
respectively ap=1 and 0.99, the reduced slope of the criti-
PE(T) FE(T) cal curve at the pure point is estimated to [dHT.(1)]
YU(T)= 7 . CuT)= 7 . (3) X(dT./dp)|p=1=3.25+0.11, which compares very well
ah* |, _, AL with the exact result, 3.2091.

We now turn to the correlation-length exponemnt,Since
whereh is an external field coupling to the order parameter;v does not appear explicitly in the expression §Y(T.)/L,
the size dependence of these quantities will be discussed bene resorts to the temperature derivative of the correlation
low. We shall takéh as uniform(ferromagnetic ord@rwhich  length, which can also be cast in a similar scaling form
is reasonable for low frustration; at the Nishimori point, this

choice implies singling out one of the two scaling directions gy 1 &)
(more on this below An extensive discussion of calcula- ML= gt =L 9(2), z= L’ 4)

tional details is given, for the specific heat, in Ref. 22. Here

we recall that, since the derivatives are numerically obtainedvith t=(T—T.)/T., andg is a finite-size scaling function.

by calculating, e.g., B (T.)—f (T.+6T)—f (T.—5T) Assuming a simple power-law divergenége~t~", i.e., ig-

with 86T=10 3T,, sample-to-sample fluctuations are noring, for the time being, less-divergent terms such as loga-

roughly as large as the difference between free energies gthmic corrections, we obtain the estimates for systems of

these three temperatures; thus one must ensuré¢hihaame  sizesL andL —2:

configurationof bonds(that is, the same sequence of pseu-

dorandom numbeysis used in the comparison of different 1 InCup/pi-2)1-7,

temperatures: free energies of the same bond geometry have V_L = In(L/L—2) -1 ®

to be subtracted. The probable errors for the free energy

differences are then much smaller than those for the freehere the derivatives are calculated numerically at the ex-

energies themselves. Similar procedures were used in taapolated(i.e., L—) value of T.. For fixedL andT.(p),

transfer-matrix study of interface energies in randomwe obtain one estimate @f for each disorder configuration;

systems? The same argument applies for the susceptibili-these estimates are then averaged over different disorder con-

ties, substitutingsh (typically of order 104 in units of J) figurations to yield the data shown in Fig. 2, for=6—14.

for &T. The trend displayed in Fig. 2 is dramatically different from
Finally, one should have in mind that the inversedfis, the one observed in the case of unfrustrated disdrdait

in principle, distinct from the difference between the two curves(for different values ofp) show a distinct downturn

leading Lyapunov exponents, which gives the decay of théasL increasel and a limiting valuev,,=1, common to all

most probable, otypical (as opposed to averagedorrela-  values ofp considered, becomes more likely.

tion function?1:232%3234\onetheless, fod=2 unfrustrated This should be contrasted with the case of unfrustrated

disordered Ising systems they have turned out to be numerdisorder, for which no downturn was observed, and the ex-

cally very closeé>?° at least at the critical poinfsee below trapolations indeed seemed to indicate a steady convergence
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1/L2 FIG. 3. Fits of Eq.(7) to determiney, for p=0.95 (triangles

and 0.92(squarek Error bars are smaller than data points.
FIG. 2. Size dependence of_ as given by Eq.(5), for p . . . .
=0.99 (triangles, 0.95(crossel and 0.92(squares Error bars are  an attempt to fit our data to these Iogaﬂthmlc corrections
smaller than data points. would require an unlikely variation fromy=0.75 for p

=0.95 to =100 for p=0.92. Attempts to fit the data to
towards a disorder dependent exponertr(p)=rv,e=1;  other forms, such as powers oflinturned out to be equally
cf., Ref. 21. In that case, available theotfgsointed towards unsuccessful. The conclusion is that logarithmic enhance-
describing those apparent exponents as resulting froments play no role in the bulk correlation length for frus-
power-law divergences with pure-system exponents, enrated disordefat least in a simple, clearly defined way as in
hanced by multiplicative logarithmic terms; such expecta-the unfrustrated case
tions were later confirmed through transfer matrix calcula-  Turning now to the specific heat behavior, we recall that
tions on stripg#* Though in the present case the downturnin the Dotsenko-Shalaev theory, the singular part of the bulk

in the trend may be taken as indicative that these correctionspecific heat per particle for the disordered Ising model, near
are absent, considerable insight should be gained by trying the critical point, is given by

fit the data along similar lines.

