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Series expansions for a Heisenberg antiferromagnetic model for SrCu2„BO3…2

Zheng Weihong,* C. J. Hamer,† and J. Oitmaa‡

School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
~Received 3 November 1998!

We use a variety of series expansion methods at both zero and finite temperature to study an antiferromag-
netic Heisenberg spin model proposed recently by Miyahara and Ueda for the quasi-two-dimensional material
SrCu2(BO3)2. We confirm that this model exhibits a first-order quantum phase transition atT50 between a
gapped dimer phase and a gapless Ne´el phase when the ratiox5J8/J of nearest- and next-nearest-neighbor
interactions is varied, and locate the transition atxc50.691(6). Using longer series we are able to give more
accurate estimates of the model parameters by fitting to the high-temperature susceptibility data.
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I. INTRODUCTION

The discovery of high-temperature superconductivity h
stimulated an enormous amount of activity in the study
two-dimensional antiferromagnetism, which may be co
nected with the superconductivity phenomenon. The pse
spin-gap behavior observed in the high-Tc cuprates has also
stimulated intense interest in systems with spin gaps. Sev
new spin gap systems have been found experiment
Among them some of the compounds which have two-
mensional character include the coupled spin ladder syst
SrCu2O3,1 CaV2O5,2 (VO2)P2O7,3 Cu2(C5H12N2)2Cl4,4 and
the plaquette RVB system CaV4O9.5

Recently a new two-dimensional spin gap syst
SrCu2(BO3)2 has been found by Kageyamaet al.6 It has a
spin-singlet ground state with a finite spin gap;20 K. They
also found that the peak of the susceptibility is much s
pressed compared with standard dimer models, and obse
two plateaus in the magnetization at 1/4 and 1/8 of the
moment.

Miyahara and Ueda7 showed that these observations cou
be understood on the basis of a simple two-dimensio
Heisenberg antiferromagnet model with nearest-neigh
and next-nearest-neighbor couplings. The copper ions in
SrCu2(BO3)2 compound are all located at crystallograph
cally equivalent sites, forming a distinctive pattern. Miyaha
and Ueda7 show that, remarkably enough, a singlet dim
state forms an exact eigenstate of this Hamiltonian at
couplings, and is the ground-state in a region where
nearest-neighbor coupling dominates. There is a first o
phase transition to a Ne´el ordered state atJ8/J50.760.01.
They find that the SrCu2(BO3)2 system lies close to this
transition, which explains the unusual temperature dep
dence of the magnetization. The plateaus observed in
magnetization curve can also be understood, on the basis
the triplet excitations from the ground state are almost loc
ized. Their conclusions were reached on the basis of e
diagonalization calculations for lattices of up to 20 sites, a
low order dimer expansions in (J8/J), and high-temperature
expansions inJ/T andJ8/T.

In this paper, we reinforce these conclusions by carry
out a more extensive series study of the model. These
clude high-temperature expansions, Ising expansions at
PRB 600163-1829/99/60~9!/6608~9!/$15.00
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temperature, and dimer expansions both at zero and fi
temperature. The model is presented in Sec. II, and
framework for the various series expansions is outlined. T
results are presented in Sec. III. It is shown that the temp
ture dependence of the susceptibility can be fitted accura
and in detail by this method.

II. SERIES EXPANSIONS

The magnetic properties of SrCu2(BO3)2 may be de-
scribed by the two-dimensional spinS51/2 Heisenberg an-
tiferromagnetic model with nearest-neighbor~NN! and next-
nearest-neighbor~NNN! interactions6,7

H5J(
NN

Si•Sj1J8 (
NNN

Si•Sj . ~1!

The system is illustrated in Fig. 1~a!. We denote the ratio of
the couplings asx, that is,x[J8/J. In the present paper, w
study only the case of antiferromagnetic coupling, whe
bothJ andJ8 are positive. In the largeJ8/J limit, the model
is topologically equivalent to the two-dimensional neare
neighbor square lattice Heisenberg model. In the smallJ8/J
limit, every pair of spins along nearest-neighbor bonds int
act only weakly with each other, and the dominant config

FIG. 1. ~a! Lattice structure of the Cu21 spins of SrCu2(BO3)2.
The nearest-neighbor bonds are expressed by solid lines and
next-nearest-neighbor bonds by dashed lines.~b! Elementary unit
for interaction between a pair of nearest-neighbor bonds. The do
lines denote the additional coupling (J2) which still allow the per-
fect dimer state as eigenstate.
6608 ©1999 The American Physical Society
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PRB 60 6609SERIES EXPANSIONS FOR A HEISENBERG . . .
ration in the ground state is the product state with the sp
along nearest-neighbor bonds forming a spin singlet. In f
it has been proved8,7 that this state is an eigenstate of t
system for anyx, and it is the ground state for small enoug
values ofx. We can also prove that this system still has t
perfect dimer state as an eigenstate even if we include
couplingJ2 denoted by dotted lines shown in Fig. 1~b!.

