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Universality, frustration, and conformal invariance in two-dimensional random Ising magnets

F. D. A. Aarão Reis, S. L. A. de Queiroz,* and Raimundo R. dos Santos*
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~Received 30 November 1998!

We consider long, finite-width strips of Ising spins with randomly distributed couplings. Frustration is
introduced by allowing both ferromagnetic and antiferromagnetic interactions. Free energy and spin-spin
correlation functions are calculated by transfer-matrix methods. Numerical derivatives and finite-size scaling
concepts allow estimates of the usual critical exponentsg/n, a/n, andn to be obtained, whenever a second-
order transition is present. Low-temperature ordering persists for suitably small concentrations of frustrated
bonds, with a transition governed by pure-Ising exponents. Contrary to the unfrustrated case, subdominant
terms do not fit a simple, logarithmic-enhancement form. Our analysis also suggests a vertical critical line at
and below the Nishimori point. Approaching this point along either the temperature axis or the Nishimori line,
one finds nondiverging specific heats. A percolationlike ratiog/n is found upon analysis of the uniform
susceptibility at the Nishimori point. Our data are also consistent with frustration inducing a breakdown of the
relationship between correlation-length amplitude and critical exponents, predicted by conformal invariance for
pure systems.@S0163-1829~99!07533-5#
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I. INTRODUCTION

Frustration induced by quenched randomness may h
rather complex effects on the behavior of spin systems.1 The
Edwards-Anderson model2 for spin glasses is one on which
great deal of theoretical effort has been concentrated, mo
on account of the basic simplicity of its formulation. In th
version that will be of direct interest to us, one has Isi
spins interacting through couplings of the same strength
random sign (6J Ising spin glass model!. For the symmetric
case of equal concentrations of1 and 2 signs, a two-
dimensional (d52) system with only first-neighbor interac
tions is paramagnetic at all temperatures.3,4 Recent results,
according to which addition of a suitable set of secon
neighbor couplings would stabilize a low-temperature sp
glass phase,5 have been disputed on grounds that the ord
ing thus observed is a finite-size effect.6

However, for asymmetricdistributions of ferromagnetic
and antiferromagnetic bonds one can have long-range o
in d52 with only first-neighbor interactions~see Ref. 7 for
references to early work! on a square lattice, for suitabl
small concentrations of frustrated plaquettes.7 Experimental
work on frustrated magnetsX2CuxCo12xF4, X5K ~Ref.
8! or Rb~Ref. 9!, has shown the existence of an ordered st
in such conditions, though direct quantitative comparis
with theoretical calculations for6J Ising systems is no
straightforward because~1! ferromagnetic~Cu-Cu! bonds are
weaker than antiferromagnetic~Co-Co! by a factor of;8
and~2! the magnetism of Cu is Heisenberg-like with a sm
Ising anisotropy, which induces additional complicatio
such as transverse freezing.

Estimates of the location of, and properties along,
critical line of the6J model have been produced.10,11 Fur-
ther, since the pioneering work of Nishimori12 asymmetric
Ising spin glasses have been shown to display quite un
features, in all space dimensionalities. Among these is
so-calledNishimori line ~NL! along which the internal en
PRB 600163-1829/99/60~9!/6740~9!/$15.00
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ergy can be calculated exactly, and which roughly separ
the regions in the temperature-randomness parameter s
where either ferromagnetic or spin-glass correlations do
nate. Accordingly, the intersection of the NL with the par
ferromagnetic boundary is of special significance, even id
52 where no spin-glass phase is expected at nonzero
perature (TÞ0). It has been proposed13 that such an inter-
section, to be referred to as aNishimori point~NP!, coincides
with the multicritical point expected to exist along th
boundary. Very recently, the NP has been investigated id
52 and 4 by series analysis,14 and ind52 also by a variant
of the Chalker-Coddington15 network model.16 Numerical
values of critical exponents thus obtained are very close
those of percolation17 in d52 @though not ind54 ~Ref.
14!#.

