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Quantum-classical depinning-rate transition of a domain wall
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It is shown that a domain wall exhibits first- and second-order transitions between classical and quantum
regimes for the depinning rate. The phase boundary between two transitions and its crossover temperature are
controlled by the magnetic field applied at some angle with the anisotropy axis and the intrinsic quantities of
the system via the effective mass of the domain wall. These features can be observed with the use of existing
experimental techniquepS0163-182809)07933-3

Recently, spin systems have aroused considerable interesith a magnetic field applied at some anglg to the easy
with the discovery that they provide examples which exhibitaxis of magnetization and show that the corresponding field
first- or second-order transitiofFST) between the classical plays an important role in exhibiting FST via the effective
and quantum behavior of the escape fatdn general tran- mass of the domain wall.
sitions in a metastable system can occur via quantum tunnel- Consider the domain wall of the slab geometry, as shown
ing through the barrier and the classical thermal activationin Fig. 1. Assuming that the domain wall thickneksis
At high temperature there is a jumping of a system inducedufficiently larger than the lattice consteabetween spins,
by thermal fluctuations whose escape rB@) is propor- we can use the continuum approximation for the magnetiza-
tional to expU/kgT) whereU is the height of barrier. At a tion. Introducing the magnetocrystalline anisotropy with the
temperature low enough to neglect the thermal activation théiaxial symmetry and the exchange interaction, the energy
transition occurs due to quantum tunneling with~ exp  density is given by
(—U/fhw) where w is the oscillation frequency around the

minimum of the inverted potential. In this situation it is ex- E[0(r,t),¢(r,t)]=KHsin26+ K, sirf¢ st

pected that there exists the crossover temperdigibetween 1

the classical thermal activation and quantum tunneling, in + ZC[(VO)2+(V)2sird], (1)
2 1

which the two mechanisms of the escape coexist. Which or-

der of the transition can occur in the process is determined ) )

by the behavior of the WKB exponent aroufig i.e., around  Where }2<|| is the parallel anisotropy constark, =K, ,
the barrier. Ifd[’(T)/dT is discontinuougcontinuoug at the ~ +27Mg. HereK, , is the transverse anisotropy constant
crossover temperature, the transition becomes (Betong ~ and 2rM§ comes from the demagnetization energy for the
order. slab geometry.

The question of the transition was studied by Affléck,  Following the analysis discussed in Ref. 13, for the
and Larkin and Ovchinikawho demonstrated the second sample with widthw< 7\/C/2K , the system can be treated
order transition at the crossover temperature by using thgs quasi-one-dimensional. The corresponding domain wall is
instanton technique. Chudnovskgave the criterion allow- perpendicular to the axis, where the magnetization rotates
ing one to establish which transition takes place, based oin the easy planexz plang and changes along theaxis.
shape of the potential. Later, theoretical investigations for Now, using the Landau-Lifshitz equatith
the transition in spin systems have been performed by sev-
eral group$~’ Up to now theoretical studies have been fo- dm SE
cused on the single domain ferromagnetic particle. However, T M XW’ @
whether the depinning of the domain wall is a first- or
second-order transition is unknown. Thus it will be interest-wherey=gug/#% is the gyromagnetic factor, the soliton so-
ing to study which order of the transition occurs in the de-lution which describes the motion of the domain wall be-
pinning process. In this paper we investigate the proper corcomes
ditions for FST in a domain wall system, and present the

phase diagram between the first- and the second-order trar 2
sition and its crossover temperature.
As is well known, a domain wall is a soliton connecting O S22t rrrttn
two stable spin configurations separated by an energy barrie EREEEEY
associated with magnetic anisotropy energy and pinned by
an impurity, lowering the anisotroy energy locatfin order y/ <«
direction of domain wall

for a domain wall to get depinned via quantum tunnefiht?
it is necessary to apply an exteranl magnetic field which FIG. 1. A configuration of magnetization is shown in a thin long
controls the height and width of the barrier and the effectivesiab geometry where the wall plane is parallel to the easy (axis
mass of the system. In this work we will consider a systemand the spin configuration spatially varies along in xrdirection.
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wherek=K, /K, vo=yy2CK| /My, and the wall position  +
is centered atQ along the x axis. Also, we represent 0.15 |

