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Local magnon modes and resonances for dynamical skyrmions in Heisenberg
two-dimensional ferromagnets

F. Kh. Abdullaev, R. M. Galimzyanov, and A. S. Kirakosyan
Theoretical Division of the Physical-Technical Institute, Uzbek Academy of Sciences, G. Mavlyanova Street 2B, 700084, Tas

Uzbekistan
~Received 12 August 1998; revised manuscript received 26 February 1999!

We investigate bound magnon states localized on dynamical topological solitons~dynamical skyrmions! in
two-dimensional~2D! Heisenberg weakly uniaxial ferromagnets. The exact analytical expressions for zero
modes are derived. It is shown that in addition to zero modes with ‘‘angular momentum’’ numbersm50,
61 truly local modes can exist in 2D ferromagnets on dynamical vortices provided that the magnon dispersion
relation has a gap. We study real local modes for dynamical solitons with topological chargesn51,2. Eigen-
frequencies of these modes are calculated numerically. It may be possible to observe resonance effects on
eigenfrequencies of internal oscillations of dynamical skyrmions in 2D weakly easy-axis ferromagnets.
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I. INTRODUCTION

There has recently been a great interest in quasi-t
dimensional~2D! layered magnetic compounds.1 It has been
motivated by technical advances in the creation of real tw
dimensional layered magnetic materials and theoretical
derstanding based on vortex~soliton! concept. The presenc
of mobile strongly nonlinear excitations~solitons! contrib-
utes to the central peak~CP!, which for quasi-one-
dimensional~1D! ferromagnets~FM! CsNiF3 was observed
by Kjems and Steiner in 1976.2 It is now well understood,
that kinks in 1D systems destruct long-range order at fin
temperatures. In 2D easy-plane magnets vortices give ris
the Berezinskii-Kosterlitz-Thouless transition3 when the dis-
sociation of vortex-antivortex pairs takes place above
critical temperatureTKT . This transition occurs also in man
other 2D systems such as crystals and superfluid film4

Two-dimensional behavior seems to be important for exp
ing the properties of ceramic superconductors.5 For high-Tc

superconductors there is a possible interplay between an
romagnetism and superconductivity as noted in Ref. 6. In
superconductivity context moving self-localized magnons
easy-axis 2D Heisenberg model with a hole have been c
sidered by Takeno, Kubota, and Kawasaki in Ref. 7. Th
have shown that the lesser value of the easy-axis exch
anisotropy constant the faster propagation of the locali
mode leaving behind the one localized at the hole site. O
important examples of current issues, which should be m
tioned are the Haldane gap problem,8 ‘‘skyrmions’’ under
the quantum Hall effect conditions,9 and in the ultrathin
magnetic films.

For topological solitons of boson fields an axially sym
metric solution~skyrmion!, minimizing the Hamiltonian has
been found by Skyrme.10 The space structure of a skyrmio
can be derived by mapping of the plane in which the sp
are placed onto sphere of the order parameter. Belavin
Polyakov have established the existence of a local static
tortion of the homogeneous state of 2D isotropic Heisenb
ferromagnets, based on the classical nonlinears model.11
PRB 600163-1829/99/60~9!/6552~6!/$15.00
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Recently Waldner12 estimated the skyrmion energy from th
heat capacity measurements and interpreted the results
indirect manifestation of skyrmions in quasi-2D magnets.

We pay a special attention to ferro- and antiferromagn
with easy-axis anisotropy. Namely for weak easy-axis a
ferromagnets, Haldane has made his conjecture about
intrinsic difference between integer-spin and half-integ
spin magnetic systems.8

Two-dimensional magnon droplets with nonzero angu
momentum or dynamical skyrmions~DS! can exist in the
uniaxial 2D FMs.13,14 These excitations are similar to pre
cessing bubble domains15,16 with a radius, which is less o
comparable to the magnetic length. They are stable bot
the topological and dynamical senses due to the spin pre
sion unlike their instability in the static description, accor
ing to the Derick-Hobart theorem.

