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Influence of the biquadratic interaction to magnetic surface reconstruction
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The surface spin ordering is studied in a ferromagnetic crystal where spins interact both by bilinear and
biguadratic interaction. The surface spin configuration is unstable with respect to ferromagnetic alignment for
certain values of parameters leading to so-called surface magnetic reconstruction. It is shown that biquadratic
interaction enhances the reconstruction. The energy of surface excitations is calculated and it is shown to be
much lower than the energy of bulk excitations in presence of surface reconstruction, while the surface
Goldstone mode appears only in the case of vanishing external field and anisotropy. Mean field calculation is
presented for the study of the behavior of surface magnetizd&f1.63-18209)00126-3

[. INTRODUCTION more thorough theoretical study of the system. The most
extensive study within the mean-field approximation was
. L . ?)erformed by Chen and LeWy,and studies by more sophis-
study of magnetic surface;, thin films, and _mulnla_yere icated technique&Green’s functions, mosthyfollowed 1222
structures, both from experimental and theoretical points 0}-|owever, all these results dealt only with the bulk materials

v!ew.l There exist nowadays modern experimental techyng this inspired us to perform a study where we shall ex-

niques [low-energy electron diffraction(LEED), nuclear  amine the possibility of surface reconstruction for the case of

magnetic resonandMR)] which enable the precise mea- semi-infinite face-centered-cubic lattice ferromagnet, de-

surements of the quantities of the local character such as thgending on the external magnetic field, bilinear, and biqua-

magnetization or susceptibility. This whole interest, ofdratic Heisenberg interaction.

course, is motivated primarly by the possible application of We shall study the above-described ferromagnet with

given materials for memory devices. translational symmetry iXXZ plane andy axis perpendicular
One interesting effect related to surfaces is the phenomto crystal surface. The magnetic moments interact by both

enon ofmagnetic surface reconstructiofhe effect involved bilinear Heisenberg exchangd,() and biguadratic ex-

means that under certain conditions the spin configuration athange &l,,,), wherea is the constant of the biquadratic

the surface could become unstable with respect to the ferranteraction. We shall simplify the model by treating only the

magnetic ordering and transit to a new state with spins tiltednteraction between nearest neighbors.

with respect to magnetization axis. For the case of the semi- First of all, let us be precise about the notation. The cell's

infinite Heisenberg ferromagnet, this phenomenon was studsite is defined in terms of layé€plane indexn (starting from

ied in detaif~* and these studies will be our starting point. zero and increasing along théaxis) and two-dimensional
On the other hand, higher-order couplin@er spin S  (2D) vector p denoting the position within the planet

=1) have been the subject of interest for a long tifie, =(p,n), and accordingly, for the spin operatds= Sy(n).

while the practical interest in biquadratimore generally, The nearest neighbors approximation will be realized by the

quadrupolar interaction started about 20 years ago, whenassumption

this interaction was added to the bilinear Heisenberg one to

explain the magnetic properties of the materials like MnAs,

UO,, UP, TbSh, MnOga—MnS, EuSe, rare-earth vanadates,

arsenates, and phosphaf&sMoreover, it was shown that

there exist materials in which the quadrupolar interaction is

the dominant one, like molecular crystalsr Jahn-Teller This leads to the Hamiltonian of the system in the fon (

ferroelectric system¥. This situation immediately caused a counts the nearest neighbors in it laye

—lg for n=m=0

| = .
"TM 11 otherwise

| al
H=2 > S,0)S, (0045 > (S,(0)S,:2 (021 X S,(0)S,x(D)—al > (S,(0)S, (1))
2 pprrg 0 2 pping 0 PPTA . PPTA !

| al .
D S(MS,n (M—% > X <S,,<n>smm<m>>2+HAB+HAs—gusﬂg§S;<n>. (1)

2 nm=1 p,p+X\p, 2 nm=1 p,p+X\p,
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The meaning of all of the sums is clear, whi,g and
H as include the bulk and surface single-ion anisotropy. The
bulk anisotropy term we take in the form

