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Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain
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As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical
phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of
spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the
antiadiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an
approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is
discussed. Comparing the properties of the ground state and low-lying excitations with exact diagonalization
data for the full quantum spin-phonon models, good agreement is found especially in the antiadiabatic regime.
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I. INTRODUCTION

The effect of a Peierls instability in quasi-on
dimensional spin systems, i.e., the instability of a unifo
spin chain towards dimerization induced by the interact
with lattice degrees of freedom, has attracted consider
attention over the last decades. Starting in the 1970s w
organic compounds of the TTF and TCNQ family,1 the in-
terest in the Peierls instability was renewed with the disc
ery of a spin-Peierls~SP! transition in the anorganic com
pound CuGeO3 in 1993 by Haseet al.2 The most significant
feature distinguishing CuGeO3 from other SP compounds i
the high energy of the involved optical phonons, which
comparable to the magnetic exchange integralJ. In contrast
to the organic materials no softening of these phonon mo
is observed near the transition. Therefore the adiabatic tr
ment of the phonon subsystem used in the works of Pytte3 or
Cross and Fisher,4 does not seem appropriate to describe
SP transition in CuGeO3, although there are recent efforts
this direction.5 Rather one has to take into account the eff
of quantum lattice fluctuations which tend to decrease the
transition temperature and the energy gap between
ground state and lowest excitations in the dimerized ph
respectively. Unfortunately there are practically no analy
methods to handle coupled systems of spins~electrons! and
phonons when all energy scales and coupling strengths a
the same order of magnitude. This is why many studies
volving dynamical phonons rely on numerical methods, su
as exact diagonalization~ED!,6,7 density matrix renormaliza
tion group ~DMRG!,8,9 or Monte Carlo~MC! simulation.10

Only recently Zheng11 developed an analytical approach
describe the SP instability of anXY spin chain, which is
based on the unitary transformation method. It works wel
the adiabatic and antiadiabatic regimes. In the latter c
there are also some approaches to the Heisenberg spin
interacting with optical phonons: Kuboki and Fukuyama12
PRB 600163-1829/99/60~9!/6566~8!/$15.00
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used perturbation theory to derive an effective spin Ham
tonian, while Uhrig13 applied the flow-equation method, i.e
a continuous unitary transformation.14

As a simple model which contains all important featur
of a SP system in the following we consider an antiferrom
netic Heisenberg chain coupled to a set of Einstein osc
tors,

H5Hs1Hp1Hsp , ~1!

with

Hs5J(
i

~Si•Si 111aSi•Si 12!, ~2!

Hp5v0(
i

bi
†bi . ~3!

The interaction of spins and phonons,Hsp , can be modeled
in two different ways,

Hsp
loc5ḡ(

i
~bi

†1bi !Si•Si 11 , ~4!

Hsp
diff5ḡ(

i
~bi

†1bi !~Si•Si 112Si•Si 21!, ~5!

whereSi denote spin-12 operators at lattice sitei, while bi
†

and bi are phonon creation and annihilation operators,
spectively.Hsp

loc andHsp
diff differ in the mechanism of how the

lattice influences the exchange integral. ForHsp
loc , the local

coupling, one can think of a single harmonic degree of fr
dom directly modifying the magnetic interaction. In the co
text of CuGeO3 this could correspond to side group effec
~by the germanium atoms! as discussed in Refs. 15 and 1
In the case ofHsp

diff , the differencecoupling, the exchange
6566 ©1999 The American Physical Society
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depends directly on the spatial distance between neighbo
spins. Note that it is not possible to uniformly decrease
increase all exchange integrals with this type of spin-pho
interaction.

AlthoughHsp
loc seems to be more appropriate for CuGeO3

we will consider both variants and compare their propert
In addition we take into account a frustrating next-neare
neighbor interactionJa, which in view of CuGeO3 was in-
troduced to explain susceptibility data.17,18 As we will see
below, the spin-phonon interaction is able to induce this k
of long ranged exchange as well.