All types of solitons~domain walls, vortices, point defect
and so on! have an internal degrees of freedom, which
principle can be observed in electron spin resonance~ESR!
or inelastic neutron scattering~INS! experiments. Such mag
netic soliton resonances have been detected in 1D Ising-
antiferromagnets~AFM! CsCoCl3

17 and investigated theo
retically for the case of Heisenberg AFM in the work.18

Resonances on domain walls in 3D thulium ortoferrite ha
been observed in Ref. 19. Currently there are no obvi
examples of experimental observation of soliton inter
resonances in 2D magnets. Magnon modes in isotrop20

easy-plane Heisenberg,21,22XY-type23 2D FM have been pre-
dicted and investigated. Two magnon modes, localized
the in-plane vortices were studied analytically in 2D ea
plane AFM within continuous spectrum.24 In all of these
works only quasi-localmodes have been predicted. A tru
local mode within the continuous spectrum in easy-plane
AFM has been investigated in Ref. 25 Truly local mod
~LM ! can exist also on dynamical topological solitons,
magnons have finite activation dispersion law and eigen
quencies of these modes lie in the frequency range, de
mined by the strength of anisotropy.26,27 Near isotropic
uniaxial FMs are of special interest because even very w
easy-axis anisotropy can change the situation crucially, le
6552 ©1999 The American Physical Society
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ing to the appearence of local modes.
Continuum description of the DS is reasonable becaus

the near isotropic case the spin field has no singularity in
core region of the vortex unlike vortices in gapless ea
plane FM on a discrete lattice for which Wysin has made
ansatz.21,22 The DS have an interesting internal structu
which may be detected experimentally.

The aim and spirit of the present work is to show that
classical 2D FMs dynamical skyrmions have truly localiz
internal magnon modes which should be detected in re
nance experiments with quasi-2D magnetic materials w
weak easy-axis magnetic anisotropy.

The paper is organized as follows. In Sec. II the 2
Heisenberg easy-axis model is presented. In Sec. III eq
tions of motion, describing magnons and DS are derived
the continuum limit and an approximate solution is cited13

In Sec. IV we derive equations of motion for eigenmodes
Sec. V we describe the numerical method for finding tru
local modes and eigenfrequencies. A discussion and c
cluding remarks are presented in Sec. VI. Appendix A
devoted to transformation of coordinates avoiding the sin
larity at r 50 which is useful when numerically integratin
equations of motion.

II. THE MODEL

We start with the Hamiltonian for a classical two
dimensional ferromagnetic Heisenberg model with easy-a
anisotropy

H52J(
^ i , j &

@Si•Sj1l„~Si
z!22S2

…#, ~1!

where Si denotes a spin vector at thei th site with lattice
constanta and ^ i , j & designate nearest neighbor sites. T
first term in Eq.~1! describes the ferromagnetic exchan
interaction of strengthJ.0 between nearest neighbors, t
second term (l.0) is the easy-axis anisotropy. We consid
the most interesting near isotropic case (l!1). The
continuum limit of this Hamiltonian can be easi
obtained by using angular variables forS, S
5S(sinu cosf,sinu sinf,cosu)

H5
JS2

2 E F ~¹u!21sin2uS ~¹f!21
1

l 0
2D Gd2x, ~2!

where l 0 is the magnetic length. Dynamical equations f
spin in the form of the Landau-Lifshitz equation are14

¹2u2sinu cosuS ~¹f!21
1

l 0
2D 1

1

v0l 0
2

]f

]t
sinu50,

¹•~sin2u¹f!2
1

v0l 0
2

]u

]t
sinu50, ~3!

where

l 05
a

2Al
, v054lJS. ~4!
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Here v0 is the homogeneous ferromagnetic resonance
quency and we set\51. It is more convenient to useł 0 and
v0 instead ofl to study linear and nonlinear excitaions
this model.

III. MAGNONS AND DYNAMICAL SKYRMIONS

The easy-axis symmetry corresponds to a doubly deg
erate classical ground state. In the long wavelength limit
easy-axis 2D model has a well known finite activation d
persion law for magnons

v~qW !5v0„11~kl 0!2
…, ~5!

wherek is the magnon wave vector.
Let us now consider nonlinear excitations. We can rew

the first equation of Eq.~3! in polar coordinates. In the un
perturbed DS with the topological chargen spin has the fol-
lowing polar angle:

f0~x,t !5nx1vt1w0 , ~6!

wherex, v and w0 are polar coordinate in thex-y plane,
precession frequency and initial polar angle of the spin
spectively. After substituting the expression forf0(x,t) into
Eq. ~3! for azimuthal angleu0(r ) we get

1

r

d

dr S r
du0

dr D2sinu0cosu0S n2

r 2 1
1

l 0
2D 1

v

v0l 0
2 sinu050.