Hag= —Dn; § Sy(n)? 2

[ e

{Although in the bulk systems with cubic symmetry the /P)' ol / / /
allowed single-ion anisotropy is of the formD[(S,)* i
+(Sy)4+(SZ)4], one can demonstrate that its contribution is v\Q\ \ \
proportional to (ASZ)2 in the approximation quadratic in Bose
operatorg. Following Ref. 4 we introduce the surface anisot- / / / /
ropy as

Fas=— 2 [Kd85(0)%+K,(8)(0)*+Ky(S(0))] / / / /

pin=
which can be cast into the form \ \ \
Has= —Ds X (S5(0))? / / / /
p,n=0

}»ao

FIG. 1. Spin configuration of the surface layer in the presence of
magnetic surface reconstruction. The axes of the local frame are
denoted.

8K [(S5(0))2—(S)(0))?] )
2 0 (4 (4 !

pn=

whereDg=K,— (Ky+K,)/2; AK=K,—K,.
Let us finally comment on the values of the parametersdefine the local frame, where the spins are denoted by

The biquadratic interaction is important f6& 1, so we shall  primed quantities:

concentrate on these values, with particular attention paid to

the cases=1, when most of the expressions are simplified.

However, the bulk stu_dies indicate tha_lt i_m1>1, more com- & (0)=cos6S (0)=sineS (0),

plex configurations arise, so we shall limit our calculations to Pab Pab Paib

the range Gca<1.
The structure of the paper is as follows: The Hamiltonian

of the system in the presence of surface reconstruction is é% (0):@%/ (0),

analyzed in Sec. II, where the local frame for surface spins is o/b alb

introduced. The Hamiltonian is stabilized leading to the con-

ditions for the reconstruction. Boson representation which is . o o

used for the study of elementary excitations is introduced in S,,,(0)=FsindS, (0)+cosdS, (0), 4

Sec. lll. The results are summarized in Sec. IV where also a

mean-field study is outlined.

for n=1 S,(n)=5',(n). (5)

Il. THE HAMILTONIAN OF THE SYSTEM IN THE

PRESENCE OF SURFACE RECONSTRUCTION ) _ -
We shall present here the calculation details for the bilinear

We shall assume that the ground state in the bulk is deinteraction only, due to the cumbersome form of the expres-
fined by the ordering of spins along tfaxis, while the  sjons for the biquadratic interaction.
possible surface reconstruction manifests itself by the devia- The quantization axis i’ and it is given by the relation
tion of surface spins from th& direction for the angled ASZ/(n)|O>’ —5|0)’, forn=0,1,2.... Itisclear that this last
within the XZ plane. The surface is divided into two sublat- _# " "' ~/#n b .
tices denotech andb, and although we shall formally work relation makes no distinction betwearandb sites.
with sublattices, we remember that the only difference oc- From t_he relations4) and (5) one concludes_ tha’? the re-
curs in the surface layer wheeespins deviate for the angle constructlon gffects (?nly the Ferms of the Harpﬂtonlan which
6 while b spins deviate for the angle . The spin configu- describe the interaction of spins at the surfa0,0)] and
ration in the surface layer is presented in Fig. 1. Let us novbetween the surface and first bulk layét(0,1)]:
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~ ~ |S Al An! Al Al VL Ayl . ~ ! ~y!
AO0+AOD=7 3 {cos2E; (008, (00+8 (08 1, 0]+, (018}, (0)+5in 20 & (O8], (0)

~ ’ Al IS ~ ! ~ ’ ~ ! ~ ! ~ ’ ~ !
505,005 3 {cosE; (08, 048, (08, (01+§(0)F , (0)

+5in 208 (0)8, 1) (0) =8, (085 1, (O =1 X {[S(0)8; 1,,(1+5 (0], (1)]coss

Pa:Pat

+8,(008) ., (D+sing[S, (08, (D=8 (0F (D} -1 2 {808 ., (1)

PoPot A
+8,(0)8], ;) (D]cost+8, (0, .\ (D]=sind[$; (0)S; ., (1S (0, ,, (1)} (6)
|
Possible values of the reconstruction anglare determined J+h
from the stabilization of the Hamiltonia(6). We shall mini- cosf= 235" 9

mize over # the energy of the new ground stat)’

