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Local magnon modes and resonances for dynamical skyrmions in Heisenberg
two-dimensional ferromagnets
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We investigate bound magnon states localized on dynamical topological sdliymemical skyrmionsin
two-dimensional(2D) Heisenberg weakly uniaxial ferromagnets. The exact analytical expressions for zero
modes are derived. It is shown that in addition to zero modes with “angular momentum” numise@s
+1 truly local modes can exist in 2D ferromagnets on dynamical vortices provided that the magnon dispersion
relation has a gap. We study real local modes for dynamical solitons with topological charde®. Eigen-
frequencies of these modes are calculated numerically. It may be possible to observe resonance effects on
eigenfrequencies of internal oscillations of dynamical skyrmions in 2D weakly easy-axis ferromagnets.
[S0163-182699)05033-X

I. INTRODUCTION Recently Waldnéf estimated the skyrmion energy from the
heat capacity measurements and interpreted the results as an

There has recently been a great interest in quasi-twoindirect manifestation of skyrmions in quasi-2D magnets.
dimensional2D) layered magnetic compoundist has been We pay a special attention to ferro- and antiferromagnets
motivated by technical advances in the creation of real twoWwith easy-axis anisotropy. Namely for weak easy-axis anti-
dimensional layered magnetic materials and theoretical urferromagnets, Haldane has made his conjecture about the
derstanding based on vortésoliton) concept. The presence int_rinsic diffgrence between integer-spin and half-integer-
of mobile strongly nonlinear excitationsolitong contrib-  SPIN Magnetic systents. _
utes to the central peakCP), which for quasi-one- Two-dimensional magnon dro_plets with nonzero angular
dimensional(1D) ferromagnetsFM) CsNiF; was observed Mmomentum or dynamical skyrmion®S) can exist in the

. . 3’14 . . . . _
by Kiems and Steiner in 1976lt is now well understood, uniaxial 2D FMs!** These excitations are similar to pre

; : . ._cessing bubble domait®st® with a radius, which is less or
that kinks in 1D systems destruct long-range order at finite bl h i | h. Th ble both i
temperatures. In 2D easy-plane magnets vortices give rise Ecﬁompara: ¢ tol t edrgagnetllc lengt T dey arehsta e both in

A . i : e topological an namical senses due to the spin preces-
the Berezinskii-Kosterlitz-Thouless transitfowhen the dis- Po’og y pin p

o ) ) sion unlike their instability in the static description, accord-
SO.C_IatIOH of vortex-annvor.tex pairs takes place gbove th?ng to the Derick-Hobart theorem.
critical temperatur@ xr . This transition occurs also in many — “p types of solitons(domain walls, vortices, point defects
other 2D systems such as crystals and superfluid ﬁlms.and so of have an internal degrees of freedom, which in
Two-dimensional behavior seems to be important for explorprinciple can be observed in electron spin resondf&SR)
ing the properties of ceramic superconductoFor highT;  or inelastic neutron scatterigNS) experiments. Such mag-
superconductors there is a possible interplay between antifefetic soliton resonances have been detected in 1D Ising-type
romagnetism and superconductivity as noted in Ref. 6. In thantiferromagnetAFM) CsCoC}'’ and investigated theo-
superconductivity context moving self-localized magnons inretically for the case of Heisenberg AFM in the wdfk.
easy-axis 2D Heisenberg model with a hole have been corResonances on domain walls in 3D thulium ortoferrite have
sidered by Takeno, Kubota, and Kawasaki in Ref. 7. Theybeen observed in Ref. 19. Currently there are no obvious
have shown that the lesser value of the easy-axis exchangxamples of experimental observation of soliton internal
anisotropy constant the faster propagation of the localizedesonances in 2D magnets. Magnon modes in isotfdpic,
mode leaving behind the one localized at the hole site. Othesasy-plane Heisenbef§?2X Y-type’ 2D FM have been pre-
important examples of current issues, which should be merdicted and investigated. Two magnon modes, localized on
tioned are the Haldane gap problériskyrmions” under the in-plane vortices were studied analytically in 2D easy-
the quantum Hall effect conditiodsand in the ultrathin  plane AFM within continuous spectrufft.In all of these
magnetic films. works only quasi-localmodes have been predicted. A truly
For topological solitons of boson fields an axially sym-local mode within the continuous spectrum in easy-plane 2D
metric solution(skyrmion, minimizing the Hamiltonian has AFM has been investigated in Ref. 25 Truly local modes
been found by Skyrm¥ The space structure of a skyrmion (LM) can exist also on dynamical topological solitons, if
can be derived by mapping of the plane in which the spinsnagnons have finite activation dispersion law and eigenfre-
are placed onto sphere of the order parameter. Belavin arglencies of these modes lie in the frequency range, deter-
Polyakov have established the existence of a local static disnined by the strength of anisotropy?’ Near isotropic
tortion of the homogeneous state of 2D isotropic Heisenbergniaxial FMs are of special interest because even very weak
ferromagnets, based on the classical nonlineamodel**  easy-axis anisotropy can change the situation crucially, lead-
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ing to the appearence of local modes. Here wg is the homogeneous ferromagnetic resonance fre-

