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Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain
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As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical
phonons. In view of the anorganic spin-Peierls compound CuGe©consider two different mechanisms of
spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the
antiadiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an
approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is
discussed. Comparing the properties of the ground state and low-lying excitations with exact diagonalization
data for the full quantum spin-phonon models, good agreement is found especially in the antiadiabatic regime.
[S0163-18209)04733-3

[. INTRODUCTION used perturbation theory to derive an effective spin Hamil-
tonian, while Uhrid® applied the flow-equation method, i.e.,
The effect of a Peierls instability in quasi-one- a continuous unitary transformatiof.

dimensional spin systems, i.e., the instability of a uniform As a simple model which contains all important features
spin chain towards dimerization induced by the interactior0f & SP system in the following we consider an antiferromag-
with lattice degrees of freedom, has attracted considerableetic Heisenberg chain coupled to a set of Einstein oscilla-
attention over the last decades. Starting in the 1970s witfPrs,
organic compounds of the TTF and TCNQ familyhe in-
terest in the Peierls instability was renewed with the discov-
ery of a spin-Peierl§SP transition in the anorganic com- \yith
pound CuGeQ in 1993 by Haset al? The most significant
feature distinguishing CuGe{Ofrom other SP compounds is
the high energy of the involved optical phonons, which is HSZJZ (S$:S+1+a§-S;2), )
comparable to the magnetic exchange integrah contrast
to the organic materials no softening of these phonon modes
is observed near the transition. Therefore the adiabatic treat- Hp:wOE bi’fbi . (3
ment of the phonon subsystem used in the works of Pgitte [
Cross an_o_l Fighé‘rdoes hot seem appropriate to describe Fhel'he interaction of spins and phonot$,,,, can be modeled
SP transition in CuGe@ although there are recent efforts in in two different ways P
this direction® Rather one has to take into account the effect '
of quantum lattice fluctuations which tend to decrease the SP
transition temperature and the energy gap between the H=g>, (b/+b)S S, (4)
ground state and lowest excitations in the dimerized phase, !
respectively. Unfortunately there are practically no analytic
methods to handle coupled systems of sgglectrons and diff _ T ] _a.
phonons when all energy scales and coupling strengths are of Hsp Q (b +b)(S-S+175-5-0), ©
the same order of magnitude. This is why many studies in- ) ) N .
volving dynamical phonons rely on numerical methods, suchvhere S denote spirz operators at lattice site while b;
as exact diagonalizatiofED),®” density matrix renormaliza- andb; are phonon creation and annihilation operators, re-
tion group (DMRG),%° or Monte Carlo(MC) simulation® spectively.H'S?,f annggf differ in the mechanism of how the
Only recently Zhent} developed an analytical approach to lattice influences the exchange integral. IT—djg the local
describe the SP instability of aXY spin chain, which is coupling, one can think of a single harmonic degree of free-
based on the unitary transformation method. It works well indom directly modifying the magnetic interaction. In the con-
the adiabatic and antiadiabatic regimes. In the latter castext of CuGeQ this could correspond to side group effects
there are also some approaches to the Heisenberg spin chdby the germanium atomss discussed in Refs. 15 and 16.

interacting with optical phonons: Kuboki and Fukuyafa In the case ongi;f, the differencecoupling, the exchange

H=Hg+Hp+Hgp, (1)
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depends directly on the spatial distance between neighboring iof
spins. Note that it is not possible to uniformly decrease or

increase all exchange integrals with this type of spin-phonon 08 |
interaction.

Although HLOS seems to be more appropriate for CuGeO
we will consider both variants and compare their properties.
In addition we take into account a frustrating next-nearest-
neighbor interactiod«, which in view of CuGeQ was in-
troduced to explain susceptibility data® As we will see

0.6 I

0.4

below, the spin-phonon interaction is able to induce this kind 02 r
of long ranged exchange as well.

