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Energy distribution of light ions backscattered from a solid

G. Falcone and L. Forlano
Dipartimento di Fisica, Universita della Calabria, 87036 Rende (CS), Italy

and Unita INFM di Cosenza, Cosenza, Italy

A. I. Tolmachev
Yu. Gagarin microrayon 2-19, Moscow 105179, Russia

~Received 9 April 1999!

The energy distribution of backscattered ions is obtained in analytical form as a result of approximate
solution of the Boltzmann equation. The elastic-scattering cross section is taken in a form corresponding to the
screened Coulomb potential which allows investigation of the cases from hard-sphere to Rutherford scattering.
Inelastic energy losses are assumed to be proportional to some power of energy. The theory is valid for the case
of normal ion incidence on the target surface and for the mass of a target atom much more than the mass of an
ion. The first term of expansion of the final result gives the energy distribution obtained in the single-collision
approximation and it coincides with the solution known from the previous theories. The theoretical results are
verified by their comparison with computer simulation data.@S0163-1829~99!00533-0#
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I. INTRODUCTION

If the surface of a solid is bombarded by electrons or
an ion beam then investigation of the angular and ene
distributions of reflected particles gives the informati
about chemical and physical properties of the solid. T
information is of essential importance for electron micro
copy, nuclear fusion research, and radiation damage p
lems. Theoretical treatment of ion reflection represents
first and necessary step towards theoretical treatment of s
tering. For these reasons at present the process of refle
is intensively investigated by experimental1 and computer
simulation methods.2 Analytical theories of reflection for the
case of normal ion incidence on the target surface can
divided in two main categories of the theories based on
single-collision approximation and the theories which ta
into consideration multiple-collision effects.

The supposition of reflection by a single collision is ge
erally used at high energies of incident ions where the refl
tion coefficient is relatively small. This model assumes t
straight-line trajectories between the surface and the poin
elastic collision. On their straight-line path the ions lose e
ergy due to inelastic collisions, and they can also lose ene
as a result of elastic collisions if the ratio of target atom
ion mass is finite. The single-collision theories started fr
the cases of the Rutherford elastic scattering and inela
energy losses proportional to ion velocity.3 Subsequent cal
culations considered more general cases of the screened
tic cross section4 and inelastic losses proportional to som
power of energy5 that led to expressions valid in a wide
range of energies. In Refs. 6 and 7 the theory was exten
for heavier ions by taking into account elastic energy loss
and in Ref. 8 the effect of beam attenuation was added to
results.6,7

At lower ion energies the effects of multiple scatteri
become essential and the theory requires solution of the B
zmann equation. In Ref. 9 the theory was based on
infinite-medium approximation with the target surface be
PRB 600163-1829/99/60~9!/6352~5!/$15.00
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considered as some reference plane which, unlike rea
may be crossed by the ion several times.

In recent years theoretical work has been devoted to
general case of multiple scattering in a half infinite mediu
The theory in Ref. 10 assumes that the elastic-scatte
cross section is isotropic in the laboratory system that rep
sents an extremely rare case in reality. The theory in Ref
is based on the approximate solution of the Boltzmann eq
tion by the method of spherical harmonics. Within the lim
of this method the delta function in the boundary condition
represented by a finite number of Legendre polynomials
leads to the problem of negative number of scattered i
and makes the final results questionable. Moreover,
theory in Ref. 11 disregards the correlation between sca
ing and energy loss in a single collision. For these reas
the theory in Ref. 11 achieved satisfactory results for
integral characteristic of backscattered ions—the reflec
coefficient—but failed for the differential characteristic—th
energy distribution.

In the previous works12,13 the authors applied anothe
method of approximate solution of the Boltzman
equation—the Chandrasekhar method of discr
streams14—in which the problem of negative number of sca
tered ions does not arise. In Refs. 12 and 13 the ene
distribution of reflected ions was obtained in an analyti
form for a power-law elastic-scattering cross section w
inelastic energy losses being neglected. In the present w
the inelastic energy losses are taken into consideration.

II. BASIC EQUATIONS

We consider the scattering and slowing down of ions in
half infinite target consisting of randomly distributed immo
able atoms with the number densityN. We assume that the
ion beam of energyE0 impinges perpendicularly on the ta
get surface and that the ion mass is much less than the m
of the target atom. In this case the ions are scattered du
elastic collisions with atoms and they lose their energy a
6352 ©1999 The American Physical Society
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PRB 60 6353ENERGY DISTRIBUTION OF LIGHT IONS . . .
result of electronic stopping between elastic collisions. W
seek for the energy distribution, integrated over all e
angles, of those ions which underwent a number of ela
collisions and approached again to the target surface.