A=\o//1+ksirP¢ Where,= VC/2K|| is the width of the

static wall which represents the compromise between ex-  %'f ]
change and anisotropy energy. Assuming @&t dQ/dt)

is much smaller than the Walker critical velocfly 005y |
vo(v1+k—1), from Eq.(1) the energy is expressed as 0 e , .
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FIG. 2. TheH, dependence of the quantifyX,), where (a)

where Ey=2A,2CK;, and the wall mass is M  tanhX(=1/y/3)=< tanhX,<1, and(b) 0= tanhX,<1/,/3. Note that

=AW(M§/y2KL)\/2KH/C with A, the cross sectional area the maximum off (X;,) occursH,=0.82.

of the sample. Even though the spins lie in the easy plane in

a static domain wall, as is noted in Eq®) and (4), its  with my=atandy, a=(w/4)MH,(1K;+1K,), b

dynamical motion induces the spins to precess which leads te 2V, /E,, and f(X)=X tanhXsecfX. Here we note that

the magnetization out of the plane, i.81,=Q. In this re-  the third term in Eq(9) originated from the pinning potential

spect the inertial term in Eq5) comes from the precession (6) via N for Q< kv,,.

of the spins. If the size of the defect is much smaller than the Let us analyze the structure of the potentiflX). Since

wall thicknessh, the wall is pinned by a potential fofh!®  the external magnetic field brings the system into a meta-

stable state by tilting the potential, the domain wall has a

Vp=—Vosech(Q/\), (6)  chance to move out of the potential. As the field is increased,

whereV, is proportional to the volume of the defect. Here it j[he metastable state disappears in the situatlé(x;) =0,

. . S i.e., X;=arctanh(1{3) andU’(X;)|,c<=0 where’ indicates
is noticed that\ depends orQ via ¢. In case that a con- z

centration of defects is small, the pinning energies becomIEh?_ differentiati_on_of tt]e function with respect % This
small, in which the radius of curvature of the wall is much critical magnetic fieldn$[ = (4/3/9)V,] corresponds to the

larger thank. Since it is showi? that weak curvature has classical depinning fielé; multiplied by 2A, Mo\ o. Denot-
very little effect on wall tunneling, the wall can be assumeding Xo and X to be theX coordinate of the metastable po-
to be flat and remained flat during the tunneling process. Agition and the top of the potential, respectively, we have 0
external magnetic field with a negatixecomponent in the <Xo<X;<X,. Since the second and the third term in Eq.

xz plane leads to the additional enetfy (9) are expected to be important to determine the phase
boundary, it is meaningful to estimaféX,) depending on
k+1 Q 2 the magnitude of H,(=H,/HS)<1. Noting that H,
—2AuMoHQ— mARAMoHy 2 [\ kvg (7 [=g(X)] is a function ofX, with 1//3< tanhX,<1 via

U’(X,) =0, we have 6&f(X,)=0.32, as is shown in Fig. 2.
The reason why we need the field with a negattvempo- Now, interested in the transition rafe~ exp(—Fn/T)
nent is associated with the adjustment of the range of thghereF ,,, is the minimum of the effective “free energy*
first-order transition via the effective mass in Ef). Inor-  F=g+TSE)— U, with respect tcE, we consider the least
der words, as the second term in the effective n@swhich  action in the imaginary time
comes from the directional dependence of the field contrib-
utes more, the magnitude bfin Eq. (9) for the phase bound-
ary is expected to be smaller, which is more relevant to the Smin(E):fo ©
experimental situations, as will be seen later. Deno@iy !
to be X, from Egs.(5), (6), and(7) the total energy for the whereX,(E) andX,(E) are the turning points for the par-
domain wall becomes ticle with energy—E in the inverted potential-U(x). As

was previously mentioned, the effective mass depends on the

Xo(E

)dX\/Zm(X)[U(X)—E], (10)

1 (dX\? coordinate and the direction of the field, which will be im-
Em dt +U(X), (8) portant in obtaining the first-order transition. In order to have
the phase boundary between the first- and the second-order
where U(X) =V{(X)—h,X, h,=2A,MoH Ao, VO(X)=  transition, we need to consider the behavior %f(E)
—VgsechkX, and the effective mass is represented as around the top of the barrier. Expanding the integrand in Eq.

5 (10) nearX,, which corresponds to the top of the barrier, and
m=MAg[1—my+bf(X)], (9 introducing dimensionless energy varidfle p[=(U max
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FIG. 4. The scaled quantum-classical crossover temperggure
at the phase boundary between first- and second-order transitions
where my;=0.99 (a), 0.97 (b), 0.5 (c), and 0(d). Note that the

maximal values ofl ; are approximately 2.4&), 1.36(b), 0.33(c),
and 0.23(d) atH,=0.4.

