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Exclusion statistics: A resolution of the problem of negative weights
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We give a formulation of the single-particle occupation probabilities for a system of identical particles
obeying the fractional exclusion statistics of Haldane. We first derive a set of constraints using an exactly
solvable model which describes an ideal exclusion statistics system and deduce the general counting rules for
occupancy of states obeyed by these particles. We show that the problem of negative probabilities may be
avoided with these counting rulds50163-1829)04933-4

I. INTRODUCTION scale$ This property is realized by a large class of one-
dimensional models of interacting fermions where Fermi lig-
A few years ago, Haldaheroposed a generalized exclu- uid theory breaks dowh!®In fact it has been shown exactly
sion principle in which adding particles into a system leadsthat quasiparticles with nontrivial exclusion statistics exist in
to a change in the dimension of the single-particle spacea class of models that are solved by the Bethe arigatin
Specifically, the generalized exclusion principle envisagegarticular the quasiparticles of the Calogero-Sutherland
systems in which the addition of one particle blocks 9ff model (CSM) behave like an ideal exclusion statistics
single-particle states for the others, wheyethe fractional  system'!~13A feature of the exclusion statistics as gleaned
exclusion statisticéFES parameter, is an arbitrary number. from the analysis of various models is that the exclusion acts
Obviously g=0 for bosons andy=1 for fermions. This across a set of levels unlike in the case of Fermi or Bose
leads to the following formula foDy(g,d), the dimension statistics where the exclusion principle is stated with a single
of the N-particle Hilbert space, if the dimension of the level in mind. It is this crucial difference that results in the

single-particle space i, occurrence of negative probabilities. We will show that the
particles obeying fractional exclusion statistics can be char-
[d+(1-g)(N-D)]! (1)  acterized by constraints on the sets of occupation numbers.

Dn(g.d)= N!I{d—1—-g(N-1)]!’ There are no negative probabilities if these constraints are

. . . obeyed. If these constraints are relaxed, then negative
wh|(.:h'reduces to the familiar expressions for Bose and I:erm}veights arise in order to compensate for the resulting over-
statistics forg=0 and_g= L respectlvely. . counting. Indeed this is the way we encounter negative prob-

_ The thermodynamic properties of an ideal gas of exclupjjities’in other systems in physics—for example, in gauge
sion particles have been investigated widely. Specifically, &, 4ries they arise in the ghost sectors. Ghosts come from
definition of an ideal gas of particles with nontrivial exclu- ye j5conian associated with nonlinear gauges which essen-
sion statistics was given in Refs. 2 and 3. In this definition 'ttially ensure the correct counting of states. Another example
was assumed that if there wetdevels of energy, thenthe s 1hat of the Wigner distribution function in quantum me-
dimension of the Hilbert space with particles of energy is  chanjcs which is not positive definite precisely because some
given by Eq.(1). The distribution function may then be onsiraints are relaxed. A formulation based on the variable
computed™and is given by number of single-particle states, which depends on the total

1 number of particles in the system, has been discussed by
n(e)=——, ) Isakov* as a way to avoid the problem of negative weights.
w(e)+g Recently, a microscopic interpretation of exclusion statistics

systems has been advanced by Chaturvedi and Srinfrasan
where they show how this problem of negative probabilities
w(e)I[1+w(e)]t9=ebe 3) may be _solved for semiong=1/2. They have also indicated
how their method may be generalized to other valueg. of
and B is as usual the inverse temperature. If we attempt to In this paper we first discuss the origin of negative prob-
interpret this distribution function as arising from the statis-abilities in exclusion statistics particle systems. To do this
tical mechanics of a single mode with statistical weightwe have chosen an unusual starting point in an equation and
pne "2 for the mode to be occupied byparticles, then it its solution given by Ramanujailiscussed in Ref. 16 This
was found”’ that some of the,’s are invariably negative if starting point makes precise the statements about the occur-
g is different from 0 and 1. This raises the problem of inter-rence of negative probabilities. We then formulate a counting
preting these negative probabilities. It has also been specprinciple based on the set of constraints which reproduces
lated that these negative probabilities are an essential featutiee Haldane dimension formula. We first extract the counting
of nontrivial exclusion statistic. rules starting from an exactly solvable model of interacting
A crucial property of exclusion statistical interactions is particles and state them in the form of counting rules for
that they should cause shifts in single particle energies at alirbitrary systems obeying exclusion statistics. This method

