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Influence of the biquadratic interaction to magnetic surface reconstruction
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The surface spin ordering is studied in a ferromagnetic crystal where spins interact both by bilinear and
biquadratic interaction. The surface spin configuration is unstable with respect to ferromagnetic alignment for
certain values of parameters leading to so-called surface magnetic reconstruction. It is shown that biquadratic
interaction enhances the reconstruction. The energy of surface excitations is calculated and it is shown to be
much lower than the energy of bulk excitations in presence of surface reconstruction, while the surface
Goldstone mode appears only in the case of vanishing external field and anisotropy. Mean field calculation is
presented for the study of the behavior of surface magnetization.@S0163-1829~99!00126-5#
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I. INTRODUCTION

During the last several years, interest has grown for
study of magnetic surfaces, thin films, and multilayer
structures, both from experimental and theoretical points
view.1 There exist nowadays modern experimental te
niques @low-energy electron diffraction~LEED!, nuclear
magnetic resonance~NMR!# which enable the precise mea
surements of the quantities of the local character such as
magnetization or susceptibility. This whole interest,
course, is motivated primarly by the possible application
given materials for memory devices.

One interesting effect related to surfaces is the phen
enon ofmagnetic surface reconstruction. The effect involved
means that under certain conditions the spin configuratio
the surface could become unstable with respect to the fe
magnetic ordering and transit to a new state with spins ti
with respect to magnetization axis. For the case of the se
infinite Heisenberg ferromagnet, this phenomenon was s
ied in detail2–4 and these studies will be our starting point

On the other hand, higher-order couplings~for spin S
>1) have been the subject of interest for a long time5,6

while the practical interest in biquadratic~more generally,
quadrupolar! interaction started about 20 years ago, wh
this interaction was added to the bilinear Heisenberg on
explain the magnetic properties of the materials like MnA
UO2, UP, TbSb, MnO,a2MnS, EuSe, rare-earth vanadate
arsenates, and phosphates.7,8 Moreover, it was shown tha
there exist materials in which the quadrupolar interaction
the dominant one, like molecular crystals9 or Jahn-Teller
ferroelectric systems.10 This situation immediately caused
PRB 600163-1829/99/60~9!/6574~10!/$15.00
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more thorough theoretical study of the system. The m
extensive study within the mean-field approximation w
performed by Chen and Levy,11 and studies by more sophis
ticated techniques~Green’s functions, mostly! followed.12–22

However, all these results dealt only with the bulk materi
and this inspired us to perform a study where we shall
amine the possibility of surface reconstruction for the case
semi-infinite face-centered-cubic lattice ferromagnet,
pending on the external magnetic field, bilinear, and biq
dratic Heisenberg interaction.

We shall study the above-described ferromagnet w
translational symmetry inXZ plane andY axis perpendicular
to crystal surface. The magnetic moments interact by b
bilinear Heisenberg exchange (I nm) and biquadratic ex-
change (aInm), wherea is the constant of the biquadrati
interaction. We shall simplify the model by treating only th
interaction between nearest neighbors.

First of all, let us be precise about the notation. The ce
site is defined in terms of layer~plane! indexn ~starting from
zero and increasing along theY axis! and two-dimensional
~2D! vector r denoting the position within the plane:n
5(r,n), and accordingly, for the spin operatorsSn5Sr(n).
The nearest neighbors approximation will be realized by
assumption

I n2m5H 2I S for n5m50

I otherwise
.

This leads to the Hamiltonian of the system in the form (ln
counts the nearest neighbors in thenth layer!
H5
I S

2 (
r,r1l0

Sr~0!Sr1l0
~0!1

aIS

2 (
r,r1l0

„Sr~0!Sr1l0
~0!…22I (

r,r1l1

Sr~0!Sr1l1
~1!2aI (

r,r1l1

„Sr~0!Sr1l1
~1!…2

2
I

2 (
n,m>1

(
r,r1lm

Sr~n!Sr1lm
~m!2

aI

2 (
n,m>1

(
r,r1lm

„Sr~n!Sr1lm
~m!…21HAB1HAS2gmBH(

n
(

r
Ŝr

z~n!. ~1!
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The meaning of all of the sums is clear, whileHAB and
HAS include the bulk and surface single-ion anisotropy. T
bulk anisotropy term we take in the form

ĤAB52D (
n>1

(
r

„Ŝr
z~n!…2 ~2!