We have studied this system by using various linke
cluster expansion methods including dimer expansions
both zero temperature and finite temperature, Ising exp
sions at zero temperature, and high-temperature expans
The linked-cluster expansion method has been previously
viewed in several articles,9–13 and will not be repeated here
Here we only summarize the expansion methods used,
the results derived from them are presented in the next
tion.

A. Dimer expansions atT50

At temperatureT50, we can construct an expansion inx
by taking the first term ofH as the unperturbed Hamiltonia
and the second term inH as a perturbation. That is, th
Hamiltonian of Eq.~1! can be rewritten as

H5H01xV, ~2!

where

H05(
NN

Si•Sj ,

V5 (
NNN

Si•Sj , ~3!

and where we have setJ51 for convenience. The unper
turbed ground state is then a product state of near
neighbor singlet dimers and the perturbation couples th
among themselves and with the pair triplet states. As m
tioned above, the unperturbed ground state is also an ei
state of the full Hamiltonian, but is not the true ground st
for x.xc .

Dimer expansions can be developed for all ground s
properties as well as for the triplet excitation spectrum. He
because of the trivial nature of the ground state in the dim
phase, we concentrate on the lowest triplet excitations.
have calculated the dispersion relationD(kx ,ky) to orderx15,
extending the calculation of Miyahara and Ueda by 11 ter
This calculation involves 11 586 linked clusters up to eig
sites. The resulting series coefficients are available on
quest.

B. Ising expansions atT50

In the limit thatJ8@J, the model is topologically equiva
lent to the two-dimensional square lattice Heisenberg mo
so we expect that the system has Nee´l order: an order in
which every pair of spins along a horizontal nearest-neigh
bond ~denoted as A! has spin up, while every pair of spin
along a vertical nearest-neighbor bond~denoted as B! has
spin down.

To construct aT50 expansion about the Ising limit fo
this system, one has to introduce an anisotropy parametel,
and write the Hamiltonian for the Heisenberg-Ising model
s
t,
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H5H081lV8, ~4!

where

H085(
NN

Si
zSj

z1x (
NNN

Si
zSj

z1tF (
i PB

Si
z2(

i PA
Si

zG ,
V85(

NN
~Si

xSj
x1Si

ySj
y!1x (

NNN
~Si

xSj
x1Si

ySj
y!

2tF (
i PB

Si
z2(

i PA
Si

zG . ~5!

The last term in bothH08 and V8 is a local staggered field
term, which can be included to improve convergence. T
limits l50 andl51 correspond to the Ising model and th
isotropic Heisenberg model, respectively. The operatorH08 is
taken as the unperturbed Hamiltonian, with the unpertur
ground state being the usual Ne´el state. The operatorV8 is
treated as a perturbation. It flips a pair of spins on neighb
ing sites.

Ising series have been calculated for the ground state
ergy per site,E0 /N and the staggered magnetizationM, for
several ratios of couplingsx and~simultaneously! for several
values of t up to orderl9. The series are available upo
request.

At the next stage of the analysis, we try to extrapolate
series to the isotropic point (l51) for those values of the
exchange coupling parameters which lie within the Ne´el-
ordered phase atl51. For this purpose, we first transform
the series to a new variable

d512~12l!1/2, ~6!

to remove the singularity atl51 predicted by the spin-wave
theory. This was first proposed by Huse14 and was also used
in our earlier work on the square lattice case.15 We then use
both integrated first-order inhomogeneous differen
approximants16 and Pade´ approximants to extrapolate the s
ries to the isotropic pointd51 (l51). The results of the
Ising expansions will be presented in the next section.

