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Exclusion statistics: A resolution of the problem of negative weights

M. V. N. Murthy and R. Shankar
The Institute of Mathematical Sciences, Chennai 600 113, India

~Received 16 March 1999!

We give a formulation of the single-particle occupation probabilities for a system of identical particles
obeying the fractional exclusion statistics of Haldane. We first derive a set of constraints using an exactly
solvable model which describes an ideal exclusion statistics system and deduce the general counting rules for
occupancy of states obeyed by these particles. We show that the problem of negative probabilities may be
avoided with these counting rules.@S0163-1829~99!04933-4#
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I. INTRODUCTION

A few years ago, Haldane1 proposed a generalized exclu
sion principle in which adding particles into a system lea
to a change in the dimension of the single-particle spa
Specifically, the generalized exclusion principle envisa
systems in which the addition of one particle blocks offg
single-particle states for the others, whereg, the fractional
exclusion statistics~FES! parameter, is an arbitrary numbe
Obviously g50 for bosons andg51 for fermions. This
leads to the following formula forDN(g,d), the dimension
of the N-particle Hilbert space, if the dimension of th
single-particle space isd,

DN~g,d!5
@d1~12g!~N21!#!

N! @d212g~N21!#!
, ~1!

which reduces to the familiar expressions for Bose and Fe
statistics forg50 andg51, respectively.

The thermodynamic properties of an ideal gas of exc
sion particles have been investigated widely. Specifically
definition of an ideal gas of particles with nontrivial excl
sion statistics was given in Refs. 2 and 3. In this definition
was assumed that if there wered levels of energye, then the
dimension of the Hilbert space withN particles of energye is
given by Eq. ~1!. The distribution function may then b
computed2–5 and is given by

n~e!5
1

w~e!1g
, ~2!

wherew(e) is the solution of the equation2,5

w~e!g@11w~e!# (12g)5ebe ~3!

and b is as usual the inverse temperature. If we attemp
interpret this distribution function as arising from the stat
tical mechanics of a single mode with statistical weig
rne2nbe for the mode to be occupied byn particles, then it
was found6,7 that some of thern’s are invariably negative if
g is different from 0 and 1. This raises the problem of inte
preting these negative probabilities. It has also been sp
lated that these negative probabilities are an essential fea
of nontrivial exclusion statistics.7

A crucial property of exclusion statistical interactions
that they should cause shifts in single particle energies a
PRB 600163-1829/99/60~9!/6517~5!/$15.00
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scales.8 This property is realized by a large class of on
dimensional models of interacting fermions where Fermi l
uid theory breaks down.9,10 In fact it has been shown exactl
that quasiparticles with nontrivial exclusion statistics exist
a class of models that are solved by the Bethe ansatz.3,11 In
particular the quasiparticles of the Calogero-Sutherla
model ~CSM! behave like an ideal exclusion statistic
system.3,11–13A feature of the exclusion statistics as glean
from the analysis of various models is that the exclusion a
across a set of levels unlike in the case of Fermi or B
statistics where the exclusion principle is stated with a sin
level in mind. It is this crucial difference that results in th
occurrence of negative probabilities. We will show that t
particles obeying fractional exclusion statistics can be ch
acterized by constraints on the sets of occupation numb
There are no negative probabilities if these constraints
obeyed. If these constraints are relaxed, then nega
weights arise in order to compensate for the resulting ov
counting. Indeed this is the way we encounter negative pr
abilities in other systems in physics—for example, in gau
theories, they arise in the ghost sectors. Ghosts come f
the Jacobian associated with nonlinear gauges which es
tially ensure the correct counting of states. Another exam
is that of the Wigner distribution function in quantum m
chanics which is not positive definite precisely because so
constraints are relaxed. A formulation based on the varia
number of single-particle states, which depends on the t
number of particles in the system, has been discussed
Isakov14 as a way to avoid the problem of negative weigh
Recently, a microscopic interpretation of exclusion statist
systems has been advanced by Chaturvedi and Srinivas15

where they show how this problem of negative probabilit
may be solved for semions,g51/2. They have also indicate
how their method may be generalized to other values ofg.