Continuum description of the DS is reasonable because iguency and we sét= 1. It is more convenient to udg and
the near isotropic case the spin field has no singularity in the,, instead of\ to study linear and nonlinear excitaions in
core region of the vortex unlike vortices in gapless easyihis model.
plane FM on a discrete lattice for which Wysin has made his
ansatZl??2 The DS have an interesting internal structure
which may be detected experimentally.

The aim and spirit of the present work is to show that in  The easy-axis symmetry corresponds to a doubly degen-
classical 2D FMs dynamical skyrmions have truly localizederate classical ground state. In the long wavelength limit the
internal magnon modes which should be detected in resaeasy-axis 2D model has a well known finite activation dis-
nance experiments with quasi-2D magnetic materials wittpersion law for magnons
weak easy-axis magnetic anisotropy.

The paper is org_anlzed as follows. In Sec. Il the 2D w(a)=wo(1+(k|o)2), (5)
Heisenberg easy-axis model is presented. In Sec. Ill equa-
tions of motion, describing magnons and DS are derived ifyherek is the magnon wave vector.
the continuum limit and an approximate solution is cittd. et us now consider nonlinear excitations. We can rewrite
In Sec. IV we derive equations of motion for eigenmodes. Inthe first equation of Eq(3) in polar coordinates. In the un-

Sec. V we describe the numerical method for f|nd|ng trulyperturbed DS with the top0|ogical Chargapin has the fol-
local modes and eigenfrequencies. A discussion and cofowing polar angle:

cluding remarks are presented in Sec. VI. Appendix A is
deyoted to transformatlon of coordinates gvmdmg the singu- bo(x,t) = vx+ ot+ g, (6)
larity at r =0 which is useful when numerically integrating
equations of motion. where , w and ¢, are polar coordinate in the-y plane,
precession frequency and initial polar angle of the spin re-
II. THE MODEL spectively. After substituting the expression fg( x,t) into

) o ) Eq. (3) for azimuthal angledy(r) we get
We start with the Hamiltonian for a classical two-

IIl. MAGNONS AND DYNAMICAL SKYRMIONS

dimensional ferromagnetic Heisenberg model with easy-axis 1 4 dé, 2 ©
anisotropy Fm(rw> —sinf#ycosb, r—z+ Ef + msin 0,=0.

(7)

H==32 [S-S+N (S-S, &)
(i) Based on the matching method in Ref. 13 an approximate
solution has been found to describe the space distribution of

where § denotes a spin vector at théh site with lattice . L X
constanta and (i ,j) designate nearest neighbor sites. Theammuthal angle of spin in the unperturbed DS with boundary

first term in Eq.(1) describes the ferromagnetic exchangecond'tlonsao_w for r—0 andf—0 for r—c:
interaction of strengtld>0 between nearest neighbors, the

second termX>0) is the easy-axis anisotropy. We consider Bo(r)=2tan
the most interesting near isotropic casa<{1). The

continuum limit of this Hamiltonian can be easily ) ) .
obtained by using angular variables fors, S  Whereko=y(1—w/wo)/lo andRis the radius of soliton. We
— S(sin #cose,sin dsin ¢,cosb) call this nonlinear excitation a dynamical skyrmi¢bS),

because in the regian<R it looks like a skyrmion, the spin
of which precesses with a frequency closede wq/|v|,
d?x, (2 provided thatR<I,. The energy of such DS is given by

(W=D @

I
7) K.(kr)

2 (koR

2
H= ? [(V 0)2+sin26( (Vp)2+ |£2
0

where |, is the magnetic length. Dynamical equations for E=43S(mS[v|+AN/|v]), ©

spin in the form of the Landau-Lifshitz equation Hre whereN is the number of spin deviations from homogeneous

state, which is proportional tB?