~7!

Based on the matching method in Ref. 13 an approxim
solution has been found to describe the space distributio
azimuthal angle of spin in the unperturbed DS with bound
conditionsu0˜p for r˜0 andu0˜0 for r˜`

u0~r !52tan21F 2

~ unu21!! S k0R

2 D unu

Kn~k0r !G , ~8!

wherek05A(12v/v0)/ l 0 andR is the radius of soliton. We
call this nonlinear excitation a dynamical skyrmion~DS!,
because in the regionr ,R it looks like a skyrmion, the spin
of which precesses with a frequency close tov5v0 /unu,
provided thatR! l 0. The energy of such DS is given by

E54JS~pSunu1lN/unu!, ~9!

whereN is the number of spin deviations from homogeneo
state, which is proportional toR2

N5
S

a2E ~12cosu0!d2x. ~10!

The dependence of the energy and precession frequenc
the unperturbed DS on the number of spin deviationsE(N)
and v(N) was studied numerically in the above-mention
Ref. 13. The side and front views of the DS with topologic
chargen51 andn52 are shown in Fig. 1 and Fig. 2, re
spectively. Both DS have the same radius, but the sec
one can be shown to be more localized~see Appendix A!.
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IV. LOCAL MODES

In order to study small oscillations of the precessing s
vector of DS we introduce small deviations of the angle va
ables u and f from the ones corresponding to th
unperturbed vortex, u5u0(r )1q(r ,x,t), f5f0(x,t)
1m(r ,x,t)/sin„u0(r )…. The variablesm and q are the pro-
jections of MW on local axeseW1 and eW2 connected with the
vortex: m5MW eW1 , q52MW eW2 . Here

eW15eW ycosf02eW xsinf0 ,

eW25eW zsinf02cosu0~eW xcosf01eW ysinf0!. ~11!

The axiseW3 coincides with the direction ofMW in the unper-
turbed vortex. Linearizing Eqs.~3! we get the following
coupled set of two partial differential equations:

@2¹21U1~r !#q1
2n cosu0

r 2

]m

]x
5

1

v0l 0
2

]m

]t
,

@2¹21U2~r !#m2
2n cosu0

r 2

]q

]x
52

1

v0l 0
2

]q

]t
, ~12!

where

FIG. 1. Front and side views of the dynamical skyrmion w
topological chargen51.

FIG. 2. The same as in Fig. 1 but for dynamical skyrmion w
topological chargen52.
n
-

U1~r !5S n2

r 2 D cos 2u01Uan~r !,

U2~r !5cotu0¹2u02~¹u0!2, ~13!

and introduce the ‘‘anisotropy potential’’Uan(r ) and g
5v/v0

Uan~r !5
1

l 0
2 ~cos 2u02g cosu0!. ~14!

Multiplying Eq. ~7! by r 2du0 /dr and integrating from 0 tor
we get

~¹u0!25S n2

r 2 1
1

l 0
2D sin2u02

1

l 0
2
„2g~12cosu0!1I ~r !…,

~15!

where

I ~r !5
2

r 2E
0

r

„sin2u022g~12cosu0!…rdr.

Substituting Eq.~15! into Eq. ~13! we derive the following
identity for DU(r )5U2(r )2U1(r ).0:

DU~r !5
1

l 0
2 „2g~12cosu0!1I ~r !…. ~16!

Another equivalent identity for theDU(r ) is

DU~r !5S n2

r 2 1
1

l 0
2D sin2u02~¹u0!2. ~17!

We look for the solution of Eq.~12! in the form of the ansatz

q5(
k

(
m52`

1`

f k,m~r !cos~mx1vk,mt1dm!,

m5(
k

(
m52`

1`

gk,m~r !sin~mx1vk,mt1dm!, ~18!

herek andm stand for numbers of eigenstates and ‘‘angu
momentum,’’ respectively. We introduce dimensionle
eigenfrequencies of the small oscillationsgk,m5vk,m /v0
anddm are arbitrary phases. Further for convenience we w
usef, g andgm instead off k,m(r ), gk,m(r ) andgk,m respec-
tively. Substituting Eq.~18! into Eq. ~12! we get the follow-
ing equations forf andg:

Ĥmf 1Vm~r !g50,

@Ĥm1DU~r !#g1Vm~r ! f 50, ~19!

where

Ĥm52
1

r

d

dr S r
d

dr D1
1

r 2 ~m21n2cos 2u0!1Uan~r !,

~20!
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Vm~r !5
2mn cosu0

r 2 2
gm

l 0
2

. ~21!