The forms of logarithmic corrections in random systems C.(t)=(1/Cp)In[1+ CyIn(1h)], (8)
have been derived within a field-theoretic approstwhich
does not explicitly account for frustration effects. Nonethe-whereCy is proportional to the strength of disorder, and the
less, inspired by our experience with unfrustrated disorderpure-system simple logarithmic divergence is recovered as
we decided to check whether in the present case such cogo—0. ForCy#0 andt<1 a double-logarithmic singularity
rections also arise. The thedfywhich successfully accounts arises, whose amplitude E(B) predicts to decrease as dis-
for unfrustrated disorder predicts that the correlation lengtiorder increases. For a finite system, the usual FSS theory
of the disordered Ising model, near the critical point, is givenapplied to this case yield

by
C(t=0)=C;+aln(1+blnL), )

f-~t L+ CIn(A ], © where, similarly to Eq(8), b— 0 for vanishing disorder. We
for the infinite system, wherey=1, C is a disorder- tried to check whether such forms had any relevance in the
dependent positive constant, ane-1/2; for C=0 one re- present case. Our results are displayed in Fig. 4, and a trend
covers pure-system behavior. As discussed in Ref. 21, logssimilar to unfrustrated randomness is observed: for low dis-
rithmic corrections do not show up in the correlation lengthorder, the specific heat increases with system size faster than
for finite systems, but in its temperature derivatives; at criti-in a double-logarithmic fashiofe.g., with InL); as disorder
cality, i.e.,t(p)=0, Eq.(4) becomes increases [§=0.92), the best fit of the data crosses over to
double-logarithmic behavior. Though this may be interpreted
as signalling the existence of logarithmic corrections, such a
discussion is rather subtfé At any rate, an inequivocal con-

. . L clusion to be drawn from our data is that the specific heat
whereA is some disorder-dependent constant. While in thediverges asL—o. Accordingly, this enables us to set

Dotsenko-Shalaev theol§),» was predicted to be 1/2, here >0 in the hyperscaling relatiodv=2—a, to obtain the
we allow it to be determined from an analysis of the data: itcondition »<1. This condition, together with the absence of
is chosen in such a way that, for fixpddata for] g /L%]Y" logarithmic corrections fog, and the downturn in the se-

versus IrL lie on a straight line, for the largest system sizes.quence of estimates far, lead to a scenario af(p)=1, as
Figure 3 shows our results f@r=0.95 and 0.92: we see that in the pure case.

%~(l—AInL)7’, 7)
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FIG. 4. Specific heat as a function of Inllnfor p=0.95 (tri-

angle$ and 0.92(squares Error bars are smaller than data points.

In order to build up a fuller picture of the low-frustration

regime, we turned to an alternate quantity, the susceptibilit

The ratioy/v can be obtained in the usual way,

In[x./xL-
(y) B [xc/xi-2lr, 20
L

v| — In[L/L—2] °

extrapolation of data calculated di(£2Y), and not with
those coming fronT(£YP). We take this to mean that)
from susceptibility, specific-heat, and correlation-length data
the most likely self-consistent picture is one in which the
critical behavior is pure-Ising for low frustratiofij) though
very likely £ and£YP will eventually scale in a similar way,
higher-order corrections still produce sizeable distortions in
the accessible range of strip widths, dnd further, it seems
that, for not very large widthst?” behaves more reliably.

The above analysis, together with the scaling law 2
—(y/v), predicts that, for low disorder, the exponent de-
scribing the decay of correlations at criticality sticks to the
pure system valuep=3%. Thus, if the exponent-amplitude
relationship of conformal invariance remains valid in the
case of frustrated disorder, we should have
lim & [T(p)l/L=1m7n=1.273 ... . Weobtain an esti-
mate of lim _,..&, [ T¢(p)]/L by observing the trend followed
by the sequences of points calculated Kgi(p) and at
K¢(p)*=0.001, to determine the central estimate and its error
bars(see Fig. ]; the outcome is shown in the last column of
Table I. In spite of the arbitrariness of this approach, the
error bars thus obtained are certainly overestimated. None-
theless, even with such generous allowances, the data for
Y= 0.92 show that the conformal invariance prediction is defi-

nitely not satisfied, since it lies way outside the range of the
error bars. As the critical behavior should be the same along
the critical line(at least within the low disorder regipnwe

are led to conclude that, unlike the case of unfrustrated dis-
order, the exponent-amplitude relationship of conformal in-

