PHYSICAL REVIEW B VOLUME 60, NUMBER 9 1 SEPTEMBER 1999-1

Series expansions for a Heisenberg antiferromagnetic model for SrGUBO3),

Zheng Weihong;, C. J. Hamef, and J. Oitmaa
School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
(Received 3 November 1998

We use a variety of series expansion methods at both zero and finite temperature to study an antiferromag-
netic Heisenberg spin model proposed recently by Miyahara and Ueda for the quasi-two-dimensional material
SrCw(B0O3),. We confirm that this model exhibits a first-order quantum phase transitids-8t between a
gapped dimer phase and a gaplesgINshase when the ratio=J'/J of nearest- and next-nearest-neighbor
interactions is varied, and locate the transitioxgt 0.691(6). Using longer series we are able to give more
accurate estimates of the model parameters by fitting to the high-temperature susceptibility data.
[S0163-182609)09225-5

[. INTRODUCTION temperature, and dimer expansions both at zero and finite
temperature. The model is presented in Sec. Il, and the
The discovery of high-temperature superconductivity hagramework for the various series expansions is outlined. The
stimulated an enormous amount of activity in the study ofresults are presented in Sec. lll. It is shown that the tempera-
two-dimensional antiferromagnetism, which may be con-ture dependence of the susceptibility can be fitted accurately
nected with the superconductivity phenomenon. The pseudand in detail by this method.
spin-gap behavior observed in the high-cuprates has also
stimulated intense interest in systems with spin gaps. Several Il. SERIES EXPANSIONS
new spin gap systems have been found experimentally.
Among them some of the compounds which have two-di- The magnetic properties of Sr&{BOs), may be de-
mensional character include the coupled spin ladder systengsribed by the two-dimensional sp8r 1/2 Heisenberg an-
SrCw03,t CaV,0s,2 (VO,)P,0;,2 Cuy(CsHyN,),Cl,,* and  tiferromagnetic model with nearest-neightitiN) and next-

the plaquette RVB system Ca,.® nearest-neighboiNNN) interaction&’

Recently a new two-dimensional spin gap system
SrCw(BO;), has been found by Kageyaneaal® It has a H=1J .S+ .S 1
spin-singlet ground state with a finite spin gaj20 K. They % S5 N%\l S5 @

also found that the peak of the susceptibility is much sup- o o _

pressed compared with standard dimer models, and observa§e system is illustrated in Fig(d). We denote the ratio of

two plateaus in the magnetization at 1/4 and 1/8 of the fulthe couplings as, that is,x=J'/J. In the present paper, we

moment. study only the case of antiferromagnetic coupling, where
Miyahara and Uedashowed that these observations couldbothJ andJ’ are positive. In the largd’/J limit, the model

be understood on the basis of a simple two-dimensiondf topologically equivalent to the two-dimensional nearest-

Heisenberg antiferromagnet model with nearest-neighboR€ighbor square lattice Heisenberg model. In the stidl

and next-nearest-neighbor couplings. The copper ions in théMit, every pair of spins along nearest-neighbor bonds inter-

SrCu(BO;), compound are all located at crystallographi- &ct only weakly with each other, and the dominant configu-

cally equivalent sites, forming a distinctive pattern. Miyahara

and Ueda show that, remarkably enough, a singlet dimer I

state forms an exact eigenstate of this Hamiltonian at all & ~~~-§--"""

’
[

couplings, and is the ground-state in a region where the ;s

nearest-neighbor coupling dominates. There is a first order $-.._ / \ __.--

phase transition to a ¢ ordered state at’/J=0.7+0.01. J ‘_'I J
They find that the SrGBOs), system lies close to this N L S5
transition, which explains the unusual temperature depen- / ' __.¢.._ / \

dence of the magnetization. The plateaus observed in the®=——®__ -c—e

magnetization curve can also be understood, on the basis tha
the triplet excitations from the ground state are almost local-

ized. Their conclusions were reached on the basis of exact
diagonalization calculations for lattices of up to 20 sites, and g, 1. (g) Lattice structure of the CGd spins of SICy(BOy),.

low order dimer expansions iJ(/J), and high-temperature The nearest-neighbor bonds are expressed by solid lines and the
expansions inl/T andJ’/T. next-nearest-neighbor bonds by dashed lifbs.Elementary unit

In this paper, we reinforce these conclusions by carryingor interaction between a pair of nearest-neighbor bonds. The dotted
out a more extensive series study of the model. These irlines denote the additional coupling,) which still allow the per-
clude high-temperature expansions, Ising expansions at zefect dimer state as eigenstate.

