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First-order phase transitions in quantum-mechanical tunneling models
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A criterion is derived for the determination of parameter domains of first-order phase transitions in quantum-
mechanical tunneling models. The criterion is tested by application to various models, in particular to some
that have been used recently to explore spin tunneling in macroscopic particles. In each case agreement is
found with previously heuristically determined domains.@S0163-1829~99!08833-5#
ca
nn
co
i
a
m

ee
r

io
.g
th
ti
h
o
li
o

e
rk
is

-
py
n

ic
c
ith
e
d
n

in

A
dy
he
ie
a
th

se

le
ical
wn

the
ar
ot
3,
en-

ling
in
m-
, of

s in
eri-
nce

n. It
of
one
or-
al

sion
is

rest
ich
and
of
di-
to

ry
ten-
-

a-
its

er

lts
ec-
ex-

ri-
. 9.
I. INTRODUCTION

It is well known that at temperatures close to zero, de
rates of metastable states are determined by quantum tu
ing processes whose dynamics is described by classical
figurations such as vacuum or periodic bounces, but that w
increasing temperature thermal activation becomes more
more important, and beyond some critical or crossover te
peratureTc becomes the decisive mechanism. It has b
realized recently that this change or crossover can be
garded as a transition from quantum to classical behav
which in turn can be looked at like a phase transition in, e
the thermodynamics of gases. This is a fascinating topic
has attracted considerable interest recently and applica
particularly in the area of macroscopic spin systems. T
general idea applies also to other cases where instead
decay rate a shift in energy is involved, such as a level sp
ting in quantum mechanics, which is described by vacuum
periodic instantons.

The characteristic way in which phase transitions app
in quantum-mechanical tunneling processes has been wo
out in Ref. 1. In particular, a sharp first-order transition
there shown to appear in the plot of actionSversus tempera
ture T, which is very analogous to that of the free enthal
versus pressure of a van der Waals gas, whose equatio
state plotted as pressure versus volume corresponds to
plot of the periodP(E) ~of the periodic bounce or instanton!
versus energy in the consideration of quantum-mechan
systems. It is well known2 that in the case of a periodi
problem in Euclidean time the derivative of the action w
respect to the energyE is the negative of the oscillation tim
t(E) or periodP(E) at that energy that has to be identifie
with 2\/T. If t(E) is a monotonically decreasing functio
with increasingE, one has a second-order transition; ift(E)
has a minimum and then rises again within the domain
,E,barrier height, one has a first-order transition, i.e.,
this case there is an energyEc within this range withTc
5\/t(Ec) at which the first-order transition takes place.
criterion for a first-order transition can be obtained by stu
ing the Euclidean time period in the neighborhood of t
sphaleron configuration at the peak of the potential barr
i.e., at the bottom of the well of the inverse potential,
advocated in Ref. 2. If the frequency of oscillation about
sphaleron point isvs and oscillations different fromvs
about it are possible, a first-order transition requiresv2

.vs
2 or t2ts,0. Thus, this is a condition one can u
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as a criterion for a first-order transition. Explicit and solvab
examples of both types of transitions in quantum-mechan
models have been given recently in Refs. 3–6. It was sho
there that simple models, such as those of
~111)-dimensional scalar field theories with the famili
double-well or periodic or sine-Gordon potentials, do n
lead to first-order transitions. However, as shown in Ref.
this changes if the mass is allowed to become field dep
dent, a case which occurs, for instance, in spin tunne
theories, or if an externally applied field is introduced as
Refs. 4–7, as again in the context of spin tunneling pheno
ena. The introduction of such extra dependences implies
course, the introduction of appropriate parameters. Thu
Ref. 3 it was shown, for example, that in the case of a p
odic potential and an effective mass with a field depende
multiplied by a parameterl, the periodP(E) is monotoni-
cally decreasing forl, 1

2 , but for l. 1
2 it has a minimum

and then rises again, and so leads to a first-order transitio
is therefore of interest to find criteria for the determination
domains of such parameter values in which they lead to
type of phase transition or the other. A significant step f
ward in this direction on the basis of higher-dimension
arguments, was achieved in Ref. 2, where an expan
about the time-independent saddle-point configuration
considered. However, many considerations of basic inte
are best illustrated by quantum-mechanical models, wh
serve as useful prototypes for more complicated theories,
it is natural to enquire about criteria for the occurrence
first-order transitions in these, and hence to verify the con
tions obtained heuristically as in the models referred
above.3–5 Thus in the following we consider a scalar theo
with a field-dependent mass and suitable nonlinear po
tials. Expanding the static field~quantum mechanically a co
ordinate! about the constant sphaleron configuration~at the
top of the barrier! and proceeding to second-order perturb
tion theory, we obtain the deviation of the frequency from
sphaleron value~lowest-order perturbation theory! and hence
the criterion for a first-order transition. We then consid
various models considered earlier3–7 and demonstrate the
agreement of the prediction of the criterion with the resu
obtained there heuristically. We add that theories with eff
tive field-dependent masses are not unusual; typical
amples are, for instance, Skyrme theories.8 The instability of
the sphaleron configuration at the top of the barrier in va
ous familiar models has been shown, for instance, in Ref
6662 ©1999 The American Physical Society
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II. CONDITION FOR A FIRST-ORDER TRANSITION