For the electronic stopping cross section we use
power-law expression

Se~E!5KpEp, ~1!

whereE is the ion energy,Kp is a constant, and the param
eterp varies betweenp5 1

2 for low energies andp521 for
high energies.

For the elastic cross section we take the expression

s~E,v!5
2h~11h!s0~E!

~112h2cosv!2 , ~2!

where the scattering anglev can be found from the equatio

cosv5cosu cosu11sinu sinu1 cos~w2w1!, ~3!

and (u1 ,w1) and ~u, w! are the normalized polar and az
muthal components of the ion velocity before and after c
lision.

Cross sections of the type~2! arise for the truncated Cou
lomb potential15,16 and also as a result of quantum
mechanical solution of the scattering problem in the fi
Born approximation for the screened Coulomb potentia17

As well as the Lindhard parameterm in the power-law cross
section,18 the screening parameterh in Eq. ~2! depends on
the ion energy. For low energies we haveh@1, and Eq.~2!
describes the hard-sphere interaction. For high energieh
!1, and s(E,v) characterizes the Rutherford scatterin
The advantage of the cross section~2! in comparison with
the power-law cross section is the fact that its total cr
section is finite,

E
0

p

s~E,v!sinvdv5s0~E!, ~4!

and no problems arise in formulation of the Boltzmann eq
tion.

In the case of normal ion incidence the problem is a
muthally symmetrical and integration of the cross section~2!
over azimuthal angle gives the probability of ion scatter
from the statem15cosu1 to the statem5cosu:

dW~m1 ,m!5
ds~m1 ,m!

s0

5
2h~11h!~112h2mm1!dm1

@4h~11h2mm1!1~m2m1!2#3/2. ~5!

Let us denote byf (z,E,m)dEdm the flux of ions at a
depthz with energy~E,dE! and direction of motion (m,dm).
For the functionf (z,E,m) we can write the forward Boltz-
mann equation in a form similar to Refs. 11–13:
e
t
ic

e

l-

t

.

s

-

-

m
] f

]z
~z,E,m!5Ns0E

21

1

f ~z,E,m1!dW~m1 ,m!

2Ns0f ~z,E,m!1N
]

]E
@Se~E! f ~z,E,m!#.

~6!

The term in the left-hand side of Eq.~6! describes the
space variation of the flux between elastic collisions. T
first two terms in the right-hand side represent the collis
integral for elastic scattering, and the third term allows
inelastic energy losses.

Equation~6! should be solved with the boundary cond
tion

f ~0,E,m!5d~E2E0!d~12m! for m.0, ~7!

which means that the ion beam of energyE0 impinges per-
pendicularly on a target surfacez50.

Our aim is to find the flux of those ions which are a
proaching to the target surface from inside,f (0,E,m) for m
,0, to integrate the flux over angle variablem and to obtain
the energy distribution of backscattered ions.

Before starting the solution of the system of Eqs.~6! and
~7! it is convenient to define two parameters: the mean f
path length of ions with respect to elastic collisionsl0
5(Ns0)21, and the total inelastic ion range

RT5E
0

E0 dE

NSe~E!
5

E0
12p

~12p!NKp
. ~8!

Then the ratio

h5l0 /RT ~9!

will characterize the average number of elastic collisions
the ion in the target: the valuesh@1 describe the single
collision situation and the valuesh!1 correspond to the cas
of multiple scattering.

If we also introduce the dimensionless depth variablex
5z/l0 , the relative ion energyu5E/E0 , and the new en-
ergy variable

t5
12u12p

h
, ~10!

then for the new unknown functiong(t) defined by the trans-
formation f (u)du5g(t)dt instead of Eq.~6! and boundary
condition ~7! we can write

m
]g

]x
1g1

]g

]t
5E

21

1

g~m1!dW~m1 ,m!, ~11!

g~0,t,m!5d~ t !d~12m! for m.0. ~12!

The variablet is proportional to the time of presence of a
ion within the target and it is similar to the so-called Fer
age used in the theory of the slowing down of neutrons19

This variable gives the possibility to formulate Eq.~11! in a
rather general form valid for arbitrary scattering probabil
dW(m1 ,m) and for arbitrary values of the parameterp in the
electronic stopping law~1!.
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Equation~11! in some different notations was already fo
mulated in the theories11,20 with following expansion of the
solution into series of the Legendre polynomials. Analytic
theory11 used the first two polynomials that may be enou
for the infinite-medium problems,19 but is not sufficient for
the half space target. The theory in Ref. 20 considers a la
number of polynomials, but it is based upon numerical so
tion of a system of ordinary differential equations and
results contain only integral and not differential characte
tics. The main divergence of the present calculations fr
the theories11,20 is another way of approximate solution o
Eq. ~11!.