where T, is understood to be the extrapolated value. Wevariance breaks down in the case of frustrated disorder.
checked for self-consistency of critical-point locations and At p=0.89, the transition vanishes abruptly, meaning that
properties in the following way. First, the procedure we usedve do not find any temperature at which correlation lengths

above to obtairl.(p) from extrapolations of{" can be re-
peated foréYP; this yields a slightly different extrapolated
value T.(&YP). For p=0.95, for instance, one ha&,(£YP)
=0.531+0.001, while K (£®)=0.534-0.001. The se-
guence of susceptibilities calculated at these estimat&s of
gives rise, through Eq10), to the data shown in Fig. 5. One
clearly sees that the Ising valyév=7/4 is compatible with

1.8
—
> 1.75
> - ; ]

1.65 | I | | 11 1 | | 11 1 |
0 0.01 0.02 0.03

1 /12

FIG. 5. Ratio of critical exponentg/ v as a function of 1/2, for
p=0.95, from Eq.(10), calculated afT, determined through the
scaling of £ (crossesand of €¥P (squares

scale linearly with strip width. In Ref. 10, it is found that the
typical correlation lengthg®P still scale linearly withL at
suitably lowT for a broader range gf variation, along a line
that significantly departs from the vertical opaTl diagram;
however, they find a maximum ig®” as a function of tem-
perature for finite values of. This unexpected behavior has
indeed been observed in studies &P for (unfrustrateg
disordered and random-field Ising systethblo similar peak
structure occurs when we investigadé@erage correlation
lengths; instead, these vary monotonically and diverge only
as T—0, consistent with the fact that a strip is essentially
one dimensional. Though the authors of Ref. 10 acknowl-
edge that such maxima at finifle are unphysical, they as-
sume that their data still are reliable above the peak tempera-
tures, and interpret the corresponding part of their low-
temperature results as marking the boundary between a
random-antiphase state and the paramagnetic regime, extend-
ing as far ap=0.8. We have not found any evidence for this
phase from our treatment. Strictly speaking, this means only
that the expected signature of the corresponding second-
order phase transition does not show up when averaged cor-
relation lengths are considered. At present we are unaware of
why it should be so, and whether it means that the random-
antiphase state is not present at all.

IV. AT AND BELOW THE NISHIMORI POINT
The Nishimori line is given b¥f

exp(2dy/T)=p/(1—p), (11
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FIG. 6. Size-scaled averaged correlation length versug 1/
along the Nishimori line:p=0.892 (up triangle$, 0.891 (dia-
mondg, 0.890(starg, and 0.889(down triangles For eachp, the
corresponding temperature is given by E@l). Error bars are
smaller than data points.

0.02 0.04 0.06
1/12

FIG. 7. Size-scaled averaged correlation length versiu$ lg-
low the Nishimori line:p=0.892 (up triangle$ and 0.889(down
triangles at T=0.4. Error bars are smaller than, or of similar size
to, data points.

i ) . ) . diverge ad —x, indicating that the T,p) point lies within
and our first task is to determine its intersect with the criticaly,g ferromagnetic region; the one correspondingptopy
curve, which is done as follows. For ea€hwe extracyia  seems to vanish ds—c, indicating that the corresponding
from Eq. (11), and calculat€™(pyia); this procedure is re- (T 1y point lies outside the ordered phase. Given that both
peated for different system sizes, so that a sequence of esfjz| es ofp are very close tgqy, we interpret this as an

mates,£, /L, is produced. Figure 6 shows our data thus Ob‘l_ndication of absence of reentrant behavior, and that the criti-
tained, and two different trends can be clearly observedeg| |ine T.(p) is vertical at and below the Nishimori point.