=TI, I1,/|0)/ |0)’,. It can be easily demonstrated that the
Po ”1| >pO| >P1 _ y It follows from Eq. (9) that the reconstruction is possible if
ground-state energy per site equals Js>JS, where the critical value of the exchange is given by
Eo(6)=2S%gcos 20— 4S% cosf—gugHScosd. (7)
Introducing Js=41sS; J=4SI; h=gugH, we obtain the Jc:J+h (10)
basic condition S22

sin#(2Jscosf—J—h)=0. ® et us mention that the relatio®) can be obtained also by

This equation possesses two solutions. The first one, the bosonization of “primed” spin operatofsithin Bloch
approximation and elimination of terms linear in Bose op-

6=0, erators, arising from the combinatiOﬂASZ'(O)ASf,;M(i), i

corresponds to the situation when no reconstruction occurs=0,1, in the Hamiltonian(6). After this elimination, we are
The solution which allows the possibility of the reconstruc-left with the Hamiltonian which contributes to the quadratic
tion is terms in Bose operators in the form

~ ~ IS Ayl Ayt Al Al Al Al
AA00+R00=7 3 {cosAS; (018, (0)+8] (08, ., (0)]+8,(0)) ., (O}

+o > {cos2[8(0)8] ,, (0)+5(0)8E ) (0)]+8,(0)8) ., (0)}

2 Py Pt g

-l X {cost[S, (05, 1 (D8 (008 5 (118, (08 5 (1)}
a'Fa 1

- pEA {cost[ 85, (008 1\ (D+E (008, (D]+8 (0T 1\ (1)}

—hcosd| >, "s;;(0)+2 é;;(O) . (12)
Pa Pp

In the above Hamiltonian, the summations oygrand layer and first layer, while it does not change two-
pp in the surface layer can be written as a unique sundimensional(2D) lattice, neither will it influence 2D Bril-
over p, according to the definition of primed quantities. louin zone(BZ).

We see that, within the framework of the given Regrouping all the terms with bilinear interaction we ob-
approximation, surface reconstruction leads to theain the spin Hamiltonian which contributes to second-order
anisotropic interaction at the surface and between the surfadéamiltonian in Bose operators:
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HZ:?,WEH {cos 29[‘3;’(0)%;;%(0)+é;’(O)é;;AO(O)]+é,y,’(0)éy,’ﬂo(0)}—hcosg% §'(0)
] 0
~1 MEM {cosO[ 8} (008, (V+5; (08, (DI+5, (05, (1)}
| ~ ! ~ Ll ~ ~ ! ~ ’ ~ L Al
—3 2 2 (S (mE, (M+S (S, (m+8)(mS)., (m]-h > §(n) (12
m,n=1 p,p+ Ay, p,n=1

This concludes the part concerning the contribution of the  2a3J4(2S—1)? cos 9+[2J4(1—a/2) —alg(2S—1)2
bilinear interaction. 5

A similar procedure can be applied to biquadratic and ~—aJ/2(25-1)°+(2S-1)(AK/2-Dg)]
anisotropic parts of the Hamiltonian, where again, only the _ _ _
terms contributing to the Hamiltonian quadratic in Bose op- xcosf—[J(1~a/2)+h]=0. (15)
erators are retained. We are not going to write them explicThe discussion of the solutions of this equation will be given

itly, but only quote the results. in the next section.
The ground-state energy including the contributions of the The transition to Bose operators is realized in such a way
complete Hamiltoniaril) has the following form: to include only the terms contributing to second-order
Hamiltonian. For that purpose, we use the following repre-
1 1 sentation:
Eo(6)= zaJS(ZS— 1)2 co¢ 6+§[2JS(1—a/2)
~ ’ S ~ ~
X _ “ra+
—aJg(25—-1)2—ad2(25—1)2+ (25— 1) Sp ()= \[2["""(””3"(”)]’
X (AK/2—Dg)]cog #—[J(1—al2)+h]cosé. . S X
(13) S, (n)=i \[E[a;(n)—ap(n)],
Deriving this expression ovet, we obtain the condition for &7 v — o At (A
the extreme values of energf,(0)/96=0, with one solu- Sp (M=S=a, (na,n). (16
tion corresponding to unreconstructed surface: This choice of boson representation is valid as longfas
# /2, i.e., in the cases with no complete antiferromagnetic
sing=0, (14)  ordering. In the case of antiferromagnetic ordering, the intro-