$Although in the bulk systems with cubic symmetry th
allowed single-ion anisotropy is of the form2D@(Sx)

4

1(Sy)
41(Sz)

4#, one can demonstrate that its contribution
proportional to (Ŝz)2 in the approximation quadratic in Bos
operators.% Following Ref. 4 we introduce the surface aniso
ropy as

ĤAS52 (
r,n50

@Kx„Ŝr
x~0!…21Ky„Ŝr

y~0!…21Kz„Ŝr
z~0!…2#

which can be cast into the form

ĤAS52DS (
r,n50

„Ŝr
z~0!…2

2
DK

2 (
r,n50

@„Ŝr
x~0!…22„Ŝr

y~0!…2#, ~3!

whereDS5Kz2(Kx1Ky)/2; DK5Kx2Ky .
Let us finally comment on the values of the paramete

The biquadratic interaction is important forS>1, so we shall
concentrate on these values, with particular attention pai
the caseS51, when most of the expressions are simplifie
However, the bulk studies indicate that fora.1, more com-
plex configurations arise, so we shall limit our calculations
the range 0<a<1.

The structure of the paper is as follows: The Hamilton
of the system in the presence of surface reconstructio
analyzed in Sec. II, where the local frame for surface spin
introduced. The Hamiltonian is stabilized leading to the co
ditions for the reconstruction. Boson representation whic
used for the study of elementary excitations is introduced
Sec. III. The results are summarized in Sec. IV where als
mean-field study is outlined.

II. THE HAMILTONIAN OF THE SYSTEM IN THE
PRESENCE OF SURFACE RECONSTRUCTION

We shall assume that the ground state in the bulk is
fined by the ordering of spins along theZ axis, while the
possible surface reconstruction manifests itself by the de
tion of surface spins from theZ direction for the angleu
within the XZ plane. The surface is divided into two subla
tices denoteda andb, and although we shall formally work
with sublattices, we remember that the only difference
curs in the surface layer wherea spins deviate for the angl
u while b spins deviate for the angle2u. The spin configu-
ration in the surface layer is presented in Fig. 1. Let us n
e

s.

to
.

o
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is
-
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n
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-

w

define the local frame, where the spins are denoted
primed quantities:

Ŝra/b

x ~0!5cosuŜra/b

x8 ~0!6sinuŜra/b

z8 ~0!,

Ŝra/b

y ~0!5Ŝra/b

y8 ~0!,

Ŝra/b

z ~0!57sinuŜra/b

x8 ~0!1cosuŜra/b

z8 ~0!, ~4!

for n>1 Ŝr~n!5S8r~n!. ~5!

We shall present here the calculation details for the bilin
interaction only, due to the cumbersome form of the expr
sions for the biquadratic interaction.

The quantization axis isZ8 and it is given by the relation

Ŝr
z8(n)u0&rn

8 5Su0&rn
8 for n50,1,2, . . . . It is clear that this last

relation makes no distinction betweena andb sites.
From the relations~4! and ~5! one concludes that the re

construction affects only the terms of the Hamiltonian whi
describe the interaction of spins at the surface@Ĥ(0,0)# and
between the surface and first bulk layer@Ĥ(0,1)#:

FIG. 1. Spin configuration of the surface layer in the presence
magnetic surface reconstruction. The axes of the local frame
denoted.
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Ĥ~0,0!1Ĥ~0,1!5
I S

2 (
ra ,ra1lb

$cos 2u@Ŝra

x8~0!Ŝra1lb

x8 ~0!1Ŝra

z8~0!Ŝra1lb

z8 ~0!#1Ŝra

y8~0!Ŝra1lb

y8 ~0!1sin 2u@Ŝra

z8~0!Ŝra1lb

x8 ~0!

2Ŝra

x8~0!Ŝra1lb

z8 ~0!#%1
I S

2 (
rb ,rb1la

$cos 2u@Ŝrb

x8~0!Ŝrb1la

x8 ~0!1Ŝrb

z8~0!Ŝrb1la

z8 ~0!#1Ŝrb

y8~0!Ŝrb1la

y8 ~0!

1sin 2u@Ŝrb

x8~0!Ŝrb1la

z8 ~0!2Ŝrb

z8~0!Ŝrb1la

x8 ~0!#%2I (
ra ,ra1l1

$@Ŝra

x8~0!Ŝra1l1

x8 ~1!1Ŝra

z8~0!Ŝra1l1

z8 ~1!#cosu

1Ŝra

y8~0!Ŝra1l1

y8 ~1!1sinu@Ŝra

z8~0!Ŝra1l1

x8 ~1!2Ŝra

x8~0!Ŝra1l1

z8 ~1!#%2I (
rb ,rb1l1

$@Ŝrb

x8~0!Ŝrb1l1

x8 ~1!