We consider a Euclidean action integral of the form

S5E dt@ 1
2 M ~q!q̇21V~q!# ~1!

with Euler-Lagrange equation

M ~q!q̈1
1

2

]M ~q!

]q
q̇25

]V~q!

]q
~2!

and q(t1P)5q(t), whereP51/T is the period andT the
temperature. Since the solutions near the sphaleron solu
at the top of the barrier shown in Fig. 1 have information
the order of the ‘‘phase’’ transition between quantum a
thermal activity regimes, we confine ourselves to this reg
in solution space. We define@as for a maximum ofV(q) at
qs]

2vs
2[

V9~qs!

M ~qs!
~3!

and set in Eq.~2!

q5qs1h~t!, ~4!

whereqs is the sphaleron position withV8(qs)50. Expand-
ing M @qs1h(t)# andV@qs1h(t)# and their derivatives in
powers ofh(t), we obtain the fluctuation equation,

@M ~qs!1M 8~qs!h~t!1 1
2 M 9~qs!h

2~t!¯#ḧ~t!

1 1
2 @M 8~qs!1M 9~qs!h~t!

1 1
2 M-~qs!h

2~t!1¯#ḣ2~t!

5V9~qs!h~t!1 1
2 V-~qs!h

2~t!

1 1
6 V99~qs!h

3~t!1¯ . ~5!

We are interested in small fluctuationsh(t). The first-order
equation

M ~qs!ḧ~t!2V9~qs!h~t!50 ~6!

has the even solution

h~t!5a cos~v0t!, v0
25vs

2. ~7!

FIG. 1. The potential barrier with sphaleron coordinateqs .
on

d
n

This is the solution we choose for the following reaso
which we explain for simplicity for the caseM (q)51. The
classical equation

q̈5
]V

]q

is invariant under time translationst˜t1const. The opera-
tor of the fluctuation equation or second variational deriv
tive of the actionS at the classical configurationqc must
therefore possess a zero eigenvalue with eigenfunc
dqc /dt. This operator is also obtained by differentiating t
classical equation and implies the fluctuation equation

S d2

dt22V9~qc! Dc i5v i
2c i .

If qc is the constantqs , and if this is a saddle point, we mus
have ~at and aroundqs) v1

250, c1 odd ~the first excited
state!, andv0

2,0, andc0 even ~the ground state!. Thus in
this case,c0 is proportional to cos(v0t). This explains our
ansatz~7!, which is the component of a general fluctuation
the direction of the negative eigenmode of the fluctuat
equation. The fluctuation equation for the caseM (q)
Þconst has been discussed in Ref. 10.

For the solution in the next order of perturbation theo
we set

h~t!5a cos~vt!1a2h1~t!, v25v0
21aD1v2. ~8!

We insert this again into Eq.~5! and retain only terms up to
and including those ofO(a2). Also we reexpress powers o
cos(vt) in terms of cos(nvt), wheren is an integer and use
Eq. ~6!. Then

a2FM ~qs!
d2

dt22V9~qs!Gh1~t!

5a2D1v2M ~qs!cos~v0t!

1a2F S v2M 8~qs!1V-~qs!

4 D
1S 3v3M 8~qs!

4
1

V-~qs!

4 D cos~2v0t!G . ~9!

We now expand the fluctuationh1(t) in terms of lowest-
order functions, i.e., we set

h1~t!5 (
n50,1,2,...

cn cos~nv0t!

and use the orthonormality of the latter, i.e.,

E
2P/2

P/2

cos~mv0t!cos~nv0t!dt5
P

2
dmn , P5

2p

v0
.

The remaining steps are standard in perturbation the
Thus, multiplying Eq.~9! by cos(v0t) and integrating one
obtains immediately that

D1v250

and the fluctuationh1(t) is obtained to be
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h1~t!5g11g2 cos~2v0t!, ~10!

with

g1~v!52
v2M 8~qs!1V-~qs!

4V9~qs!
,

g2~v!52
3M 8~qs!v

21V-~qs!