On the other hand,d52 unfrustrated random Ising sys
tems, such as the random-bond~i.e., bonds beingJ or
rJ, 0,r ,1), and the diluted model, have been the su
ject of renewed interest over the past years, for two m
reasons. First, different scenarios regarding the universa
class of these systems have been proposed:weak universality
versuslogarithmic ‘‘corrections.’’ In the former, critical ex-
ponents are distinct from those in the pure case, but t
ratios ton, the correlation length exponent, remain the sa
as in the pure case;18 in the latter, the pure-system power-la
critical behavior is reinforced by logarithmic divergences19

Secondly, the applicability of conformal invariance to ra
dom spin systems has not been put on grounds as firm
those for pure systems,20 thus ~for instance! the correspond-
ing relationship between critical exponents and correlat
length amplitudes needs to be checked in each case.

Thus, a systematic study of the asymmetric6J Ising
model on a square lattice is of interest, not only in relation
specific quantitative questions~such as the shape of the crit
cal line and its intersection with the NP!, but also in relation
to the broader context of universality classes in disorde
systems, singling out the effects of frustration. With this
6740 ©1999 The American Physical Society
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mind, here we will focus on the following main questions.~i!
To what extent, if any, do logarithmic corrections to pur
system behavior describe criticality for small degrees of fr
tration?~ii ! Does the connection between critical expone
and correlation length amplitudes hold in the case?~iii ! Can
we provide evidence for~or against! the conjecture14 that the
critical behavior at thed52 Nishimori point is percolation-
like? These issues are addressed through the calculatio
free energies and spin-spin correlation functions on lo
finite-width strips of a square lattice. The rate of decay
correlation functions determines correlation lengths alo
the strip. We have already shown how averaged value
such quantities, and their numerically calculated field a
temperature derivatives, enable one to extract critical pr
erties of unfrustrated disordered models.21,22 For the latter
class of systems in particular, we gave numerical evidenc
favor of the logarithmic corrections scenario; we al
showed that the relationship between critical exponents
correlation length amplitudes, predicted by conform
invariance,20 remains valid provided one uses averaged c
relation lengths.21,23 The validity of conformal invariance
ideas for~unfrustrated! disorderedq-state Potts models ha
also been verified.24,25

This paper is organized as follows. In Sec. II we outli
numerical aspects of our calculational procedures, as app
to the asymmetric6J Ising model. Results for the phas
boundary and critical behavior above the Nishimori line a
discussed in Sec. III, while the Nishimori point and the
gion below it are discussed separately in Sec. IV. Our fi
ings are then summarized in Sec. V.

II. CALCULATIONAL METHOD

We have used long strips of a square lattice, of width
<L<14 sites with periodic boundary conditions across
strip. Only even widths were used, in order to accommod
possibly occurring unfrustrated antiferromagnetic grou
states. We compute spin-spin correlation functions along
‘‘infinite’’ direction by transfer-matrix methods,26–28extract-
ing averaged correlation lengths. By the same methods
numerically obtain the free energy and its second derivat
with respect to~i! a uniform external field, which are used
connection with finite-size scaling~FSS! for estimatingg/n
and ~ii ! temperature, again used with FSS concepts for e
matinga/n. In order to provide samples that are sufficien
representative of disorder, we iterated the transfer matr28

typically along 107 (108 near the NP! lattice spacings.
At each step, the respective vertical and horizontal bo

between first-neighbor spinsi andj were drawn from a prob-
ability distribution

P~Ji j !5pd~Ji j 2J0!1~12p!d~Ji j 1J0!. ~1!

For a square lattice the phase diagram in theT2p plane is
invariant with respect to the symmetryp↔12p; thus we
shall restrict ourselves to 0.5,p<1, meaning that bulk an
tiferromagnetic order will play no part in what follows.

The direct calculation of correlation functions^s0sR&,
goes according to Sec. 1.4 of Ref. 28, with the correspond
adaptations for an inhomogeneous system.23 For fixed dis-
tances up toR550, and for strips with lengths as give
above, the correlation functions are averaged over an
-
-
s

of
,

f
g
of
d
p-

in

d
l
r-

ed

e
-
-

e
te
d
e

e
s

ti-

s

g

n-

semble of 105–106 different estimates to yield̂s0sR&. The
average correlation lengthjav ~which carries a dependenc
on T, p and strip widthL), is in turn defined by

^s0sR&;exp~2R/jav!, ~2!

and is calculated from least-squares fits of straight lines
semilog plots of the average correlation function as a fu
tion of distance, in the range 10<R<50. Finally,jav is itself
averaged over the different realizations of disordered bon
In this context it must be recalled that, although in-sam
fluctuations of correlation functions do not die out as st
length is increased, averaged values conve
satisfactorily;29 as done before,21 here we make use of thi
fact to calculate error bars of related quantities.