C. High-temperature series expansions

We now turn to the finite-T thermodynamic properties
We have developed high-temperature series expansionb
51/(kBT) for the uniform magnetic susceptibilityx(T) and
the specific heatC(T), for the system with arbitraryx,

Tx~T!5
1

N (
i

(
j

TrSi
zSj

ze2bH

Tre2bH
,

C~T!5
]U

]T
, ~7!

whereN is the number of sites, and the internal energyU is
defined by

U5
TrHe2bH

Tre2bH
. ~8!
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The series forx(T) andC(T) were computed to orderb7 for
arbitraryx. The expansions have the following general form

(
i 50

` F (
j 50

i

ci , j x
j Gb i , ~9!

whereci , j are the numerical coefficients. The series coe
cients are not presented here, but are available upon req
Some of the coefficients can be obtained by using the dim
expansion series at finite temperature discussed in the
subsection. The high-temperature series expansions w
first carried out by Miyahara and Ueda7 up to orderb2. Our
results agree with these previous results, and extend the
ries by five terms.

D. Dimer expansions at finite temperature

The study of finite-temperature properties via series e
pansions is usually done by the high-temperature expans
method as mentioned above, where we expand in power
b for given ratio of exchange couplings. This method oft
performs poorly at low temperatures for many parameter
gimes of interest. To overcome this difficulty, one can d
velop the dimer expansion at finite temperature, where
expand the thermodynamic quantities in power ofx for arbi-
trary temperatures. This method has been used by one o
previously for the Hubbard model12 and more recently also
by Elstner and Singh13 for spin models. This method ha
shown excellent convergence for a wide range of coupl
constants at all temperatures for the bilayer Heisenb
model13 and for alternating spin-chains and spin ladders.17

To get an expansion for thermodynamic quantities, su
as the susceptibility and the specific heat, inx at arbitrary
temperature for the Hamiltonian in Eq.~2!, one basically
needs to expand

e2b(H01xV) ~10!

in powers ofx. This can be obtained by using the followin
relation:

e2b(H01xV)5e2bH0(
n

~2x!nI n , ~11!

whereI n are the integrals given by

I n5E
0

b

dt1E
0

t1
dt2•••E

0

tn21
dtnṼ~ t1!Ṽ~ t2!•••Ṽ~ tn!,

~12!

with

Ṽ~ t !5etH0Ve2tH0. ~13!

The integrations needed in this expansion are of the type

tkelt , ~14!

and can easily be integrated analytically.
The expansions for the susceptibilityx and the logarithm

of the partition function lnZ per site take the general form13

Tx~x,b!5 (
n50

f n
(x)~b!

12n! S x

12D
n

,

~15!
:
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ln Z~x,b!53b/41 ln Z01 (
n51

f n
(Z)~b!

12n! S x

12D
n

,

whereZ05113 exp(2b), and the coefficientf n(b) for both
x and lnZ have the general form

f n~b!5 (
k50

n

(
l 50

n11

ck,l
(n)bkZ0

2 l , ~16!

whereck,l
(n) are expansion coefficients. The series were co

puted to ordern56, the results forx(x,b) are given in
Table I, and the results for lnZ(x,b) are available on reques
From this expansion, one can recover the results of the h
temperature expansion and dimer expansions if we reexp
in powers ofb, or x at T50.

III. RESULTS

Having obtained the series for the various expansi
above we present in this section the results of series anal
We use integrated first-order inhomogeneous differen
approximants16 and Pade´ approximants to extrapolate the s
ries.

A. Phase diagram

The ground state energy per siteE0 /N is shown in Fig. 2.
The full points in the largeJ8/J region are obtained from the
Ising expansion, and the horizontal line corresponds to
eigenenergy of the perfect dimer state~which is E0
53NJ/8 exactly!. These curves cross at a transition po
xc , which corresponds to a first order ground state ph
transition, resulting from a level crossing. The numerical
timate of xc50.691(6) is a more precise estimate of t
resultxc50.70(1) of Miyahara and Ueda7 discussed above

The staggered magnetizationM for those values of the
exchange coupling parameters which lie within the Ne´el-
ordered phase atl51 is shown in Fig. 3. We can see thatM
decreases as we turn onJ, and appears to vanish at aroun
J/J8.1.4, near the transition point determined from t
ground state energies. The errors are too large to determ
whether or not where is a finite discontinuity at the tran
tion.

B. Triplet excitation spectrum

From the dimer expansions, one can estimate the tri
excitation spectrum for those values of the exchange c
pling parameters which lie within the dimer phase. The tr
let excitation spectra forx50.6, 0.65 and 0.678 are show
in Fig. 4. We can see that the minimum energy gap is
(kx ,ky)5(0,0) ~and the equivalent point (p,p)). The band-
width is quite small, indicating that the triplet excitations a
highly localized, but increases asxc is approached.