Motivated by the success of methods combining unitary 0.0 , , . ]
transformations with variational and numerical techniques, 107 107 10° 10’ 10°
which we used to study the Peierls transition in the Holstein Y

model of spinless fermions, and inspired by the work of FIG. 1. Variation off in th  local i d lati

Zheng!?! in this article we analyze the modél) within the . - - vanation oftin the case ot focal coupling and fatice
. sizeN=16.

same framework. In particular we focus on the ground-staté

phase diagram as a function of spin-phonon coupling, frus- _ o

tration, and phonon frequency, and compare our results witkonianH are as small as possibleeminding us of the usual

exact diagonalization data. condition for a Schrieffer-Wolff transformatiéh. In par-
ticular we require the amplitude of the state resulting from
Il. EFFECTIVE SPIN MODELS the application ofHSp+[Sz,HS+Hp]|Aﬁ:0 to the ground

To describe a static lattice dimerization in the adiabatics_tate OfH3+HP to be minimal. Figure 1 illustrates the varia-

: . tion of f with varying phonon frequencyy.
case of small phonon frequeney, we start with a unitary .
transformation oH which shifts the equilibrium position of We find that the general shape ot f(wo) depends only

each oscillator by a constant amount alternating from site t eakly on both 'sygtem . siz8l and frustrationa. While
— . —1 in the antiadiabatic frequency range£J), the
site, H=expE)H exp(= Sy, with transformation ex®,) vanishes completely as the frequency
A becomes small¢y<J).
S;=— > (— 1)i(biT— b;). (6) In contrast to electron-phonon systems with Holstein cou-
2g i pling, where a transformation similar to e can be
evaluated to give a simple analytic expression, applying the

For the terms involving phonons this yields ) ] - ) AR
unitary transformation exf) to H, we obtain an infinite

- A, , A, 2 series of terms, which cannot be summed up easily, i.e.,
Ho=Hp—wo— > (—1)'(b{ +b))+Nawo| —| , (7)
2g 29
H=2 [S; HI/kL, (12)
~ ’ k
A =HE -4, 3 (-1)'S S, (®)
where[S,,H], denotes the iterated commutaf@®,,H]y. 1
R i i =[S,,[S, H ith [S,,H]o=H. In the following, forH
Hggf=Hg'g—2AﬁZi (—1)'S-S ;. (9) [S2.[S2,HIk] with [S;,H]o n the following, for

we will consider only contributions up to fourth order gn
A will act as the variational parameter describing the To determine properties of the Io_w-energy spin excitation
dimerization of the system. spectrum(l_lke the eX|st_ence of a spin gawe have to kegp
) ) ~ — most details of the spin system, and we therefore derive an
Applylgg another  unitary transfo'rmatlon H effective spin model by taking the average over the phonon
= exp&S)H exp(=S,), we want to decouple spin and phonon g pqystemH = (H). As we stay close to the ground state,
degrees of freedom in the antiadiabatic case of large phono<n. ..y should denote averaging over the phonon vacuum.

frequepcy. In analogy to théncomplete Lang-Firsov trans- However, to allow for a later comparison with the results of
formation used in Refs. 19 and 11, we choose the ansatz Uhrig.®in an intermediate step we write - -) for the aver-

age over thermally excited phonon states, and introduce

§e=t-2 5 (bf-b)S Sy, 10
0! -1 if T=0,
P Yi=((bf —by)%) = I_(“’o) . (13
S-S (b]-b)(S-S.1-§-5-). (1Y ~oot 3p) if T>0,

The free parametdraccounts for the change from the antia- as a shorthand notation for an expression occurring repeat-
diabtic to the adiabtic regime; numerically it is determinededly below. The resulting spin Hamiltoniates=(H) con-
such that the contributions of first order gnto the Hamil-  tains long-ranged Heisenberg interactions as well as numer-
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ous four- and six-spin couplings of the forr (S)(S.- )
--(Sy+'Sy). To a good approximation we can neglect them
and obtain

He/3=Jo+ 2 [31+(~1)'01S S 14

4
2 2 S S (14)
Note that all phonon dynamics disappeared from the Hamil
tonian He;, but the effect of the spin-phonon interaction
enters through both the static dimerization param&teand
the different long-range spin interactions.