1Ŝrb

z8~0!Ŝrb1l1

z8 ~1!#cosu1Ŝrb

y8~0!Ŝrb1l1

y8 ~1!#2sinu@Ŝrb

z8~0!Ŝrb1l1

x8 ~1!2Ŝrb

x8~0!Ŝrb1l1

z8 ~1!#% ~6!
he

u
c
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tic
Possible values of the reconstruction angleu are determined
from the stabilization of the Hamiltonian~6!. We shall mini-
mize over u the energy of the new ground stateu0&8
5)r0

)r
18
u0&r0

8 u0&r
18

8 . It can be easily demonstrated that t

ground-state energy per site equals

Eo~u!52S2I S cos 2u24S2I cosu2gmBHScosu. ~7!

Introducing JS54I SS; J54SI; h5gmBH, we obtain the
basic condition

sinu~2Js cosu2J2h!50. ~8!

This equation possesses two solutions. The first one,

u50,

corresponds to the situation when no reconstruction occ
The solution which allows the possibility of the reconstru
tion is
um
s.
n
th
fa
rs.
-

cosu5
J1h

2JS
. ~9!

It follows from Eq. ~9! that the reconstruction is possible
JS.JS

c , where the critical value of the exchange is given

JS
c5

J1h

2
. ~10!

Let us mention that the relation~8! can be obtained also b
the bosonization of ‘‘primed’’ spin operators~within Bloch
approximation! and elimination of terms linear in Bose op

erators, arising from the combination;Ŝr
x8(0)Ŝr1l1

z8 ( i ), i

50,1, in the Hamiltonian~6!. After this elimination, we are
left with the Hamiltonian which contributes to the quadra
terms in Bose operators in the form
Ĥ2~0,0!1Ĥ2~0,1!5
I S

2 (
ra ,ra1l0

$cos 2u@Ŝra

x8~0!Ŝra1l0

x8 ~0!1Ŝra

z8~0!Ŝra1l0

z8 ~0!#1Ŝra

y8~0!Ŝra1l0

y8 ~0!%

1
I S

2 (
rb ,rb1l0

$cos 2u@Ŝrb

x8~0!Ŝrb1l0

x8 ~0!1Ŝrb

z8~0!Ŝrb1l0

z8 ~0!#1Ŝrb

y8~0!Ŝrb1l0

y8 ~0!%

2I (
ra ,ra1l1

$cosu@Ŝra

x8~0!Ŝra1l1

x8 ~1!1Ŝra

z8~0!Ŝra1l1

z8 ~1!#1Ŝra

y8~0!Ŝra1l1

y8 ~1!%

2I (
rb ,rb1l1

$cosu@Ŝrb

x8~0!Ŝrb1l1

x8 ~1!1Ŝrb

z8~0!Ŝrb1l1

z8 ~1!#1Ŝrb

y8~0!Ŝrb1l1

y8 ~1!%

2h cosuS (
ra

Ŝra

z8~0!1(
rb

Ŝrb

z8~0! D . ~11!
o-

b-
der
In the above Hamiltonian, the summations overra and
rb in the surface layer can be written as a unique s
over r, according to the definition of primed quantitie
We see that, within the framework of the give
approximation, surface reconstruction leads to
anisotropic interaction at the surface and between the sur
e
ce

layer and first layer, while it does not change tw
dimensional~2D! lattice, neither will it influence 2D Bril-
louin zone~BZ!.

Regrouping all the terms with bilinear interaction we o
tain the spin Hamiltonian which contributes to second-or
Hamiltonian in Bose operators:
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Ĥ25
I S

2 (
r,r1l0

$cos 2u@Ŝr
x8~0!Ŝr1l0

x8 ~0!1Ŝr
z8~0!Ŝr1l0

z8 ~0!#1Ŝr
y8~0!Ŝr1l0

y8 ~0!%2h cosu(
r

Ŝr
z8~0!

2I (
r,r1l1

$cosu@Ŝr
x8~0!Ŝr1l1

x8 ~1!1Ŝr
z8~0!Ŝr1l1

z8 ~1!#1Ŝr
y8~0!Ŝr1l1

y8 ~1!%

2
I

2 (
m,n>1

(
r,r1lm

@Ŝr
x8~n!Ŝr1lm

x8 ~m!1Ŝr
z8~n!Ŝr1lm

z8 ~m!1Ŝr
y8~n!Ŝr1lm

y8 ~m!#2h (
r,n>1

Ŝr
z8~n! ~12!
th

n
th
p
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-
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re-

s
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me
This concludes the part concerning the contribution of
bilinear interaction.