wherew(e€) is the solution of the equatidn
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not only avoids negative probabilities, but with minimal wherew satisfies Eq(3). We have also assumed that all the
modification reproduces the results derived by Chaturvedenergy levels are degenerate with energy givere biNote
and Srinivasan for the semion. The counting principle isthat this is an exact expression and no assumption is required

however, not restricted to semions alone. on the single particle dimensiod. The negative weights
aris€’ when one insists on expanding-v—* in powers of
Il. PROBLEM OF NEGATIVE WEIGHTS e A€, From Eq.(5) and the definitions following the equa-

tion, it follows that
The problem of negative probabilities was first pointed

out by Nayak aneg Wilczékand elaborated by Polychronakos w

in a recent paper.n order to clarify the origin of negative Twle _ —Bne
probabilities or weights, we first discuss an equation and its Lrw nZO Co(1=g.1. e 7 @
solution due to Ramanujdfi.Ramanujan considered the fol-

lowing equation: The weights
agXP—Xx9+1=0, 4) n
gn
wherea may be complex ang,q are positive. The general Cn(1-9,1,))=p,= H (1— F) C)
solution forXd is m=2
o are always negative fayn>m for somem.” This is indeed
Xd=>" Ccy(p,q,d)aV, (5 the problem of negative weights associated with exclusion
= statistics and is claimed to be inherent in the exclusion sta-
_ _ tistics. There are, however, a few points to note: The nega-
whereCo(p,d,d)=1 andCy(p.q,d)=d and tive probabilities arise because of our insistence on the
g Nt factorizatiort® implied in Eq. (7). For example, combining
CN(p’q’d):W (d+Np—ijq), N=2. Egs.(7) and(8) we have
Y=
To make a connection with the result obtained by z=> (11 Cn_(l—g,l,l))ex;{ —Be> nj), (10)
Polychronakog, which is a particular case of the general (b \ ! i
solution given by Ramanujan, we now pp(1—g) and
g=1; then, where the sum is an unconstrained one over all sets of occu-
pation numbers. The overcounting resulting from this uncon-
_ [d+(1-g)N—-1]! strained sum is compensated for by the occurrence of nega-
Cn(1-g.1d)=d NI(d—gN)! ©) tive weights. We next derive the precise counting rules

which impose constraints on this sum and avoid this prob-

which is clearly different from the dimension formula of |em.
Haldane. However, it correctly reproduces the bosonic and
fermionic dimension formula fog=0 and g=1, respec-
tively. This dimension formula was derived independently  !ll. REALIZATION IN AN INTERACTING SYSTEM
by Polychronakoswith the restriction that any two particles AND COUNTING RULES
be at leasty sites apart when placed on a periodic lattice.
One can also derive the Haldane dimension formula with the,
restriction that any two particles lgesites apart but without
the restriction of periodicity.

Further, if we putX=(1+w™!) anda=e #<in Eq. (4),

Any realization of fractional exclusion statistics must
ave its origins in systems of interacting particles. The ex-
pectation is that under certain conditions systems of interact-
ing particles which obey Fermi or Bose statistics may be

. . . . ; described in terms of quasiparticlésr quasiholes which
we immediately obtain E(3) derived earlier by Wd.The obey fractional statistics. The quasiparticles of the CSM be-

important point to notice here is that the dimension formulay, ¢ |ike jdeal exclusion statistics particles. The main feature
that' presc_lsely leads to the distribution functlop der!vedof the CSM is that the total energy of the many-body system
earlie?”® is given by Cy and not the Haldane dimension ¢a pe written in terms of single-quasiparticle energies which
formula. In the limitd>1, however, it is easy to see that  iqlve shifted momenta and these shifts contain information
about the exclusion statistics of the quasiparticles. In this
section we analyze these shifted momenta and make an ex-
plicit connection with the formula in Eq.l). We then use
them to obtain constraints on the allowed set of occupation
numbers. These are what we refer to as the counting rules
that reproduce the formula in E€). The statistical mechan-
Yics of the system obeying these constraints is then the same
as that defined by WAand all statistical weights are positive.
® We begin with the trigonometric Sutherland mddeif an
Z=(1+w Hd= 2 Cn(1—g,1d)e ANe, @) !\I-pgrticle system on a ring of unit radius. The Hamiltonian
N=0 is given by