For the local coupling the corresponding interaction
strengths are

loc A g f
8%= -5 (A-H+——[1-3]|, (15)
2
loc__ ﬂ Th. i E
Jo [J<bib'>+4>\ J)
3f1 f )\ngf31 f 16
“gMitTz) e (Tl 19
f\ f20%Y(1—a)
loc__ o
W=1M| 1 S|+ ————
MgV 1 fl, o'y’ 28— 37 1
Joe_ f29%Y(1-2a) NQ?Yf !
2 =% 2 4 4
—f4 4\/2—(1 2a), (18
f292Y(1 f494Y2
loc_ —
J3 5 9% (9—46a), (19
9f4g*Y2a
loc__
i=—9 (20)
while for the difference coupling we find
5diff — 25|OC, (21)
1/A,\?
Jd'ﬁ—N[—(b bi)+ 2 ;)
3 o1 f 3)\92Yf3 L f -
Mg e gl @
f\ 3f2g%Y(1—a)
diff __ o 29 A =7
Ji 1+2)\f(1 2)+ >
3ng2Yfe L f\  figty? S0 75, (23
— 2 \1a)t g 59T (3
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. f\  f?g%Y(3—-5a)
diff __ .
)\ngf?’ f\  f4gty?
— |17 7] g (75— 124a), (29)
5Ag2Y 3 f\  fig*y?
dlff 22 _ N —
J§"=—12g%Ya & (1 4)+ g (32-11%),
(25
. - 21f4g*Y2%a
diff _

To point out the relevant model parameters we introduced
the dimensionless coupling constahts g%/ (Jw,) (cf. Refs.
3 and 4 andg=g/wg. _
Comparing our result with that of Uhrif,in HAI' we
have to seff =1, which corresponds to the antiadiabatic re-
gime, andA ,=0. Indeed we recovdexcept for a prefactor
1/2 which in Ref. 13 enters erroneously going from Ed.o
to Eq. (13)] all second-order terms derived with the flow-
equation method, supplemented by some new fourth-order
contributions.
Hereafter we seff=0 and useY=—1 and(bb;)=0
exclusively; i.e., we search for a good approximation to the
ground state of Eq(1).

Ill. TRANSITION TO A GAPPED PHASE

A prominent feature associated with the SP instability is
of course the existence of an energy gap between the ground
state and lowest excitations. Considering, in a first step, the
pure spin modeHg, it is known that the spectrum is gapless
for the Heisenberg chain with=0, where the lowest spinon
excitations (triplet and singlet are degenerate with the
ground state at momeng=0 and 7.2'=23 In contrast the
system has a twofold-degenerate ground state and a gap to
lowest triplet excitations aw=0.5, the Majumdar-Ghosh
point?* At some intermediate frustration, the model un-
dergoes a transition from the gapless to the gapped phase,
which is of Kosterlitz-Thouless typ@-27 Using arguments
of conformal field theory one can show that the lowest sin-
glet and triplet excitations of a finite system of sikebe-
come degenerate ait;(N), where the dependence dhis
only weak andx(N) — a() ~N~2 (cf. Refs. 28—30 This
was used in Refs. 31, 18 and 32 to determing
=0.241%67(5).

Looking at our effective spin models.; we find that the
interaction with the optical phonons induces the same kind of
frustrating next-nearest neighbor interaction. Therefore,
without any explicit frustratione, the effective frustration
aei=J,/J, due to the phonons can lead to a gap in the
energy spectrum and to spontaneous dimerization, as was
already discussed in Refs. 12 and 13. This effect is most
important in the antiadiabatic frequency range.