duction of two types of boson operators corresponding to
while the reconstruction angle is defined by a cubic equa- different ground states would be necessary. The quadratic
tion in terms of co%: terms must be written in the following way:

A (§)2=52-(25-1)aja,,

(8, )2=(25-1)(a;)?,
0,27/ a,)
(57)2=(25-1)(ay)?. (17)

This representation is obtained by taking into account the
contribution of the normal order of higher terms to second-
order terms, and, what is more important, it leads to the same
results as the equations linearized in spi(Rlease notice
. that the bosonization is performed in the local franfdter
k? the transition to Bose operato($6) and (17), we can intro-
duce two-dimensional Fourier transforms:

(2m/2,,0)

. 1 .
ap(|)=ﬁ > ay (e, (18)

xNz K|

where

=l o
pP= anex"_nz?ez

FIG. 2. Two-dimensional | Brillouin zone. is the same for botl®=0 and6+0.
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The summation ovek goes over 2D BZ, i.e.,

whose shape is presented in Fig. 2.
In this way we obtain the total Hamiltonian of the system, quadratic in bose operators:

N 1
Htot:;H ws(ku)a:”(o)aku(o)‘FE;H as(ku)[a:”(o)atk“(o)+H-C-]"‘;" w517+(ku)[a;"(0)ak”(1)+H-C-]

1
+; a31y+(ku)[ak*u(0)atku(1)+H.c.]+; wl(|<H)ak+u(1)akH(1)—E ; al[a;r”(l)afku(l)ﬁLH.c.]
[ I I

+|22 % w(kH)a;Ha)akuu)—"le2 ; y+(kH)[ak+”(|)ak"(|—1)+H.c.].
= \ = I

The following notation has been introduced here:

1 1
wg(k))=(h+J)cosf—Jscos 20+ Jgal —3(2S—1)*(cosd)*+3(2S—1)%(cosh)>+ (cosh)*— 5(28— 1)%— >

PRB 60

(19

3 1 1
—aJ — Z(ZS_ 1)2(cos6)’+ 5 oS0+ Z(ZS_ 1)?|+ y(k)){Js(cosh)*+2Jsa[ (25— 1) cos 49— (3S°—3S+1)
-1 3 _
X (c0s#)2J]} + > D4 3(cos#)>—1]+ 7 AK(sin 0)?t,

1+a

2(2S— 1)2(c050)2—%(28— 1)%— %) } —(2S—1)%a

H 2 2 J
aS(kH): —JS(SIH 0) [ y(k”) (cosh)“— 4—‘]5)]

251 . AK
———| Dg(sin6/2)’+ —-[(cosI2)*+1] |,

2

wg = —J(C0s0/2)?

a
1+ ————[(25-1)%(c0s6)2+2S(S—1)cosf—25%+25—-11],
2(0030/2)2[( )4( )=+28( ) ])

ag=J(sin 0/2)2( 1- [(2S—1)%(cosh)?— (25— 2S+1)cosf—2S(S— 1)]) :

2(sin6/2)?

~ al(3 1 ~
wy(K|)=Jcosf+2]+h+ — ZS—1)2(c030)2—0030—§(23—1)2)—Jy(k||)+(28—l)D,

5(
J
a1=az(28—1)2(sin6)2,

o(kp)=h+33-Ty(k)+(2S-1)D,

J=J[1+2aSS-1)],

kzao kel
'y(kH) = COST COos 5

1 k,a kya
+ _ = z%0 x%o
y (k) 5| €os—— +cos—2
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Finally, let us note that in the case of reconstructibn

#0, one can eliminate the external field from the expression

for wg(k|), leading to
ws(k)) =JJ1+ y(k”)(cosa)z] —Ja(2S— 1) (sin #)?

