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Energy distribution of light ions backscattered from a solid
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The energy distribution of backscattered ions is obtained in analytical form as a result of approximate
solution of the Boltzmann equation. The elastic-scattering cross section is taken in a form corresponding to the
screened Coulomb potential which allows investigation of the cases from hard-sphere to Rutherford scattering.
Inelastic energy losses are assumed to be proportional to some power of energy. The theory is valid for the case
of normal ion incidence on the target surface and for the mass of a target atom much more than the mass of an
ion. The first term of expansion of the final result gives the energy distribution obtained in the single-collision
approximation and it coincides with the solution known from the previous theories. The theoretical results are
verified by their comparison with computer simulation d4&0163-18289)00533-0

I. INTRODUCTION considered as some reference plane which, unlike reality,
may be crossed by the ion several times.

If the surface of a solid is bombarded by electrons or by In recent years theoretical work has been devoted to the
an ion beam then investigation of the angular and energgeneral case of multiple scattering in a half infinite medium.
distributions of reflected particles gives the information The theory in Ref. 10 assumes that the elastic-scattering
about chemical and physical properties of the solid. Thiscross section is isotropic in the laboratory system that repre-
information is of essential importance for electron micros-S€Nts an extremely rare case in reality. The theory in Ref. 11
copy, nuclear fusion research, and radiation damage protis Pased on the approximate solution of the Boltzmann equa-
lems. Theoretical treatment of ion reflection represents théon by the method of spherical harmonics. Within the limits
first and necessary step towards theoretical treatment of spuf this method the delta function in the boundary condition is
tering. For these reasons at present the process of reflectié@Presented by a finite number of Legendre polynomials that
is intensively investigated by experimeritaind computer leads to the probl_em of negative nqmber of scattered ions
simulation method$ Analytical theories of reflection for the @nd makes the final results questionable. Moreover, the
case of normal ion incidence on the target surface can b_gneory in Ref. 11 dlsr_egard$ the cor.reilauon between scatter-
divided in two main categories of the theories based on thé"d and energy loss in a single collision. For these reasons

single-collision approximation and the theories which takethe theory in Ref. 11 achieved satisfactory results for the
into consideration multiple-collision effects. integral characteristic of backscattered ions—the reflection

erally used at high energies of incident ions where the reflecnergy distribution. i .
tion coefficient is relatively small. This model assumes two [N the previous work§*® the authors applied another
straight-line trajectories between the surface and the point dpethod  of ~approximate ~ solution of the Boltzmann
elastic collision. On their straight-line path the ions lose en_equatlorl—_the ~Chandrasekhar ~ method  of discrete
ergy due to inelastic collisions, and they can also lose energ§tré@ms*—in which the problem of negative number of scat-
as a result of elastic collisions if the ratio of target atom tof€red ions does not arise. In Refs. 12 and 13 the energy
ion mass is finite. The single-collision theories started frondistribution of reflected ions was obtained in an analytical
the cases of the Rutherford elastic scattering and inelastrm for a power-law elastic-scattering cross section with
energy losses proportional to ion velocitBubsequent cal- melastlc energy losses being neglecte_zd. In the_ present work
culations considered more general cases of the screened el#3€ inelastic energy losses are taken into consideration.
tic cross sectichand inelastic losses proportional to some
power of energ§/ that led to expressions valid in a wider II. BASIC EQUATIONS
range of energies. In Refs. 6 and 7 the theory was extended
for heavier ions by taking into account elastic energy losses, We consider the scattering and slowing down of ions in a
and in Ref. 8 the effect of beam attenuation was added to thialf infinite target consisting of randomly distributed immov-
results®’ able atoms with the number densify We assume that the

At lower ion energies the effects of multiple scatteringion beam of energ¥, impinges perpendicularly on the tar-
become essential and the theory requires solution of the Bolget surface and that the ion mass is much less than the mass
zmann equation. In Ref. 9 the theory was based on thef the target atom. In this case the ions are scattered due to
infinite-medium approximation with the target surface beingelastic collisions with atoms and they lose their energy as a
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result of electronic stopping between elastic collisions. We  yf 1
seek for the energy distribution, integrated over all exit M—2(Z-E,M)=N00f f(z,E, 1) dW(peq, 1)
angles, of those ions which underwent a number of elastic -t
collisions and approached again to the target surface. J
For the electronic stopping cross section we use the —Ncrof(Z,E,,u)JrNE[SQ(E)f(Z,E,,u)].
power-law expression
(6)

