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First-order phase transitions in quantum-mechanical tunneling models
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A criterion is derived for the determination of parameter domains of first-order phase transitions in quantum-
mechanical tunneling models. The criterion is tested by application to various models, in particular to some
that have been used recently to explore spin tunneling in macroscopic particles. In each case agreement is
found with previously heuristically determined domaif80163-182@9)08833-5

[. INTRODUCTION as a criterion for a first-order transition. Explicit and solvable
examples of both types of transitions in quantum-mechanical
It is well known that at temperatures close to zero, decaynodels have been given recently in Refs. 3—6. It was shown
rates of metastable states are determined by quantum tunnghere that simple models, such as those of the
ing processes whose dynamics is described by classical co(t+ 1)-dimensional scalar field theories with the familiar
figurations such as vacuum or periodic bounces, but that Witaoub|e_we|| or periodic or sine-Gordon potentials, do not
increasing temperature thermal activation becomes more angad to first-order transitions. However, as shown in Ref. 3,
more important, and beyond some critical or crossover teMs changes if the mass is allowed to become field depen-
peratureT; becomes the decisive mechanism. It has beegent a case which occurs, for instance, in spin tunneling
realized recently that this change or crossover can be r§pegries or if an externally applied field is introduced as in
garded as a transition from quantum to classical behaviorg o 4-7, as again in the context of spin tunneling phenom-

mh'ctﬂ n turdn can be Io;)ked at I|_:_<§iaipha?e trierl]n?ilgor; 'n} et'ﬁ'eina. The introduction of such extra dependences implies, of
€ thermodynamics of gases. 1his 1S a fascinaling topic ek, e ' the introduction of appropriate parameters. Thus in
has attracted considerable interest recently and applicati

particularly in the area of macroscopic spin systems. Th ef. 3 it was shown, for example, that in the case of a peri-

general idea applies also to other cases where instead ofogﬁ:.plc_)tzngal and an effectwr:e mass (‘;VF'} hEa f|eld depenQence
decay rate a shift in energy is involved, such as a level splitMultiplied by a parametex, the periodP(E) is monotoni-

ting in quantum mechanics, which is described by vacuum of@lly decreasing foh <3, but for A>3 it has a minimum
periodic instantons. gnd then rises again, and_so Iegds_ to a first-order trans:mon. It
The characteristic way in which phase transitions appealé therefore of interest to find criteria for the determination of
in quantum-mechanical tunneling processes has been work&@mains of such parameter values in which they lead to one
out in Ref. 1. In particular, a sharp first-order transition istype of phase transition or the other. A significant step for-
there shown to appear in the plot of acti®nersus tempera- Wward in this direction on the basis of higher-dimensional
ture T, which is very analogous to that of the free enthalpyarguments, was achieved in Ref. 2, where an expansion
versus pressure of a van der Waals gas, whose equation about the time-independent saddle-point configuration is
state plotted as pressure versus volume corresponds to tbensidered. However, many considerations of basic interest
plot of the periodP(E) (of the periodic bounce or instanton are best illustrated by quantum-mechanical models, which
versus energy in the consideration of quantum-mechanicalerve as useful prototypes for more complicated theories, and
systems. It is well knowhthat in the case of a periodic it is natural to enquire about criteria for the occurrence of
problem in Euclidean time the derivative of the action with first-order transitions in these, and hence to verify the condi-
respect to the enerdy is the negative of the oscillation time tions obtained heuristically as in the models referred to
7(E) or periodP(E) at that energy that has to be identified above®® Thus in the following we consider a scalar theory
with —#4/T. If 7(E) is a monotonically decreasing function with a field-dependent mass and suitable nonlinear poten-
with increasingE, one has a second-order transition7(E) tials. Expanding the static fiel@juantum mechanically a co-
has a minimum and then rises again within the domain Qordinate about the constant sphaleron configuratiah the
<E<barrier height, one has a first-order transition, i.e., intop of the barrier and proceeding to second-order perturba-
this case there is an enerdy, within this range withT.  tion theory, we obtain the deviation of the frequency from its
=hlr(E.) at which the first-order transition takes place. A sphaleron valu€owest-order perturbation thegrgnd hence
criterion for a first-order transition can be obtained by study-the criterion for a first-order transition. We then consider
ing the Euclidean time period in the neighborhood of thevarious models considered earfiet and demonstrate the
sphaleron configuration at the peak of the potential barrieragreement of the prediction of the criterion with the results
i.e., at the bottom of the well of the inverse potential, asobtained there heuristically. We add that theories with effec-
advocated in Ref. 2. If the frequency of oscillation about thetive field-dependent masses are not unusual; typical ex-
sphaleron point isws and oscillations different fromws  amples are, for instance, Skyrme theofid@e instability of
about it are possible, a first-order transition requites the sphaleron configuration at the top of the barrier in vari-
>w? or 7—7,<0. Thus, this is a condition one can use ous familiar models has been shown, for instance, in Ref. 9.
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A This is the solution we choose for the following reason,
V(q) which we explain for simplicity for the cas@l(q)=1. The
classical equation