In contrast with the unfrustrated disordered models c
sidered earlier,21,22 here the exact critical temperature is n
known as a function ofp, so our first step was to use ave
aged correlation lengths together with FSS ideas26–28 to ob-
tain an approximate critical curveTc(p). This approach is
safe because the only underlying assumption is tha
second-order phase transition occurs, without further hypo
eses on its universality class. In the usual phenomenolog
renormalization recipe, used for pure systems, one looks
the fixed pointT* of jav(L,T* ,p)/L5jav(L8,T* ,p)/L8 ~in
the case one would useL85L22). For disordered systems
should be stressed that, even if logarithmic corrections
present in the bulk limit, the~averaged! correlation length at
the critical point should still scale linearly with the stri
width L, to leading order.21 Thus, here we produce estimate
of Tc(p) by scanning a range of temperatures for fixedp, and
bracketing the interval for whichjav/L appears to approach
finite value asL˜`. The width of such temperature interva
gives the respective error bar, as illustrated in Fig. 1. T
remarks are in order in relation to this approach. First, thi
more convenient here than the standard fixed-point sea

FIG. 1. Size-scaled correlation length versus 1/L2 (L is the
strip width! at different inverse temperatures,K[J0 /kBT in the
low frustration regime:~a! p50.95 andK50.535 ~stars!, 0.534
~triangles!, 0.533 ~crosses!, and 0.532~squares!; ~b! p50.92 and
K50.637 ~hexagons!, 0.636 ~stars!, 0.635 ~triangles!, 0.634
~squares!, and 0.633~crosses!. Lines drawn through the points ar
guides to the eye. See Table I for corresponding estimates ofKc .
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since ~1! intrinsic uncertainties associated to the individu
jav are amplified when estimatingT* (L,L8) and~2! it is the
extrapolation asL,L8˜` that matters in the end. As th
range of available strip widths is not very broad, it is impo
tant that, for givenT, the sequence of data from individu
L ’s has one more point, and also slightly smaller error ba
than that ofT* (L,L8). Second, with our procedure one a
ready gains an insight into corrections to scaling: by vary
the power of 1/L against whichjav/L is plotted, one can
check how better to produce~inclined! straight lines within
the bracketed temperature range singled out by the in
scan. It must be stressed that the location and width of
bracketed range itself, separating the~high-temperature! re-
gime in which one is certain thatjav/L˜0 and that~low-
temperature! in which jav/L diverges, are practically insen
sitive to the choice of power. Indeed, though in Fig. 1 w
plottedjav/L vs L22, inspired by results for pure30 and un-
frustrated random23 systems, we have also checked that
ing jav/L vs L21, L/jav vs L21 or L22, changes no sig-
nificant digits of our extrapolated estimates.

Once, for fixedp, one has an estimate ofTc(p), the next
step is to calculate the critical free energy and its appropr
derivatives. This is done by evaluating the largest Lyapun
exponentLL

0 for strips of widthL and lengthN@1.31,32 The
average free energy per site isf L

av(T)52(kBT/J0L)LL
0 , in

units of J0. The initial susceptibility and specific heat of
strip are then given by

xL~T!5
]2f L

av~T!

]h2 U
h50

, CL~T!5
]2f L

av~T!

]T2 U
h50

, ~3!

whereh is an external field coupling to the order paramet
the size dependence of these quantities will be discussed
low. We shall takeh as uniform~ferromagnetic order!, which
is reasonable for low frustration; at the Nishimori point, th
choice implies singling out one of the two scaling directio
~more on this below!. An extensive discussion of calcula
tional details is given, for the specific heat, in Ref. 22. He
we recall that, since the derivatives are numerically obtai
by calculating, e.g., 2f L(Tc)2 f L(Tc1dT)2 f L(Tc2dT)
with dT51023Tc , sample-to-sample fluctuations a
roughly as large as the difference between free energie
these three temperatures; thus one must ensure thatthe same
configurationof bonds~that is, the same sequence of pse
dorandom numbers! is used in the comparison of differen
temperatures: free energies of the same bond geometry
to be subtracted. The probable errors for the free ene
differences are then much smaller than those for the
energies themselves. Similar procedures were used
transfer-matrix study of interface energies in rando
systems.33 The same argument applies for the susceptib
ties, substitutingdh ~typically of order 1024 in units of J)
for dT.