(a) (b)
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ration in the ground state is the product state with the spins H=H{+AV’, 4
along nearest-neighbor bonds forming a spin singlet. In fact,
it has been provéd that this state is an eigenstate of the where
system for any, and it is the ground state for small enough
values ofx. We can also prove that this system still has this
perfect dimer state as an eigenstate even if we include the
couplingJ, denoted by dotted lines shown in Figbl.

We have studied this system by using various linked-

e

Hp= >, SIST+x > SiSi+t
NN NNN

cluster expansion methods including dimer expansions at V= (S'Si+ S?’S}’)erz (S'Sf+9's)

both zero temperature and finite temperature, Ising expan- NN NNN

sions at zero temperature, and high-temperature expansions.

The linked-cluster expansion method has been previously re- —t[z Siz—z s|. (5)
viewed in several article¥;** and will not be repeated here. eB - 1eA

Here we only summarize the expansion methods used, anfe |ast term in bottH/ and V' is a local staggered field
t_he results derived from them are presented in the next S€¢arm, which can be included to improve convergence. The
tion. limits A=0 and\ =1 correspond to the Ising model and the
. . isotropic Heisenberg model, respectively. The operkifprs
A. Dimer expansions atT =0 taken as the unperturbed Hamiltonian, with the unperturbed
At temperaturel =0, we can construct an expansionxin  ground state being the usual &lestate. The operatdr’ is
by taking the first term oH as the unperturbed Hamiltonian treated as a perturbation. It flips a pair of spins on neighbor-
and the second term ikl as a perturbation. That is, the ing sites.

Hamiltonian of Eq.(1) can be rewritten as Ising series have been calculated for the ground state en-
ergy per siteEq/N and the staggered magnetizatiwgh for
H=Ho+xV, (2)  several ratios of couplingsand(simultaneouslyfor several
where values oft up to order\®. The series are available upon
request.
At the next stage of the analysis, we try to extrapolate the
Hoz% S-S, series to the isotropic poini&1) for those values of the

exchange coupling parameters which lie within théeNe
ordered phase at=1. For this purpose, we first transform

V= S-S, 3 the series to a new variable
NNN

and where we have sé=1 for convenience. The unper- s=1-(1-M)"2 (6)
turped gro_und state Is then a product state of neares%b remove the singularity at=1 predicted by the spin-wave
neighbor singlet dimers and the perturbation couples thest%eory. This was first proposed by Hi$end was also used

among themselves and with the pair triplet states. As MENYL our earlier work on the square lattice casaVe then use

tioned above, the unperturbed ground state is also an €19 5th integrated first-order inhomogeneous differential

fs;?t)((a;)f( the full Hamiltonian, but is not the true ground Stateapproximant%? and Padapproximants to extrapolate the se-
-

Dimer expansions can be developed for all ground statries o the isotropic poin6=1 (A=1). The results of the
- P . ped 9 ?sing expansions will be presented in the next section.

properties as well as for the triplet excitation spectrum. Here,

because of the trivial nature of the ground state in the dimer

phase, we concentrate on the lowest triplet excitations. We C. High-temperature series expansions

have calculated the dispersion relatidtk, k) to orderx'?, We now turn to the finitéF thermodynamic properties.
eXtending the calculation of Miyahara and Ueda by 11 term&/\/e have devek)ped high-temperature series expanﬁ)ns
This calculation involves 11586 linked clusters up to eight=1/(k,T) for the uniform magnetic susceptibility(T) and
sites. The resulting series coefficients are available on rehe specific hea€(T), for the system with arbitrary,
quest.
1 TrsiSte A1
B. Ising expansions atfT =0 Tx(T)=—= Z E +
NT T Tre A"
In the limit thatJ’>J, the model is topologically equiva-
lent to the two-dimensional square lattice Heisenberg model, oU
so we expect that the system has Nemder: an order in C(T)=—, 7
which every pair of spins along a horizontal nearest-neighbor al