Se(E)=K,EP, 1) The term in the left-hand side of E@6) describes the
space variation of the flux between elastic collisions. The
whereE is the ion energyK, is a constant, and the param- first two terms in the right-hand side represent the collision
eterp varies betweep= 3 for low energies angp=—1 for integral for elastic scattering, and the third term allows for

high energies. inelastic energy losses.
For the elastic cross section we take the expression Equation(6) should be solved with the boundary condi-
tion
+
o (E, o) = 21T ME) @ f(0E.n)=8(E-EQ)d(1-u) for p>0,  (7)

(1+27—cosw)?’
which means that the ion beam of eneigy impinges per-
endicularly on a target surfaze=0.
Our aim is to find the flux of those ions which are ap-
proaching to the target surface from insidéQ,E, ) for u
cosw=cosf cosf; +sindsind code—¢1), (3) <0, to integrate the flux over angle variableand to obtain
the energy distribution of backscattered ions.
and (f;,¢,) and (6, ¢) are the normalized polar and azi- Before starting the solution of the system of E(f.and
muthal components of the ion velocity before and after col{7) it is convenient to define two parameters: the mean free
lision. path length of ions with respect to elastic collisiong
Cross sections of the typ@) arise for the truncated Cou- =(Nog) 1, and the total inelastic ion range
lomb potentia®!® and also as a result of quantum-

where the scattering angle can be found from the equation P

mechanical solution of the scattering problem in the first (B0 dE Es P 3
Born approximation for the screened Coulomb poterifial. ™ /o NS.(E) (1-p)NK," ®
As well as the Lindhard parametarin the power-law cross _
section'® the screening parameterin Eq. (2) depends on Then the ratio
the ion energy. For low energies we haye-1, and Eq.(2

gy 9 ay q2) heg/R; ©

describes the hard-sphere interaction. For high energies
<1, and o(E,w) characterizes the Rutherford scattering. | characterize the average number of elastic collisions of
The advantage of the cross secti@ in comparison with  he jon in the target: the valuds>1 describe the single-
the power-law cross section is the fact that its total crosgjjision situation and the valués<1 correspond to the case
section is finite, of multiple scattering.

If we also introduce the dimensionless depth variable

w _ =12z/\q, the relative ion energu=E/E,, and the new en-
fo o(E,w)sinwdw=oo(E), (4 ergy variable
1-ut?
and no problems arise in formulation of the Boltzmann equa- t= T (10

tion.

In the case of normal ion incidence the problem is azi-then for the new unknown functiag(t) defined by the trans-
muthally symmetrical and integration of the cross sect®)n  formation f(u)du=g(t)dt instead of Eq(6) and boundary
over azimuthal angle gives the probability of ion scatteringcondition(7) we can write
from the stateu;=cos#; to the stateu=cosé:

79 79 !
dor( ) mo tot EZJ 19(Ml)dW(,U«1,,u), (11
o(umy,m _
AWy 1) = —
° 9(0t,u)=8(1)8(1—u) for u>0. (12)
__2ntm)(dt 20— k)i (5) The variablet is proportional to the time of presence of an
C[An(1+ p—pp) + (= py)? T

ion within the target and it is similar to the so-called Fermi
age used in the theory of the slowing down of neutrbhs.

Let us denote byf(z,E,u)dEdu the flux of ions at a This variable gives the possibility to formulate EG1) in a
depthz with energy(E,dE) and direction of motion &,du). rather general form valid for arbitrary scattering probability
For the functionf(z,E, ) we can write the forward Boltz- dW(u4,«) and for arbitrary values of the paramepein the
mann equation in a form similar to Refs. 11-13: electronic stopping lawl).
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Equation(11) in some different notations was already for- w (= arctary
mulated in the theorié&?° with following expansion of the H(a,u)=exr{ - ;J In( l1-a
solution into series of the Legendre polynomials. Analytical 0 y 21
theory! used the first two polynomials that may be enough @D
for the infinite-medium problern'b", but is not sufficient for js the Chandrasekhat function!* The function(20) shows
the half space target. The theory in Ref. 20 considers a largge following asymptotical behavior:
number of polynomials, but it is based upon numerical solu-
tion of a system of ordinary differential equations and its 1-2.9078/s for s<1,
results contain only integral and not differential characteris-

dy
1+,u,2y2

tics. The main divergence of the present calculations from R(s,7>1)=1 1~7In2 for s> 1. (22)
the theories"?° is another way of approximate solution of 2s
Eq. (11).
If we also take into account th&®(s=0,7)=1 for arbi-
I1l. APPROXIMATE SOLUTION trary Scattering probab|l|t|edW(,lL1,/L) and for arbitrary?],
we can write an approximate solution of the probléid)
The Laplace transformation and (15) in the form
G(x,s,u)= | e Sg(x,t,u)dt 13 — a
( 'LL) jo g( 'LL) ( ) R(S,U) S+a+[(s+a)2_a2]1/2' (23)

reduces Eqsi11) and(12) to The function(23) has the following featuresa) ats<<1 it