2 H 2 1 07(75 .
V<6—sin6cosb| (Vo) +|—2 +ﬁﬁsm0=0, s
w
0 o0 N= ;f (1—cosfy)d?x. (10
V- (sif oV ¢) — 2 - Sin6=0, (3)  The dependence of the energy and precession frequency of
0o the unperturbed DS on the number of spin deviatiB(hl)
where and w(N) was studied numerically in the above-mentioned

Ref. 13. The side and front views of the DS with topological
chargev=1 andv=2 are shown in Fig. 1 and Fig. 2, re-
lo=——=, wo=4\JS. (4)  spectively. Both DS have the same radius, but the second
2\/X one can be shown to be more localizsgée Appendix A
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2

S LA A SO Y Ul(r):(—z)coszaoJrUan(r),
r

'ZIZZIZZIIi::Qi::‘I":EZE B ) R
TIIIIIIIIIININ N Uo(r)=cottoV0o—(V bo)", (13
iR | | |
::::::::::\\HH”” ’y and introduce the “anisotropy potentialU,{(r) and y
PPy
Bittasssor N QAN ¥ VAN = wlwg
vt/z/.,/::/ﬂ"_\ V/&ﬁ';;::::
/:j/l//i/ N
:/li./(iil J \\'Q\—%”/'/"//'" 1
::;iﬁfﬁi%t\\ e UaAr):iE(COS2HO—”yCOSGQ. (14)
T I S A - o
RN
R N s Multiplying Eq. (7) by r2dé,/dr and integrating from 0 to
CerivvaniiIiiioii we get
2
FIG. 1. Front and side views of the dynamical skyrmion with , [vo 1) 1
topological charger=1. (Vbo)*=| =+ 2 sirt e, I(2)(23/(1 cosb) +1(r)),
15
IV. LOCAL MODES (15)

I . . where
In order to study small oscillations of the precessing spin

vector of DS we introduce small deviations of the angle vari-

2 (r
ables ¢ and ¢ from the ones corresponding to the |(r)=—2f (Sirfh,— 2y(1—cosb,))pdp.
unperturbed vortex, 8= 0y(r)+9(r,x,t), é=ddo(x.,t) r~Jo

f"“.(r’X’t)/sjinwO(r))' The v?riable? and & are th? pro- Substituting Eq(15) into Eq. (13) we derive the following
jections of M on local axese; ande, connected with the jgentity for AU(r)=U,(r)—U,(r)>0:

vortex: u= I\7Iél, v=- I\7I52. Here

1
el:eycos(ﬁo_exsin(ﬁo, AU(r):E(Z’y(l_cosao)"f‘l(r)) (16)
€,= €,5iN ¢y — COSHy(€,COSPy+ éysin #o). (11)  Another equivalent identity for thaU(r) is
The axise; coincides with the direction ofi in the unper- (v _ )
turbed vortex. Linearizing Eqsi3) we get the following AU(r)= F”LE Sirffo—(V 60)*. (17)

coupled set of two partial differential equations:

We look for the solution of Eq12) in the form of the ansatz
2vC0SHy du _ 1 ou

[—V2+Uq(r)]9+ = - oo
29X wolf o 9=, > frem(r)codmy+ oy mt+ ),
k m=-=
(=24 U,(r)] 2v cosfy 9 1 99 12 e
20X woly MZEk m:Z_ Gem(D)SINMY+ @il + 5), (18)
where )
herek andm stand for numbers of eigenstates and “angular
"7 momentum,” respectively. We introduce dimensionless
R ! eigenfrequencies of the small oscillationg = wy m/®o
........................ and 6,,, are arbitrary phases. Further for convenience we will
D usef, g and y, instead offy ,(r), gy m(r) and yy , respec-
e T IR tively. Substituting Eq(18) into Eq.(12) we get the follow-
N N LR c ing equations fof andg:
N LA N D
‘‘‘‘‘ \\iv/h\ 3 A R
....... ..T//'/,-,......
...-.--:\%,_H_--...... H.f+V,(r)g=0,
....... AT [
...... //‘f i\\:\\~.....
...... ,f1V\_5 }\,‘\‘.,.« .
OSSN NN [Hpn+AU(r)]g+Ve(r)f=0, (19)
where
LTI ) 1d( d+1 2y 2 I
=——=—lr=— m cos r),
FIG. 2. The same as in Fig. 1 but for dynamical skyrmion with m rdr\ dr r_Z( v o)+ Uan(r)

topological charger=2. (20
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difference between the near isotropic and isotropic cases is
(21)  the existence of truly local modes with exponential decay for
frequenciedw | < wo— .