4@4M ~qs!v0
21V9~qs!#

, ~11!

where in these first-order expressionsv25v0
2. Thus, in or-

der to obtain a nonvanishing deviation from the sphale
value, we have to proceed to the next order of perturba
theory. Hence we set

h~t!5a cos~vt!1a2h1~t!1a3h2~t!,

v25v0
21aD1v21a2D2v2, ~12!

and insert this into Eq.~5! and expand up to and includin
terms ofO(a3). The procedure is the same as before but
calculations are now much more involved, so that we c
only cite a main intermediate result. The equation cor
sponding to Eq.~9! above and multiplied by cos(v0t) and
integrated over yields the equation

2aM~qs!a
2D2v2

P

2

5a3FV-~qs!S g1

2
1

g2

4 D P1 1
6 V99~qs!

3
8 P

14M 8~qs!v
2g2

P
4 1M 8~qs!v

2S g1

2
1

g2

4 D P

1 1
2 M 9~qs!v

2 3
8 P22M 8~qs!v

2g2
P
4 2 1

2 M 9~qs!v
2 P

8 G .
~13!

From this the condition of a first-order phase transition, i
D2v2.0, becomes

FV-~qs!S g11
g2

2 D1 1
8 V99~qs!1M 8~qs!v

2g2

1M 8~qs!v
2S g11

g2

2 D1 1
4 M 9~qs!v

2G
v0

,0.

~14!

The first two terms of the expression on the left can be s
to be contained in the appropriate formula of Ref. 2@their
Eq. ~31!#, whereM5const.

III. APPLICATION OF THE CRITERION
TO VARIOUS MODELS

In the following we focus our interest on the criterion f
a first-order transition in various model theories and not
the physical contexts of these theories. We therefore do
elaborate on the latter that are discussed in the approp
sources cited.
n
n

e
n
-

.,

n

n
ot
te

1. Spin tunneling model with variable mass but without applied
magnetic field

In Ref. 3 a large-spin tunneling model was considered
which

M ~f!5
1

2K1~12l sin2 f!
, V@f#5K2s~s11!sin2 f.

~15!

Thus, identifyingf with our previous coordinateq, we
have

fs5
p

2
, V@fs#5K2s~s11!, V8@fs#50,

V9@fs#522K2s~s11!, V-@fs#50,

V99@fs#58K2s~s11!,

and

M @fs#5
1

2K1~12l!
,

M 8@fs#50, M 9@fs#52
l

K1~12l!2 .

From Eq.~3! we then obtain

v0
254K1K2s~s11!~12l!. ~16!

It follows that g150, g250, and Eq.~14! becomes

K2s~s11!1S 2
l

K1
D 1

~12l!2 K1K2s~s11!~12l!,0,

i.e.,

l. 1
2 . ~17!

This is precisely the condition found heuristically in Ref.
for the existence of a first-order transition in the model. T
result implies, of course, the necessity of a significant fi
dependence of the effective mass to generate the first-o
transition. In the next model this effect is produced by
applied magnetic field.

2. Spin tunneling model with constant mass and applied
magnetic field

In Ref. 6 a large-spin tunneling case was considered
which ~in our present notation!

M5const, V@f#5~s1 1
2 !2D~hx

2 sinh2f22hx coshf!.
~18!

Herehx5Hx /(2s11)D, whereHx is the magnetic field ap-
plied in the direction of coordinatex, which in our notation is
alsof[x. In this case one finds

fs50, V@fs#522~s1 1
2 !2Dhx , V8@fs#50,

V9@fs#522~s1 1
2 !2hx~12hx!, V-@fs#50,

V99@fs#52~s1 1
2 !2Dhx~4hx21!,
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and

M5M ,M 85M 950.

Then from Eq.~3!,

v0
25

2

M
~s1 1

2 !2hx~12hx! ~19!

andg150, g250 and the inequality~14! becomes

1
8 32~s1 1

2 !2Dhx~4hx21!,0,

and hence

hx, 1
4 , ~20!

as found in Ref. 6, there expressed asHx,sD/2.

3. Spin tunneling model with variable mass and applied
transverse magnetic field

In Ref. 4 another and more complicated spin tunnel
model was investigated in which the magnetic field is a
plied in a direction transverse to that of the easy axis and
potential has the shape of a periodically recurring asymm
ric twin barrier ~i.e., a large one followed by a small one!
with

M ~f!5
1

2K~12l sin2 f1al sinf!
,

V@f#5Kls2~sinf2a!2. ~21!

In this case we have to distinguish between transitions in
large barrier and those in the small barrier. We theref
consider these separately.