bond (denoted as Ahas spin up, while every pair of spins |, v aN is th ber of sit d the int | .
along a vertical nearest-neighbor bofaknoted as Bhas \clivef(iarzgd E)'/ e number of sites, and the internal enethys

spin down.
To construct al=0 expansion about the Ising limit for .
i i i TrHe
this system, one has to introduce an anisotropy parameter U= —— . (8)

and write the Hamiltonian for the Heisenberg-Ising model as Tre PH
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The series foi(T) andC(T) were computed to ordes’ for fOB) [ x\
. . . n
arbitraryx. The expansions have the following general form: INZ(x,8)=3p/4+InZy+ 21 W(l_Z ,
1= !
e i
> ci X |8, (9)  wherezZy=1+3 exp(-p), and the coefficient,(B) for both
1=0]j=0 x and InZ have the general form

wherec; ; are the numerical coefficients. The series coeffi-
cients are not presented here, but are available upon request.
Some of the coefficients can be obtained by using the dimer f(B)=2 > 18"z, (16)
expansion series at finite temperature discussed in the next k=0 170
subsection. The high-temperature series expansions Were crec
first carried out by Miyahara and Uedap to orderg?. Our

results agree with these previous results, and extend the s%
ries by five terms.

n ntl

f(f‘l) are expansion coefficients. The series were com-
uted to ordem=6, the results fory(x,3) are given in
able |, and the results for I(x,B) are available on request.
From this expansion, one can recover the results of the high-
temperature expansion and dimer expansions if we reexpand
in powers ofB, orx at T=0.

The study of finite-temperature properties via series ex-
pansions is usually done by the high-temperature expansion
method as mentioned above, where we expand in powers of
B for given ratio of exchange couplings. This method often Having obtained the series for the various expansions
performs poorly at low temperatures for many parameter reabove we present in this section the results of series analysis.
gimes of interest. To overcome this difficulty, one can de-We use integrated first-order inhomogeneous differential
velop the dimer expansion at finite temperature, where wepproximant¥ and Padepproximants to extrapolate the se-
expand the thermodynamic quantities in powexd&br arbi-  ries.
trary temperatures. This method has been used by one of us
previously for the Hubbard modé&land more recently also
by Elstner and Singfl for spin models. This method has
shown excellent convergence for a wide range of coupling The ground state energy per siig/N is shown in Fig. 2.
constants at all temperatures for the bilayer Heisenberdhe full points in the largd’/J region are obtained from the
model?® and for alternating spin-chains and spin laddérs. Ising expansion, and the horizontal line corresponds to the

To get an expansion for thermodynamic quantities, sucteigenenergy of the perfect dimer statevhich is E,

D. Dimer expansions at finite temperature

Ill. RESULTS

A. Phase diagram

as the susceptibility and the specific heatxiat arbitrary ~=3NJ/8 exactly. These curves cross at a transition point
temperature for the Hamiltonian in E@2), one basically X., which corresponds to a first order ground state phase
needs to expand transition, resulting from a level crossing. The numerical es-
timate of x,=0.691(6) is a more precise estimate of the
e AlHotxV) (100 resultx,=0.70(1) of Miyahara and Uedaliscussed above.

The staggered magnetizatidvt for those values of the
exchange coupling parameters which lie within theeNe
ordered phase at=1 is shown in Fig. 3. We can see thdt
decreases as we turn dnand appears to vanish at around

e Ao V—g =AY (—x)M,, (1) J/3’=1.4, near the transition point determined from the
" ground state energies. The errors are too large to determine
wherel,, are the integrals given by whether or not where is a finite discontinuity at the transi-
tion.

in powers ofx. This can be obtained by using the following
relation:

B ty th-1 ~ ~
In=J dtlf dty- - - j dt,V(t)V(ty)- - - V(t,),
0 0 0 B. Triplet excitation spectrum

. (12 From the dimer expansions, one can estimate the triplet
with excitation spectrum for those values of the exchange cou-
e tHon s tH pling parameters which lie within the dimer phase. The trip-

V(t)=eTove . (13 |et excitation spectra fox=0.6, 0.65 and 0.678 are shown

The integrations needed in this expansion are of the type " Fig- 4. We can see that the minimum energy gap is at
(kx,ky)=(0,0) (and the equivalent pointx, 7)). The band-

thelt) (14  width is quite small, indicating that the triplet excitations are
highly localized, but increases a&s is approached.