We denote an eigenvector of solutions as

F̄m~r !5S f
gD . ~22!

At first let us study symmetry relations for the Eq.~19!.
This equation is invariant with respect to the following tran
formationm˜2m, gm˜2gm andg˜2g. Thus knowing
solution for somem we can find another one by making u
of this transformation.

A. Zero modes with m50,61

As well known zero modes play an essential role wh
constructing the soliton thermodynamics. Their main feat
is fully determined by the soliton profile. In this subsecti
we give the exact analytical expression for zero modes
easy-axis 2D FMs. In order to derive them we must putgm
50 for m50,61. Zero modes have the following form:

f 5m
]u0

]r
r 12umu,

g52
n sinu

r umu
. ~23!

Numerical simulations confirm this expression. Zero mod
become apparent in inelastic neutron scattering experim
and essentially contributes in central peak due to interfere
between ones and DS. They may serve as a good test fo
investigation of truly local modes.

B. Truly local modes

These modes do not exist in isotropic FM, because t
have nonzero limit in infinity. They appear in the anisotrop
case and have well pronounced exponential decay. Le
make analysis of the asymptotics of solutions of equati
~19!. Near the core the most important contribution com
from the isotropic exchange interaction so we can neglec
the ‘‘anisotropy potential.’’ The ‘‘potentials difference’
Uan(r )˜0 in the region near the skyrmion center. Then
immediately recover equations for zero modes of static sk
mions in isotropic magnet20 or for DS ~23! in the casen
51. Far away from the core region (r @R) we have the
following asymptotics forUm(r ), Vm(r ) andDU(r ):

Um~r !˜
m21n2

r 2 1k0
2 , Vm~r !˜

2mn

r 2 , DU~r !˜0.

~24!

Asymptotics forF̄m in the regionr @R are given by

F̄m~r !˜aKm1n~k1r !S 1
1D1bKn2m~k2r !S 1

21D , ~25!

herek6(gm)5A12g7gm/ l 0
2 and a,b are arbitrary constan

determined by boundary conditions atr 50. A significant
-
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difference between the near isotropic and isotropic case
the existence of truly local modes with exponential decay
frequenciesuvmu,v02v.

V. NUMERICAL RESULTS

First we solve numerically an ordinary differential equ
tion ~7! for u0(r ) and look for an appropriate value ofv for
given R by employing the shooting method with bounda
conditionsu0˜p for r˜0 andu0˜0 for r˜`. The prob-
lem arising with the singularity atr 50 can be effectively
avoided by coordinate transformation~see Appendix A!.
Then the numerically obtained solution is used for findi
magnon normal modes on the DS. The coupled set of line
ized Landau-Lifshitz equations is solved by applying t
shooting method. We considered ‘‘angular momentum
numbersm50,61 for topological chargesn51 andm50,
6162 for n52 when literally local modes exist. We hav
two shooting parametersDm and gm . The first one is a
‘‘mixing’’ parameter between symmetric and antisymmet
modes and the second is a dimensionless eigenfrequ
gm5vm /v0.

The eigenvalue problem is solved by matching of nume
cal solution with modified Bessel functions of the first kin
near the region of soliton’s center and with ones of the s
ond kind ~25! far away from DS. For this purpose the fo
lowing boundary conditions forr˜0 are applied:

F̄m~r !5cos~Dm!S 1
1D I n2m~k2r !1sin~Dm!

3S 1
21D I n1m~k1r !, ~26!

dF̄m

dr
5

d

dr S cos~Dm!S 1
1D I n2m~k2r !1sin~Dm!

3S 1
21D I n1m~k1r ! D , ~27!

where

k65
A11g6gm

l 0
.

The eigenfrequency spectrum for local modes for DS w
n51,m521 andn52,m52 for the different values of di-
mensionless radius of DSe5R/ l 0 are presented in Fig. 3. I
is seen that both eigenfrequencies tend to the 12g, g
5v/v0 when e˜0. Eigenfrequenciesgm together with 1
2g versusr are presented in the above mentioned Fig. 3

Numerical solutions for the radial parts of the eigenfun
tions f, g and analytical ones forR/ l 050.2 andn51 andn
52 are presented in Fig. 4.