III. APPROXIMATE SOLUTION

The Laplace transformation

G~x,s,m!5E
0

`

e2stg~x,t,m!dt ~13!

reduces Eqs.~11! and ~12! to

m
]G

]x
1~11s!G5E

21

1

G~m1!dW~m1 ,m!, ~14!

G~0,s,m!5d~12m! for m.0. ~15!

If from Eqs. ~14! and ~15! we find the function

R~s,h!52E
21

0

mG~0,s,m!dm, ~16!

then inverse transformation ofR(s,h) together with Eq.~10!
will give the energy distribution of backscattered ions.

For two particular cases Eq.~14! can be solved analyti
cally.

The case ofs@1 describes the single-collision situatio
when the solution can be found by the methods used in R
3–8:

R~s@1,h!5
a~h!

2s
, ~17!

where the function

a~h!52E
21

0 2m1dW~m1,1!

12m1
512

11h

h
ln

112h

11h
~18!

is proportional to the the reflection coefficientR1 of the ions
which suffered a single collision,8

R15
a~h!

2 F12expS 2
1

hD G . ~19!

The case ofh@1 corresponds to the hard-sphere inter
tion with the isotropic scattering probabilitydW(m1 ,m)5 1

2

for which solution of the system of Eqs.~14! and~15! has the
form

R~s,h@1!512A12a•H~a,1!, ~20!

wherea5(11s)21 and
l

ge
-

-

fs.

-

H~a,m!5expF2
m

p E
0

`

lnS 12a
arctany

y D dy

11m2y2G
~21!

is the ChandrasekharH function.14 The function~20! shows
the following asymptotical behavior:

R~s,h@1!5H 122.9078As for s!1,

12 ln 2

2s
for s@1.

~22!

If we also take into account thatR(s50,h)51 for arbi-
trary scattering probabilitiesdW(m1 ,m) and for arbitraryh,
we can write an approximate solution of the problem~14!
and ~15! in the form

R~s,h!5
a

s1a1@~s1a!22a2#1/2. ~23!

The function~23! has the following features:~a! at s!1 it
behaves in the same way as the solution~22!, ~b! at s@1 it
coincides with the solution~17!, and~c! at h@1 it represents
approximately the solution~20! with the maximum diver-
gence 6% ats50.16.

The function~23! is the exact Laplace transform to

dR

dt
5

1

t
e2at

•I 1~at! ~24!

~Ref. 21!, whereI 1(x) is the modified Bessel function of th
first kind.22 If now we return to the variableu in the accor-
dance with Eq.~10!, we obtain the energy distribution o
backscattered ions integrated over all exit angles:

dR

du
5

~12p!exp@2a~12u12p!/h#

up~12u12p!
•I 1S a

h
~12u12p! D .

~25!

Equation~25! represents the central result of the work.
shows that the shape of energy distribution depends u
two parameters: the powerp in the electronic stopping law
~1!, and the ratiob5a/h, where the functiona(h) corre-
sponds to the reflection coefficient by a single collision a
the parameterh describes the number of collision events.

Behavior of the energy distribution~25! at low energies
and at the energies close toE0 can be obtained by using
asymptotic forms of the functionI 1(x) at x@1 and x!1,
correspondingly. In the case ofx@1 we have the energy
distribution of ions which participated in a large number
collisions:

dR

du
5S b

2p D 1/2

•

12p

up~12u12p!3/2 for b~12u12p!@1.

~26!

In the case ofx!1 we obtain the energy distribution o
backscattered ions which participated in a single collision

dR

du
5

~12p!b

2up for b~12u12p!!1. ~27!
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The result~27! coincides with the solution obtained in the
single-collision approximation and it also can be deduced
inverse Laplace transformation of the expression~17!.

IV. THE ENERGY DISTRIBUTION

Figure 1 presents the energy distribution~25! for different
values of the parameterb. Here and everywhere in this sec
tion we assume that inelastic energy losses are proportio
to the ion velocity and consider Eq.~25! for the particular
case ofp5 1

2 . At b!1 the distribution is a monotonically
decreasing function of energy and it is similar to the energ
distribution of the ions after the single collision in the case o
h@1 when the probability of a scattering event is smal
When the parameterb increases, the low-energy part of the
distribution falls, and forb.1 there appears a maximum a
u51. In the limiting case ofb@1, when inelastic energy
losses may be disregarded, the distribution takes the de
type shape and contains only ions with relative energiesu
'1.

We should like to emphasize that both energy distributio
~25! and all analytical energy distributions obtained in th
single-collision approximation3–8 are finite at the energyE
5E0 (u51). The infinity of the energy distribution calcu-
lated in Ref. 11 atE5E0 is only the consequence of the
approximate method of solution but not of the physical bac
ground of the problem.