Another mechanism producing a gap(statio dimeriza-
tion, i.e., an alternation of the nearest-neighbor exchange in-
tegral. Taking the adiabatic limit of our effective model,
f-0 and 6—A,, the ground-state energy of
H+62(—1)'S- S, 1 is known to deviate from its value at
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5=0 like 6*2 (cf. Ref. 4, while the elastic energy increases 04
with 2. Therefore for all couplings the ground-state en- T fwcross (N=19)
ergy ofHq(f=0) is minimal, if § is finite. At the same time S e
proportional to5?* a gap opens in the spectrum. 0371 [, Do THadm 2
By taking into account both mechanisms we can now de- ’
termine the transition from the gapless phase to the gapped q\ @gI=10
one. As the SP system behaves differently for the two cou- 02 N T
plings, we treat them separately, starting with kbeal cou- gapless \ ‘,‘
pling case. R
0.1 ¢ o gapped
0
A. Local coupling “\ e
In a first step we sefA .=0 and use the level-crossing 9% 05 o 15
criteriunt18°to0 calculate the critical line in the-g plane 9
for different phonon frequencie®, and system size§l. 0.4
Since H% contains longer-ranged interactions such as ' b) i aross (et
S-S.3andS- S, 4, this line slightly deviates from the line od=t - ::ér‘ég:“(h:a)
asf= a;, and we have to calculate it separately. Applying 03t ¢ R e ey

the Lanczos algorithm to the effective model we obtain the
critical line with high accuracy on local workstation$ (
$20) 3 02 F
On the other hand we determine the level crossing in the
original model(1) by using the methods described in Ref. 6.

gapped

In the casewy/J=0.1, the latter is complicated with our 01} \

Lanczos diagonalization code, since for the small systems we gapless ¢

can handle the finite-size gap to that singlet excitation we \\ ¢

have to consider for the level crossing is a few times larger 0.0 A :

than wq. Therefore this singlet is in between a number of 0.0 05 g 10 15

other singlet excitations, not allowed for determining the
critical coupling. Only very large systentsee Ref. 9, Table
II) with a finite-size gap smaller than, permit one to pre-
cisely locate the level crossing.

Figures 2a) and 2b) show the critical lines in the effec-
tive (bold solid and the original moddbold dashegas well
as the lineswg= a, (thin solid). As in the case of the pure
spin model, the critical lines depend only weakly NnWe 3
can therefore compare exact data for the original model and
N =8 with data for the effective model amt¢i=16. While the
results differ noticeably for intermediate phonon frequency
wo~1, the agreement is excellent in the antiadiabatic fre-
guency rangewy>J. With increasingw, the critical curve
exhibits a remarkable upturn before crossing the abscissa;
i.e., the frustration is suppressed for small spin phonon cou-
pling, but overcritical for strong coupling. It is this feature
which makes it necessary to expand E#2) up to fourth FIG. 2. Singlet-triplet level crossin¢solid lineg and onset of
order to approximatéd loc in a correct way. A second-order dimerization(dashed lines with symbaglsn the effective model in
theory is not capable of describing the observed critical linecomparison to the level crossing in the original mogelld dashed

Another point we can study within our effective model is lines at wo/J=10, 1 and 0.1. In(c) the inset shows & wo)* for
the behavior of the critical spin phonon couplimg at ~ @=0-36, wo/J=0.1(solid line), 0.316(dashed ling andN=8.
a=0 in the limit wg/J—0e, i.e., the limit of the crossing

point of the critical line and the abscissa. As the effects of _ Do % 1(17‘%), (28)
the longer-ranged interactions are rather small, we can solve J 2 2

the equationa!S¢= . Settingf=1 (compare Fig. 1 and

a=0 we find R R N LA (29

Jgl2a ¢ 96 24°°)°
P B2 and in the limit of infinite phonon frequenay. approaches a
gzz_Jr (_) ﬂ’ (27) finite value,
¢ 2Q 2Q Q

. / 8ag
lim gc.= 3(1+—268‘;)~066, (30

with wglJ—o
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FIG. 3. Low-lying excitations in the effectivésolid symboly FIG. 4. Critical couplingy, vs frequency foH g with a=0.
and the original modelopen symbolsfor different frequency and
local couplingg. wp=J the lowest excitations are due to renormalized spin
. _ interactions and well approximated by the effective model.
for the model with local coupling. To collect the results of this subsection we show in Fig. 4