In this paper we first discuss the origin of negative pro
abilities in exclusion statistics particle systems. To do t
we have chosen an unusual starting point in an equation
its solution given by Ramanujan~discussed in Ref. 16!. This
starting point makes precise the statements about the oc
rence of negative probabilities. We then formulate a count
principle based on the set of constraints which reprodu
the Haldane dimension formula. We first extract the count
rules starting from an exactly solvable model of interacti
particles and state them in the form of counting rules
arbitrary systems obeying exclusion statistics. This meth
6517 ©1999 The American Physical Society
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not only avoids negative probabilities, but with minim
modification reproduces the results derived by Chaturv
and Srinivasan for the semion. The counting principle
however, not restricted to semions alone.

II. PROBLEM OF NEGATIVE WEIGHTS

The problem of negative probabilities was first point
out by Nayak and Wilczek6 and elaborated by Polychronako
in a recent paper.7 In order to clarify the origin of negative
probabilities or weights, we first discuss an equation and
solution due to Ramanujan.16 Ramanujan considered the fo
lowing equation:

aqXp2Xq1150, ~4!

wherea may be complex andp,q are positive. The genera
solution forXd is

Xd5 (
N50

`

CN~p,q,d!aN, ~5!

whereC0(p,q,d)51 andC1(p,q,d)5d and

CN~p,q,d!5
d

N! )
j 51

N21

~d1Np2 jq !, N>2.

To make a connection with the result obtained
Polychronakos,7 which is a particular case of the gener
solution given by Ramanujan, we now putp5(12g) and
q51; then,

CN~12g,1,d!5d
@d1~12g!N21#!

N! ~d2gN!!
, ~6!

which is clearly different from the dimension formula o
Haldane. However, it correctly reproduces the bosonic
fermionic dimension formula forg50 and g51, respec-
tively. This dimension formula was derived independen
by Polychronakos7 with the restriction that any two particle
be at leastg sites apart when placed on a periodic lattic
One can also derive the Haldane dimension formula with
restriction that any two particles beg sites apart but withou
the restriction of periodicity.

Further, if we putX5(11w21) anda5e2be in Eq. ~4!,
we immediately obtain Eq.~3! derived earlier by Wu.2 The
important point to notice here is that the dimension form
that precisely leads to the distribution function deriv
earlier2–5 is given by CN and not the Haldane dimensio
formula. In the limitd@1, however, it is easy to see that

CN~12g,1,d!5DN~g,d!1OS 1

dD .

Therefore in the continuum limit, theCN and DN are ap-
proximately the same.

The grand canonical partition function of the system m
be written as

Z5~11w21!d5 (
N50

`

CN~12g,1,d!e2bNe, ~7!
di
,

ts

d

.
e

a

y

wherew satisfies Eq.~3!. We have also assumed that all th
energy levels are degenerate with energy given bye. Note
that this is an exact expression and no assumption is requ
on the single particle dimensiond. The negative weights
arise6,7 when one insists on expanding 11w21 in powers of
e2be. From Eq.~5! and the definitions following the equa
tion, it follows that

11w215 (
n50

`

Cn~12g,1,1!e2bne. ~8!

The weights

Cn~12g,1,1!5pn5 )
m52

n S 12
gn

m D ~9!

are always negative forgn.m for somem.7 This is indeed
the problem of negative weights associated with exclus
statistics and is claimed to be inherent in the exclusion
tistics. There are, however, a few points to note: The ne
tive probabilities arise because of our insistence on
factorization15 implied in Eq. ~7!. For example, combining
Eqs.~7! and ~8! we have

Z5(
$nj %

S)
j

Cnj
~12g,1,1! DexpS 2be(

j
nj D , ~10!

where the sum is an unconstrained one over all sets of o
pation numbers. The overcounting resulting from this unc
strained sum is compensated for by the occurrence of n
tive weights. We next derive the precise counting ru
which impose constraints on this sum and avoid this pr
lem.