+2y(K))(cos6)?](sin 6)?— 282—_1{Ds(sin 0)?

Ja
—AK[(sin#)?+2]}— - (25— 1)%(sin )2,
(20

Js=JJ1+2a8S-1)].

Ill. SURFACE EXCITATIONS IN THE PRESENCE
OF SURFACE RECONSTRUCTION

Starting from the boson Hamiltonidfh9), we are going to
determine in this section the dispersion law of surféaed
bulk) spin waves in a closed form.

Due to “anomalous” coupling of the forma anda®a™,
our initial point will be the equations of motion for *“two-
component” operators

a(1.1)
éfku(l,t) ’
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(Q—w(k|) 0 a (1)
0 Q-l-w(k”) étk”(l)
+<ﬁy+(k|) 0 ) a (1-1)
0 =Jy*(kp éik”(l—l)
ékH(|+1)
+| ., =0. (23
a_kH(I+1)
The solutions fol =1 are written in the form
ékH(I) ékH(l) i(1-1) (24)
. = . [ 24
afku(l) aka(l)

wherex= a+in andn=0 in order to keep the amplitude of
the surface waves finite. Substituting Eg4) into Eq. (23),
we obtain two possible values faf.

Zj ’y+(kH)COSK1= w(kH) - \/@,

2J ‘y+(kH)COSK2= w(kH) + \/@ (25)

For realk=kya,/2 (i.e., for n=0), both solutions lead to the

which shall be immediately written in the energy representasame result fo(2?, which, in fact, represents the energy of

tion, i.e., in terms of the Fourier transforms:

“ 1 “ )
ak”(I,Q)zﬂf akH(I,t)e'mdt.

A simple calculation gives:

for =0,

(Q—ws(kn) ~a(k) | [ (0] )
astk)  Q+wstk)/| a5, (0) [
(o =),

—ag g éik”(l)
forl=1,

(Q—wl(k|) —a 8 (1) (k)
aq QO+ wq(k)) éiku(l) [
ws1  ag ékH(O) ~ (1 0)

- Jy*(k

. —w31)<aik(0) Pyl
a(2) |
x| ., =0, (22
a-(2)

for =2,

the bulk spin waves:

2

~ kya
03=| w(k))—23y"* (k))cos—%— (26)

2

This solution is valid for botl¥+# 0 and@#=0 (no reconstruc-
tion), the difference appearing in the boundary conditions for
the amplitudes of bulk spin wavéggs. (21) and(22)], but
we are not going to discuss this problem in detdihe pro-
cedure is described in detail in our previous wotk&)

The energy of the surface excitationQ4d) is defined by
two complex solutionscy», (71,>0). Introducing a new
quantity

K1+ Ko

. @7)

Xx=—1i cot

after simple trigonometric transformations, we obt&lig in
terms ofx:

(w(k)?  43%(y* (K))?
Q3= 2 + I

(28)

The basic problem now is the determination of the quartity
in terms of system parameters akdwave vector from 2D
BZ.

It can be easily seen that the general solution of (28)
is of the form
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a. () 2% (1 0 by Wolfram and De Wamés for bilinear Heisenberg inter-
I — akH( ) PRICE SRR I el (=1 action and in Refs. 23 and 24 for an antiferromagnetic with
éikH(I) 0 aZ (1) biquadratic interaction.

Closing this section, let us present the corresponding
ay (1)el(~bx equations forx and ()5 for the case with no reconstruction
= I (29) (6=0). The equation fox becomes a quadratic one:
al (1)l

2 _ 2.+ 2 20t 2
After substituting Eq(29) into Egs.(22) and(23) and sub- XLas(lg) Al =3 (k) THXIr " (ky)
tracting these two systems of equations, we obtain —(Aws(k”))z]—w(k“)Aws(kH)=0, (34
[Awi (k)= wo(k) —w]: o
whereA wg(K)) = w(k)) — og(k)). Qg(k)) is given by