Motivated by the success of methods combining unit
transformations with variational and numerical techniqu
which we used to study the Peierls transition in the Holst
model of spinless fermions,19 and inspired by the work o
Zheng,11 in this article we analyze the model~1! within the
same framework. In particular we focus on the ground-s
phase diagram as a function of spin-phonon coupling, fr
tration, and phonon frequency, and compare our results
exact diagonalization data.

II. EFFECTIVE SPIN MODELS

To describe a static lattice dimerization in the adiaba
case of small phonon frequencyv0 we start with a unitary
transformation ofH which shifts the equilibrium position o
each oscillator by a constant amount alternating from site
site, H̃5exp(S1)H exp(2S1), with

S15
Dp

2ḡ
(

i
~21! i~bi

†2bi !. ~6!

For the terms involving phonons this yields

H̃p5Hp2v0

Dp

2ḡ
(

i
~21! i~bi

†1bi !1Nv0S Dp

2ḡ
D 2

, ~7!

H̃sp
loc5Hsp

loc2Dp (
i

~21! iSi•Si 11 , ~8!

H̃sp
diff5Hsp

diff22Dp (
i

~21! iSi•Si 11 . ~9!

Dp will act as the variational parameter describing t
dimerization of the system.

Applying another unitary transformation H̄

5exp(S2)H̃ exp(2S2), we want to decouple spin and phono
degrees of freedom in the antiadiabatic case of large pho
frequency. In analogy to the~incomplete! Lang-Firsov trans-
formation used in Refs. 19 and 11, we choose the ansat

S2
loc5 f

ḡ

v0
(

i
~bi

†2bi !Si•Si 11 , ~10!

S2
diff5 f

ḡ

v0
(

i
~bi

†2bi !~Si•Si 112Si•Si 21!. ~11!

The free parameterf accounts for the change from the anti
diabtic to the adiabtic regime; numerically it is determin
such that the contributions of first order inḡ to the Hamil-
ng
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tonianH̄ are as small as possible~reminding us of the usua
condition for a Schrieffer-Wolff transformation20!. In par-
ticular we require the amplitude of the state resulting fro
the application ofH̃sp1@S2 ,H̃s1H̃p#uDp50 to the ground

state ofHs1Hp to be minimal. Figure 1 illustrates the varia
tion of f with varying phonon frequencyv0.

We find that the general shape off 5 f (v0) depends only
weakly on both system sizeN and frustrationa. While
f˜1 in the antiadiabatic frequency range (v0@J), the
transformation exp(S2) vanishes completely as the frequen
becomes small (v0!J).

In contrast to electron-phonon systems with Holstein c
pling, where a transformation similar to exp(S2) can be
evaluated to give a simple analytic expression, applying
unitary transformation exp(S2) to H̃, we obtain an infinite
series of terms, which cannot be summed up easily, i.e.,

H̄5(
k

@S2 ,H̃#k /k!, ~12!

where@S2 ,H̃#k denotes the iterated commutator@S2 ,H̃#k11

5@S2 ,@S2 ,H̃#k# with @S2 ,H̃#05H̃. In the following, for H̄

we will consider only contributions up to fourth order inḡ.
To determine properties of the low-energy spin excitat

spectrum~like the existence of a spin gap! we have to keep
most details of the spin system, and we therefore derive
effectivespin model by taking the average over the phon
subsystem,Heff5^H̄&. As we stay close to the ground stat
^•••& should denote averaging over the phonon vacuu
However, to allow for a later comparison with the results
Uhrig,13 in an intermediate step we write^•••& for the aver-
age over thermally excited phonon states, and introduce

Yª^~bi
†2bi !