curves forp=0.892 and 0.891 display an upward curvature,Thjs js consistent with theoretical consideratiri€ and
whereas those fop=0.890 and 0.889 are bent downwards. yjth extensive numerical wotR!138 specifically aimed at
Assuming a monotonic behavideas L—) of £/L, any  the two-dimensionat J Ising model. As a result, we assume
curve outside the interv4D.8900, 0.891pwill certainly not  {hat the scaling directions at the NP are, respectively, tangent
stabilize to a constant \_/alue for IgrgerOur central estimate o the critical curvethus, purely temperaturelikand along
for the NP is therefore just the midpoint along the confidencgne Nishimori lingt31416
interval (or, one might say, along the complementary of the |y order to discuss critical exponents, we note that the
nonconfidence domajn numerical evaluation of temperature derivatives in E).
implies that6T=<0.001 at the NP; since this is of the same
Pn=0.8905£0.0005, Ty=0.954:0.002,  (12) ;4o 45 the estimated error barsTiy, we shall sit at our
where Ty, follows from Eq.(11). Our estimate for the loca- Own central estimates, E€L2), and measure the correspond-
tion of the NP should be compared with those coming froming éT from there. While for scaling along the tangéne.,
series work on the NE? giving py=0.886+0.003, Ty pure temperaturelikeaxis, the considerations on the need to
—0.975* 0.006; zero-temperature calculations, together withsubtract free energies of the same bond georffeang iden-
a no-reentrance assumption, givimg,=0.896+0.001 or tical to those quoted above, a subtlety arises when consider-
pn=0.894+0.002 (depending on details of the )it® exact ~ing variations along the Nishimori line, where a temperature
combinatorial worR® py=0.885 [error bar presumably change implies a change as well. From Eq(11), one has
~0.005 (our estimatg]; and Monte Carlo analysis of non- (dp/dT), 7, =0.21. For the free energy calculation on what
equilibrium relaxatiorf® py=0.8872+0.0008. is supposed to be a given sample, the use of the same pseu-
Once the Nishimori point has been accurately determinedjorandom number sequence fband T+ 6T with the typi-
we can check the region below for reentrant behavior. Evical 6T=0.007 (to be explained belojymeans that roughly
dence has been presented very recelffty Potts spin- 14 bonds in 10000 will reverse sign. We have assumed that
glasses on hierarchical lattigethat there appears to be no this is the meaning of “using the same sample” along the
fundamental reason why reentrances should be ruled out iNishimori line. While in principle the bond reversals tend to
thermodynamic systentS,thus this is a matter worthy of increase in-sample fluctuations, results are manageable
consideration. We examine the size dependencé™ofit a  beit with relative error bars- three orders of magnitude
temperatureT=0.4<T\/2 and at concentrations slightly larger than those for derivatives along the puirdirection,
away frompy, p=0.889, and 0.892; the results are dis- no doubt owing partly talp/d T being small at the Nishimori
played in Fig. 7. The curve correspondingpo- py seems to  point. We used a relatively larg&T, compared with scaling
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0.2 —r1 T T T TABLE II. Second derivatives of free energy at the NP, for strip
- - widths L=4—-14. T: along the temperature axis; NL: along the
Nisihmori line (see text Uncertainties in last digits are given in
parenthesis.
L T NL
4 0.192188%7) 1.55838)
6 0.18485410) 1.70444)
8 0.18182413) 1.77239)
10 0.18024%7) 1.84630)
12 0.1792885) 1.84667)
i ] 14 0.17866720) 1.85973)
0'17IIIIIIIII|III

|
0 0.05 0.1 0.15 with (y/v),=43/24=1.7917- - of percolation. Series wotk
LO(/U gives y=2.37+0.05 andv=1.32+0.08, which yieldy/v
=1.80+0.09.
FIG. 8. Size dependence of the specific heat at the Nishimori F1nally, correlation lengths obtained from the decay of
point, resulting from the best fit of/v=—1.5 in Eq.(13). The  SPIN-Spin correlationéwvhich therefore couple to a ferromag-

intersect with the vertical axis is at a finite value, 0.1762. Error bard1€tic order parametergive an extrapolation of*/L to
are smaller than data points_ 1.75+0.05 at the NF(SEG F|g 6, rather different from the

percolation (JT‘I]p)_l: 1.5279-- . From experience for low
frustration, as described above, we interpret this as signalling

along the pureF axis, because of the need to compromisea breakdown of the exponent-amplitude relationship, rather

betweerfluctuationscoming from the in-sample analysis de- than indicating that the transition is not in the percolation
scribed above, and the corresponding actaailationsof the universality class.
free energy, used to approximate the derivative.
We have tentatively interpreted the derivatives along the
NL as specific-heat—like. Accordingly, we have applied FSS V. CONCLUSIONS
to the finite-size specific heats along both scaling directions

in order to find estimates ob(v); in both cases the specific square lattice, by means of transfer matrix calculations of

heat clearly does not diverge ds—. Tangent to the L - . . .
. , several quantities on long, finite-width strips. First, use has
boundary line we have found that attempts to fit our data t . . ;
een made of a configurationallpveraged correlation