1
d

Cn(1—g,1d)= DN(g,d)—l—O(

Therefore in the continuum limit, th€y and Dy are ap-
proximately the same.

The grand canonical partition function of the system ma
be written as
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N 52 2g(g—1) (3) The gaps between any two npn—close—packiesl are
H:—E St 5 (11 greater than 1. Therefore all tHgs in any cell are close
=1 &Xi j<i Slnz[(xi _X])/2] packed_

We now come to the question as to what are the con-

where_g is the int.er.action parameter. We will soon ideptify straints on the sets of occupation numbige$. For example,
this with the statistical parameter of the exclusion statistics; g=0, there are no constraints as in the bosonic case. If

While the model can be applied to both interacting boson%l:l, the constraints are. <1 as in the case of fermions.
and fermions, we choose to work in the fermionic basis hereg, any otherg, one obvioJus constraint come from the sec-

after. The energy of alN-fermion state may be written in 54 property derived above, namely, the occupancy of the
terms of shifted momenta as jth celln;<1/g which specifies the maximum occupancy of
a given cell assumed to be of unit spacing. This is the same
_ - 2 constraint one derives from the distribution function of Wu,
E_izl ki, (12 Eqg. (3). An important departure from the usual bosonic and
fermionic case is that the cell size is important and cannot be
where n;=0,1 and the shifted momentk, (also called arbitrarily taken to zero as in the case of bosons and

NG
pseudomomenta in Ref. 1are given by fermions: _
There are further constraints on the occupancy. To formu-

late them we use the third property. Liet be the lowest

i \
ki:mi_(l_g)w, (13y  momentum in thejth cell. Then from the second and third
2 properties, it follows that
wherem; are distinct integers anNi_(+) are the number of ke+o(nj—1)<j+1. (15

particles with shifted momenta leggreatey thank;. Note . .
that we could have also started with the Calogero-SutherIan%Ve can writek, ask =] +f(k.), wheref(k,) denotes the

model with harmonic confinement. The results below follow ractional part ofk,, that is, 0<f(k )<1. We then have
analogously yvith the proviso that we have shifted energies f(ky)+g(nj—1)<1. (16)
instead of shifted momenta.

First we establish the relationship between the shifted moFrom Eq.(13), we can expres$(k ) as a function of the
menta given above and the Haldane’s dimension forrfijla  occupation numbers,
Consider the above system with an upper and lower cutoff 3 N
on the momentak ., andknin, respectively. We divide this fk)= | — (1 )[ch_ch_(nj_l)] a7
range of momenta into cells of unit lengtthe first and last L 9 2 '
cells could be smallg¢rand define the occupancy of thth
cell, n;, to be the number of particles with momerka,
such thatj +1>k;=j. We identify single-particle space di-
mensiond with the number of cells in the range, i.a,
=Kmax— Kmin,» Whered may be fractional. If we now denote
the range of then,’s by d-, we have

where N¢;=ZX,.;n; and N§j=2|>jn|. Equations(16) and
(17) then constitute a set of constraints on the occupation
numbers.