Finally, one should have in mind that the inverse ofjav is,
in principle, distinct from the difference between the tw
leading Lyapunov exponents, which gives the decay of
most probable, ortypical ~as opposed to averaged! correla-
tion function.21,23,29,32,34Nonetheless, ford52 unfrustrated
disordered Ising systems they have turned out to be num
cally very close,23,29 at least at the critical point~see below
l
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for remarks on low-temperature behavior in the pres
case!; significant differences arise only in the corrections
scaling, which are relevant for extrapolation to the therm
dynamic limit.34 In Refs. 10,11, the model considered he
was studied with the aid of typical correlation lengthsj typ

also calculated on strip geometries, but disregarding cor
tions to scaling; below, we will comment on some of th
differences between our results and theirs.

III. ABOVE THE NISHIMORI POINT

We start by applying the above-described procedure
scale correlation lengths, forp close to 1. Figure 1 displays
j/L vs 1/L2 at different temperatures, for~a! p50.95 and~b!
p50.92. The corresponding estimates for the critical te
peratures are shown in Table I, and compare rather well w
those of Refs. 10 and 11. Using exact and approximate d
respectively atp51 and 0.99, the reduced slope of the cri
cal curve at the pure point is estimated to be@1/Tc(1)#
3(dTc /dp)up5153.2560.11, which compares very wel
with the exact result, 3.2091.7

We now turn to the correlation-length exponent,n. Since
n does not appear explicitly in the expression forjL

av(Tc)/L,
one resorts to the temperature derivative of the correla
length, which can also be cast in a similar scaling form21

mL[
djL

av

dt
5L111/nG~z!, z[

j`~ t !

L
, ~4!

with t[(T2Tc)/Tc , andG is a finite-size scaling function
Assuming a simple power-law divergencej`;t2n, i.e., ig-
noring, for the time being, less-divergent terms such as lo
rithmic corrections, we obtain the estimates for systems
sizesL andL22:

1

nL
5

ln~mL /mL22!T5Tc

ln~L/L22!
21, ~5!

where the derivatives are calculated numerically at the
trapolated~i.e., L˜`) value ofTc . For fixedL andTc(p),
we obtain one estimate ofnL for each disorder configuration
these estimates are then averaged over different disorder
figurations to yield the data shown in Fig. 2, forL56214.
The trend displayed in Fig. 2 is dramatically different fro
the one observed in the case of unfrustrated disorder:21 All
curves~for different values ofp) show a distinct downturn
~asL increases!, and a limiting valuen`51, common to all
values ofp considered, becomes more likely.

This should be contrasted with the case of unfrustra
disorder, for which no downturn was observed, and the
trapolations indeed seemed to indicate a steady converg

TABLE I. Inverse critical temperatures for low frustration. Th
pure-system value ofj/L is 4/p51.2732 . . . , from conformal in-
variance.

p Kc(p) limL˜`j/L

0.99 0.455560.0005 1.27560.015
0.95 0.53460.001 1.28560.015
0.92 0.636060.0015 1.32560.015
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towards a disorder dependent exponentn5n(p)>npure51;
cf., Ref. 21. In that case, available theories19 pointed towards
describing those apparent exponents as resulting f
power-law divergences with pure-system exponents,
hanced by multiplicative logarithmic terms; such expec
tions were later confirmed through transfer matrix calcu
tions on strips.21,22 Though in the present case the downtu
in the trend may be taken as indicative that these correct
are absent, considerable insight should be gained by tryin
fit the data along similar lines.

The forms of logarithmic corrections in random syste
have been derived within a field-theoretic approach,19 which
does not explicitly account for frustration effects. Noneth
less, inspired by our experience with unfrustrated disord
we decided to check whether in the present case such
rections also arise. The theory19 which successfully account
for unfrustrated disorder predicts that the correlation len
of the disordered Ising model, near the critical point, is giv
by

j`;t2n@11Cln~1/t !# ñ, ~6!

for the infinite system, wheren51, C is a disorder-
dependent positive constant, andñ51/2; for C50 one re-
covers pure-system behavior. As discussed in Ref. 21, lo
rithmic corrections do not show up in the correlation leng
for finite systems, but in its temperature derivatives; at cr
cality, i.e., t(p)50, Eq. ~4! becomes

mL

L2 ;~12A lnL !ñ, ~7!