Figure 5 shows the triplet excitation gapD5D(0,0) as a
function of x. At J850, D/J is equal to 1 exactly, corre
sponding to a single dimer excited to a triplet state. At t
first order transition pointxc , the gap isD50.14(5), where
the uncertainty is largely associated with the uncertainty
xc .
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TABLE I. Series coefficients for the dimer expansion at finite temperature of the magnetic susceptibilityx. Nonzero coefficientsck,l
(n) in

Eq. ~16! up to ordern56 are listed.

(n,k,l) ck,l
(n) (n,k,l) ck,l

(n) (n,k,l) ck,l
(n) (n,k,l) ck,l

(n)

~ 0, 0, 0! 4 ~ 4, 3, 1! 220689920 ~ 5, 2, 3! 26519859200 ~ 6, 5, 2! 126045573120
~ 0, 0, 1! 24 ~ 4, 4, 1! 23239424 ~ 5, 3, 3! 28138690560 ~ 6, 6, 2! 5370983424
~ 1, 1, 0! 264 ~ 4, 1, 2! 23417856 ~ 5, 4, 3! 1845657600 ~ 6, 1, 3! 2386640691200
~ 1, 1, 1! 128 ~ 4, 2, 2! 50377728 ~ 5, 5, 3! 256417280 ~ 6, 2, 3! 22967429427200
~ 1, 1, 2! 264 ~ 4, 3, 2! 56881152 ~ 5, 1, 4! 21577410560 ~ 6, 3, 3! 21905248194560
~ 2, 1, 0! 640 ~ 4, 4, 2! 1916160 ~ 5, 2, 4! 6189373440 ~ 6, 4, 3! 22606694359040
~ 2, 2, 0! 1344 ~ 4, 1, 3! 222579200 ~ 5, 3, 4! 236834969600 ~ 6, 5, 3! 9843886080
~ 2, 1, 1! 24224 ~ 4, 2, 3! 2109221888 ~ 5, 4, 4! 1241210880 ~ 6, 6, 3! 25610921984
~ 2, 2, 1! 23456 ~ 4, 3, 3! 268871168 ~ 5, 5, 4! 33269760 ~ 6, 1, 4! 412034826240
~ 2, 1, 2! 7680 ~ 4, 4, 3! 1858560 ~ 5, 1, 5! 188743680 ~ 6, 2, 4! 3178633052160
~ 2, 2, 2! 2880 ~ 4, 1, 4! 7593984 ~ 5, 2, 5! 22117468160 ~ 6, 3, 4! 4207696773120
~ 2, 1, 3! 24096 ~ 4, 2, 4! 105916416 ~ 5, 3, 5! 23898193920 ~ 6, 4, 4! 3593735331840
~ 2, 2, 3! 2768 ~ 4, 3, 4! 37969920 ~ 5, 4, 5! 22151383040 ~ 6, 5, 4! 2331372339200
~ 3, 1, 0! 16128 ~ 4, 4, 4! 22433024 ~ 5, 5, 5! 36126720 ~ 6, 6, 4! 15752116224
~ 3, 2, 0! 239168 ~ 4, 2, 5! 237355520 ~ 5, 3, 6! 26102712320 ~ 6, 1, 5! 2160650362880
~ 3, 3, 0! 236864 ~ 4, 3, 5! 27667712 ~ 5, 4, 6! 747110400 ~ 6, 2, 5! 21772148326400
~ 3, 1, 1! 2103680 ~ 4, 4, 5! 712704 ~ 5, 5, 6! 221626880 ~ 6, 3, 5! 25437322035200
~ 3, 2, 1! 359424 ~ 5, 1, 0! 2190402560 ~ 6, 1, 0! 23039897600 ~ 6, 4, 5! 22693322178560
~ 3, 3, 1! 99072 ~ 5, 2, 0! 275018240 ~ 6, 2, 0! 35239587840 ~ 6, 5, 5! 441996410880
~ 3, 1, 2! 179712 ~ 5, 3, 0! 2157562880 ~ 6, 3, 0! 24536862720 ~ 6, 6, 5! 222042312704
~ 3, 2, 2! 2933120 ~ 5, 4, 0! 2142878720 ~ 6, 4, 0! 17376768000 ~ 6, 1, 6! 9059696640
~ 3, 3, 2! 278336 ~ 5, 5, 0! 243966464 ~ 6, 5, 0! 8583413760 ~ 6, 2, 6! 402165596160
~ 3, 1, 3! 292160 ~ 5, 1, 1! 1436820480 ~ 6, 6, 0! 1929157632 ~ 6, 3, 6! 3619867852800
~ 3, 2, 3! 944640 ~ 5, 2, 1! 2283760640 ~ 6, 1, 1! 22405099520 ~ 6, 4, 6! 1007563898880
~ 3, 3, 3! 6912 ~ 5, 3, 1! 2067609600 ~ 6, 2, 1! 2386275184640 ~ 6, 5, 6! 2240553820160
~ 3, 2, 4! 2331776 ~ 5, 4, 1! 1148129280 ~ 6, 3, 1! 2162191831040 ~ 6, 6, 6! 13220904960
~ 3, 3, 4! 9216 ~ 5, 5, 1! 119927808 ~ 6, 4, 1! 2204870942720 ~ 6, 3, 7! 2958440407040
~ 4, 1, 0! 1290240 ~ 5, 1, 2! 23521018880 ~ 6, 5, 1! 263168215040 ~ 6, 4, 7! 2140236554240
~ 4, 2, 0! 1256448 ~ 5, 2, 2! 2806732800 ~ 6, 6, 1! 25717993472 ~ 6, 5, 7! 48625090560
~ 4, 3, 0! 2377728 ~ 5, 3, 2! 211009249280 ~ 6, 1, 2! 131641528320 ~ 6, 6, 7! 22901934080
~ 4, 4, 0! 1185024 ~ 5, 4, 2! 22687846400 ~ 6, 2, 2! 1509814702080
~ 4, 1, 1! 29722880 ~ 5, 5, 2! 267313664 ~ 6, 3, 2! 611100979200
~ 4, 2, 1! 210973184 ~ 5, 1, 3! 3663267840 ~ 6, 4, 2! 1026448035840
.
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C. Thermodynamic properties