Figure 5 shows the triplet excitation gap=A(0,0) as a
function of x. At J’=0, A/J is equal to 1 exactly, corre-
sponding to a single dimer excited to a triplet state. At the

and can easily be integrated analytically.
The expansions for the susceptibilityand the logarithm
of the partition function IfZ per site take the general fotfn

F0(8) [ x |1 first order transition poink;, the gap isA =0.145), where
Tx(x,B)= E n — the uncertainty is largely associated with the uncertainty of
x(x,.8 o | 12)
n=0 . Xe-

(19
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TABLE I. Series coefficients for the dimer expansion at finite temperature of the magnetic susceptibNiyzero coefficients(k’]) in
Eg. (16) up to ordem=6 are listed.

(nkh o (nkh ol (nkh o7 (nk) ol
(0,0,0 4 (4,3,9 —20689920 (5,2, 3 —6519859200 (6,5, 2 126045573120
(0,0,0 -4 (4,4, —3239424 (5,3,3 28138690560 (6, 6, 2 5370983424
(1,1,0 —64 (4,1,2 23417856 (5,4, 3 1845657600 (6,1, 3 —386640691200
(1,1, 128 (4,2,2 50377728 (5,5, 3 —56417280 (6,2,3 —2967429427200
(1,1,2 —64 (4,3,2 56881152 (5,1, 49 —1577410560 (6,3,3 —1905248194560
(2,1,0 640 (4,4,2 1916160 (5,2,49 6189373440 (6,4,3 —2606694359040
(2,2,0 1344 (4,1,3 —22579200 (5,3,9 —36834969600 (6,5,3 9843886080
(2,1, —4224 (4,2,3 —109221888 (5,4, 49 1241210880 (6,6, 3 —5610921984
(2,2,9 —3456 (4,3,3 —68871168 (5,5, 9 33269760 (6,1,49 412034826240
(2,1,2 7680 (4,4,3 1858560 (5,1,5H 188743680 (6,2, 4 3178633052160
(2,2,2 2880 (4,1,49 7593984 (5,2,H —2117468160 (6, 3,4 4207696773120
(2,1,3 —4096 (4,2,49 105916416 (5, 3,5H 23898193920 (6,4, 49 3593735331840
(2,2,3 —768 (4,3,9 37969920 (5,4,H —2151383040 (6,5,4 —331372339200
(3,1,0 16128 (4,4,49 —2433024 (5,5,9H 36126720 (6, 6,49 15752116224
(3,2,0 —39168 (4,2,H —37355520 (5,3,6 —6102712320 (6,1,5 —160650362880
(3,30 — 36864 (4,359 —7667712 (5,4,6 747110400 (6,2,H — 1772148326400
(3,1, —103680 (4,4,5 712704  (5,5,6 —21626880 (6,3,H —5437322035200
(3,2,9 359424 (5,1,0 —190402560 (6,1,0 —3039897600 (6,4,5H —2693322178560
(3,3,) 99072 (5,2,0 —75018240 (6,2,0 35239587840 (6,5,H 441996410880
(3,1,2 179712 (5,3,0 —157562880 (6,3,0 24536862720 (6,6,5H —22042312704
(3,2,2 —933120 (5,4,0 —142878720 (6,4,0 17376768000 (6,1, 6 9059696640
(3,3,2 — 78336 (5,50 —43966464 (6,50 8583413760 (6,2,6 402165596160
(3,1,3 —92160 (5,1,0 1436820480 (6,6,0 1929157632 (6, 3,6 3619867852800
(3,2,3 944640 (5,2, —283760640 (6,1, —2405099520 (6,4,6 1007563898880
(3,33 6912 (5,30 2067609600 (6,2, —386275184640 (6,5, 6 — 240553820160
(3,2,9 —331776  (5,4,) 1148129280 (6,3, —162191831040 (6,6, 6 13220904960
(3,3,9 9216 (5,59 119927808 (6,4, 1 —204870942720 (6,3, —958440407040
(4,1,0 1290240 (5,1,2 —3521018880 (6,5,2 —63168215040 (6,4, 7 —140236554240
(4,2,0 1256448 (5,2,2 2806732800 (6,6, —5717993472 (6,5, 48625090560
(4,3,0 2377728 (5,3,2 —11009249280 (6,1,2 131641528320 (6,6,7 —2901934080
(4,4,0 1185024 (5,4, 2 —2687846400 (6,2,2 1509814702080
(4,1, —9722880 (5,5,2 —67313664 (6,3,2 611100979200
(4,2, —10973184 (5,1,3 3663267840 (6,4, 2 1026448035840