2&5H 21 if T50,

2cothS v0

2TD if T.0,
~13!

as a shorthand notation for an expression occurring rep
edly below. The resulting spin HamiltonianHeff5^H̄& con-
tains long-ranged Heisenberg interactions as well as num

FIG. 1. Variation off in the case of local coupling and lattic
sizeN516.
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6568 PRB 60A. WEIßE, G. WELLEIN, AND H. FEHSKE
ous four- and six-spin couplings of the form (Si•Sj )(Sk•Sl)
•••(Sm•Sn). To a good approximation we can neglect the
and obtain

Heff /J5J01(
i

@J11~21! id#Si•Si 11

1(
i

(
k52

4

JkSi•Si 1k . ~14!

Note that all phonon dynamics disappeared from the Ham
tonian Heff , but the effect of the spin-phonon interactio
enters through both the static dimerization parameterDp and
the different long-range spin interactions.

For the local coupling the corresponding interacti
strengths are

d loc52
Dp

J F ~12 f !1
f 2g2Y

2 S 12
f

3D G , ~15!

J0
loc5NFv0

J
^bi

†bi&1
1

4l S Dp

J D 2

2
3

8
l f S 12

f

2D2
lg2Y f3

16 S 12
f

4D G , ~16!

J1
loc511l f S 12

f

2D1
f 2g2Y~12a!

2

1
lg2Y f3

2 S 12
f

4D1
f 4g4Y2

96
~28237a!, ~17!

J2
loc5a2

f 2g2Y~122a!

2
2

lg2Y f3

4 S 12
f

4D
2 f 4g4Y2

37

96
~122a!, ~18!

J3
loc52

f 2g2Ya

2
1

f 4g4Y2

96
~9246a!, ~19!

J4
loc5

9 f 4g4Y2a

96
, ~20!

while for the difference coupling we find

ddiff52d loc, ~21!

J0
diff5NFv0

J
^bi

†bi&1
1

4l S Dp

J D 2

2
3

4
l f S 12

f

2D2
3lg2Y f3

16 S 12
f

4D G , ~22!

J1
diff5112l f S 12

f

2D1
3 f 2g2Y~12a!

2

1
3lg2Y f3

2 S 12
f

4D1
f 4g4Y2

24
~59275a!, ~23!
l-

J2
diff5a1l f S 12

f

2D2
f 2g2Y~325a!

2

2
lg2Y f3

12 S 12
f

4D2
f 4g4Y2

24
~752124a!, ~24!

J3
diff52 f 2g2Ya2

5lg2Y f3

6 S 12
f

4D1
f 4g4Y2

48
~322119a!,

~25!

J4
diff5

21f 4g4Y2a

48
. ~26!

To point out the relevant model parameters we introdu
the dimensionless coupling constantsl5ḡ2/(Jv0) ~cf. Refs.
3 and 4! andg5ḡ/v0.

Comparing our result with that of Uhrig,13 in Heff
diff we

have to setf 51, which corresponds to the antiadiabatic r
gime, andDp50. Indeed we recover@except for a prefactor
1/2 which in Ref. 13 enters erroneously going from Eq.~11c!
to Eq. ~13!# all second-order terms derived with the flow
equation method, supplemented by some new fourth-o
contributions.

Hereafter we setT50 and useY521 and ^bi
†bi&50

exclusively; i.e., we search for a good approximation to
ground state of Eq.~1!.

III. TRANSITION TO A GAPPED PHASE

A prominent feature associated with the SP instability
of course the existence of an energy gap between the gro
state and lowest excitations. Considering, in a first step,
pure spin modelHs , it is known that the spectrum is gaples
for the Heisenberg chain witha50, where the lowest spinon
excitations ~triplet and singlet! are degenerate with th
ground state at momentaq50 and p.21–23 In contrast the
system has a twofold-degenerate ground state and a ga
lowest triplet excitations ata50.5, the Majumdar-Ghosh
point.24 At some intermediate frustrationac the model un-
dergoes a transition from the gapless to the gapped ph
which is of Kosterlitz-Thouless type.25–27 Using arguments
of conformal field theory one can show that the lowest s
glet and triplet excitations of a finite system of sizeN be-
come degenerate atac(N), where the dependence onN is
only weak andac(N)2ac(`);N22 ~cf. Refs. 28–30!. This
was used in Refs. 31, 18 and 32 to determineac
50.241167(5).