Awy(kp—Jy*(kpe ™ ay ) ak(l)) (k) (5" (k)22
- p - —v (K| _ Y K
—a;  —Awi(k)+Iy"(kpe ' aikH(l) (Qs(kp)?= ws(kn)—w (39
wgy ag ék”(o) There also appears a single excitation branch in the whole
_ _ -l =0. (30 2D BZ.
asy wg) a_kH(O)

The relations(30) and (21) give us a system of four ho- V- ANALYSIS OF THE RESULTS AND CONCLUDING
mogenous equations for the determination of four amplitudes REMARKS

akH(O),aJ_rkH(O),ak”(l), andatk”(l)- The condition of van- Most of our results will be analyzed numerically due to
ishing of the determinant of the system gives an equation fothe complexity of the equations defining the reconstruction
the determination oxk. angle and the energy of elementary excitations. Let us first
The calculation is straightforward, yet cumbersome, sexamine the influence of the biquadratic interaction to the
we are not going to present it in detail. Let us only mentionreconstruction angle by analyzing from H45) the critical
that for that purpose we have to use the expression for enalue () of the parametedg for which there still exist the

ergy (28) and the following auxilliary relations: acceptable values of the angk (0<cos#<1). One can
show, using Viette formulas, that the equation has a single
gt ) — x=1 ik Ky o(k) x-1 positive real solution for cog (which can never vanish for
e =xr1 € 'te T3k X finite values of]g). On the other hand, the condition a®s
| =<1 imposes the limitations fadg, so that the solutions ex-
Jy*(kp(e Fi—e 1) = (x—1). (31)  ists only forJs=Jg, where
The result is an equation of the sixth order: AK
h+(2S+1) DS—T
A(X)=ap+ax+ax®+ax+ax*+asx®+agx®=0, e 4
0T 2 3 4 5 6 ) s=5 2[1+2aS5-1)] (36)

whose coefficients are presented in the Appendix. _ ¢ i
The procedure for obtaining the energy of surface excita- er|1t dfgggwsthZTorE;i ((ft’r?)e:hsat'rfora?;;;i)dfs g?jtreii
tions is now clear: for a given set of values of system param.p 7, Wi bin valu +),hqu !
eters 0,J5,Ds,AK,D) and a given wave vectds, we de- interaction decreases the critical valdg, i.e., favors the
terminéx ?rbrr?izq ('32) and then the energy,s(kH)Hf’rom Eq reconstruction. In the particular case of vanishing external
(28). We must mention that there exists a restrictionor 11€/d and anisotropyJs has the same value as for the bilinear
which can be obtained from Eq&5) and (28). Performing  interaction:Js=0.5]. We have presented graphical analysis
an analysis similar to the one explained in detail in the Ap-for two sets of system parameters in the Figs) and 3b).
pendix Of Ref 24’ |t can be Shown that the System a”owét IS |mp0rtant to stress that the reconstruction occurs Only n

only the acoustic branches of surface excitatio®s( the case when fog+0, i.e.,Js>Js, the energy of the re-

<08, for which a;=a,=0 and constructed ground state,( ) is lower thanE,(0) for the
same set of parameters. Studying the dependefge

- ntny =E,(6) one can show that this function, for fixeld>Jg,

X=—cot——, le, Xx<-1. 33 has the maximum ap=0 and the minimum for & cosf

<1, which is the solution of the cubic equati@b). We see
In the next section, we are going to analyze the energiethat the presence of the biquadratic interaction does not dis-
of surface excitations for some values of the system paranturb the stability of the reconstructed state, but that it favors
eters, using Eq9428), (32), and(33). One can immediately it, as mentioned above. We have already mentioned in the
notice that in our approach to the reconstruction problemprevious section that the energy of surface excitatidgsn
contrary to Ref. 4, there always exists a single branch ofhe case of reconstruction can be evaluated only numerically
surface excitations for given set of parameters. A similafEgs. (28) and (32)]. The results of these calculations for
situation occurs for semi-infinite antiferromagnetic, as showrseveral sets of system parameters are shown in Fig. 4,
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together with the bottom of the bulk continuum. Basic fea-
tures of the surface excitations can be summarized in the
following way:

(1) Goldstone surface mode&)s—0 for k—0) exists
only in the case of vanishing external field and anisotropy
[Fig. 4@]. It should be noted that in the long-wavelength
approximation it cannot be separated from the corresponding
bulk mode since both attenuation coefficients vanish
lim,_071>—0. This conclusion essentially differs from the
analysis presented in Ref. 4 where Goldstone modes exist
even for nonvanishing field and anisotropy.