NV

q=£

is invariant under time translations— 7+ const. The opera-

ds q tor of the fluctuation equation or second variational deriva-
tive of the actionS at the classical configuratiog. must
therefore possess a zero eigenvalue with eigenfunction
dg./dr. This operator is also obtained by differentiating the
classical equation and implies the fluctuation equation

-V(a) g2
(F—V’%qc)) vi= o g

FIG. 1. The potential barrier with sphaleron coordingie . e .
P P % If q; is the constangs, and if this is a saddle point, we must

Il. CONDITION FOR A FIRST-ORDER TRANSITION have (at and aroundjs) =0, ¢, odd (the first excited

. . o stat§, and w3<0, and ¢, even(the ground state Thus in

We consider a Euclidean action integral of the form s case y, is proportional to cos,7). This explains our
ansatz7), which is the component of a general fluctuation in

szf diM(9)§%+V(q)] (1)  the direction of the negative eigenmode of the fluctuation
equation. The fluctuation equation for the cabg(q)
with Euler-Lagrange equation #const has been discussed in Ref. 10.
) @ For the solution in the next order of perturbation theory
. 1dM(aq) , dV(q we set
M@+ 5 —o— "= 2

— 2 2_ 2 2
andq(7+P)=q(7), whereP=1/T is the period and the nn=acodon+aiy(n), o =wpradwt. (§
temperature. Since the solutions near the sphaleron solutid¥e insert this again into Eq5) and retain only terms up to
at the top of the barrier shown in Fig. 1 have information onand including those ob(a?). Also we reexpress powers of
the order of the “phase” transition between gquantum andcos(w7) in terms of cosfwr), wheren is an integer and use
thermal activity regimes, we confine ourselves to this regiorEd. (6). Then
in solution space. We defifas for a maximum o¥(q) at

2
) " & M(a2) 5~ V"(Gs) | (7
q
98 g9 @ = a%A;0?M (q9)C08 wg7)
and set in Eq(2) a2 (wZM’(quV'”(qs))
4
q=0s+ 7(7), @ .
whereqs is the sphaleron position withi’ (qs) =0. Expand- +<3w M'(qs) + v (qs)>cog(2wo7-) . (9
ing M[gs+ 7(7)] andV[gs+ 7(7)] and their derivatives in 4 4
powers of7(7), we obtain the fluctuation equation, We now expand the fluctuation,(7) in terms of lowest-
[M (o) +M’(qe) 7(7)+ 2M"(q) 72(7) -1 7) order functions, i.e., we set
1 ! ”
+3[M"(ds) +M"(qs) n(7) 771(7'):”:02;2 CnCOgNwyT)
+3M"(qg) (1) ++ - 17%(7) o
Y Lo 5 and use the orthonormality of the latter, i.e.,
=V"(qs) n(7)+32V"(ds) 7°(7)
nn P/2 P 2
+eV" () 7 (7) + ©) f_P/ZCOS(mon)Coinon)dT=E5mn, P:w_:'
We are interested in small fluctuatiom§r). The first-order
equation The remaining steps are standard in perturbation theory.
) Thus, multiplying Eq.(9) by coswg7) and integrating one
M(ds) 7(7) = V"(Qs) n(7)=0 (6)  obtains immediately that
has the even solution Ayw?=0

n(r)=acogwer), 5= w?. (7)  and the fluctuationy,(7) is obtained to be
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71(7)=0g1+ 0, cOS2wo7), (10) 1. Spin tunneling model with variable mass but without applied
. magnetic field
with In Ref. 3 a large-spin tunneling model was considered in
) — MG VTG e
4V"(qs)

V[ p]=K,s(s+1)sir? ¢.