A similar procedure can be applied to biquadratic a
anisotropic parts of the Hamiltonian, where again, only
terms contributing to the Hamiltonian quadratic in Bose o
erators are retained. We are not going to write them exp
itly, but only quote the results.

The ground-state energy including the contributions of
complete Hamiltonian~1! has the following form:

Eo~u!5
1

2
aJS~2S21!2 cos4 u1

1

2
@2JS~12a/2!

2aJS~2S21!22aJ/2~2S21!21~2S21!

3~DK/22DS!#cos2 u2@J~12a/2!1h#cosu.

~13!

Deriving this expression overu, we obtain the condition for
the extreme values of energy]Eo(u)/]u50, with one solu-
tion corresponding to unreconstructed surface:

sinu50, ~14!

while the reconstruction angleu is defined by a cubic equa
tion in terms of cosu:

FIG. 2. Two-dimensional I Brillouin zone.
e

d
e
-
-

e

2aJS~2S21!2 cos3 u1@2JS~12a/2!2aJS~2S21!2

2aJ/2~2S21!21~2S21!~DK/22DS!#

3cosu2@J~12a/2!1h#50. ~15!

The discussion of the solutions of this equation will be giv
in the next section.

The transition to Bose operators is realized in such a w
to include only the terms contributing to second-ord
Hamiltonian. For that purpose, we use the following rep
sentation:

Ŝr
x8~n!5AS

2
@ âr

1~n!1âr~n!#,

Ŝr
y8~n!5 iAS

2
@ âr

1~n!2âr~n!#,

Ŝr
z8~n!5S2âr

1~n!âr~n!. ~16!

This choice of boson representation is valid as long au
Þp/2, i.e., in the cases with no complete antiferromagne
ordering. In the case of antiferromagnetic ordering, the int
duction of two types of boson operators corresponding
different ground states would be necessary. The quadr
terms must be written in the following way:

~Ŝn
z8!25S22~2S21!ân

1ân,

~Ŝn
28!25~2S21!~ ân

1!2,

~Ŝn
18!25~2S21!~ ân!2. ~17!

This representation is obtained by taking into account
contribution of the normal order of higher terms to secon
order terms, and, what is more important, it leads to the sa
results as the equations linearized in spins.~Please notice
that the bosonization is performed in the local frame.! After
the transition to Bose operators~16! and ~17!, we can intro-
duce two-dimensional Fourier transforms:

âr( l )5
1

ANxNz
(
ki

aki
~ l !eikir, ~18!

where

r5nx

a0

2
ex1nz

a0

2
ez

is the same for bothu50 anduÞ0.
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The summation overki goes over 2D BZ, i.e.,

2
2p

ao
<kx<

2p

ao
, 2

2p

ao
<kz<

2p

ao
,

whose shape is presented in Fig. 2.

In this way we obtain the total Hamiltonian of the system, quadratic in bose operators:

Ĥtot5(
ki

vS~ki!aki

1~0!aki
~0!1

1

2 (
ki

aS~ki!@aki

1~0!a2ki

1 ~0!1H.c.#1(
ki

vS1g1~ki!@aki

1~0!aki
~1!1H.c.#

1(
ki

aS1g1~ki!@aki

1~0!a2ki

1 ~1!1H.c.#1(
ki

v1~ki!aki

1~1!aki
~1!2

1

2 (
ki

a1@aki

1~1!a2ki

1 ~1!1H.c.#

1(
l>2

(
ki

v~ki!aki

1~ l !aki
~ l !2 J̃(

l>2
(
ki

g1~ki!@aki

1~ l !aki
~ l 21!1H.c.#. ~19!

The following notation has been introduced here:

vS~ki!5~h1J!cosu2JS cos 2u1JSaF23~2S21!2~cosu!413~2S21!2~cosu!21~cosu!22
1

2
~2S21!22

1

2G
2aJF2

3

4
~2S21!2~cosu!21

1

2
cosu1

1

4
~2S21!2G1g~ki!$JS~cosu!212JSa@~2S21!2 cos 4u2~3S223S11!