(2) The energy of surface excitations for all analyzed sets
of parametersJs, Dg, AK, andD) in the whole 2D BZ
lie rather low with respect to the bottonE§°") of the bulk
continuum, especially in the short-wave length region where
the attenuation coefficients are also high so that the excita-
tions are practically localized at the surface.

The presence of low-frequendgnergy surface waves
leads to spin fluctuations with high amplitudes at and near
the surface, which even at low temperatures has as a conse-
quence the decrease of the ferromagnetic ordering of the sur-
face which practically leads to vanishing of the antiferromag-
netic ordering of the surface along tbkedirection. Strictly
this can be shown by calculating the spin correlation func-

(b) 0.2 0.4 0.6 08 @ 1 tions from Green’s functions for the surface. Unfortunately,

FIG. 3. The plot of the critical value of surface couplidfvs the pole of the .Gr('aen’s functiqn which defines the surface
biquadratic interaction constaatfor S=1,1.5 and 2(a) h=0Dg ~ €lémentary excitation energy is the solution of at least a
=0.2),AK=0.13,J=1; (b) h=(0.38)J,Ds=0.2J,AK=0.13,J  Sixth-order equation inx [A(x)=0], and nothing can be

=1, achieved analytically, while numerical analysis is too com-
6
§
i QO
B 4 B
4
3
3
) 2
I I §

2 3 & Syt L2 3 & 5qyt

(a) (c)

> 20
QN
4 Q/1 B
B 15
3
10
2
5
1
§ §
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FIG. 4. The plot of the excitation enerdy/J (surface excitationsS, bulk bottomB) alongk, direction of the Brilloin zone{a) S
=2h=0J5=0.7],a=0.1D=Ds=AK=0,c0s6=0.837 661; (b) S=1h=0.31,J5=0.7],a=0.1D=Dg=AK=0,c0s6=0.93767; (c) S
=2h=0.31,J5=0.6],a=0.1D=Dg=AK=0.1J,c086=0.958 15; (d) S=2,h=0.3],J5=0.7J,a=1,0=0.13,D5g=0.3J,AK=0.1J,cosé
=0.962 836.
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plex, so we shall present the analysis of the surface magne- |

tization in the mean-field approximatidiMFA), which, al-
though crude, confirms the above estimates.

Applying the standard MFA procedifeto the rotated
Hamiltonian (12) (for a=0), from the minimum of the

Gibbs’ free energy we obtain the expressions for the magne-
tizations of the layers and additional relation for the recon-

struction angle # (T#0,0/ =(5(1))/S, 1=0,1,2..., h
=0):

o= 2 20 37
cos = ,
2Js a(T)
, H,
ol (1) =B {7/ (38)
whereBg(x) is the Brillouin function, and for
=0, Ho=Jo} cosfd— o} COS 20, (39
=1, Hy=Jo}cosf+I(o)+ o), (40)
122, Hi=3(o{_1+0{ +0],y). (42)

Additional relations for the surface layéfor unrotated
componentsare

(5 (SO)> =0y(T) =0} cosé, (42
(8%5(0)) == S tané. (43

For =1 we haves'(l)=o(l). Using the relation37) the
mean field at the surfacH, and the first layef{, takes the
form

Ho= 3509, (44)

J
1+ 2—‘_18)0'14‘0'2

0.6 Js/1=0.7
0.4
0.2
0..2 0:4 0.‘6 0.‘8 kT/J 1

FIG. 5. Reconstruction angledependence on the reduced tem-
peraturek T/J.