III. REALIZATION IN AN INTERACTING SYSTEM
AND COUNTING RULES

Any realization of fractional exclusion statistics mu
have its origins in systems of interacting particles. The
pectation is that under certain conditions systems of inter
ing particles which obey Fermi or Bose statistics may
described in terms of quasiparticles~or quasiholes! which
obey fractional statistics. The quasiparticles of the CSM
have like ideal exclusion statistics particles. The main feat
of the CSM is that the total energy of the many-body syst
can be written in terms of single-quasiparticle energies wh
involve shifted momenta and these shifts contain informat
about the exclusion statistics of the quasiparticles. In t
section we analyze these shifted momenta and make an
plicit connection with the formula in Eq.~1!. We then use
them to obtain constraints on the allowed set of occupa
numbers. These are what we refer to as the counting r
that reproduce the formula in Eq.~1!. The statistical mechan
ics of the system obeying these constraints is then the s
as that defined by Wu2 and all statistical weights are positive

We begin with the trigonometric Sutherland model17 of an
N-particle system on a ring of unit radius. The Hamiltoni
is given by
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H52(
i 51

N
]2

]xi
2

1(
j , i

2g~g21!

sin2@~xi2xj !/2#
, ~11!

whereg is the interaction parameter. We will soon identi
this with the statistical parameter of the exclusion statist
While the model can be applied to both interacting bos
and fermions, we choose to work in the fermionic basis he
after. The energy of anN-fermion state may be written in
terms of shifted momenta as

E5(
i 51

`

ki
2ni , ~12!

where ni50,1 and the shifted momentaki ~also called
pseudomomenta in Ref. 13! are given by

ki5mi2~12g!
~Ni

22Ni
1!

2
, ~13!

wheremi are distinct integers andNi
2(1) are the number of

particles with shifted momenta less~greater! than ki . Note
that we could have also started with the Calogero-Suther
model with harmonic confinement. The results below follo
analogously with the proviso that we have shifted energ
instead of shifted momenta.

First we establish the relationship between the shifted m
menta given above and the Haldane’s dimension formula~1!.
Consider the above system with an upper and lower cu
on the momenta,kmax andkmin , respectively. We divide this
range of momenta into cells of unit length~the first and last
cells could be smaller! and define the occupancy of thej th
cell, nj , to be the number of particles with momentaki ,
such thatj 11.ki> j . We identify single-particle space d
mensiond with the number of cells in the range, i.e.,d
5kmax2kmin , whered may be fractional. If we now denot
the range of themi ’s by dF , we have

dF5mmax2mmin5d1~12g!~N21!. ~14!

Since there exists anmi for every ki , the total number of
states in the rangekmax2kmin is the same as that betwee
mmax2mmin . The total number of states is then the numb
of ways N distinct integers can be picked fromdF distinct
integers, i.e.,dFCN , as in a fermionic description. Substitu
ing for dF from the above expression we immediately rep
duce the Haldane dimension formula in Eq.~1!.8

In order to obtain the counting rules we will first deriv
three properties of the set of momenta$ki%. If ki are ordered
such that they increase with increasingi, then we have
ki 112ki5mi 112mi2(12g). If g,1, then it follows that
mi 11.mi . Further, ifmi 112mi51, thenki 112ki5g, and
if mi 112mi.1, then ki 112ki.(11g).1 becausemi ’s
are integers.

We can then draw the following three conclusions fro
the properties of the shifted momentaki .

~1! The ordering inki ’s is the same as the ordering
mi ’s.

~2! ‘‘Close-packed’’mi ’s with unit spacing correspond t
‘‘close-packed’’ki ’s with spacingg.
s.
s
-

d

s

-

ff

r

-

~3! The gaps between any two non-close-packedki ’s are
greater than 1. Therefore all thekis in any cell are close
packed.

We now come to the question as to what are the c
straints on the sets of occupation numbers$ki%. For example,
if g50, there are no constraints as in the bosonic case
g51, the constraints arenj<1 as in the case of fermions
For any otherg, one obvious constraint come from the se
ond property derived above, namely, the occupancy of
j th cell nj<1/g which specifies the maximum occupancy
a given cell assumed to be of unit spacing. This is the sa
constraint one derives from the distribution function of W
Eq. ~3!. An important departure from the usual bosonic a
fermionic case is that the cell size is important and canno
arbitrarily taken to zero as in the case of bosons a
fermions.6

There are further constraints on the occupancy. To form
late them we use the third property. LetkL be the lowest
momentum in thej th cell. Then from the second and thir
properties, it follows that

kL1g~nj21!, j 11. ~15!