Let us now discuss the thermodynamic properties. Fig
shows the internal energy per siteE/NJ vs temperature
kBT/J obtained from the high-temperature expansion a
from the dimer expansion at finite temperature forx50.5.
We can see that the direct sum to the dimer expansion s
at finite temperature converges extremely well down toT
50, and it can recover the exact ground state ene
E0 /NJ523/8 at T50. The results obtained from the inte
grated differential approximants to the high-temperature
ries expansion only converge well down tokBT/J.0.3.

The results for the specific heat atx50.4 obtained from
the high-temperature expansion and from the dimer exp
sion at finite temperature are shown in Fig. 7. We choosx
50.4 rather thanx50.5 because the specific heat series c
verges poorly for largerx.

Finally, the results for the susceptibilityx at x50.5 are
shown in Fig. 8. Again, we can see that the results from
direct sum of the dimer expansion series at finite tempera
converges well down toT50 ~it converges less well near th
6

d

ies

y

e-

n-

-

a
re

peak position!, while the integrated differential approximan
to the high-temperature expansion series only converg
the position of the peak.

It is clear that the dimer expansion at finite temperat
gives much better results than the high-temperature exp
sion for those values of the exchange coupling parame
which lie within the dimer phase. It is interesting to explo
this also for ratios of the couplings lying within the Nee´l-
ordered phase atT50 (x.0.691). In Figs. 9 and 10, we
present the results for internal energy and susceptibility
x51.5, well outside the dimer phase atT50, and one can
see that dimer expansions at finite temperature still give g
convergence in the high-temperature region. Evidently
high temperature the system is highly disordered and b
methods include contributions from all states.

D. Compound SrCu2„BO3…2

Finally we compare the experimental results for the co
pound SrCu2(BO3)2 with the theoretical calculations to ge
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an estimate of the exchange constants. Kageyamaet al.6 de-
termined the excitation gapD525 K from the NMR relax-
ation rate. They also measure the temperature dependen
the magnetic susceptibility, and this implies a sligh
smaller gap:D5(1961) K. Since there is some uncertain
in the energy gap, to determine the exchange constants
begin with the magnetic susceptibility. To convert the the
retical x(T) into units emu/Cu mol in experiment, we mu
tiply our x ~calculated withJ51) by NAg2mB

2/kB , with mB

FIG. 2. The ground-state energy per siteE0 /NJ as function of
J8/J. The solid horizontal line is the energy of the perfect dim
state, while the solid points with error bars are the estimates f
the Ising expansion.