3~cosu!2J#%1
2S21

2 H DS@3~cosu!221#1
3

4
DK~sinu!2J ,

aS~ki!52JS~sinu!2H g~ki!F11aS 2~2S21!2~cosu!22
1

2
~2S21!22

1

2D G2~2S21!2aS ~cosu!22
J

4JS
D J

2
2S21

2 S DS~sinu/2!21
DK

2
@~cosu/2!211# D ,

vS152J~cosu/2!2S 11
a

2~cosu/2!2
@~2S21!2~cosu!212S~S21!cosu22S212S21# D ,

aS15J~sinu/2!2S 12
a

2~sinu/2!2
@~2S21!2~cosu!22~2S222S11!cosu22S~S21!# D ,

v1~ki!5Jcosu12J̃1h1
aJ

2 S 3

2
~2S21!2~cosu!22cosu2

1

2
~2S21!2D2 J̃g~ki!1~2S21!D,

a15
aJ

4
~2S21!2~sinu!2,

v~ki!5h13J̃2 J̃g~ki!1~2S21!D,

J̃5J@112aS~S21!#,

g~ki!5cos
kzao

2
cos

kxao

2
,

g1~ki!5
1

2 S cos
kzao

2
1cos

kxao

2 D .
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Finally, let us note that in the case of reconstructionu
Þ0, one can eliminate the external field from the express
for vS(ki), leading to

vS~ki!5 J̃S@11g~ki!~cosu!2#2JSa~2S21!2@~sinu!2

12g~ki!~cosu!2#~sinu!22
2S21

2
$DS~sinu!2

2DK@~sinu!212#%2
Ja

4
~2S21!2~sinu!2,

~20!

J̃S5JS@112aS~S21!#.

III. SURFACE EXCITATIONS IN THE PRESENCE
OF SURFACE RECONSTRUCTION

Starting from the boson Hamiltonian~19!, we are going to
determine in this section the dispersion law of surface~and
bulk! spin waves in a closed form.

Due to ‘‘anomalous’’ coupling of the formââ andâ1â1,
our initial point will be the equations of motion for ‘‘two
component’’ operators

S âki
~ l ,t !

â2ki

1 ~ l ,t !
D ,

which shall be immediately written in the energy represen
tion, i.e., in terms of the Fourier transforms:

âki
~ l ,V!5

1

2pE âki
~ l ,t !eiVtdt.

A simple calculation gives:

for l 50,

S V2vS~ki! 2aS~ki!

aS~ki! V1vS~ki!
D S âki

~0!

â2ki

1 ~0!
D 1g1~ki!

3S vS1 aS1

2aS1 2vS1
D S âki

~1!

â2ki

1 ~1!
D 50 ~21!

for l 51,

S V2v1~ki! 2a1

a1 V1v1~ki!
D S âki

~1!

â2ki

1 ~1!
D 2g1~ki!

3S vS1 aS1

2aS1 2vS1
D S âki

~0!

â2ki

1 ~0!
D 1 J̃g1~ki!S 1 0

0 21D
3S âki

~2!

â2ki

1 ~2!
D 50, ~22!

for l>2,
n

-

S V2v~ki! 0

0 V1v~ki!
D S âki

~ l !

â2ki

1 ~ l !
D

1S J̃g1~ki! 0

0 2 J̃g1~ki!
D F S âki

~ l 21!

â2ki

1 ~ l 21!
D

1S âki
~ l 11!

â2ki

1 ~ l 11!
D G50. ~23!

The solutions forl>1 are written in the form

S âki
~ l !

â2ki

1 ~ l !
D 5S âki

~1!

â2ki

1 ~1!
D ei ( l 21)k, ~24!

wherek5a1 ih andh>0 in order to keep the amplitude o
the surface waves finite. Substituting Eq.~24! into Eq. ~23!,
we obtain two possible values fork:

2J̃g1~ki!cosk15v~ki!2AV2,

2J̃g1~ki!cosk25v~ki!1AV2. ~25!

For realk5kyao/2 ~i.e., forh50), both solutions lead to the
same result forV2, which, in fact, represents the energy
the bulk spin waves:

VB
25S v~ki!22J̃g1~ki!cos

kyao

2 D 2

. ~26!

This solution is valid for bothuÞ0 andu50 ~no reconstruc-
tion!, the difference appearing in the boundary conditions
the amplitudes of bulk spin waves@Eqs.~21! and ~22!#, but
we are not going to discuss this problem in detail.~The pro-
cedure is described in detail in our previous works.23,24!

The energy of the surface excitations (VS) is defined by
two complex solutionsk1/2, (h1/2.0). Introducing a new
quantity

x52 i cot
k11k2

2
~27!

after simple trigonometric transformations, we obtainVS in
terms ofx:

VS
25

„v~ki!…
2

x2
1

4J̃2
„g1~ki!…

2

12x2
. ~28!

The basic problem now is the determination of the quantitx
in terms of system parameters andki wave vector from 2D
BZ.