G 1 behaves in the same way as the soluti@®), (b) ats>1 it

. +(1+s)G= J G(u)dW(q, ), (14 coincides with the solutiofil7), and(c) at > 1 it represents

-1 approximately the solutiorf20) with the maximum diver-
_ gence 6% as=0.16.
G(0s,u)=38(1—pn) for u>0. (15 The function(23) is the exact Laplace transform to

If from Egs. (14) and(15) we find the function drR 1
0 G- 18 @y (24)
R(s,n)=— ﬁlMG(O,S,u)dM, (16)
(Ref. 21), wherel 4(x) is the modified Bessel function of the
then inverse transformation &(s, ) together with Eq(10)  first kind?? If now we return to the variable in the accor-

will give the energy distribution of backscattered ions. dance with Eq.(10), we obtain the energy distribution of
For two particular cases E@l4) can be solved analyti- backscattered ions integrated over all exit angles:
cally.
The case of>1 describes the single-collision situation dR (1—p)exd—a(1—u'"P)/h] | a 1 yi-p
when the solution can be found by the methods used in Refs. gy uP(1—ul=P) ! ﬁ( —ur .
3-8: (25)
R(s>1.7)= a(n) 17 Equation(25) represents the central result of the work. It
(s>17)= 2s ’ shows that the shape of energy distribution depends upon
) two parameters: the powerin the electronic stopping law
where the function (1), and the ratiob=a/h, where the functiora(#) corre-
sponds to the reflection coefficient by a single collision and
a(n)=— fo le_ Itm 112m the parameteh describes the number of collision events.
-1 1—py n 1+ Behavior of the energy distributiof25) at low energies

(18 and at the energies close Ey can be obtained by using
asymptotic forms of the functioh,(x) at x>1 andx<1,
correspondingly. In the case a&>1 we have the energy
distribution of ions which participated in a large number of
} collisions:

is proportional to the the reflection coefficigRt of the ions
which suffered a single collisioh,

1

l1—exp — N
dR [ b \¥? 1-p .
. —=\5=| " Tp A I-p3n for b(1—u*"P)>1.

The case ofp>1 corresponds to the hard-sphere interac- du |2 uP(1—u""")
tion with the isotropic scattering probabiliyW(u,u) = 3 (26)
for which solution of the system of Eq&l4) and(15) has the In the case ofx<1 we obtain the energy distribution of
form backscattered ions which participated in a single collision:

R(s,7>1)=1—1—a-H(a,1), (20) dR (1-p)b

wherea=(1+s)~! and du_ 2uwP

:a(n)

R, >

(19

for b(1—ul"P)<1. (27
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0 0.2 0.4 0.6 0.8 1.0 FIG. 2. The particle reflection coefficieRy (curve ) and the
single-collision reflection coefficieri, for »>1 (2) and »=0.1
RELATIVE ENERGY OF BACKSCATTERED IONS 3).

FIG. 1. Energy distribution of backscattered id25) as a func-
tion of their relative energu=E/E, for b<1 (curve 1, b=5 (2),
andb=20 (3). The distribution is normalized to its value &t 1.

tion coefficientRy: at low ion energies and hard-sphere in-
teraction (7>1) the single-collision model can be applied
for Ry<<0.1, and at higher energies and screened Coulomb
interaction (7=0.1) for Ry<<0.01.