(i) Large barrier transitions. In this case the sphalero
angle is~superscriptL referring to the large barrier!

fs
L5 3

2 p

and there

V@fs
L#5Kls2~11a!2, V8@fs

L#50,

V9@fs
L#522Kls2~11a!,

FIG. 2. The parameter domains for first- and second-order t
sitions through the large barrier in the spin tunneling model w
field-dependent mass and field transverse to the easy axis.
g
-
e
t-

e
e

V-@fs
L#50, V99@fs

L#52Kls2~41a!

and

M ~fs
L!5

1

2K@12l~11a!#
, M 8~fs

L!50,

M 9~fs
L!52

l

2K

~21a!

@12l~11a!#2 .

In this case we obtain with Eq.~3!,

v0
L2

54K2ls2~11a!@12l~11a!#. ~22!

Again g150, g250 and the condition for a first-order phas
transition is found to be

l.
a14

~a11!~3a18!
. ~23!

The parameter domains for first- and second-order transit
through the large barrier are shown in Fig. 2.

(ii) Small barrier transitions.In the case of transitions
through the small barrier we havefs

S5p/2 and

V@fs
S#5Kls2~12a!2, V8@fs

S#50,

V9@fs
S#522Kls2~12a!,

V-@fs
S#50, V99@fs

S#52Kls2~42a!,

and

M ~fs
S!5

1

2K@12l~12a!#
, M 8~fs

S!50,

M 9~fs
S!52

l

2K

~22a!

@12l~12a!#2 .

From Eq.~3! we find

v0
S2

54K2ls2~12a!@12l~12a!#. ~24!

Again g150, g250 and the condition for a first-order tran
sition through the small barrier is found to be

n- FIG. 3. The parameter domains for first- and second-order t
sitions through the small barrier in the spin tunneling model w
field-dependent mass and field transverse to the easy axis.
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l.
42a

~823a!~12a!
. ~25!

The parameter domains for first- and second-order transit
through the small barrier are shown in Fig. 3. The param
domains for transitions through either barrier are shown
Fig. 4.

4. Spin tunneling model with variable mass and applied
longitudinal field

In Ref. 7 yet another model was investigated in which
applied magnetic field assumes a longitudinal, i.e., para
direction with respect to the easy axis. In this case it is a
possible to find explicit classical configurations,11 but we do
not consider these here. In this model,7

M ~f!5
1

2K1S 12l sin2 f2
al

2
cosf D ,

V@f#5K2s2~sin2 f1a cosf1a!. ~26!

In this case the sphaleron value off is fs5 arccosa/2 and

V@fs#5K2s2S 11a1
a2

4 D , V8@fs#50,

V9@fs#52K2s2S 22
a2

2 D ,

V-@fs#523K2s2aS 12
a2

4 D 1/2

,

V99@fs#5K2s2~82 7
2 a2!,

and

M ~fs!5
1

2K1~12l!
, M 8~fs!5

l

4K1

aS 12
a2

4 D 1/2

~12l!2 ,

FIG. 4. The parameter domains for first- and second-order t
sitions in the model with field-dependent mass and transverse m
netic field.
ns
er
n

e
l,
o

M 9~fs!5
l

2K1

~ 3
4 a222!~12l!1

a2l

2 S 12
a2

4 D
~12l!3 .

In this case,

v0
252K1K2s2~12l!S 22

a2

2 D . ~27!

The expressions forg1 andg2 are now found to be

g15
a

8S 12
a2

4 D 1/2F l

~12l! S 12
a2

4 D23G ,

g252
a

8S 12
a2

4 D 1/2F l

12l S 12
a2

4 D21G . ~28!

The condition for a first-order phase transition is now mo
complicated in that it reduces to the inequality

3

16
a2j22j1S 11

a2

2 D,0, ~29!

where

j5
l

12l S 12
a2

4 D .

Setting

j65
8

3a2 H 16F12
3

4
a2S 11

a2

2 D G1/2J ,

the inequality~29! is thenj2,j,j1 , which reduces to

j2

j21S 12
a2

4 D,l,
j1

j11S 12
a2

4 D . ~30!

In Fig. 5 we plot the boundary separating the parameter
main of first-order transitions from that of second-order tra
sitions.

n-
g- FIG. 5. The parameter domains for first- and second-order ph
transitions in the model with applied longitudinal field.
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IV. CONCLUSIONS

In the above we have derived a criterion for the parame
domains of first-order phase transitions for a wide class
quantum-mechanical tunneling models. By application
specific models that received attention recently, particula
in the discussion of the tunneling of large or macrosco
spins, we demonstrated the agreement of the predictio
the criterion with previous heuristically obtained results. W
envisage that considerations like those presented above
r
f

o
ly
c
of

nd

in Ref. 2 can be useful in wider contexts, and also in fiel
theory models, such as those with Skyrme terms that im
an effective field-dependent mass.
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