We can writekL askL5 j 1 f (kL), where f (kL) denotes the
fractional part ofkL , that is, 0< f (kL),1. We then have

f ~kL!1g~nj21!,1. ~16!

From Eq. ~13!, we can expressf (kL) as a function of the
occupation numbers,

f ~kL!5 f F2~12g!
@Nc j

22Nc j
12~nj21!#

2 G , ~17!

where Nc j
25( l , jnl and Nc j

15( l . jnl . Equations~16! and
~17! then constitute a set of constraints on the occupa
numbers.

We will now show that these form a complete set of co
straints. Namely, given any set of occupation numbers,$nj%,
that satisfies the constraints, there exists a set of mome
$ki%, that realizes it. To do this, consider a set$nj%, where
j min< j < j max. The lowest value of the momentum in thej th
cell is uniquely determined by the occupation numb
through Eq.~17!. Because of the third property, all the oth
momenta are also uniquely determined. Hence we h
shown that there are no more constraints. Equations~16! and
~17! form a complete set of constraints. Note also that
above logic implies that there is a one-to-one corresponde
between the sets of occupation numbers,$nj%, that satisfy the
constraints~16! and~17! and the sets of momenta,$ki%, that
satisfy Eq.~13!.

We can now remove the scaffolding of the Sutherla
model that we started with anddefinean exclusion statistics
system by the above constraints. The connection to the
mension formula in Eq.~1! established earlier implies that

(
$ni %

F~$ni%!5DN~g,d!, ~18!

whereN5( jnj andF($ni%)51 if $ni% satisfy the constraints
and zero otherwise. Note that the weights now are posi
definite. There are no negative weights once the constra
are imposed.
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Next, we construct some simple examples from the ab
counting rules. For simplicity we look at occupation numbe
for special values ofg51/m wherem is an integer. The rules
formulated above for the occupation number of exclus
particles may be combined and restated thus: Letm51/g,
and letNi be the number of particles in the occupied sta
below some ith level, Ni5( j , ini . Then an occupation
ni(ni<m) is allowed if (Nimodm)<(m2ni). This rule now
includes all the three constraints stated above.

To see how this rule is implemented, consider a system
N particles spread overd states. In order thatDN be an inte-
ger, we chooseN5mp11, wherep is an integer. SinceN
<md, we havep,d. We shall divide thesed states into
cells. An allowed configuration may be represented a
string of numbers (n1 ,n2 ,n3 , . . . ), where eachni<m de-
notes the occupancy of levels ordered from left to right.
stead of dealing with a configuration where allN particles are
spread overd states~some which may be empty!, we can
simplify the discussion by considering one cell at a tim
Each cell may now have a partition ofm. This allows us to
fill the subsequent cells without reference to the previous
according to the counting rules sinceNimodm50. We now
fill each cell with a partition ofm which is allowed by the
rules given above. This then generates all possible allo
configurations whose sum is given byDN .

If, in particular, we are interested in expectation values
symmetric functions ofni , we can work with symmetrized
weights. Consider a symmetric operatorO($ni%). The expec-
tation value of this operator may be written as

^O~$ni%!&5

(
$ni %

Fs~$ni%!O~$ni%!

(
$ni %

Fs~$ni%!

, ~19!

where

Fs~$ni%!5
1

d! (
p

F~pni
!. ~20!

Herep stands for all permutations of the allowed configu
tions. Every allowed configuration in$ni% may be
characterized by the multiplicitiesqn ; namely, a given
allowed configuration may be written as a strin
mqm(m21)qm21

•••1q1, where q112q21•••1mqm5N.
We may now also allow any permutation of these occup
cies ~with zeros added to make upd states!. The dimension
of the N-particle space may then be written as

DN~g,d!5(
$qn%

f m
N~q1 ,q2 , . . . !dCq , ~21!

whereq5(n51
m qn . The new weightsf are defined as

f m
N~q1 ,q2 , . . . ,qm!5

Ma~q1 ,q2 , . . . ,qm!