whereA is some disorder-dependent constant. While in
Dotsenko-Shalaev theory,19 ñ was predicted to be 1/2, her
we allow it to be determined from an analysis of the data
is chosen in such a way that, for fixedp, data for@mL /L2#1/ñ

versus lnL lie on a straight line, for the largest system siz
Figure 3 shows our results forp50.95 and 0.92: we see tha

FIG. 2. Size dependence ofnL as given by Eq.~5!, for p
50.99~triangles!, 0.95~crosses!, and 0.92~squares!. Error bars are
smaller than data points.
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an attempt to fit our data to these logarithmic correctio
would require an unlikely variation fromñ50.75 for p

50.95 to ñ5100 for p50.92. Attempts to fit the data to
other forms, such as powers of lnL, turned out to be equally
unsuccessful. The conclusion is that logarithmic enhan
ments play no role in the bulk correlation length for fru
trated disorder~at least in a simple, clearly defined way as
the unfrustrated case!.

Turning now to the specific heat behavior, we recall th
in the Dotsenko-Shalaev theory, the singular part of the b
specific heat per particle for the disordered Ising model, n
the critical point, is given by

C`~ t !.~1/C0!ln@11C0 ln~1/t !#, ~8!

whereC0 is proportional to the strength of disorder, and t
pure-system simple logarithmic divergence is recovered
C0˜0. ForC0Þ0 andt!1 a double-logarithmic singularity
arises, whose amplitude Eq.~8! predicts to decrease as di
order increases. For a finite system, the usual FSS th
applied to this case yields19

CL~ t50!.C11a ln~11b ln L !, ~9!

where, similarly to Eq.~8!, b˜0 for vanishing disorder. We
tried to check whether such forms had any relevance in
present case. Our results are displayed in Fig. 4, and a t
similar to unfrustrated randomness is observed: for low d
order, the specific heat increases with system size faster
in a double-logarithmic fashion~e.g., with lnL); as disorder
increases (p50.92), the best fit of the data crosses over
double-logarithmic behavior. Though this may be interpre
as signalling the existence of logarithmic corrections, suc
discussion is rather subtle.22 At any rate, an inequivocal con
clusion to be drawn from our data is that the specific h
diverges asL˜`. Accordingly, this enables us to seta
>0 in the hyperscaling relationdn522a, to obtain the
conditionn<1. This condition, together with the absence
logarithmic corrections forj, and the downturn in the se
quence of estimates forn, lead to a scenario ofn(p)51, as
in the pure case.

FIG. 3. Fits of Eq.~7! to determineñ, for p50.95 ~triangles!
and 0.92~squares!. Error bars are smaller than data points.
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In order to build up a fuller picture of the low-frustratio
regime, we turned to an alternate quantity, the susceptibi
The ratiog/n can be obtained in the usual way,

S g

n D
L

5
ln@xL /xL22#Tc

ln@L/L22#
, ~10!

where Tc is understood to be the extrapolated value. W
checked for self-consistency of critical-point locations a
properties in the following way. First, the procedure we us
above to obtainTc(p) from extrapolations ofjL

av can be re-
peated forj typ; this yields a slightly different extrapolate
value Tc(j

typ). For p50.95, for instance, one hasKc(j
typ)

50.53160.001, while Kc(j
av)50.53460.001. The se-

quence of susceptibilities calculated at these estimates oKc
gives rise, through Eq.~10!, to the data shown in Fig. 5. On
clearly sees that the Ising valueg/n57/4 is compatible with

FIG. 4. Specific heat as a function of ln lnL, for p50.95 ~tri-
angles! and 0.92~squares!. Error bars are smaller than data poin

FIG. 5. Ratio of critical exponentsg/n as a function of 1/L2, for
p50.95, from Eq.~10!, calculated atTc determined through the
scaling ofjav ~crosses! and ofj typ ~squares!.
y.

e

d

extrapolation of data calculated atTc(j
av), and not with

those coming fromTc(j
typ). We take this to mean that~i!

from susceptibility, specific-heat, and correlation-length d
the most likely self-consistent picture is one in which t
critical behavior is pure-Ising for low frustration,~ii ! though
very likely jav andj typ will eventually scale in a similar way
higher-order corrections still produce sizeable distortions
the accessible range of strip widths, and~iii ! further, it seems
that, for not very large widths,jav behaves more reliably.