In the case small phonon frequenayy<J, the second the critical couplingg.(«=0) over a wide range of phonon
transformation exi&) loses its importance, and the effective frequencies, using both criteria for the phase transition. Sym-
frustration due to the spin-phonon interaction is replaced byols stand for the onset of dimerization, while the bold line
the dimerization as the relevant mechanism leading to agorresponds tar.s= .. As expected, we find that our ap-
energy gap. We account for this effect by allowing for aproximation is somewhat unreliable for intermediate phonon
finite A, in our approximation. Using the Hellmann- frequencies. The singularity af. at wg/J=1 is a manifes-
Feynman theorem and numerical diagonalization of finitetation of this deficiency. The correct critical line will connect
spin systems we determing, such that the ground-state adiabatic and antiadiabatic behavior in a continuous way
energy ofHLf’f? is minimal. Depending on coupling strength  (compare also the next subsection and Rf. 9
and frustrationa the system prefers to remain in the un-
dimerized, gapless phas& (=0) or to develop a nonzero
dimerization leading to a gap. In Figs(a2—2(c) we plotted
these transition linegdashed line with symboldn addition The procedure to determine the phase transition in the SP
to those obtained by level crossing. As we already found irsystem with difference coupling is the same as described
our study of the Holstein model of spinless fermidhdor  before. In the antiadiabatic regime we fet=0 and calcu-
small wq the transition to the dimerized phase depends notate the position of the crossing of the first triplet and the first
ticeably on the system si2é[see Fig. 2c)], while the finite-  singlet excitation for both the original and effective models.
size dependence is weak in the antiadiabatic redohd=ig.  The results forwy,/J=10 and 1 are shown in Figs(& and
2(a)]. In addition, forwy/J=10 the transition is consistent 5(b), respectively.
with the critical line determined via level crossing. In contrast to the local coupling the structure of the criti-

To compare properties of the original and effective mod-cal line for high phonon frequencys( /J= 10) is much sim-
els also in the case of small phonon frequency, we considagler. It appears that one would get the same shape also for a
the dimerization. As a quantity which correspondss®5®  second-order theory. However, to enlarge the application
we take the statilattice) structure factof;’ area of our approximation taking into account higher-order

contributions is still appropriate. As before, the agreement

B. Difference coupling

5 g° (=K between the original and effective models is excellent in the
o :m Ek (Ujue ™Y, (3)  antiadiabatic regime, while the deviations increase with ap-
g proaching intermediate frequencies.
calculated in the ground state of E¢l), where uj=b/ Calculating the behavior of the critical coupling(a

+b;. The inset of Fig. &) demonstrates that the results for =0) in the limit of infinite phonon frequencyyo/J—c, we
the dimerization in the effectivéoold lines and the original Now find
model(thin lines with symbolsagree rather well, especially

for wy/J=0.1.

Another feature we can compare is the dispersion of low- 9P=——+
lying excitations. Figure 3 shows the energy of the lowest ¢ 2Q
triplet excitations, calculated exactly and within our approxi-
mation. Clearly forwy/J=0.3 the correct dispersion is flat- with
tened at momenta nege= /2. This results from the energy
of the dispersionless phonons, which is added to the lowest
triplet atq= 7. Of course our effective model does not con- @o ( 1
tain these low-lying phonon excitations. However, as soon as J

(32

—ac)-i-g(l-i-ac), (33
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- «
o
O N=8
107" oN=12
©N=16
A N=20
— &y =0,
. 107° .
0.3 0.4 0 1 2
9
) N FIG. 6. Critical couplingg., vs frequency foHd with «=0.
0/J=1 < \\3 Q Jfg:ecgins((u:sa)) th =0 de i Hdif‘f Th f heq = de ind
03 | - o cnsam o e =0 mode inHgy . Therefore theg=7 mode induces
° R R oroHedni=e long-ranged exchange more efficiently, leading to a vanish-
ing g. for wqg/J—o0.