Figure 2 shows the dependence of the particle reflecti
coefficientRN and the single-collision reflection coefficien
R1 on the parameterb. The value ofRN was obtained by
numerical integration of the function~25! over energy vari-
able u in the limits ~0, 1! and the valueR1 was calculated
from Eq.~19!. From Fig. 2 we may find the region of validity
of the single-collision approximation in terms of the reflec

FIG. 1. Energy distribution of backscattered ions~25! as a func-
tion of their relative energyu5E/E0 for b!1 ~curve 1!, b55 ~2!,
andb520 ~3!. The distribution is normalized to its value atu51.
y

al

y
f
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tion coefficientRN : at low ion energies and hard-sphere i
teraction (h@1) the single-collision model can be applie
for RN,0.1, and at higher energies and screened Coulo
interaction (h50.1) for RN,0.01.

Measurements of the energy distributions at normal
incidence mainly contain the data for fixed exit anglesu.
Inasmuch as we could not find in the literature experimen
distributions integrated over allu, we used the data o
computer simulation.23

Figure 3 gives the energy distribution of backscatte
ions at primary energyE05300 eV for the combination
D-W ~the target atom to ion mass ratioM2 /M1592). The
theoretical curve is obtained from Eq.~25! for the valueb
55 which corresponds to the reflection coefficientRN
50.65 in Fig. 2, the former being deduced by interpolati

FIG. 2. The particle reflection coefficientRN ~curve 1! and the
single-collision reflection coefficientR1 for h@1 ~2! and h50.1
~3!.

FIG. 3. CombinationD-W at E05300 eV. Energy distribution
of backscattered ions normalized to the maximum value. S
line: Eq. ~25!, histogram: computer simulation~Ref. 23!.
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of experimental24 and computer data.2 Agreement of the the-
oretical and computer distributions is good with the exc
tion of energies close to the bombarding energy. Equa
~25! cannot explain the shift of the maximum of the dist
bution from E/E051 to E/E0'0.9. This shift can be the
consequence of either elastic energy losses due to the
mass ratioM2 /M1 or the fluctuations of inelastic energ
losses, but it is difficult to predict in advance which of the
two effects dominates.

V. RESULTS AND DISCUSSION

Development of the theory of ion backscattering from
solid represents an extremely complicated problem of tak
into consideration and mathematical interpretation a num
of separate effects:~i! the effect of half infinite target,~ii ! the
effect of delta-type boundary condition,~iii ! elastic scatter-
ing of the ions by the target atoms,~iv! the inelastic energy
losses, and~v! the elastic energy losses. In the case of m
erate and low ion energies, when the multiple scattering
dominating, all the existing theories are based on the solu
of the Boltzmann equation by one or another approxim
method.

At present the most complete theory of ion backscatter
is the theory of Vicanek and Urbassek11 which allows for all
the effects mentioned above. However, the theory11 contains
two serious defects. First, the elastic energy losses are
sidered within the limits of the diffusional approximatio
That neglects the correlation between the energy loss and
scattering angle in a collision event and distorts the ene
distribution at least at energies close to the primary ene
And second, in Ref. 11 the angular dependence of the
flux is represented in a form of two first Legend
s

D

ion
-
n

ite

g
er

-
is
n
e

g

n-

he
y
y.
n

polynomials. As it was pointed out in Ref. 25, that leads
the problem of negative ion density. Indeed, a closer inv
tigation of intermediate calculations in Ref. 11 shows tha
definite target depths the number of ions with definite en
gies becomes negative.

In the theories of Refs. 12 and 13 the problem of negat
ion density was avoided by applying another method of
proximate solution of the Boltzmann equation—the meth
of discrete streams. Unfortunately, the authors did not s
ceed in simultaneous interpretation both elastic and inela
energy losses, and in Refs. 12 and 13 electronic stopping
disregarded.

In the present work, on the contrary, the inelastic ene
losses are included in the theory, but the elastic losses
neglected, which holds for the cases of light ions~H, D, and
He! and heavy targets. The approximate solution is c
structed as an extrapolation of two analytical solutio
known in the literature—the solution for isotropic scatteri
and the solution for a single collision event. The final ener
distribution~25! is valid for arbitrary values of the paramete
p in the electronic stopping law~1! that makes the resul
valid for a rather wide range of ion energies. Agreeme
between theoretical and computer simulation distribution
good with the exception of ion energies near the bombard
energy. One can expect that the divergence will be remo
by taking into consideration the effects of elastic ener
losses and fluctuations in the electronic stopping.
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