1
M) = Sk T nsiF o)’
(11) (15
Thus, identifying ¢ with our previous coordinate, we
where in these first-order expressian$=w3. Thus, in or-  have
der to obtain a nonvanishing deviation from the sphaleron

value, we have to proceed to the next order of perturbation
theory. Hence we set

 3M'(d9w’+V"(gy)
4[4M (ds) wg+V" ()]’

go(w)=

b=y, VISd=Kys(s+1), V'[$]=0,

n(7)=acogwr)+a’y;(7)+a’n,(7), V[ pl=—2K,s(s+1), V"[h]=0,
w?=wi+al0’+a%A,0?, (12 V" ¢s]=8K,s(s+1),

and insert this into Eq(5) and expand up to and including and
terms ofO(a®). The procedure is the same as before but the
calculations are now much more involved, so that we can M _

: - : . [ &s] "
only cite a main intermediate result. The equation corre- 2K1(1-N)
sponding to Eq(9) above and multiplied by cosfr) and

integrated over yields the equation , , A
’ ’ | M[6s]=0, M=~ g0
1

P
—aM(qS)aZAszE From Eqg.(3) we then obtain
o g wi=4KK,s(s+1)(1—\). (16)
:a3 V///(q ) _1+_2 P+ ;Vr///(q )§P
2 4 6 '8 It follows thatg,=0, g,=0, and Eq.(14) becomes
, , g1 92 \ 1
+4M'(ds) 0°gr5 + M’ (ds) ? >+ Z)P K,S(s+ 1)+( - K—1>WK1K2$(S+ 1)(1-MN)<0,

ie.,
+3M"(gs) @?§P—2M’ (gs) 0?0,k — 3M" () 0?5

A>3 (17

(13 This is precisely the condition found heuristically in Ref. 3

From this the condition of a first-order phase transition, i.e.for the existence of a first-order transition in the model. The

A,w?>0, becomes result implies, of course, the necessity of a significant field
dependence of the effective mass to generate the first-order

” 92\ 1 , 2 transition. In the next model this effect is produced by an
V()| 911 5| +8V"(4) + M (Qs) 070 applied magnetic field.
, (o) " 2. Spin tunneling model with constant mass and applied
+M’(gs) 91t > +iM"(g9)w?| <O. magnetic field
@0

In Ref. 6 a large-spin tunneling case was considered in
(14 which (in our present notation

The first two terms of the expression on the left can be seen = B 12 2 o _
to be contained in the appropriate formula of Refitlzeir M=const, V[¢]=(s+3)?D(h;sint?¢—2h, cosh¢>()1.8)
Eg. (31)], whereM = const.

Hereh,=H,/(2s+1)D, whereH, is the magnetic field ap-

lIl. APPLICATION OF THE CRITERION plied in the direction of coordinate which in our notation is
TO VARIOUS MODELS also d=Xx. In this case one finds
In the following we focus our interest on the criterion for $s=0, V[ps]=—2(s+3)?Dh,, V'[¢s]=0,

a first-order transition in various model theories and not on

the physical contexts of these theories. We therefore do not V[ ¢s]=—2(s+32)%h(1—hy), V"[¢s]=0,
elaborate on the latter that are discussed in the appropriate

sources cited. V""[ ps]=2(s+3)?Dhy(4h,— 1),
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_ FIG. 2. The parameter domains for first- and second-order ran- g 3. The parameter domains for first- and second-order tran-
sitions through the large barrier in the spin tunneling model withgitions through the small barrier in the spin tunneling model with

field-dependent mass and field transverse to the easy axis. field-dependent mass and field transverse to the easy axis.
and V,,,[¢I§]:O, V”"[¢IS_]:2K)\52(4+C¥)

MZM,M/ZMHZO. and
Then from Eq.(3),

Ly ’ Ly —
) 2 s M(¢S)_2K[1_}\(l+a)], M (¢S) 01
wO:M(S+§) hx(l_hx) (19)
o (2+ a)
andg;=0, g,=0 and the inequality14) becomes M™(ds)=— 5 S
§ X 2(s+3)?Dhy(4h,—1)<0, In this case we obtain with Eq3),
and hence
w5’ = 4K2AS2(1+ &) [1-N(1+ a)]. (22)
1
hy<1. (20 Againg;=0, g,=0 and the condition for a first-order phase
as found in Ref. 6, there expressedHag<sD/2. transition is found to be
3. Spin tunneling model with variable mass and applied at4

transverse magnetic field }\>(a+ 1)(3a+8)’ @3

In Ref. 4 another and more complicated spin tunnelingThe parameter domains for first- and second-order transitions
model was investigated in which the magnetic field is apthrough the large barrier are shown in Fig. 2.