FIG. 3. The staggered magnetizationM vsJ/J8. The solid points
with error bars are the estimates from the Ising expansions.
of

we
-

the Bohr magneton,kB the Boltzmann constant,NA
Avogadro’s number, andg the effectiveg factor. There are
three fitting parameters:J andx ~or J8) andg. Our goal is to
try to find a proper parameter set (J,x,g) which gives the
minimum value of

P5(
Ti

@xexp~Ti !2x theo~Ti !#
2, ~17!

where xexp, x theo(Ti) are the experimental and theoretic
susceptibilities, respectively, and the summation is over
experimental pointsTi . As the theoretical susceptibility
from the sixth order dimer expansion at finite temperat
converges well above temperatures corresponding to a ph
cal temperatureT0;100 K, we restrict the minimization

r
m

FIG. 4. Plot of triplet excitation spectrumD(kx ,ky) ~derived
from the dimer expansions! along high-symmetry cuts through th
Brillouin zone for coupling ratiosx50.6, 0.65, 0.678.

FIG. 5. The triplet excitation gapD5D(0,0) as a function of
coupling ratiosx derived from the dimer expansion. Several diffe
ent integrated differential approximants to the series are shown.
error bar indicates the gap at the critical point.
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FIG. 6. Internal energy per siteE/NJ vs temperaturekBT/J for
x51/2. The solid and dashed lines are the direct sum of the di
expansion series at finite temperature to orders from 2 to 6, w
the dotted lines are several different integrated differential appr
mants to the high-temperature series.

FIG. 7. Specific heat per siteC vs temperaturekBT/J for x
50.4. The solid and dashed lines are the direct sum of the di
expansion series at finite temperature to orders from 2 to 6, w
the dotted lines are several different integrated differential appr
mants to the high-temperature series.
er
le
i-

er
le
i-

FIG. 8. Susceptibilityx per sitex vs temperaturekBT/J for x
51/2. The solid and dashed lines are direct sum of the dimer
pansion series at finite temperature to orders from 2 to 6, while
dotted lines are several different integrated differential appro
mants to the high-temperature series.

FIG. 9. Internal energy per siteE/NJ vs temperaturekBT/J for
x53/2. The solid and dashed lines are direct sum of series of di
expansion at finite temperature to order from 2 to 6, while
dotted lines are several different integrated differential appro
mants to high-temperature series.
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function to temperaturesT.T0. We then scan the values o
P around the expected parameter region for SrCu2(BO3)2 to
locate the minimumPmin51.1431029 (emu/CuMol)2 at J
592.0 K, x50.563 andg52.104. This is shown as the fu
point in Fig. 11

Since there is some error in both the experimental
theoreticalx, we cannot expect that the true parameters
SrCu2(BO3)2 are located exactly at the minimum point ofP
~in fact, the location of the minimum point depends on t
chosen value ofT0), we need to consider the energy g
also. In the three-dimensional parameter space (J,x,g), there
is a long tubelike region which hasP<5Pmin . The intersec-
tion with the planeg52.108 is shown as the dashed lines
Fig. 11~a!. If we fix the value ofJ and varyx and g, we
obtain curvesx(J) andg(J) which give near minimum val-
ues ofP. These curvesx(J) andg(J) and the corresponding
P are given in Fig. 11. We can see that alongx(J), P only
changes slightly by about 10%, andg is about 2.11 almos
independent ofJ. To further determine the parameters f
SrCu2(BO3)2, we need to consider the energy gap@which
relates to the low-temperature behavior ofx(T)#. From Fig.
5, we can get two curves in (J,x) space where the energ
gap is 19 and 25 K, respectively, as shown in Fig. 11. We
that they cross with the optimalx(J) curve obtained above a

J582.0K, x50.678, g52.108

if the energy gap is 19 K, or at

J583.2K, x50.664, g52.108

FIG. 10. Susceptibilityx per sitex vs temperaturekBT/J for
x53/2. The solid and dashed lines are the direct sum of the di
expansion series at finite temperature to orders from 2 to 6, w
the dotted lines are several different integrated differential appr
mants to the high-temperature series.
d
r

e

if the energy gap is 25 K. We believe this should be the b
fit to both x(T) and the energy gap.