The above analysis, together with the scaling lawh52
2(g/n), predicts that, for low disorder, the exponent d
scribing the decay of correlations at criticality sticks to t
pure system value,h5 1

4 . Thus, if the exponent-amplitud
relationship of conformal invariance remains valid in t
case of frustrated disorder, we should ha
limL˜`jL@Tc(p)#/L51/ph51.273 . . . . Weobtain an esti-
mate of limL˜`jL@Tc(p)#/L by observing the trend followed
by the sequences of points calculated atKc(p) and at
Kc(p)60.001, to determine the central estimate and its e
bars~see Fig. 1!; the outcome is shown in the last column
Table I. In spite of the arbitrariness of this approach,
error bars thus obtained are certainly overestimated. No
theless, even with such generous allowances, the data fp
50.92 show that the conformal invariance prediction is de
nitely not satisfied, since it lies way outside the range of
error bars. As the critical behavior should be the same al
the critical line~at least within the low disorder region!, we
are led to conclude that, unlike the case of unfrustrated
order, the exponent-amplitude relationship of conformal
variance breaks down in the case of frustrated disorder.

At p.0.89, the transition vanishes abruptly, meaning t
we do not find any temperature at which correlation leng
scale linearly with strip width. In Ref. 10, it is found that th
typical correlation lengthsj typ still scale linearly withL at
suitably lowT for a broader range ofp variation, along a line
that significantly departs from the vertical on ap-T diagram;
however, they find a maximum inj typ as a function of tem-
perature for finite values ofT. This unexpected behavior ha
indeed been observed in studies ofj typ for ~unfrustrated!
disordered and random-field Ising systems.35 No similar peak
structure occurs when we investigateaverage correlation
lengths; instead, these vary monotonically and diverge o
as T˜0, consistent with the fact that a strip is essentia
one dimensional. Though the authors of Ref. 10 ackno
edge that such maxima at finiteT are unphysical, they as
sume that their data still are reliable above the peak temp
tures, and interpret the corresponding part of their lo
temperature results as marking the boundary betwee
random-antiphase state and the paramagnetic regime, ex
ing as far asp.0.8. We have not found any evidence for th
phase from our treatment. Strictly speaking, this means o
that the expected signature of the corresponding seco
order phase transition does not show up when averaged
relation lengths are considered. At present we are unawa
why it should be so, and whether it means that the rando
antiphase state is not present at all.

IV. AT AND BELOW THE NISHIMORI POINT

The Nishimori line is given by12

exp~2J0 /T!5p/~12p!, ~11!
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and our first task is to determine its intersect with the criti
curve, which is done as follows. For eachT, we extractptrial
from Eq. ~11!, and calculatejav(ptrial); this procedure is re-
peated for different system sizes, so that a sequence of
mates,jL /L, is produced. Figure 6 shows our data thus o
tained, and two different trends can be clearly observ
curves forp50.892 and 0.891 display an upward curvatu
whereas those forp50.890 and 0.889 are bent downward
Assuming a monotonic behavior~as L˜`) of j/L, any
curve outside the interval@0.8900, 0.8910# will certainly not
stabilize to a constant value for largerL. Our central estimate
for the NP is therefore just the midpoint along the confiden
interval ~or, one might say, along the complementary of t
nonconfidence domain!:

pN50.890560.0005, TN50.95460.002, ~12!

whereTN follows from Eq.~11!. Our estimate for the loca
tion of the NP should be compared with those coming fro
series work on the NL,14 giving pN50.88660.003, TN
50.97560.006; zero-temperature calculations, together w
a no-reentrance assumption, givingpN50.89660.001 or
pN50.89460.002 ~depending on details of the fit!;38 exact
combinatorial work39 pN.0.885 @error bar presumably
.0.005 ~our estimate!#; and Monte Carlo analysis of non
equilibrium relaxation,40 pN50.887260.0008.