We have studied the asymmetricJ Ising model on a

the form length, which is distinct from théypical (or most probable
correlation length, used in previous transfer matrix studies of
C_=C,+aL(®"ia, (13)  the same model. We have shown that an intrinsically self-
consistent picture can be obtained by the use of the former
yield a much smalleffour orders of magnitudechi square 1.9

for (a/v)yi= — 1.5 than for @/v),=— 1.1 (the latter is ex- B

tracted fromv=2.2 of Ref. 16 plus the hyperscaling relation B ]
dv=2—a). Figure 8 shows that our data fit neatly into a = -
single-power form, i.e., corrections to scaling seem of little —
relevance in the case. Along the Nishimori line our datado “_ > 1.85
not give a satisfactory behavior of the chi square for any ~
sensible fitting to Eq(13): varying a/v between—2 and

—0.5 does not change the chi square significantly, and this A
persists even when corrections to scaling are accounted for. «__ 1.8
Thus we are not in a position to compare these data to the :
percolation valu¥ (a/v),=—1/2. In Table Il we display

our raw data, so readers can reproduce the analysis quoted

above, and try alternative procedures of their own devising. B

We have thus turned to calculating the uniform suscepti- tys b Lo Lo L
bility; as it couples to a ferromagnetic order parameter, the 0 0.01 0.02 0.03
corresponding value ofy/v is related to criticality upon
crossing of the ferro-paramagnetic boundérg., along the ]_ / LZ
Nishimori ling). In Fig. 9 we show {/v), , calculated from
Eqg. (10), with T.=Ty, as a function of 1/2. The extrapo- FIG. 9. Ratio of critical exponents/ v, as a function of 1/2, at

lated value 1.86:0.02 (where the estimated error bars are the Nishimori point, from Eq(10). The arrow points to the perco-
subjective, but certainly conservatjveompares favorably lation value(see text



PRB 60 UNIVERSALITY, FRUSTRATION, AND CONFORMA. . .. 6747

quantity, while(at least for the strip widths within reacht also the most accurate to date. Approaching this Nishimori
seems that higher-order corrections to scaling may distogpoint either along a temperaturelike direction or along the
analyses based on the latter. Points on the critical curvBlL, one finds nondiverging specific heats; while for the
T.(p) were then obtained as those for whi¢f/L ap- former we were able to extract(v)=— 1.5, for the latter
proached a finite value ds—«; to the best of our knowl- we could not find reliable fits. However, analysis of the uni-
edge, the estimates fdr, at p=0.99, 0.95, and 0.92 thus form susceptibility, which probes the phase transition along
obtained are the most accurate to date. Secondly, the critictthe Nishimori line, showed percolationlike behavior, in the
behavior along the critical line has been discussed throughense thay/v is very close to the percolation value. Confor-
the analysis ofi¢2V/d T, as well as in terms of other quanti- mal invariance is also absent at the Nishimori point. Further
ties, such as the specific heat and the zero-field susceptibilityork is clearly necessary in order to fully elucidate all the
The following picture emerged from our analysis. Above subtleties related to the multicritical behavior at the Nishi-
the Nishimori line, the correlation length and the susceptibil-mori point. Finally, we found no signature of a reentrance in
ity appear to diverge with power laws, with the same expothe phase diagram below the Nishimori point; instead, the
nents as in the pure casess 1 andy=7/4; logarithmic cor-  critical curve below this point seems to be parallel to the
rections(i.e., enhancementslo not seem to play a role in the temperature direction.
behavior of these quantities. We were also able to establish
that the specific heat diverges, though at most logarithmi-
cally. Further, the exponent-amplitude relationship of con-
formal invariance breaks down as a result of frustration. We thank Laboratdo Nacional de Comput@o Cientr
These results are in marked contrast with the case of unfrugica (LNCC) for use of their computational facilities, and
trated disorder, for which logarithmic enhancements werdBrazilian agencies CNPq and FINEP, for financial support.
needed in order to explain an apparent disorder dependen&.AdQ thanks the Department of Theoretical Physics at Ox-
on estimates fow, and the conformal invariance prediction ford, where part of this work was done, for the hospitality,
applies. and the cooperation agreement between CNPq and the Royal
The intersection of the Nishimori lingNL) with the criti-  Society for funding his visit. Special thanks are due to R. B.
cal curve Ty ,pn) has been determined, near which the criti- Stinchcombe for invaluable discussions, and to D. Stauffer
cal behavior was analyzed; our estimates fog (py) are  for useful suggestions.
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