If we take the energy gap to be 19 K, the comparison
the experimental data with theoretical calculations is sho
in Figs. 12 and 13. We can see the fit is extremely good
the high-temperature region. We note that the dimer exp
sion sums tend to show sharp peaks, which are not visibl
either the experimental data or the high-temperature exp
sions. We suspect that these are an artifact, as the results
become more sensitive to the truncation of the dimer exp
sion at finite order near the transition point inx. The ratio of
couplings x obtained here is similar to that obtained b
Miyahara and Ueda,7 but they foundJ5100 K which is
nearly 20% larger than our estimate. They obtained th
results by considering the paramagnetic Curie-Weiss c
stant u. The Curie-Weiss constant given by the hig
temperature expansions isu5(J14J8)/4. From experimen-
tal data, the susceptibility at high temperature can be fit
with a Curie-Weiss constantu592.5 K and an effectiveg
factor g52.14.6 The result curve for (J14J8)/4592.5 K is
shown as a dotted line in Fig. 11~a!. The discrepancy be
tween the two estimates is perhaps due to uncertainty in
tracting the Curie-Weiss constant from experimental data
finite temperature. Our estimates imply the Curie-Weiss c
stant to beu576.1 K.

IV. CONCLUSIONS

Several different series expansions have been calcul
to high order for this model: high-temperature expansions

er
le
i-

FIG. 11. The two nearly horizontal solid lines in the lower wi
dow indicate where the energy gap is 19 and 25 K, respectiv
The other solid lines in both upper and lower windows indicate
a given value ofJ, the values of (x,g) which give a minimum value
of P, and the corresponding value ofP is also given in the upper
window. The region bounded by two dashed lines in the low
window indicates the range in parameter space (J,x,g52.108) that
P is less than or equal to 5Pmin , wherePmin is the minimum ofP in
the whole parameter space, indicated by the solid box point in
lower window. The dotted line in the lower window indicates whe
the Weiss constantu5(J14J8)/4592.5 K.
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Ising expansion at zero temperature, and dimer expansio
both zero and finite temperature. The first-order transit
from the dimer phase to a Ne´el-ordered phase has been fou
to occur at J8/J50.691(6), in good agreement with the
original estimate 0.70~1! of Miyahara and Ueda.7 The
ground-state energy shows a sharp and distinct break in s
at that point, indicative of a first-order transition, and t
triplet spin gap undergoes a small but definite discontinu
the triplet spin gap isD50.14(5) at the transition point. A
discontinuity in the Ne´el phase magnetization is less certa
but is not excluded by our results.

The model has been fitted to the experimental suscept
ity data for SrCu2(BO3)2,6 with parametersg52.108, J
582.0 K, andx50.678 if the energy gap is 19 K org
52.108,J583.2 K, andx50.664 if the energy gap is 25 K
A detailed and accurate fit can be obtained at high temp
ture, and a reasonable fit at low temperatures is also
tained. The fitted value ofx5(J8/J) is about 0.67, which is
indeed very close to the transition point 0.691.

The Ising expansion has been developed for this mo
and this allows a more accurate determination of the ph
transition point. We have also estimated the spontane
magnetization in the Nee´l phase. The finite-temperatur
dimer expansion has been computed; this provides the m

FIG. 12. Comparison of the calculated temperature depend
of the susceptibility with experimental data~Ref. 6! ~open points!.
The solid and dashed lines are direct sums of the dimer expan
series at finite temperature to orders from 2 to 6 for Heisenb
model with parametersJ582 K, x50.678, andg52.108.
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reliable theoretical estimate of the high-temperature susc
tibility and is used to estimate the experimental paramet
of the real system. Apart from this we have also substantia
increased the length of the dimer series atT50 and the
conventional high-temperature expansion. The former has
lowed us to present a calculation of the full triplet excitatio
spectrum for this system.

Note added in proof.We were informed recently of the
work by Albrecht and Mila,18 who study this system by us-
ing the exact diagonalization of small clusters, linear spi
wave theory, and Schwinger-boson mean-field theory, a
argue there is an intermediate phase with helical long-ran
order between the Ne´el phase and the dimer phase. We hop
to consider the possibility of helical long-range order in
future calculation.
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FIG. 13. Same as Fig. 12, but the experimental data are co
pared with the estimates from high-temperature expansions~the
solid lines representing various integrated differential approxima
to the high-temperature series.!
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