Measurements of the energy distributions at normal ion
idence mainly contain the data for fixed exit angks
Inasmuch as we could not find in the literature experimental
distributions integrated over alh, we used the data of
computer simulatioR®

Figure 1 presents the energy distributi@s) for different Figure 3 gives the energy distribution of back_sca_ttered
values of the parametér Here and everywhere in this sec- 10NS at primary energye,=300eV for the combination
tion we assume that inelastic energy losses are proportion&-W (the target atom to ion mass ratld,/M,=92). The
to the ion velocity and consider E¢R5) for the particular ~ theoretical curve is obtained from E(®5) for the valueb
case ofp=1. At b<1 the distribution is a monotonically =9° Which corresponds to the reflection coefficieRy,
decreasing function of energy and it is similar to the energy= 0.65 in Fig. 2, the former being deduced by interpolation
distribution of the ions after the single collision in the case of
h>1 when the probability of a scattering event is small. ' ' ‘ ' '
When the parametdy increases, the low-energy part of the
distribution falls, and folb>1 there appears a maximum at 1.0 - /
u=1. In the limiting case ob>1, when inelastic energy
losses may be disregarded, the distribution takes the delta
type shape and contains only ions with relative energies
~1.

We should like to emphasize that both energy distribution
(25 and all analytical energy distributions obtained in the
single-collision approximatich® are finite at the energ
=Eq (u=1). The infinity of the energy distribution calcu-
lated in Ref. 11 atE=E, is only the consequence of the
approximate method of solution but not of the physical back- 0.2 |- -
ground of the problem.

Figure 2 shows the dependence of the particle reflection . . , .
coefficientRy and the single-collision reflection coefficient ° 5 0.2 0.4 0.6 0.8 1.0
R; on the parameteb. The value ofRy was obtained by
numerical integration of the functiof25) over energy vari-
ableu in the limits (0, 1) and the valueR; was calculated FIG. 3. CombinatiorD-W at E,=300eV. Energy distribution
from Eq.(19). From Fig. 2 we may find the region of validity of backscattered ions normalized to the maximum value. Solid
of the single-collision approximation in terms of the reflec-line: Eq.(25), histogram: computer simulatioiiRef. 23.

The result(27) coincides with the solution obtained in the
single-collision approximation and it also can be deduced b¥nc
inverse Laplace transformation of the expres<ibn.

IV. THE ENERGY DISTRIBUTION
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of experimenta and computer dathAgreement of the the- polynomials. As it was pointed out in Ref. 25, that leads to
oretical and computer distributions is good with the excepthe problem of negative ion density. Indeed, a closer inves-
tion of energies close to the bombarding energy. Equatiotigation of intermediate calculations in Ref. 11 shows that at
(25 cannot explain the shift of the maximum of the distri- definite target depths the number of ions with definite ener-
bution from E/Eq=1 to E/E;~0.9. This shift can be the gies becomes negative.

consequence of either elastic energy losses due to the finite In the theories of Refs. 12 and 13 the problem of negative
mass ratioM,/M; or the fluctuations of inelastic energy ion density was avoided by applying another method of ap-
losses, but it is difficult to predict in advance which of theseproximate solution of the Boltzmann equation—the method

two effects dominates. of discrete streams. Unfortunately, the authors did not suc-
ceed in simultaneous interpretation both elastic and inelastic
V. RESULTS AND DISCUSSION energy losses, and in Refs. 12 and 13 electronic stopping was

) . disregarded.

Development of the theory of ion backscattering from a | the present work, on the contrary, the inelastic energy
solid represents an extremely complicated problem of takingosses are included in the theory, but the elastic losses are
into consideration and mathematical interpretation a numbeﬂieglected, which holds for the cases of light idhs D, and
of separate effectsi) the effect of half infinite targetji) the  He) and heavy targets. The approximate solution is con-
effect of delta-type boundary conditiofiii) elastic scatter- strycted as an extrapolation of two analytical solutions
ing of the ions by the target atom@y) the inelastic energy  known in the literature—the solution for isotropic scattering
losses, andv) the elastic energy losses. In the case of modand the solution for a single collision event. The final energy
erate and low ion energies, when the multiple scattering igjistribution(25) is valid for arbitrary values of the parameter
dominating, all the existing theories are based on the solutioB in the electronic stopping lawl) that makes the result
of the Boltzmann equation by one or another approximatgalid for a rather wide range of ion energies. Agreement
method. . _ between theoretical and computer simulation distributions is
_ Atpresent the most complete theory of ion backscatteringyood with the exception of ion energies near the bombarding
is the theory of Vicanek and Urba3§ék\/h|Ch allows for all energy. One can expect that the divergence will be removed

the effects mentioned above. However, the th€ogpntains by taking into consideration the effects of elastic energy

sidered within the limits of the diffusional approximation.

That neglects the correlation between the energy loss and the

scattering angle in a collision event and distorts the energy ACKNOWLEDGMENT

distribution at least at energies close to the primary energy.
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