Looking at our effective spin modelsHeff we find that the
interaction with the optical phonons induces the same kind
frustrating next-nearest neighbor interaction. Therefo
without any explicit frustrationa, the effective frustration
aeffªJ2 /J1 due to the phonons can lead to a gap in t
energy spectrum and to spontaneous dimerization, as
already discussed in Refs. 12 and 13. This effect is m
important in the antiadiabatic frequency range.

Another mechanism producing a gap is~static! dimeriza-
tion, i.e., an alternation of the nearest-neighbor exchange
tegral. Taking the adiabatic limit of our effective mode
f˜0 and d˜Dp , the ground-state energy o
Hs1d( i(21)iSi•Si 11 is known to deviate from its value a
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d50 like d4/3 ~cf. Ref. 4!, while the elastic energy increase
with d2. Therefore for all couplingsl the ground-state en
ergy ofHeff( f 50) is minimal, ifd is finite. At the same time
proportional tod2/3 a gap opens in the spectrum.

By taking into account both mechanisms we can now
termine the transition from the gapless phase to the gap
one. As the SP system behaves differently for the two c
plings, we treat them separately, starting with thelocal cou-
pling case.

A. Local coupling

In a first step we setDp50 and use the level-crossin
criterium31,18,9 to calculate the critical line in thea-g plane
for different phonon frequenciesv0 and system sizesN.
Since Heff

loc contains longer-ranged interactions such
Si•Si 13 andSi•Si 14, this line slightly deviates from the line
aeff5ac , and we have to calculate it separately. Applyi
the Lanczos algorithm to the effective model we obtain
critical line with high accuracy on local workstations (N
<20).

On the other hand we determine the level crossing in
original model~1! by using the methods described in Ref.
In the casev0 /J50.1, the latter is complicated with ou
Lanczos diagonalization code, since for the small systems
can handle the finite-size gap to that singlet excitation
have to consider for the level crossing is a few times lar
than v0. Therefore this singlet is in between a number
other singlet excitations, not allowed for determining t
critical coupling. Only very large systems~see Ref. 9, Table
II ! with a finite-size gap smaller thanv0 permit one to pre-
cisely locate the level crossing.

Figures 2~a! and 2~b! show the critical lines in the effec
tive ~bold solid! and the original model~bold dashed! as well
as the linesaeff5ac ~thin solid!. As in the case of the pure
spin model, the critical lines depend only weakly onN. We
can therefore compare exact data for the original model
N58 with data for the effective model andN516. While the
results differ noticeably for intermediate phonon frequen
v0;1, the agreement is excellent in the antiadiabatic f
quency rangev0@J. With increasingv0 the critical curve
exhibits a remarkable upturn before crossing the absci
i.e., the frustration is suppressed for small spin phonon c
pling, but overcritical for strong coupling. It is this featu
which makes it necessary to expand Eq.~12! up to fourth
order to approximateH loc in a correct way. A second-orde
theory is not capable of describing the observed critical li

Another point we can study within our effective model
the behavior of the critical spin phonon couplinggc at
a50 in the limit v0 /J˜`, i.e., the limit of the crossing
point of the critical line and the abscissa. As the effects
the longer-ranged interactions are rather small, we can s
the equationaeff

loc5ac . Setting f 51 ~compare Fig. 1! and
a50 we find

gc
25

P

2Q
1AS P

2Q
D 2

1
ac

Q
, ~27!
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P5
v0

J

ac

2
2

1

2
~11ac!, ~28!