We will now show that these form a complete set of con-
straints. Namely, given any set of occupation numbgrsg,,
that satisfies the constraints, there exists a set of momenta,
tki}, that realizes it. To do this, consider a $e{}, where
Jmin=] <Jmax- The lowest value of the momentum in tjt&
. . cell is uniquely determined by the occupation numbers
Since there exists am; for everyk;, the total number of through Eq.(17). Because of the third property, all the other

states in the rangkma,—Kpin is the same as that between momenta are also uniquely determined. Hence we have
Mmax— Mmin- The total number of states is then the number,

. ) . " shown that there are no more constraints. Equatib6sand
.Of waysN d'ﬁt'nCt mtegers can.be_ p|cked.fr(_)d1 dlstmgt (17) form a complete set of constraints. Note also that the
integers, i.e.,'FCy, as in a fermionic description. Substitut-

) _ . ) above logic implies that there is a one-to-one correspondence
ing for dg. from the a_bove expression we immediately rePTO petween the sets of occupation numbérs}, that satisfy the
duce the Haldane dimension formula in Ef).2 : '
. X _— . constraint416) and(17) and the sets of momentg;}, that
In order to obtain the counting rules we will first derive

; satisfy Eq.(13).
three properties of the set of momeffgl. If k; are ordered We can now remove the scaffolding of the Sutherland
such that they increase with increasingthen we have

K K — 1 If a<1. then it foll h model that we started with ardefinean exclusion statistics
i+17 i_mlyl;mi__f( —9). —gl< N ¢ En It i OWs ¢ Zu system by the above constraints. The connection to the di-

M 1> Further, ifm;, —mi=1, thenki; ~ki=9g, and  mangion formula in Eq(1) established earlier implies that

if m,,—m;>1, thenk;,;—k;>(1+g)>1 becausem;'s

are integers.
We can then draw the following three conclusions from > F({n})=Dn(g.d), (18
the properties of the shifted momerka ni}
(1) The ordering ink;’s is the same as the ordering in whereN=2X;n; andF({n;})=1 if {n;} satisfy the constraints
m;’s. and zero otherwise. Note that the weights now are positive
(2) “Close-packed”m;’s with unit spacing correspond to definite. There are no negative weights once the constraints
“close-packed”k;’s with spacingg. are imposed.

de=Mpax— Mpin=d+(1—g)(N—-1). (14
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Next, we construct some simple examples from the above A. Case of semion(g=1/2m=2)
counting rules. For simplicity we look at occupation nUMbers  the maximal occupancy of a state in this case is 2. Hence

for special values of=1/m wheremis an integer. The rules  {he ajlowed occupancy of a state is 2 or 1. Zeros may occur
formulated above for the occupation number of exclusionyny\where without changing the rules. Let us implement this
particles may be combined and restated thus: metl/g, i, the specific case ofi=4N=5, say. In this case the
and letN; be the number of particles in the occupied states;|owed configurations are given by the strings
below someith level, N;==;in;. Then an occupation (2210 (2111),(1121. In the first configuration, zero can be
n;(nj=m) is allowed if (N;modm)=<(m—n;). This rule now  gny\where and therefore there are four configurations. Notice
includes all the three constraints stated above. that a string of the forn§1211) or (1112 violates the count-

To see how this rule is implemented, consider a system of,g ryles. Therefore counting all the allowed configurations
N particles spread ovef states. In order thddy be an inte-  \ye optainD(1/2,4)=6. This is exactly what one gets from
ger, we choosé&N=mp-+1, wherep is an integer. Sincé\ the Haldane formula.
=md, we havep<d. We shall divide thesel states into Further, if we symmetrize each of these allowed configu-
cells. An allowed configuration may be represented as @tions, then the new weights may be computed using Eq.

string of numbers 1f;,n,,n3, ...), where eachn;=<m de- (22). In the specific case ah=2, we have
notes the occupancy of levels ordered from left to right. In-

stead of dealing with a configuration whereldlparticles are M,(qy,qy) =" %C M.(Qs,0,) =PC (23)
spread overd states(some which may be emptywe can e dr AL g2’
simplify the discussion by considering one cell at a time'wherep is defined through the equatidf=2p+ 1. The cor-
Each cell may now have a partition of. This allows us to responding is therefore given by
fill the subsequent cells without reference to the previous cell

according to the counting rules sinskmodm=0. We now 0

fill each cell with a partition ofm which is allowed by the N Cq,
rules given above. This then generates all possible allowed 27 gt
configurations whose sum is given By . 92