It can be easily seen that the general solution of Eq.~23!
is of the form
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S âki
~ l !

â2ki

1 ~ l !
D 5S âki

~1!

0
D ei ( l 21)k11S 0

â2ki

1 ~1!D ei ( l 21)k2

[S âki
~1!ei ( l 21)k1

â2ki

1 ~1!ei ( l 21)k2
D . ~29!

After substituting Eq.~29! into Eqs.~22! and ~23! and sub-
tracting these two systems of equations, we obt
@Dv1(ki)5v(ki)2v1#:

S Dv1~ki!2 J̃g1~ki!e
2 ik1 a1

2a1 2Dv1~ki!1 J̃g1~ki!e
2 ik2

D S âki
~1!

â2ki

1 ~1!
D 2g1~ki!

3S vS1 aS1

2aS1 2vS1
D S âki

~0!

â2ki

1 ~0!
D 50. ~30!

The relations~30! and ~21! give us a system of four ho
mogenous equations for the determination of four amplitu
âki

(0),â2ki

1 (0),âki
(1), and â2ki

1 (1). The condition of van-

ishing of the determinant of the system gives an equation
the determination ofx.

The calculation is straightforward, yet cumbersome,
we are not going to present it in detail. Let us only menti
that for that purpose we have to use the expression for
ergy ~28! and the following auxilliary relations:

e2 i (k11k2)5
x21

x11
; e2 ik11e2 ik25

v~ki!

J̃g1~ki!

x21

x

Jg1~ki!~e2 ik12e2 ik2!5V~x21!. ~31!

The result is an equation of the sixth order:

D~x!5a01a1x1a2x21a3x31a4x41a5x51a6x650,

~32!
whose coefficients are presented in the Appendix.

The procedure for obtaining the energy of surface exc
tions is now clear: for a given set of values of system para
eters (J,JS ,DS ,DK,D) and a given wave vectorki , we de-
terminex from Eq.~32! and then the energyVS(ki) from Eq.
~28!. We must mention that there exists a restriction forx,
which can be obtained from Eqs.~25! and ~28!. Performing
an analysis similar to the one explained in detail in the A
pendix of Ref. 24, it can be shown that the system allo
only the acoustic branches of surface excitations (VS

<VB
bott), for which a15a250 and

x52cot
h11h2

2
, i.e., x,21. ~33!

In the next section, we are going to analyze the energ
of surface excitations for some values of the system par
eters, using Eqs.~28!, ~32!, and ~33!. One can immediately
notice that in our approach to the reconstruction proble
contrary to Ref. 4, there always exists a single branch
surface excitations for given set of parameters. A sim
situation occurs for semi-infinite antiferromagnetic, as sho
n

s

r

o

n-

-
-

-
s

s
-

,
f
r
n

by Wolfram and De Wames25 for bilinear Heisenberg inter-
action and in Refs. 23 and 24 for an antiferromagnetic w
biquadratic interaction.

Closing this section, let us present the correspond
equations forx and VS for the case with no reconstructio
(u50). The equation forx becomes a quadratic one:

x2@vS~ki!DvS~ki!2 J̃2
„g1~ki!…

2#1x@J2
„g1~ki!…

2

2„DvS~ki!…
2#2v~ki!DvS~ki!50, ~34!

whereDvS(ki)5v(ki)2vS(ki). VS(ki) is given by

„VS~ki!)
25S vS~ki!2

J̃2
„g1~ki!…

2

DvS~ki!
D 2

. ~35!

There also appears a single excitation branch in the wh
2D BZ.

IV. ANALYSIS OF THE RESULTS AND CONCLUDING
REMARKS

Most of our results will be analyzed numerically due
the complexity of the equations defining the reconstruct
angle and the energy of elementary excitations. Let us
examine the influence of the biquadratic interaction to
reconstruction angle by analyzing from Eq.~15! the critical
value (JS

c) of the parameterJS for which there still exist the
acceptable values of the angleu (0,cosu,1). One can
show, using Viette formulas, that the equation has a sin
positive real solution for cosu ~which can never vanish fo
finite values ofJS). On the other hand, the condition cosu
<1 imposes the limitations forJS , so that the solutions ex
ists only forJS>JS

c , where

JS
c5

J

2
1

h1~2S11!S DS2
DK

2 D
2@112aS~S21!#

. ~36!