C. Thermodynamic properties peak positiofy, while the integrated differential approximants

Let us now discuss the thermodynamic properties. Fig. 60 the high-temperature expansion series only converge to
shows the internal energy per si/NJ vs temperature the position of the peak. _ o
kgT/J obtained from the high-temperature expansion and It is clear that the dimer expansion at finite temperature
from the dimer expansion at finite temperature for0.5.  9IV€S much better results than the h|gh—temp_erature expan-
We can see that the direct sum to the dimer expansion seriéon for those values of the exchange coupling parameters
at finite temperature converges extremely well dowriTto Which lie within the dimer phase. It is interesting to explore
—0, and it can recover the exact ground state energy“'s also for ratios of the couplings lying within the Nee
Eo/NJ=—3/8 atT=0. The results obtained from the inte- ordered phase ar=0 (x>0.691). In Figs. 9 and 10, we
grated differential approximants to the high-temperature sePresent the resul_ts for mtgrnal energy and susceptibility for
ries expansion only converge well downkgT/J=0.3. x=1.5, well outside the dimer phase Bt-0, and one can

The results for the specific heat 0.4 obtained from see that d|mer.expan5|9ns at finite temperat_ure stlll_g|ve good
the high-temperature expansion and from the dimer exparfonVvergence in the high-temperature region. Evidently at

sion at finite temperature are shown in Fig. 7. We choose Nigh temperature the system is highly disordered and both

—0.4 rather thax=0.5 because the specific heat series conMethods include contributions from all states.

verges poorly for largex.

Finally, the results for the susceptibility at x=0.5 are
shown in Fig. 8. Again, we can see that the results from a
direct sum of the dimer expansion series at finite temperature Finally we compare the experimental results for the com-
converges well down td =0 (it converges less well near the pound SrCy(BOs), with the theoretical calculations to get

D. Compound SrCw,(BO3),
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0.5 ;ﬂf““\\*mﬁ_\w
r x=0.6 1
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04 x=0.65 i
2 8/3 ﬁ\”wwﬂ’% %&”ﬁ{
<
5T x=0.678
0.3
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0.2(0,0) (m,0) (m,m) (0,0) (0,m) (m,7)
(k. k,)
' I W S T S R S R S
0 0.2 0.4 FIG. 4. Plot of triplet excitation spectrum(k,,k,) (derived

0.6
3/ from the dimer expansiohslong high-symmetry cuts through the
Brillouin zone for coupling ratiox=0.6, 0.65, 0.678.
FIG. 2. The ground-state energy per ditg/NJ as function of
J'/J. The solid horizontal line is the energy of the perfect dimerthe Bohr magneton,kg the Boltzmann constantN,
state, while the solid points with error bars are the estimates fromnyogadro’s number, and the effectiveg factor. There are
the Ising expansion. three fitting parameters:andx (or J’) andg. Our goal is to

_ try to find a proper parameter sel,k,g) which gives the
an estimate of the exchange constants. Kageyeina®® de-  minimum value of

termined the excitation gajj=25 K from the NMR relax-

ation rate. They also measure the temperature dependence of

the magnetic susceptibility, and this implies a slightly P:; DXAT) = X" T) 1%, (17)

smaller gapA=(19+1) K. Since there is some uncertainty '

in the energy gap, to determine the exchange constants wehere x*®, x"q(T;) are the experimental and theoretical

begin with the magnetic susceptibility. To convert the theo-susceptibilities, respectively, and the summation is over all

retical x(T) into units emu/Cu mol in experiment, we mul- experimental pointsT;. As the theoretical susceptibility

tiply our y (calculated withJ=1) by Nag?u2/kg, with ug  from the sixth order dimer expansion at finite temperature
converges well above temperatures corresponding to a physi-