S For small phonon frequencies,<<J again we determine
the optimal dimerizatiomA . and the critical line beyond
which A | starts to be nonzero. The results are shown in Figs.

L 5(b) and Fc). For large phonon frequency we find an un-
- stable behavior ofA ,; it is finite for someg, but vanishes
\ <> E N before growing to substantial values again. We therefore
%95 TERERTY 06 make no attempt to fix the onset Af_#0 for wy/J=1.
g As in the case of local coupling the dimerization in the
0.4 oo : origin.al and effective models agrees well #05/J=0.1[in-
© B -ty et set Fig. %c)].
o N i i Finally in Fig. 6 we combine the above results to obtain
0y/J=0.1 ax B Q o - .
03 RASTR the phase diagram in th& wq-g plane. Except forwq/J
N L —o, whereg.—0, the behavior is similar to the case of
RN ° local coupling. Again atvg/J~ 1 the effective model gives a
3 0.2 6 ISR a singularity ing., while the correct result should be continu-
s 2 e o o ous. Comparing the transition line with the very recent
£ N A " DMRG data of Bursillet al.,® we find very good agreement
01t W, in the antiadiabatic regiméthe phase transition does not
Lo : 0\\ ™ change, going from the second- to fourth-order effective
Boa R theory. For small phonon frequenay,/J—0 the results of
005 02 02 0'6—\0—88 Bursill et al. suggest a finite limit forg./wq, while our

FIG. 5. Level crossingsolid lineg and onset of dimerization
(dashed lines with symbol#n the effective model in comparison to
the level crossing in the original modébold dashed linesat
wo/J=10, 1 and 0.1. Ifc) the inset compares exagymbolg and
variational results for &/ wy)? at =0.36, wy/J=0.1, andN=8.

w1 N 9 25+ 59
Q=T |16 8% |5 " 24%)
and, differently from the local coupling casg, tends to
zero,
lim g.=0.
wglJ—e

While theq=0 and theq= 7 phonon modes compete in the

model gives an increasing ratio gf/wy. However, as the
finite-size effects are large fany<J, determining the cor-
rect value ofg. is a delicate procedure and the exagt
might be much smaller than depicted in Fig. 6.

IV. GROUND-STATE PHONON DISTRIBUTION

In the course of exact diagonalizations of the phonon dy-
namical model(1) we observed another interesting feature
distinguishing the two mechanisms of spin-phonon interac-
tion. Turning our attention to the phonon distribution in the
ground state of Eq1), we find for the model withdifference
coupling in the adiabatic regime that the system prefers
states withevenphonon occupation numbefsf. Fig. 7(a)].
This behavior reminds us of a simple two-level system, more
precisely the Rabipseudo-Jahn-TelleHamiltoniar’

H=Ao,+g(b'+b)o,+ web™b oy, (36)

case of local spin phonon coupling, allowing for a stablewhere an interaction with a bosonic degree of freedom con-
gapless phase up to a critiogl there is no interaction with nects the levels. Solving this model in the adiabatic strong-
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, The model with local spin-phonon coupling exhibits the
0.2 1 (a difference model - . . . . . .
B o5 usual Poisson distribution for all frequencies, since the inter-
01k B 0=0 | action is due to the= 7 and the g=0 phonon mod¢Fig.
i oL
00 ———F 77—
02r 6 ol '°°$:/'J"=°;f' 1 V. CONCLUSION
01 f =0 1 In summary, we have studied the spin-Peierls instability
00 of a frustrated Heisenberg spin chain coupled to optical
o [ ' ] phonons of energy,. Using the concept of unitary transfor-
02T @ difference model mations we derive effective spin Hamiltonians, which cover
01 b m miizf_’; i the spin-phonon interaction by two mechanisms, static
WH( T dimerizationA ; and long-ranged exchange couplings. Both
0.0 =—cH I e can lead to an energy gap between the ground state and low-
02t @ difference model 4 est excitations, which is related to a Peierls instability of the
_ 0/d=10 spin system. In the antiadiabatic phonon frequency range
01 =0 wo>J, we verify and extend the Hamiltonian obtained re-
1 ( cently with the flow-equation methddwhile we recover the
0.0 (.) ; 4 6 8 10 12 14 ;é 1I8 2I0 usual static SP model in the ||m0/J—)0
m To determine the transition to the gapped phase in the