2mvcosty  ¥Ym
Vill)=——"7—- I
0

We denote an eigenvector of solutions as
V. NUMERICAL RESULTS

_ (22) First we solve numerically an ordinary differential equa-
tion (7) for 6y(r) and look for an appropriate value af for
_ ) given R by employing the shooting method with boundary
At first let us study symmetry relations for the EG9). conditions@,— 7 for r—0 and@,— 0 for r—o. The prob-
This equation is invariant with respect to the following trans-|g arising with the singularity at=0 can be effectively
formationm— —m, y,— — vy, andg— —g. Thus knowing  ayoided by coordinate transformaticisee Appendix A
solution for somem we can find another one by making use Then the numerically obtained solution is used for finding

Fm(r)= g

of this transformation. magnon normal modes on the DS. The coupled set of linear-
ized Landau-Lifshitz equations is solved by applying the
A. Zero modes withm=0,+1 shooting method. We considered “angular momentum”

As well known zero modes play an essential role Wher{lunlbersm=9,i1 for topological charges=1 andm=0,
constructing the soliton thermodynamics. Their main feature™~ 1 =2 for »=2 when literally local modes exist. We have

is fully determined by the soliton profile. In this subsection /O .sh(?,oting parametera,, and yy. The first one is a
we give the exact analytical expression for zero modes inMiXing” parameter between symmetric and antisymmetric

easy-axis 2D FMs. In order to derive them we must pyt modes and the second is a dimensionless eigenfrequency

=0 for m=0,=1. Zero modes have the following form: Ym=@m/wo. _ _ _
The eigenvalue problem is solved by matching of numeri-

cal solution with modified Bessel functions of the first kind

f:mi—?er', near the region of soliton’s center and with ones of the sec-
ond kind (25) far away from DS. For this purpose the fol-
_ lowing boundary conditions for—0 are applied:
vsing
g=- rlml (23)

Fm<r>=cosmm>(i)ly_m<x_r>+sin(Am>

Numerical simulations confirm this expression. Zero modes

become apparent in inelastic neutron scattering experiments %
and essentially contributes in central peak due to interference

between ones and DS. They may serve as a good test for the

investigation of truly local modes. dF, d 1 _
W:a cogAp) 1 I, -m(k_r)+sin(Ap)

1
_1)Iv+m('<+r), (26)

B. Truly local modes

1
These modes do not exist in isotropic FM, because they X( _1)|V+m(f<+f)), 27
have nonzero limit in infinity. They appear in the anisotropic
case and have well pronounced exponential decay. Let ughere
make analysis of the asymptotics of solutions of equations
(19). Near the core the most important contribution comes N1t yEyy
from the isotropic exchange interaction so we can neglect by Ke= :
the "anisotropy potential.” The “potentials difference”
U.(r)—0 in the region near the skyrmion center. Then we The eigenfrequency spectrum for local modes for DS with
immediately recover equations for zero modes of static skyrv=1m=—1 andv=2m=2 for the different values of di-
mions in isotropic magnét or for DS (23) in the caser mensionless radius of D& R/l are presented in Fig. 3. It
=1. Far away from the core regiomr¥R) we have the is seen that both eigenfrequencies tend to theyl y
following asymptotics folJ(r), V(r) andAU(r): =wl/wg When e—0. Eigenfrequencies,, together with 1
— vy versusr are presented in the above mentioned Fig. 3.
m-+ v ) 2my Numerical solutions for the radial parts of the eigenfunc-
Un(r)——z—+ko, Vm(r)——7, AU(r)-0. tionsf, g and analytical ones faR/1,=0.2 andv=1 andv
(24) =2 are presented in Fig. 4.

lo

2 2

Asymptotics forEm in the regionr>R are given by VI. CONCLUSIONS AND DISCUSSIONS

We have investigated truly localized magnon modes of
+bKVm(kr)(_1>, (25 dynamical skyrmions and found exact solutions for zero
modes in easy-axis 2D ferromagnets. Zero modes exist for
herek.(y,)=v1— v+ ymllg and a,b are arbitrary constants dynamical skirmions with any topological chargebut with
determined by boundary conditions e&0. A significant  “angular momentum” numbersm=0,=1. These zero