Once the Nishimori point has been accurately determin
we can check the region below for reentrant behavior. E
dence has been presented very recently~for Potts spin-
glasses on hierarchical lattices! that there appears to be n
fundamental reason why reentrances should be ruled ou
thermodynamic systems,36 thus this is a matter worthy o
consideration. We examine the size dependence ofjav at a
temperatureT50.4,TN/2 and at concentrations slightl
away from pN , p50.889, and 0.892; the results are d
played in Fig. 7. The curve corresponding top.pN seems to

FIG. 6. Size-scaled averaged correlation length versus 1L2

along the Nishimori line:p50.892 ~up triangles!, 0.891 ~dia-
monds!, 0.890~stars!, and 0.889~down triangles!. For eachp, the
corresponding temperature is given by Eq.~11!. Error bars are
smaller than data points.
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diverge asL˜`, indicating that the (T,p) point lies within
the ferromagnetic region; the one corresponding top,pN
seems to vanish asL˜`, indicating that the correspondin
(T,p) point lies outside the ordered phase. Given that b
values ofp are very close topN , we interpret this as an
indication of absence of reentrant behavior, and that the c
cal line Tc(p) is vertical at and below the Nishimori poin
This is consistent with theoretical considerations12,37 and
with extensive numerical work10,11,38 specifically aimed at
the two-dimensional6J Ising model. As a result, we assum
that the scaling directions at the NP are, respectively, tang
to the critical curve~thus, purely temperaturelike! and along
the Nishimori line.13,14,16

In order to discuss critical exponents, we note that
numerical evaluation of temperature derivatives in Eq.~3!
implies thatdT&0.001 at the NP; since this is of the sam
order as the estimated error bars inTN , we shall sit at our
own central estimates, Eq.~12!, and measure the correspon
ing dT from there. While for scaling along the tangent~i.e.,
pure temperaturelike! axis, the considerations on the need
subtract free energies of the same bond geometry22 are iden-
tical to those quoted above, a subtlety arises when consi
ing variations along the Nishimori line, where a temperatu
change implies a change inp as well. From Eq.~11!, one has
(dp/dT)pN ,TN

.0.21. For the free energy calculation on wh
is supposed to be a given sample, the use of the same p
dorandom number sequence forT andT6dT with the typi-
cal dT50.007 ~to be explained below! means that roughly
14 bonds in 10 000 will reverse sign. We have assumed
this is the meaning of ‘‘using the same sample’’ along t
Nishimori line. While in principle the bond reversals tend
increase in-sample fluctuations, results are manageable~al-
beit with relative error bars; three orders of magnitude
larger than those for derivatives along the pure-T direction!,
no doubt owing partly todp/dT being small at the Nishimor
point. We used a relatively largedT, compared with scaling

FIG. 7. Size-scaled averaged correlation length versus 1/L2 be-
low the Nishimori line:p50.892 ~up triangles! and 0.889~down
triangles! at T50.4. Error bars are smaller than, or of similar si
to, data points.
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along the pure-T axis, because of the need to comprom
betweenfluctuationscoming from the in-sample analysis d
scribed above, and the corresponding actualvariationsof the
free energy, used to approximate the derivative.

We have tentatively interpreted the derivatives along
NL as specific-heat–like. Accordingly, we have applied F
to the finite-size specific heats along both scaling directi
in order to find estimates of (a/n); in both cases the specifi
heat clearly does not diverge asL˜`. Tangent to the
boundary line we have found that attempts to fit our data
the form

CL5C`1aL(a/n)trial, ~13!

yield a much smaller~four orders of magnitude! chi square
for (a/n) trial521.5 than for (a/n)2.21.1 ~the latter is ex-
tracted fromn.2.2 of Ref. 16 plus the hyperscaling relatio
dn522a). Figure 8 shows that our data fit neatly into
single-power form, i.e., corrections to scaling seem of lit
relevance in the case. Along the Nishimori line our data
not give a satisfactory behavior of the chi square for a
sensible fitting to Eq.~13!: varying a/n between22 and
20.5 does not change the chi square significantly, and
persists even when corrections to scaling are accounted
Thus we are not in a position to compare these data to
percolation value17 (a/n)p521/2. In Table II we display
our raw data, so readers can reproduce the analysis qu
above, and try alternative procedures of their own devisi

We have thus turned to calculating the uniform susce
bility; as it couples to a ferromagnetic order parameter,
corresponding value ofg/n is related to criticality upon
crossing of the ferro-paramagnetic boundary~i.e., along the
Nishimori line!. In Fig. 9 we show (g/n)L , calculated from
Eq. ~10!, with Tc[TN , as a function of 1/L2. The extrapo-
lated value 1.8060.02 ~where the estimated error bars a
subjective, but certainly conservative! compares favorably

FIG. 8. Size dependence of the specific heat at the Nishim
point, resulting from the best fit ofa/n521.5 in Eq. ~13!. The
intersect with the vertical axis is at a finite value, 0.1762. Error b
are smaller than data points.
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with (g/n)p543/2451.7917•••of percolation. Series work14

gives g52.3760.05 andn51.3260.08, which yieldg/n
51.8060.09.