plied in a direction transverse to that of the easy axis and the (ji) Small barrier transitions.In the case of transitions
potential has the shape of a periodically recurring asymmetrough the small barrier we havkS= /2 and

ric twin barrier (i.e., a large one followed by a small gne

with V[ ¢S]=KrS(1— )%, V'[¢3]=0,

_ 1 V' ¢S]= — 2KASX(1— a),
M(4)= 2K(1—\ sir® ¢+ ak sing)’

. V[ 31=0, V""[ $5]=2K\S (4~ a),
V[ ¢]=K\S%(singp— a)?. (22) and

In this case we have to distinguish between transitions in the
large barrier and those in the small barrier. We therefore s S
consider these separately. M(¢s)= 2K[1-A(1-a)]’ M’ (¢s) =0,

(i) Large barrier transitions In this case the sphaleron
angle is(superscriptL referring to the large barrigr

L_3
(bs_ﬁw

e 1S N (2—a)
M (‘f’s)__ﬂ[l—x(l—a)]?'

and there From Eq.(3) we find

V[¢L1=KAS(1+ @), V'[¢E]=0, wf =4KAS(1-a)[1-M(1-a)] 24)

oL ) Again g;=0, g,=0 and the condition for a first-order tran-
V' ps]=—2K\s*(1+a), sition through the small barrier is found to be
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FIG. 4. The parameter domains for first- and second-order tran- . )
sitions in the model with field-dependent mass and transverse mag- FIG. 5. The parameter domains for first- and second-order phase
ral

netic field. nsitions in the model with applied longitudinal field.
2 2
_ a“\ 16
S L (25) A <%a2‘2><1‘“>+7(1‘7>
(8=3a)(1—a) M”( )= =
2K, (1-)\)°

The parameter domains for first- and second-order transitions hi
through the small barrier are shown in Fig. 3. The parametel this case,
domains for transitions through either barrier are shown in

) 2_ 209 _ _a_z
Fig. 4. wi=2KK,s7(1-N)| 2 > (27)

4. Spin tunneling model with variable mass and applied The expressions fay, andg, are now found to be

longitudinal field

In Ref. 7 yet another model was investigated in which the @

A az)
= 1-—|-3
applied magnetic field assumes a longitudinal, i.e., parallel, % 8( 1 a_z) l/2[(1—7\) ( 4

direction with respect to the easy axis. In this case it is also 4
possible to find explicit classical configuratioftshut we do

not consider these here. In this model, B a A a?
2=~ 212|150 1‘1 -1 (28)
1 8| 1— vE
M(g)= — :
2K1( 1-\sif ¢— 7005¢) The condition for a first-order phase transition is now more
complicated in that it reduces to the inequality
V[ ¢p]=K,S*(Sir? ¢+ a cose+ a). (26) 3 o2
. —a?E— &+ 1+ —| <0, (29
In this case the sphaleron value ¢fis ¢;= arccose/2 and 16 2
) where
o
V[ ps]=K,s? 1+a+ |, V'[es=0, N o2
¢= m( 1= T)'
a2 .
V'sl=— Kzsz( 2- 7) , Setting
8 3 C!Z 1/2
— 2
o2\ 12 §+——z[1i 1-—«a 1+—) ]
V’"[(ﬁs]: —3K252a< 1— T) , 3a 4 2
the inequality(29) is thené_< &< &, which reduces to
V" hs]=K,s%(8=Fa), .
° ¢ S <\< £ . (30)
and 1 a 1 a
&Fl1-7 &tll-7
aZ 1/2
a( 1— _) In Fig. 5 we plot the boundary separating the parameter do-
A 4 main of first-order transitions from that of second-order tran-

M((ﬁs):mv M,(‘i’s):4_K1 (1-N)% sitions.
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IV. CONCLUSIONS in Ref. 2 can be useful in wider contexts, and also in field-

In the above we have derived a criterion for the parametetheory m_odeIs, such as those with Skyrme terms that imply
: . z . n effective field-dependent mass.
domains of first-order phase transitions for a wide class o
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