Q5
v0

J

3

8 S 1

2
1acD2S 37

96
1

7

24
acD , ~29!

and in the limit of infinite phonon frequencygc approaches a
finite value,

lim
v0 /J˜`

gc5A 8ac

3~112ac!
'0.66, ~30!

FIG. 2. Singlet-triplet level crossing~solid lines! and onset of
dimerization~dashed lines with symbols! in the effective model in
comparison to the level crossing in the original model~bold dashed
lines! at v0 /J510, 1 and 0.1. In~c! the inset shows (d/v0)2 for
a50.36, v0 /J50.1 ~solid line!, 0.316~dashed line!, andN58.
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for the model with local coupling.
In the case small phonon frequency,v0!J, the second

transformation exp(S2) loses its importance, and the effectiv
frustration due to the spin-phonon interaction is replaced
the dimerization as the relevant mechanism leading to
energy gap. We account for this effect by allowing for
finite Dp in our approximation. Using the Hellmann
Feynman theorem and numerical diagonalization of fin
spin systems we determineDp such that the ground-stat
energy ofHeff

loc is minimal. Depending on coupling strengthg
and frustrationa the system prefers to remain in the u
dimerized, gapless phase (Dp50) or to develop a nonzero
dimerization leading to a gap. In Figs. 2~a!–2~c! we plotted
these transition lines~dashed line with symbols! in addition
to those obtained by level crossing. As we already found
our study of the Holstein model of spinless fermions,19 for
small v0 the transition to the dimerized phase depends
ticeably on the system sizeN @see Fig. 2~c!#, while the finite-
size dependence is weak in the antiadiabatic regime@cf. Fig.
2~a!#. In addition, forv0 /J510 the transition is consisten
with the critical line determined via level crossing.

To compare properties of the original and effective mo
els also in the case of small phonon frequency, we cons
the dimerization. As a quantity which corresponds tod loc/diff

we take the static~lattice! structure factor,6,7

d25
ḡ2

N2 (
j ,k

^ujuk&e
ip( j 2k) , ~31!

calculated in the ground state of Eq.~1!, where uj5bj
†

1bj . The inset of Fig. 2~c! demonstrates that the results f
the dimerization in the effective~bold lines! and the original
model~thin lines with symbols! agree rather well, especiall
for v0 /J50.1.

Another feature we can compare is the dispersion of lo
lying excitations. Figure 3 shows the energy of the low
triplet excitations, calculated exactly and within our appro
mation. Clearly forv0 /J50.3 the correct dispersion is fla
tened at momenta nearq5p/2. This results from the energ
of the dispersionless phonons, which is added to the low
triplet at q5p. Of course our effective model does not co
tain these low-lying phonon excitations. However, as soon

FIG. 3. Low-lying excitations in the effective~solid symbols!
and the original model~open symbols! for different frequency and
local couplingg.
y
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v0*J the lowest excitations are due to renormalized s
interactions and well approximated by the effective mode

To collect the results of this subsection we show in Fig
the critical couplinggc(a50) over a wide range of phono
frequencies, using both criteria for the phase transition. S
bols stand for the onset of dimerization, while the bold li
corresponds toaeff5ac . As expected, we find that our ap
proximation is somewhat unreliable for intermediate phon
frequencies. The singularity ofgc at v0 /J51 is a manifes-
tation of this deficiency. The correct critical line will conne
adiabatic and antiadiabatic behavior in a continuous w
~compare also the next subsection and Ref. 9!.

B. Difference coupling

The procedure to determine the phase transition in the
system with difference coupling is the same as descri
before. In the antiadiabatic regime we setDp50 and calcu-
late the position of the crossing of the first triplet and the fi
singlet excitation for both the original and effective mode
The results forv0 /J510 and 1 are shown in Figs. 5~a! and
5~b!, respectively.

In contrast to the local coupling the structure of the cr
cal line for high phonon frequency (v0 /J510) is much sim-
pler. It appears that one would get the same shape also
second-order theory. However, to enlarge the applica
area of our approximation taking into account higher-ord
contributions is still appropriate. As before, the agreem
between the original and effective models is excellent in
antiadiabatic regime, while the deviations increase with
proaching intermediate frequencies.