— 1
Fm(r)_’aKm+V(k+r)( 1
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cessing skyrmions in 2D ferromagnetic materials by making
use of microwave pumping. Applying of an additional oscil-
lating weak magnetic field causes peaks of absorption at the
excitation frequencies of normal modes of skyrmions gener-
ated by microwave pumping. The condition of successful
8 generation of precessing skyrmions demands the weakness
of easy-axis anisotropy. Technical advance in the synthesis
of ultrathin magnetic films gives a possibility to create
samples with the very weak easy-axis anisotr¢pge, for
R S S example Ref. 28
00 02 04 06 08 1.0 The results concerning this problem together with detailed
€ investigation of the dynamics of moving dynamical skyr-
mion will be presented in future papers.

FIG. 3. The dependence of dimensionless eigenfrequency
=wny/wg versus ratio of the radius of dynamical skyrmion with
=1,2 to the magnetic length=R/|, at fixed value of;, (curves 1
and 3. The dependence of-1y versuse for DS with v=1 and
v=2, respectivelycurves 2 and ¥ The eigenfrequencieg_, and
v, for DS with v=1 andv=2, respectively.
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and dynamical skyrmions gives rise to the contribution in the _
central peak. The truly local modes are in a certain fre(;1uency'°":":’E'\IDIX A: TRANSFORMATION OF COORDINATES

range, determined by the easy-axis anisotropy constant. The Tpis appendix shows that the=0 singularity problem
eigenfrequenciesw,, satisfy the relation|wy|<wo—®,  can be solved by introducing a new variabde=In(r/R),
where w, is the frequency of homogeneous ferromagneticyhereR is a vortex radius. We performed numerical simu-
resonance ana is the precession frequency of soliton. The ations with equations derived using this transformation.
analy_sis of these modes h_as been done numerically using thg.st consider the special case of the Belavin-Polyakov
shooting method. The existence of all of these modes argortex!! This equation is important for us because for real
connected with the high order hidden symmetry of themagnets\ <1 and in core region we have reconstruction of
Landau-Lifshitz equation. conformal invariance, therefore this vortex solution is a good
The phenomenon predicted in our paper is believed to bgnsatz forr<R,x<0. The equation describing this vortex

observed experimentally. For example one can generate prgan pe obtained from the modél) if we put A=0, which
corresponds to 2D isotropic magnet. Rewriting Ed). for
the azimuthal angl® using the new variablg, we obtain

d?6,

dx?
which is nothing else than a well known pendulum or static
sine-Gordon equation. The solution of the HA1) with
boundary conditionsf(r=0x=—x)=7 and 6(r=o,x
=0)=0is

0.08f,

2sin 9,c0s6,=0, (A1)

0.00%

0 5 10 t5 20 25 30

6o=2tan Lexp(—|v|(x—xo))]. (A2)

Herexg is the “coordinate center” and the absolute value of
topological chargev| plays the role of “inverse width” of
soliton. So the translational invariance of soluti@®) trans-
forms into the conformal invariance of skyrmion iincoor-
dinate. There are also solutions of linearized &dl) corre-

% 1 sponding to magnon modes, localized on “in-plane”
vortices in easy-plane AFRA

o0
o

T

2

N W s O

. . 0= = + 94C0% vX+ 5). (A3)

1}

r

0 . . .
00 01 02 03 04 05 06

i}

r

) o
00 01 02 03 04 05

0.6

Let us now rewrite the equations of motion for local
modes(12) in x variable

FIG. 4. The radial part of the eigenfunctions for real local Hmfm(X) +V(X)gm(x)=0,

modes for DS with topological charges=1 and v=2 at R/l,
=0.2.

(Hu() +AUX))Gn(X) +V(X)f(x)=0,  (A4)
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where
. d?
Hn(X)=| — v m?+ v?c0g26,) + U (X)|, (A5)
where
R
e=r, U (X)=€%e?*(cog26,) — ycoshy), (AB)
0
V(X)=2mv cosfy— yne’e®. (A7)

D RESONANCES FOR ... 6557

For the anisotropic case to find the solutions for zero modes
we must puty,,=0 then form=0,%1 we find the following
expressions:

30o(X)

X Im(x)=— ve~IM*sin gy(x).
(A8)

Thus it is more convenient to integrate numerically the
equations of motion using this simple transformation of co-
ordinates.

fo(X)=me M
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