Mt~q1 ,q2 , . . . ,qm!
, ~22!

where there areMa allowed configurations after symmetriz
ing andMt is the total number of configurations for a give
set ofq’s which define a configuration. We shall clarify th
now with specific examples.
e
s

n

s
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,
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A. Case of semion„g51/2,m52…

The maximal occupancy of a state in this case is 2. He
the allowed occupancy of a state is 2 or 1. Zeros may oc
anywhere without changing the rules. Let us implement t
in the specific case ofd54,N55, say. In this case the
allowed configurations are given by the strin
~2210!,~2111!,~1121!. In the first configuration, zero can b
anywhere and therefore there are four configurations. No
that a string of the form~1211! or ~1112! violates the count-
ing rules. Therefore counting all the allowed configuratio
we obtainD5(1/2,4)56. This is exactly what one gets from
the Haldane formula.

Further, if we symmetrize each of these allowed config
rations, then the new weights may be computed using
~22!. In the specific case ofm52, we have

Mt~q1 ,q2!5q11q2Cq2
, Ma~q1 ,q2!5pCq2

, ~23!

wherep is defined through the equationN52p11. The cor-
respondingf is therefore given by

f 2
N5

pCq2

q11q2Cq2

. ~24!

Note that these weights, whether in the symmetrized form
unsymmetrized form, are positive definite. Further, this
exactly the formula derived by Chaturvedi and Srinivasa15

in their microscopic analysis of Haldane statistics for sem
ons.

It is important to stress the differences in these t
approaches—in their analysis Chaturvedi and Sriniva
start from a formulation of the statistical mechanics of
system by removing factorizability of the weights as a cri
rion. They derive the expression for the weights in Eq.~24!
by imposing the conditions positivity and the requirement
symmetry~all configurations which are permutations of ea
other carry the same weight!. Our starting point is the Suth
erland model. We derive our rules from the properties
shifted momenta. After removing this scaffolding, we obta
not only positive definite weights for each configuration b
when symmetrized they reproduce the results of Chaturv
and Srinivasan.

B. Case withg51/3 or m53

The maximal occupancy of a state in this case is 3. T
allowed configurations for each cell are~3!,~21!,~12!,~111!.
That is, we can form a string of allowed configurations w
any of these cells in any order to make upN particles. Any
number of zeros may be added in between to make up a
of d states.

As in the semion case we may consider expectation
ues of symmetric functions ofni . Following the same pro-
cedure we can derive the symmetrized weightsf 3

N defined in
Eq. ~22!. Sincem53, we have

Mt~q1 ,q2 ,q3!5 q11q21q3Cq3

q11q2Cq2
,

Ma~q1 ,q2 ,q3!5 pCq3

p2q3Cq2
~2!q2, ~25!
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wherep, as before, is defined through the equationN53p
11. The corresponding weightf is therefore given by

f 3
N5

pCq3

p2q3Cq2
~2!q2

q11q21q3Cq3

q11q2Cq2

. ~26!

These weights are again positive definite. Chaturvedi
Srinivasan15 also suggest how their method may be extend
beyond the semion case which they considered in de
However, this extension requires additional conditions wh
are not imposed in the semion case. In contrast, our rule
derived from the point of view of an exactly solvable mod
are completely specified independent of the actual valueg
~or m). There is an algorithm to derivef m

N for arbitrary m
though this gets complicated for largerm.

IV. SUMMARY

To summarize, we have analyzed the origin of negat
probabilities in exclusion statistics systems. To do this
have chosen an unusual starting point in an equation an
d
d
il.
h
as
l

e
e
its

solution given by Ramanujan. This starting point makes p
cise the statements about the occurrence of negative p
abilities. Further, we have formulated a counting princip
which reproduces the Haldane dimension formula. It c
therefore be used to define exclusion statistics purely
terms of state counting. The negative probabilities discus
in the literature can be understood as arising when the
tem constrained by the counting rules is replaced by an
constrained one. The negative weights then compensate
the introduction of unphysical configurations. This is the
fore exactly analogous to other situations in physics wh
negative probabilities arise—for example, the ghosts a
negative norm states in gauge theories or as in the case o
Wigner distribution in quantum mechanics.
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