Calculating the behavior of the critical couplinggc(a
50) in the limit of infinite phonon frequency,v0 /J˜`, we
now find

gc
252

P

2Q
1AS P

2Q
D 2

1
ac

Q
, ~32!

with

P5
v0

J S 1

2
2acD1

3

2
~11ac!, ~33!

FIG. 4. Critical couplinggc vs frequency forHeff
loc with a50.



e
le

sh-

igs.
n-

ore

e

in

f

-
nt
t
t

ive

dy-
re
ac-
e

ers

ore

on-
ng-

o

PRB 60 6571QUANTUM LATTICE FLUCTUATIONS IN A . . .
Q5
v0

J S 1

16
1

9

8
acD2S 25

8
1

59

24
acD , ~34!

and, differently from the local coupling case,gc tends to
zero,

lim
v0 /J˜`

gc50. ~35!

While theq50 and theq5p phonon modes compete in th
case of local spin phonon coupling, allowing for a stab
gapless phase up to a criticalg, there is no interaction with

FIG. 5. Level crossing~solid lines! and onset of dimerization
~dashed lines with symbols! in the effective model in comparison t
the level crossing in the original model~bold dashed lines! at
v0 /J510, 1 and 0.1. In~c! the inset compares exact~symbols! and
variational results for (d/v0)2 at a50.36, v0 /J50.1, andN58.
the q50 mode inHsp
diff . Therefore theq5p mode induces

long-ranged exchange more efficiently, leading to a vani
ing gc for v0 /J˜`.

For small phonon frequenciesv0!J again we determine
the optimal dimerizationDp and the critical line beyond
which Dp starts to be nonzero. The results are shown in F
5~b! and 5~c!. For large phonon frequency we find an u
stable behavior ofDp ; it is finite for someg, but vanishes
before growing to substantial values again. We theref
make no attempt to fix the onset ofDpÞ0 for v0 /J*1.

As in the case of local coupling the dimerization in th
original and effective models agrees well forv0 /J50.1 @in-
set Fig. 5~c!#.

Finally in Fig. 6 we combine the above results to obta
the phase diagram in theJ/v0-g plane. Except forv0 /J
˜`, where gc˜0, the behavior is similar to the case o
local coupling. Again atv0 /J;1 the effective model gives a
singularity ingc , while the correct result should be continu
ous. Comparing the transition line with the very rece
DMRG data of Bursillet al.,9 we find very good agreemen
in the antiadiabatic regime~the phase transition does no
change, going from the second- to fourth-order effect
theory!. For small phonon frequencyv0 /J˜0 the results of
Bursill et al. suggest a finite limit forgc /v0, while our
model gives an increasing ratio ofgc /v0. However, as the
finite-size effects are large forv0!J, determining the cor-
rect value ofgc is a delicate procedure and the exactgc
might be much smaller than depicted in Fig. 6.

IV. GROUND-STATE PHONON DISTRIBUTION

In the course of exact diagonalizations of the phonon
namical model~1! we observed another interesting featu
distinguishing the two mechanisms of spin-phonon inter
tion. Turning our attention to the phonon distribution in th
ground state of Eq.~1!, we find for the model withdifference
coupling in the adiabatic regime that the system pref
states withevenphonon occupation numbers@cf. Fig. 7~a!#.
This behavior reminds us of a simple two-level system, m
precisely the Rabi~pseudo-Jahn-Teller! Hamiltonian33

H5Dsz1ḡ~b†1b!sx1v0b†b s0, ~36!

where an interaction with a bosonic degree of freedom c
nects the levels. Solving this model in the adiabatic stro