It follows from Eq. ~36! that for S51, JS
c does not de-

pend ona, while for all other spin values (S.1), biquadratic
interaction decreases the critical valueJS

c , i.e., favors the
reconstruction. In the particular case of vanishing exter
field and anisotropy,JS

c has the same value as for the biline
interaction:JS

c50.5J. We have presented graphical analys
for two sets of system parameters in the Figs. 3~a! and 3~b!.
It is important to stress that the reconstruction occurs only
the case when foruÞ0, i.e., JS

c.JS , the energy of the re-
constructed ground stateEo(u) is lower thanEo(0) for the
same set of parameters. Studying the dependenceEo

5Eo(u) one can show that this function, for fixedJS.JS
c ,

has the maximum atu50 and the minimum for 0,cosu
,1, which is the solution of the cubic equation~15!. We see
that the presence of the biquadratic interaction does not
turb the stability of the reconstructed state, but that it fav
it, as mentioned above. We have already mentioned in
previous section that the energy of surface excitationsVS in
the case of reconstruction can be evaluated only numeric
@Eqs. ~28! and ~32!#. The results of these calculations fo
several sets of system parameters are shown in Fig
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FIG. 3. The plot of the critical value of surface couplingJS
c vs

biquadratic interaction constanta for S51,1.5 and 2:~a! h50,DS

50.2J,DK50.1J,J51; ~b! h5(0.3/S)J,DS50.2J,DK50.1J,J
51.
together with the bottom of the bulk continuum. Basic fe
tures of the surface excitations can be summarized in
following way:

~1! Goldstone surface mode (VS˜0 for ki˜0) exists
only in the case of vanishing external field and anisotro
@Fig. 4~a!#. It should be noted that in the long-waveleng
approximation it cannot be separated from the correspond
bulk mode since both attenuation coefficients van
limk˜0h1/2˜0. This conclusion essentially differs from th
analysis presented in Ref. 4 where Goldstone modes e
even for nonvanishing field and anisotropy.

~2! The energy of surface excitations for all analyzed s
of parameters (JS , DS , DK, andD) in the whole 2D BZ
lie rather low with respect to the bottom (EB

bott) of the bulk
continuum, especially in the short-wave length region wh
the attenuation coefficients are also high so that the exc
tions are practically localized at the surface.

The presence of low-frequency~energy! surface waves
leads to spin fluctuations with high amplitudes at and n
the surface, which even at low temperatures has as a co
quence the decrease of the ferromagnetic ordering of the
face which practically leads to vanishing of the antiferroma
netic ordering of the surface along theX direction. Strictly
this can be shown by calculating the spin correlation fu
tions from Green’s functions for the surface. Unfortunate
the pole of the Green’s function which defines the surfa
elementary excitation energy is the solution of at leas
sixth-order equation inx @D(x)50#, and nothing can be
achieved analytically, while numerical analysis is too co
FIG. 4. The plot of the excitation energyV/J ~surface excitations:S, bulk bottomB) along kx direction of the Brilloin zone:~a! S
52,h50,JS50.7J,a50.1,D5DS5DK50,cosu50.837 661; ~b! S51,h50.3J,JS50.7J,a50.1,D5DS5DK50,cosu50.937 67; ~c! S
52,h50.3J,JS50.6J,a50.1,D5DS5DK50.1J,cosu50.958 15; ~d! S52,h50.3J,JS50.7J,a51,D50.1J,DS50.3J,DK50.1J,cosu
50.962 836.
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plex, so we shall present the analysis of the surface ma
tization in the mean-field approximation~MFA!, which, al-
though crude, confirms the above estimates.

Applying the standard MFA procedure26 to the rotated
Hamiltonian ~12! ~for a50), from the minimum of the
Gibbs’ free energy we obtain the expressions for the mag
tizations of the layers and additional relation for the reco
struction angle u (TÞ0,s l85^Ŝz8( l )&/S, l 50,1,2, . . . , h
50):

cosu~T!5
J

2JS

s18~T!

s08~T!
, ~37!

s l8~T!5BSS H̄l

kT
D , ~38!

whereBS(x) is the Brillouin function, and for

l 50, H̄05Js18 cosu2JSs08 cos 2u, ~39!

l 51, H̄15Js08 cosu1J~s181s28!, ~40!

l>2, H̄l5J~s l 218 1s l81s l 118 !. ~41!

Additional relations for the surface layer~for unrotated
components! are

^Ŝz~0!&
S

[s0~T!5s08 cosu, ~42!

^Ŝa/b
x ~0!&56Ss08 tanu. ~43!

For l>1 we haves8( l )5s( l ). Using the relation~37! the
mean field at the surfaceH̄0 and the first layerH̄1 takes the
form

H̄05Jss08 , ~44!