FIG. 3. TheﬁZ dependence of the phase diagram for a given
my=0.97. Inset: The phase boundary fo;=0 (a), 0.5 (b), 0.97
(c), and 0.99(d). The minimal values ob are approximately 14.9

(a), 7.5(b), 0.45(c), and 0.15(d) at H,~0.37.

—E)/(Umax— Umin) ] whereU . (Unmin) corresponds to the _
top (bottom of the potential, we have the minimal action that the phase boundary strongly dependsngn b, andH, .

near the top of the barrier The lessb is, the smaller the range chZ for the first-order
2m(Xy) transition becomes. For a giveny there exists a minimum
Smin(P) = P AU[p+Bp2+0(p%)], (11 of binthe phase boundary, e.¢,=0.45 form,=0.97 and

Uz the correspondingd, is approximately 0.37 whose value is

wheré’ m(X,)>0 and independent ofmy. As is noted in Fig. 3, the first-order
transition can be observed in the field rangesH,/HS
AU [ 12U,U,+ 15U§ m’(Xy)\ [ Us =<0.62 formg= 1, in which it occurs irrespective of the mag-
= —= ; 1
16U2[ 2U§ m(Xp) nitude ofb.

The crossover temperature at the phase bc&mdary can be
m”(Xp) 1<m’(Xb))2] obtained by using the relation betweénand H, at the

(12

Tk 2l mixy) boundary for a givermy and T{(my, ,b,H,). As follows
. o . from Fig. 4, the corresponding crossover temperature in-

with the derivatives of(st)he potential denot?g ty,=  creases asny increases, and has a maximum for a given
—U"(Xp)/2(>0), Us=U™(Xp)/3! and U,=U™(Xp)/Al oy o o T (m,=0.97, H,=0.4)=1.36 whereT, is de-
Then, the effective free energy can with the help of 8d) 4" ag oMy = )= 0
be written as

Fan(P)=AU[L+ap+Bp>+0(p%)],  (13) Tt ,_\/3‘f 021

o= tolo 2 (yH; ’

where a=T/T -1 with T = JU"(Xp)[/m(Xp)/(277).
Owing to the general conditions for FST discussed in Ref. 1,
FST can occur depending on the monotonic or nonmono- — \/(1—tank?xb)(—1+3tanﬁxb)
tonic behavior of the period of oscillation(p) in the in- [1—my+bf(Xy)]

verted potential. In other words, whether the slope(a) is (14)
negative or positive near the top of the barrier determines

FST. Since the minimum of the effective free energy deterHere we also note thdt, for the maximum ofT, is inde-
mines the transition rate in the exponential approximationpendent ofmy .

I'~ exp(—F»)/T, the phase transitions are governed by the Our final note concerns the brief illustration of the results
behavior of the free energy, to be more SDECifiC, the Sign oYVlth concrete numbers. In order to do that, we have taken the
second derivative of the free energy around the top of th@hysical quantities, e.g., from Ref. 13. For instanbeis
barrier, just as the Landau model of phase transition. Accordcalculated to be about 0.1, 0.08, and 1.03 and the scaled
ingly, the factora changes signs at the phase transition tem{actor in the denomenator dfo in Eq. (14) 5.4, 27.4, and
peratureT = T(C) If the factor 8 is negative(positive),, the 155 in unit of mK for YIG, Ni, and SrRug respectively.
system becomes the firstsecond) order transition, and Correspondingly, among these samples SrRis(hest can-
therebyB=0 determines the phase boundary between thendidate for FST because of the large valuébadnd the large
Writing b=(9/4\/§)H§/(KH/MO), one can see from Fig. 3 value of the scaled factor fof, mainly originating from
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larger coercivityH: (Figs. 3 and 4 Thus, it would be inter-
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depending on the magnetic field and its crossover tempera-

esting to study the phase transition for the materials as largiélre. The investigations presented here opens new possibili-

coercivity as possible.

In conclusion, we have considered phase transition b

ties to observe such transitions experimentally in a domain
gwall system.

tween quantum and classical regimes for the depinning rate | am indebted to B. Barbara for many fruitful discussions.
of a domain wall. The effective free energy has been calcuThis work was supported by the Basic Science Research In-
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