In the temperature regioRnc<T<T, whereT is the bulk
Curie temperatur€kTo=(S+1)J for fcc], the layers mag-
netizationo| (T)=0(T),1=0,1,2... areobtained by solv-
ing the system of coupled Eq&8)—(41) with 4=0.

It can be easily concluded from E@t3) that atT=T_ the
surface antiferromagnetic ordering aloig direction also
vanishes.

Figures 5 and 6 show the dependence of argjland
layers magnetizationS=1) on temperature, respectively.
They are perfect illustrations of the behavior described
above. The general conclusion is that biquadratic interaction
favors the reconstructiofdecreasedg) but only in the case
of nonvanishing external field and anisotropy. In the absence
of external field and anisotropy, there occur no qualitative
changes, only the normalizing factor-RaS(S+ 1) appears,
in the expressions for energy and coefficients of sixth-order
equation. Obviously, the idea of magnetic reconstruction in
the surface layer only is an oversimplification, so one should
introduce reconstruction in a few inner layers, probably with
layer-dependent reconstruction angle. In this case one can
expect a gradual transition from tilted to ferromagnetically
ordered state deep in the bulk, as shown in Ref. 3, for pure
Heisenberg model with antiferromagnetic next-nearest-
neighbors interaction.

Our considerations of surface reconstruction can be re-
lated to the study of magnetic multilayét$® where it was
pointed out that biquadratic exchange and anisotropy can
lead to various complicated magnetic structures. Due to cur-

The last relations indicate that in the presence of reconrent interest in magnetic multilayer systerfsee, for ex-

struction, the equation for the surface magnetizatigrbe-

ample, the review by Allef?), these systems will be the sub-

comes a self-consistent relation, decoupled from the rest dect of our further study.

the crystal:

‘JSO-O) , (46)

"5253( kT
while the relations foro| =0y, 1=1 remain coupled. The
relation (46) is valid until the temperatur@; where the re-

construction vanishes, i.e6(T¢)=0 and which is defined
by the relation

J
06=00(T'c)=2—3501('|'<';)- (47)

o 1

0% -

06 r
04 -
01 -

05 ] 15 {1)) 2

FIG. 6. Relative magnetizatio(S*)/S (for S=1) dependence
on the reduced temperatukd/J.
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APPENDIX

Equation(32) for the determination of the quantiiywas obtained from the condition of vanishing of the determinant of the
system(21) and (30), which has the form

O —owg Qg — v wg — vy ag
A as Q+og Y ag SR
Ko)= ~ » Al
(1, x2) —Ywg —Y as Aw-Jy'e’m a; (A1)
Y ag Y g —ag —Aw+Iyte i
|
Due to the economy of space, throughomit the appendix, the a4=(w§— aé)(ﬁzy*z—2wAw1)+(4327*2—w2)
wave-vector dependence afg(k)), as(k)),” (K|),Aw(k)),
w(_kH) will be omittgd. Expanding the determina(ml) a_md X[a2—(Aw;)?+ wAw,;—I%y"?]
using the expression fof)g (28) and auxilliary relations
(31), we obtain the expressiai32) for A(x) where the co- +20[2y 2asag ws — wsy A5 + agy) ]+ A,
efficients are
ap=— 0w, as=(432y "2~ 0?) y Y w§ — ady) + Iy H(wi—ad) — A,

2r 2 2 +2,/32 2 2
a;= o ai—(Aw) +y (I +ag —wgy)], =(ai— J - + wslwg T a
1 1 1 tag—wg aﬁ—(aé wé)(J27+2 wAw)+ ol Y 2oy él él)

a=o{[af— (Aw)?+20A0;— Py o+ vy oy wh; -2y 2asagiws] - A,

+ad) —2asas 05~ 42 A 0]~ Awi(ad- wd)},
A=(wi—ad[(Aw))?—a?]+y 4wl — a?))?

o2, 2 2 2_ 592, 42 242 2
33=2y (05— ag) (0" =207y ) (4 - o) +2y" (0§t ad)) (wsh o+ ajag)
2.7 3 2_ 2
X [a1+J2y+2— (Awl)z] _327+2(‘Us_ ag) +A, —4y+2a51w31(w5a1+ asAw,).
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