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated truly localized magnon modes
dynamical skyrmions and found exact solutions for ze
modes in easy-axis 2D ferromagnets. Zero modes exist
dynamical skirmions with any topological chargen but with
‘‘angular momentum’’ numbersm50,61. These zero
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modes are important because the interference between
and dynamical skyrmions gives rise to the contribution in
central peak. The truly local modes are in a certain freque
range, determined by the easy-axis anisotropy constant.
eigenfrequenciesvm satisfy the relation uvmu,v02v,
where v0 is the frequency of homogeneous ferromagne
resonance andv is the precession frequency of soliton. Th
analysis of these modes has been done numerically usin
shooting method. The existence of all of these modes
connected with the high order hidden symmetry of t
Landau-Lifshitz equation.

The phenomenon predicted in our paper is believed to
observed experimentally. For example one can generate

FIG. 3. The dependence of dimensionless eigenfrequencygm

5vm /v0 versus ratio of the radius of dynamical skyrmion withn
51,2 to the magnetic lengthe5R/ l 0 at fixed value ofl 0 ~curves 1
and 3!. The dependence of 12g versuse for DS with n51 and
n52, respectively~curves 2 and 4!. The eigenfrequenciesg21 and
g2 for DS with n51 andn52, respectively.

FIG. 4. The radial part of the eigenfunctions for real loc
modes for DS with topological chargesn51 and n52 at R/ l 0

50.2 .
em
e
y
he

c
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e
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cessing skyrmions in 2D ferromagnetic materials by mak
use of microwave pumping. Applying of an additional osc
lating weak magnetic field causes peaks of absorption at
excitation frequencies of normal modes of skyrmions gen
ated by microwave pumping. The condition of success
generation of precessing skyrmions demands the weak
of easy-axis anisotropy. Technical advance in the synth
of ultrathin magnetic films gives a possibility to crea
samples with the very weak easy-axis anisotropy~see, for
example Ref. 28!.

The results concerning this problem together with detai
investigation of the dynamics of moving dynamical sky
mion will be presented in future papers.
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APPENDIX A: TRANSFORMATION OF COORDINATES

This appendix shows that ther 50 singularity problem
can be solved by introducing a new variablex5 ln(r /R),
whereR is a vortex radius. We performed numerical sim
lations with equations derived using this transformatio
First consider the special case of the Belavin-Polyak
vortex.11 This equation is important for us because for re
magnetsl!1 and in core region we have reconstruction
conformal invariance, therefore this vortex solution is a go
ansatz forr<R,x<0. The equation describing this vorte
can be obtained from the model~1! if we put l50, which
corresponds to 2D isotropic magnet. Rewriting Eq.~7! for
the azimuthal angleu using the new variablex, we obtain

d2u0

dx2 2n2sinu0cosu050, ~A1!

which is nothing else than a well known pendulum or sta
sine-Gordon equation. The solution of the Eq.~A1! with
boundary conditionsu(r 50,x52`)5p and u(r 5`,x
5`)50 is

u052tan21@exp„2unu~x2x0!…#. ~A2!

Herex0 is the ‘‘coordinate center’’ and the absolute value
topological chargeunu plays the role of ‘‘inverse width’’ of
soliton. So the translational invariance of solution~A2! trans-
forms into the conformal invariance of skyrmion inr coor-
dinate. There are also solutions of linearized Eq.~A1! corre-
sponding to magnon modes, localized on ‘‘in-plane
vortices in easy-plane AFM24

u5
p

2
1q0cos~nx1d!. ~A3!

Let us now rewrite the equations of motion for loc
modes~12! in x variable

Ĥmf m~x!1V~x!gm~x!50,

„Ĥm~x!1DU~x!…gm~x!1V~x! f m~x!50, ~A4!

l
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where

Ĥm~x!5S 2
d2

dx2 1m21n2cos~2u0!1Ue~x! D , ~A5!

where

e5
R

l 0
, Ue~x!5e2e2x

„cos~2u0!2g cosu0…, ~A6!

V~x!52mn cosu02gme2e2x. ~A7!
.

ys

ns
For the anisotropic case to find the solutions for zero mo
we must putgm50 then form50,61 we find the following
expressions:

f m~x!5me2umux ]u0~x!

]x
, gm~x!52ne2umuxsinu0~x!.

~A8!

Thus it is more convenient to integrate numerically t
equations of motion using this simple transformation of c
ordinates.
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