S case of large phonon frequency we use the level-crossing
FIG. 7. (a) Phonon distribution in the ground state of the model criterium, which proved to be very accurate for similar
with difference coupling §=1.4, wy/J=0.1) and(b),(c) mecha- 1 ,54613L189F0r the two types of spin-phonon couplifig-

nisms that suppress the even-odd imbalance: local coupling, frust-al U S-Sy, anddifference (U — U+ 1) S-S ] we con-
1 Y +1 1 1+ +

tration, and antiadiabaticity. sider here, the results of our effective models agree very well
with data from exact diagonalization of the original, phonon
coupling casawy/A<1 andng/w0>1, we obtain a simi- dynamical model and with recent DMRG datalifference
lar even-odd alternation in the ground-state phonorfoupling only. In the case of local coupling two phonon
distribution. One can understand this effect within standardnodes (=0 and) compete and allow for a gapless phase
perturbation theory. Starting with the two levetsA and the 10 existin a wider parameter range. Furthermore, we observe
corresponding eigenstate}) @nd @), it is obvious that add- @ nonmonotonous behavior of the phase transition line as a
ing only one phonon requires an extra amount oA 2x-  function of spin-phonon interaction and frustratien With
change energy, because the system is excited to the uppdfference coupling spins and phonons interact almost only
level. Therefore the system prefers an even number ofrough them mode, which is able to dimerize the system
phonons for the ground-state wave function. In the antiadiaMost efficiently. _ _
batic casawo>A, to a good approximation we can omit the ~ FOr phonon frequencies,=<J, we determine the phase
Ao, term and solve the model by unitary transformation,transition by means of the static dimerizatian,, which
leading to a Poisson distribution of the phondisherent ~changes from zero at small spin phonon coupling to a finite
state. value beyond a critical coupling. _ _

In view of the SP system with difference coupling, the =~ At mtermedlate.f.requency .the situation remains unsatis-
g= phonon is the most relevafit fact in the ground state factory as t_he critical co_upllng_ behaves discontinuously.
almost all phonons occupy this mogand adding one pho- _Here _numerl_cal methods, mcludlng the full phonon dy_n_am-
non changes the momentum of the spin systemrbgon-  ICS, still provide the only reliable topl to study the transition.
sequently the gap between tfigingled ground state af Nevertheless, thg proposed gffectlve mpdels help to under-
=0 (N=4k, ke N) or 7 (N=4k+2) and the lowest sin- syand_ thg physma} mechamsm_s leading to spontaneous
glet state atj= or 0, respectively, plays the role of\2in dimerization of the interacting spin-phonon system.
the two-level system. As this singlet-singlet gap is only due
to the finite size of the considered spin chain, we believe that
the even-odd alternation will disappear in the thermody-
namic limit. The reductior{disappearangeof the even-odd We thank R.J. Bursill, J. Schliemann, and G.S. Uhrig for
imbalance resulting from a finite frustration with a much valuable discussions. Some computations were done at LRZ
smaller singlet-singlet gafzero ata=0.5) [cf. Fig. 7(c)]  Munchen, HLRZ Jlich, HLRS Stuttgart, and GMD Bonn.
can be taken as a first indication. Of course we observe H.F. acknowledges financial support from the Graduierten-
smooth phonon distribution in the antiadiabatic cfB&y.  kolleg “Nichtlineare Spektroskopie und Dynamik” at the
7(d)]. University of Bayreuth.
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