] cal temperaturel,~100 K, we restrict the minimization

A/l

0 . . L 1 . L L 1 2 L s 1

o] 0.2 0.4 0.6
I 3/
0 05 1 15
1/ FIG. 5. The triplet excitation gap=A(0,0) as a function of

coupling ratiosx derived from the dimer expansion. Several differ-
FIG. 3. The staggered magnetizatidnvs J/J’. The solid points  ent integrated differential approximants to the series are shown. The
with error bars are the estimates from the Ising expansions. error bar indicates the gap at the critical point.
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-0.1

0.15

-0.2

0.1

E/NJ

-0.3
0.05

-0.4

FIG. 6. Internal energy per site/NJ vs temperaturégT/J for FIG. 8. Susceptibilityy per sitey vs temperaturdsT/J for X
x=1/2. The solid and dashed lines are the direct sum of the dimer_, » 1o <0iid and dashed lines are direct sum o? the dimer ex-
expansion series at finite ten?peratur_e to orders _from 2_to 6, Wh'l_%ansion series at finite temperature to orders from 2 to 6, while the
the dotted lines are several different integrated differential approXiy e lines are several different integrated differential approxi-
mants to the high-temperature series.

mants to the high-temperature series.

0.6 —————T T 0 ——————————

0.4
. L
i /
™~ I
© i

02t i

0 I:EI 1 1 I 1 1 1 1 I 1 1 1 1

0 0.5 1 1.5
k,T/J

FIG. 7. Specific heat per sit€ vs temperaturékgT/J for x FIG. 9. Internal energy per sit€/NJ vs temperatur&gT/J for

=0.4. The solid and dashed lines are the direct sum of the dimex=3/2. The solid and dashed lines are direct sum of series of dimer
expansion series at finite temperature to orders from 2 to 6, whilexpansion at finite temperature to order from 2 to 6, while the
the dotted lines are several different integrated differential approxidotted lines are several different integrated differential approxi-
mants to the high-temperature series. mants to high-temperature series.
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0.1

0.08

0.06

0.04

0.02

FIG. 10. Susceptibilityy per sitey vs temperaturé&gT/J for

x=3/2. The solid and dashed lines are the direct sum of the dime,

expansion series at finite temperature to orders from 2 to 6, whil

the dotted lines are several different integrated differential approxi

mants to the high-temperature series.

function to temperature$>T,. We then scan the values of
P around the expected parameter region for $(B@s), to
locate the minimumP,,;,=1.14x 10" ° (emu/CuMolf at J
=92.0 K,x=0.563 andg=2.104. This is shown as the full
point in Fig. 11

Since there is some error in both the experimental an

theoreticaly, we cannot expect that the true parameters for,

SrCy,(BO3), are located exactly at the minimum point Bf

(in fact, the location of the minimum point depends on the

chosen value ofT), we need to consider the energy gap
also. In the three-dimensional parameter spdce,§), there

is a long tubelike region which hd&<5P,,;,. The intersec-
tion with the planeg=2.108 is shown as the dashed lines in
Fig. 11(a). If we fix the value ofJ and varyx and g, we
obtain curvex(J) andg(J) which give near minimum val-
ues ofP. These curveg(J) andg(J) and the corresponding
P are given in Fig. 11. We can see that alor(d), P only
changes slightly by about 10%, amgdis about 2.11 almost
independent ofl. To further determine the parameters for
SrCw(BO3),, we need to consider the energy daghich
relates to the low-temperature behaviondfT)]. From Fig.
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214

2,12

21 F

2,08
08 ——+—+—+

07 A=19K

/3

FIG. 11. The two nearly horizontal solid lines in the lower win-
dow indicate where the energy gap is 19 and 25 K, respectively.
The other solid lines in both upper and lower windows indicate for
a given value of), the values of X,g) which give a minimum value
of P, and the corresponding value Bfis also given in the upper
window. The region bounded by two dashed lines in the lower
window indicates the range in parameter spak&,g=2.108) that
b is less than or equal toR,,,, whereP ., is the minimum ofP in

%he whole parameter space, indicated by the solid box point in the

lower window. The dotted line in the lower window indicates where
the Weiss constami=(J+4J')/4=92.5 K.

if the energy gap is 25 K. We believe this should be the best
fit to both x(T) and the energy gap.