Finally, correlation lengths obtained from the decay
spin-spin correlations~which therefore couple to a ferromag
netic order parameter! give an extrapolation ofjav/L to
1.7560.05 at the NP~see Fig. 6!, rather different from the
percolation (php)2151.5279••• . From experience for low
frustration, as described above, we interpret this as signa
a breakdown of the exponent-amplitude relationship, rat
than indicating that the transition is not in the percolati
universality class.

V. CONCLUSIONS

We have studied the asymmetric6J Ising model on a
square lattice, by means of transfer matrix calculations
several quantities on long, finite-width strips. First, use h
been made of a configurationallyaveraged correlation
length, which is distinct from thetypical ~or most probable!
correlation length, used in previous transfer matrix studies
the same model. We have shown that an intrinsically s
consistent picture can be obtained by the use of the for

FIG. 9. Ratio of critical exponents,g/n, as a function of 1/L2, at
the Nishimori point, from Eq.~10!. The arrow points to the perco
lation value~see text!.

ri

s

TABLE II. Second derivatives of free energy at the NP, for st
widths L54214. T: along the temperature axis; NL: along th
Nisihmori line ~see text!. Uncertainties in last digits are given i
parenthesis.

L T NL

4 0.192183~7! 1.558~38!

6 0.184854~10! 1.704~44!

8 0.181824~13! 1.772~39!

10 0.180245~7! 1.846~30!

12 0.179288~25! 1.846~67!

14 0.178667~20! 1.859~73!



to
rv

s
itic
ug
i-
ili
ve
bi
o

e
li
m
n

on
ru
er
en
n

iti

ori
the
he

ni-
ng

he
r-
her
he
hi-
in

the
the

d
ort.
Ox-
ty,
oyal
B.
ffer

PRB 60 6747UNIVERSALITY, FRUSTRATION, AND CONFORMAL . . .
quantity, while~at least for the strip widths within reach! it
seems that higher-order corrections to scaling may dis
analyses based on the latter. Points on the critical cu
Tc(p) were then obtained as those for whichjav/L ap-
proached a finite value asL˜`; to the best of our knowl-
edge, the estimates forTc at p50.99, 0.95, and 0.92 thu
obtained are the most accurate to date. Secondly, the cr
behavior along the critical line has been discussed thro
the analysis ofdjav/dT, as well as in terms of other quant
ties, such as the specific heat and the zero-field susceptib

The following picture emerged from our analysis. Abo
the Nishimori line, the correlation length and the suscepti
ity appear to diverge with power laws, with the same exp
nents as in the pure case,n51 andg57/4; logarithmic cor-
rections~i.e., enhancements! do not seem to play a role in th
behavior of these quantities. We were also able to estab
that the specific heat diverges, though at most logarith
cally. Further, the exponent-amplitude relationship of co
formal invariance breaks down as a result of frustrati
These results are in marked contrast with the case of unf
trated disorder, for which logarithmic enhancements w
needed in order to explain an apparent disorder depend
on estimates forn, and the conformal invariance predictio
applies.

The intersection of the Nishimori line~NL! with the criti-
cal curve (TN ,pN) has been determined, near which the cr
cal behavior was analyzed; our estimates for (TN ,pN) are
rt
e

al
h

ty.
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-

sh
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-
.
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e
ce

-

also the most accurate to date. Approaching this Nishim
point either along a temperaturelike direction or along
NL, one finds nondiverging specific heats; while for t
former we were able to extract (a/n)T.21.5, for the latter
we could not find reliable fits. However, analysis of the u
form susceptibility, which probes the phase transition alo
the Nishimori line, showed percolationlike behavior, in t
sense thatg/n is very close to the percolation value. Confo
mal invariance is also absent at the Nishimori point. Furt
work is clearly necessary in order to fully elucidate all t
subtleties related to the multicritical behavior at the Nis
mori point. Finally, we found no signature of a reentrance
the phase diagram below the Nishimori point; instead,
critical curve below this point seems to be parallel to
temperature direction.
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