H̄15JF S 11
J

2JS
Ds181s28G . ~45!

The last relations indicate that in the presence of rec
struction, the equation for the surface magnetizations08 be-
comes a self-consistent relation, decoupled from the res
the crystal:

s085BSS JSs08

kT D , ~46!

while the relations fors l8[s l , l>1 remain coupled. The
relation ~46! is valid until the temperatureTC8 where the re-
construction vanishes, i.e.,u(TC8 )50 and which is defined
by the relation

s085s0~TC8 !5
J

2JS
s1~TC8 !. ~47!
e-

e-
-

-

of

In the temperature regionTC8 <T<TC , whereTC is the bulk
Curie temperature@kTC5(S11)J for fcc#, the layers mag-
netizations l8(T)5s l(T),l 50,1,2, . . . areobtained by solv-
ing the system of coupled Eqs.~38!–~41! with u50.

It can be easily concluded from Eq.~43! that atT5TC8 the
surface antiferromagnetic ordering alongX direction also
vanishes.

Figures 5 and 6 show the dependence of angleu and
layers magnetization (S51) on temperature, respectively
They are perfect illustrations of the behavior describ
above. The general conclusion is that biquadratic interac
favors the reconstruction~decreasesJS

c) but only in the case
of nonvanishing external field and anisotropy. In the abse
of external field and anisotropy, there occur no qualitat
changes, only the normalizing factor 112aS(S11) appears,
in the expressions for energy and coefficients of sixth-or
equation. Obviously, the idea of magnetic reconstruction
the surface layer only is an oversimplification, so one sho
introduce reconstruction in a few inner layers, probably w
layer-dependent reconstruction angle. In this case one
expect a gradual transition from tilted to ferromagnetica
ordered state deep in the bulk, as shown in Ref. 3, for p
Heisenberg model with antiferromagnetic next-neare
neighbors interaction.

Our considerations of surface reconstruction can be
lated to the study of magnetic multilayers27,28 where it was
pointed out that biquadratic exchange and anisotropy
lead to various complicated magnetic structures. Due to c
rent interest in magnetic multilayer systems~see, for ex-
ample, the review by Allen29!, these systems will be the sub
ject of our further study.

FIG. 5. Reconstruction angleu dependence on the reduced tem
peraturekT/J.

FIG. 6. Relative magnetization̂Sz&/S ~for S51) dependence
on the reduced temperaturekT/J.
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APPENDIX

Equation~32! for the determination of the quantityx was obtained from the condition of vanishing of the determinant of
system~21! and ~30!, which has the form

D~k1 ,k2!5U V2vS 2aS 2g1vS1 2g1aS1

aS V1vS g1aS1 g1vS1

2g1vS1 2g1aS1 Dv12 J̃g1e2 ik1 a1

g1aS1 g1vS1 2a1 2Dv11 J̃g1e2 ik2

U . ~A1!
th
Due to the economy of space, throughout the appendix,
wave-vector dependence ofvS(ki),aS(ki),

1(ki),Dv1(ki),
v(ki) will be omitted. Expanding the determinant~A1! and
using the expression forVS ~28! and auxilliary relations
~31!, we obtain the expression~32! for D(x) where the co-
efficients are

a052v3Dv1 ,

a15v2@a1
22~Dv1!21g12~ J̃21aS1

2 2vS1
2 !#,

a25v$@a1
22~Dv1!212vDv12 J̃2g12#v1g12@vS~vS1

2

1aS1
2 !22aSaS1vS124J̃2Dv1#2Dv1~aS

22vS
2!%,

a352g12~vS1
2 2aS1

2 !~v222J̃2g12!1~4J̃2g122v2!

3@a1
21 J̃2g122~Dv1!2#2 J̃2g12~vS

22aS
2!1A,
y

e a45~vS
22aS

2!~ J̃2g1222vDv1!1~4J̃2g122v2!

3@a1
22~Dv1!21vDv12 J̃2g12#

12v@2g12aSaS1vS12vSg12~vS1
2 1aS1

2 !#1A,

a55~4J̃2g122v2!g12~vS1
2 2aS1

2 !1 J̃2g12~vS
22aS

2!2A,

a65~aS
22vS

2!~ J̃2g122vDv1!1v@g12vS~vS1
2 1aS1

2 !

22g12aSaS1vS1#2A,

A5~vS
22aS

2!@~Dv1!22a1
2#1g14~vS1

2 2aS1
2 !2

12g12~vS1
2 1aS1

2 !~vSDv11a1aS!

24g12aS1vS1~vSa11aSDv1!.
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