If we take the energy gap to be 19 K, the comparison of
the experimental data with theoretical calculations is shown
in Figs. 12 and 13. We can see the fit is extremely good in
he high-temperature region. We note that the dimer expan-
sion sums tend to show sharp peaks, which are not visible in
either the experimental data or the high-temperature expan-
sions. We suspect that these are an artifact, as the results will
become more sensitive to the truncation of the dimer expan-
sion at finite order near the transition pointdnThe ratio of
couplings x obtained here is similar to that obtained by
Miyahara and Ued4,but they foundJ=100 K which is
nearly 20% larger than our estimate. They obtained their
results by considering the paramagnetic Curie-Weiss con-
stant . The Curie-Weiss constant given by the high-
temperature expansions és=(J+4J')/4. From experimen-
tal data, the susceptibility at high temperature can be fitted
with a Curie-Weiss constar=92.5 K and an effectivey
factor g=2.14° The result curve for{+4J')/4=92.5 K is
shown as a dotted line in Fig. (&. The discrepancy be-

5, we can get two curves inJ(x) space where the energy yyeen the two estimates is perhaps due to uncertainty in ex-

gap is 19 and 25 K, respectively, as shown in Fig. 11. We Seg.ing the Curie-Weiss constant from experimental data at
that they cross with the optima(J) curve obtained above at finjte temperature. Our estimates imply the Curie-Weiss con-

stant to befd=76.1 K.
J=82.0K, x=0.678, g=2.108

if the energy gap is 19 K, or at IV. CONCLUSIONS

Several different series expansions have been calculated

J=83.2K, x=0.664, g=2.108 to high order for this model: high-temperature expansions, an
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FIG. 12. Comparison of the calculated temperature dependence FIG. 13. Same as Fig. 12, but the experimental data are com-
of the susceptibility with experimental datRef. 6 (open points ~ Pared with the estimates from high-temperature expansitives
The solid and dashed lines are direct sums of the dimer expansictPlid lines representing various integrated differential approximants
series at finite temperature to orders from 2 to 6 for Heisenberd0 the high-temperature serigs.

model with parameter3=82 K, x=0.678, andy=2.108. reliable theoretical estimate of the high-temperature suscep-

Ising expansion at zero temperature, and dimer expansion Hfility and is used to estimate the experimental parameters
both zero and finite temperature. The first-order transitiorf the real system. Apart from this we have also substantially

from the dimer phase to a Nkordered phase has been found"creased the length of the dimer seriesTat0 and the
to occur atd’/J=0.69X6), in good agreement with the conventional high-temperature expansion. The former has al-
original estimate 0.7Q) O’f Miyahara and Ued&. The lowed us to present a calculation of the full triplet excitation

g : ectrum for this system.
ground-state energy shows a sharp and distinct break in sloﬁé) . .
at that point, indicative of a first-order transition, and the Note added in proofWe were informed recently of the

triplet spin gap undergoes a small but definite discontinuityf"’Ork by Albrecht and Mila,” who study this system by us-

the triplet spin gap is\=0.14(5) at the transition point. A "9 the exact diagonalizgtion of small cluste_:rs, linear spin-

discontinuity in the Nel phase magnetization is less certain, W2V€ theory, and Schwinger-boson mean-field theory, and

but is not excluded by our results. argue there is an ||:1termed|ate phase Wlth helical long-range
The model has been fitted to the experimental susceptibilc-)rder between the N phase and the dimer phase. We hope

ity data for SrCy(BOs),® with parametersy=2.108, J to consider the possibility of helical long-range order in a

=82.0 K, andx=0.678 if the energy gap is 19 K ay future calculation.

= 2.10§,J=83.2 K, andx=. 0.664 if the energy gap is 25 K. ACKNOWLEDGMENTS
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