If, in p'articula.r, we are interested in expectation val.ues OfNote that these weights, whether in the symmetrized form or
Symmet”c fun_ct|0ns oh, We can work with symmetrized unsymmetrized form, are positive definite. Further, this is
weights. Consider a symmetric opera@{{n;}). The expec-  gyactly the formula derived by Chaturvedi and Srinivd&an

tation value of this operator may be written as in their microscopic analysis of Haldane statistics for semi-

(29)

ons.
> F({nHo{n}) It is import_ant to stress Fhe difference_zs in thefsg two
n approaches—in their analysis Chaturvedi and Srinivasan
(O({mih))= ' (19 start from a formulation of the statistical mechanics of a
{% Fs({ni}) system by removing factorizability of the weights as a crite-
: rion. They derive the expression for the weights in Exf)
where by imposing the conditions positivity and the requirement of

symmetry(all configurations which are permutations of each
1 other carry the same weigh©Qur starting point is the Suth-
Fs({”i}):a Ep: F(pni)- (20) erland model. We derive our rules from the properties of
shifted momenta. After removing this scaffolding, we obtain
Herep stands for all permutations of the allowed configura-not only positive definite weights for each configuration but
tions. Every allowed configuration in{n;} may be when symmetrized they reproduce the results of Chaturvedi
characterized by the multiplicities),,; namely, a given and Srinivasan.
allowed configuration may be written as a string,

mim(m—1)9m-1...1%,  where g;+20,+--- +mgy=N. B. Case withg=1/3 or m=3
We may now also allow any permutation of these occupan- ) ) ) )
cies (with zeros added to make wpstates. The dimension The maximal occupancy of a state in this case is 3. The

allowed configurations for each cell a(®),(21),(12),(111).
That is, we can form a string of allowed configurations with
any of these cells in any order to make Nparticles. Any

of the N-particle space may then be written as

Dn(g.d)= 2> f(d,0z, .. .)"Cq, (21)  number of zeros may be added in between to make up a total
{nt of d states.
whereq=3" .q,. The new weights are defined as As in the semion case we may consider expectation val-
ues of symmetric functions of; . Following the same pro-
Ma(Qg1,92, - - - ,Om) cedure we can derive the symmetrized weightslefined in

(01,02, - - Om) = (22 Eq.(22). Sincem=3, we have

M(d1,92, - - - Om) ’
where there aré, allowed configurations after symmetriz- M.(Q1,02,03) = q1+q2+q3cq ql+qch '
ing andM; is the total number of configurations for a given : 2

set ofg’s which define a configuration. We shall clarify this _ _
now with specific examples. Ma(d1,02,03) = PCq,”” *Cq,(2)%, (29
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wherep, as before, is defined through the equatids 3p

+ 1. The corresponding weiglftis therefore given by

solution given by Ramanujan. This starting point makes pre-
cise the statements about the occurrence of negative prob-
abilities. Further, we have formulated a counting principle
which reproduces the Haldane dimension formula. It can
therefore be used to define exclusion statistics purely in
terms of state counting. The negative probabilities discussed
nH" the Iiteratpre can be under_stood as grising when the sys-
Srinivasah® also suggest how their method may be extended®™ constrained by the counting rules is replaced by an un-
beyond the semion case which they considered in detaipon;tralned one. The ”eg'?‘“ve WEI'ghtS t'hen compgnsate for
However, this extension requires additional conditions whiclihe introduction of unphysical configurations. This is there-
are not imposed in the semion case. In contrast, our rules re e_XaCt'y anal_o_g_ous to other situations in physics where
derived from the point of view of an exactly solvable model negative probab|I|t|e§ arise—ior example, t_he ghosts and
are completely specified independent of the actual valug of negatwe norm s_tate; in gauge theories orasin the case of the
(or m). There is an algorithm to derivé[}‘] for arbitrary m Wigner distribution in quantum mechanics.
though this gets complicated for larger

PCq,>~ BC,,(2)%

_Q1+Q2+Q3C aitdec
d3 *F}

N
3

(26)

These weights are again positive definite. Chaturvedi a
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