FIG. 6. Critical couplinggc vs frequency forHeff
diff with a50.
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6572 PRB 60A. WEIßE, G. WELLEIN, AND H. FEHSKE
coupling casev0 /D!1 andg5ḡ/v0.1, we obtain a simi-
lar even-odd alternation in the ground-state phon
distribution. One can understand this effect within stand
perturbation theory. Starting with the two levels6D and the
corresponding eigenstates (0

1) and (1
0), it is obvious that add-

ing only one phonon requires an extra amount of 2D ex-
change energy, because the system is excited to the u
level. Therefore the system prefers an even number
phonons for the ground-state wave function. In the antiad
batic casev0@D, to a good approximation we can omit th
Dsz term and solve the model by unitary transformatio
leading to a Poisson distribution of the phonons~coherent
state!.

In view of the SP system with difference coupling, th
q5p phonon is the most relevant~in fact in the ground state
almost all phonons occupy this mode!, and adding one pho
non changes the momentum of the spin system byp. Con-
sequently the gap between the~singlet! ground state atq
50 (N54k, kPN) or p (N54k12) and the lowest sin-
glet state atq5p or 0, respectively, plays the role of 2D in
the two-level system. As this singlet-singlet gap is only d
to the finite size of the considered spin chain, we believe
the even-odd alternation will disappear in the thermo
namic limit. The reduction~disappearance! of the even-odd
imbalance resulting from a finite frustration with a mu
smaller singlet-singlet gap~zero ata50.5) @cf. Fig. 7~c!#
can be taken as a first indication. Of course we observ
smooth phonon distribution in the antiadiabatic case@Fig.
7~d!#.

FIG. 7. ~a! Phonon distribution in the ground state of the mod
with difference coupling (g51.4, v0 /J50.1) and~b!,~c! mecha-
nisms that suppress the even-odd imbalance: local coupling,
tration, and antiadiabaticity.
n
d

per
of
-

,

e
at
-

a

The model with local spin-phonon coupling exhibits th
usual Poisson distribution for all frequencies, since the in
action is due to theq5p and the q50 phonon mode@Fig.
7~b!#.

V. CONCLUSION

In summary, we have studied the spin-Peierls instabi
of a frustrated Heisenberg spin chain coupled to opti
phonons of energyv0. Using the concept of unitary transfor
mations we derive effective spin Hamiltonians, which cov
the spin-phonon interaction by two mechanisms, sta
dimerizationDp and long-ranged exchange couplings. Bo
can lead to an energy gap between the ground state and
est excitations, which is related to a Peierls instability of t
spin system. In the antiadiabatic phonon frequency ra
v0@J, we verify and extend the Hamiltonian obtained r
cently with the flow-equation method,13 while we recover the
usual static SP model in the limitv0 /J˜0.

To determine the transition to the gapped phase in
case of large phonon frequency we use the level-cros
criterium, which proved to be very accurate for simil
models.31,18,9For the two types of spin-phonon coupling@lo-
cal, ui Si•Si 11, anddifference, (ui2ui 11) Si•Si 11] we con-
sider here, the results of our effective models agree very w
with data from exact diagonalization of the original, phon
dynamical model and with recent DMRG data9 ~difference
coupling only!. In the case of local coupling two phono
modes (q50 andp) compete and allow for a gapless pha
to exist in a wider parameter range. Furthermore, we obse
a nonmonotonous behavior of the phase transition line a
function of spin-phonon interaction and frustrationa. With
difference coupling spins and phonons interact almost o
through thep mode, which is able to dimerize the syste
most efficiently.

For phonon frequenciesv0&J, we determine the phas
transition by means of the static dimerizationDp , which
changes from zero at small spin phonon coupling to a fin
value beyond a critical coupling.

At intermediate frequency the situation remains unsa
factory as the critical coupling behaves discontinuous
Here numerical methods, including the full phonon dyna
ics, still provide the only reliable tool to study the transitio
Nevertheless, the proposed effective models help to un
stand the physical mechanisms leading to spontane
dimerization of the interacting spin-phonon system.
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