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Quantum-classical depinning-rate transition of a domain wall
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It is shown that a domain wall exhibits first- and second-order transitions between classical and quantum
regimes for the depinning rate. The phase boundary between two transitions and its crossover temperature are
controlled by the magnetic field applied at some angle with the anisotropy axis and the intrinsic quantities of
the system via the effective mass of the domain wall. These features can be observed with the use of existing
experimental techniques.@S0163-1829~99!07933-3#
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Recently, spin systems have aroused considerable int
with the discovery that they provide examples which exh
first- or second-order transition~FST! between the classica
and quantum behavior of the escape rate.1–7 In general tran-
sitions in a metastable system can occur via quantum tun
ing through the barrier and the classical thermal activati
At high temperature there is a jumping of a system indu
by thermal fluctuations whose escape rateG(T) is propor-
tional to exp(2U/kBT) whereU is the height of barrier. At a
temperature low enough to neglect the thermal activation
transition occurs due to quantum tunneling withG; exp
(2U/\v) where v is the oscillation frequency around th
minimum of the inverted potential. In this situation it is e
pected that there exists the crossover temperatureT0 between
the classical thermal activation and quantum tunneling
which the two mechanisms of the escape coexist. Which
der of the transition can occur in the process is determi
by the behavior of the WKB exponent aroundT0, i.e., around
the barrier. IfdG(T)/dT is discontinuous~continuous! at the
crossover temperature, the transition becomes first~second!
order.

The question of the transition was studied by Afflec8

and Larkin and Ovchinikov9 who demonstrated the secon
order transition at the crossover temperature by using
instanton technique. Chudnovsky1 gave the criterion allow-
ing one to establish which transition takes place, based
shape of the potential. Later, theoretical investigations
the transition in spin systems have been performed by
eral groups.2–7 Up to now theoretical studies have been f
cused on the single domain ferromagnetic particle. Howe
whether the depinning of the domain wall is a first-
second-order transition is unknown. Thus it will be intere
ing to study which order of the transition occurs in the d
pinning process. In this paper we investigate the proper c
ditions for FST in a domain wall system, and present
phase diagram between the first- and the second-order
sition and its crossover temperature.

As is well known, a domain wall is a soliton connectin
two stable spin configurations separated by an energy ba
associated with magnetic anisotropy energy and pinned
an impurity, lowering the anisotroy energy locally.10 In order
for a domain wall to get depinned via quantum tunneling,11,12

it is necessary to apply an exteranl magnetic field wh
controls the height and width of the barrier and the effect
mass of the system. In this work we will consider a syst
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with a magnetic field applied at some angleuH to the easy
axis of magnetization and show that the corresponding fi
plays an important role in exhibiting FST via the effectiv
mass of the domain wall.

Consider the domain wall of the slab geometry, as sho
in Fig. 1. Assuming that the domain wall thicknessl is
sufficiently larger than the lattice constanta between spins,
we can use the continuum approximation for the magnet
tion. Introducing the magnetocrystalline anisotropy with t
biaxial symmetry and the exchange interaction, the ene
density is given by

E@u~r ,t !,f~r ,t !#5K uusin2u1K'sin2f sin2u

1
1

2
C@~¹u!21~¹f!2 sin2u#, ~1!

where K uu is the parallel anisotropy constant,K'[K',a

12pM0
2. Here K',a is the transverse anisotropy consta

and 2pM0
2 comes from the demagnetization energy for t

slab geometry.
Following the analysis discussed in Ref. 13, for t

sample with widthw,pAC/2K', the system can be treate
as quasi-one-dimensional. The corresponding domain wa
perpendicular to thex axis, where the magnetization rotate
in the easy plane (xz plane! and changes along thex axis.

Now, using the Landau-Lifshitz equation14

dM

dt
52gM3

dE

dM
, ~2!

whereg5gmB /\ is the gyromagnetic factor, the soliton so
lution which describes the motion of the domain wall b
comes

FIG. 1. A configuration of magnetization is shown in a thin lon
slab geometry where the wall plane is parallel to the easy axis~z!
and the spin configuration spatially varies along in thex direction.
6262 ©1999 The American Physical Society
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us~x2Q!52arctan expS x2Q

l D , ~3!

dQ

dt
5kv0

sinfs cosfs

A11k sin2fs

, ~4!

wherek5K' /K uu , v05gA2CKuu/M0, and the wall position
is centered atQ along the x axis. Also, we represen

l5l0 /A11k sin2fs, wherel05AC/2K uu is the width of the
static wall which represents the compromise between
change and anisotropy energy. Assuming thatQ̇(5dQ/dt)
is much smaller than the Walker critical velocity10

v0(A11k21), from Eq.~1! the energy is expressed as

E d3rE@us~r ,t !,fs~r ,t !#.E01
1

2
M S dQ

dt D 2

, ~5!

where E052AwA2CKuu and the wall mass15 is M
5Aw(M0

2/g2K')A2K uu /C with Aw the cross sectional are
of the sample. Even though the spins lie in the easy plan
a static domain wall, as is noted in Eqs.~3! and ~4!, its
dynamical motion induces the spins to precess which lead

the magnetization out of the plane, i.e.,M̂ y}Q̇. In this re-
spect the inertial term in Eq.~5! comes from the precessio
of the spins. If the size of the defect is much smaller than
wall thicknessl, the wall is pinned by a potential form11,13

Vp52V0sech2~Q/l!, ~6!

whereV0 is proportional to the volume of the defect. Here

is noticed thatl depends onQ̇ via fs . In case that a con
centration of defects is small, the pinning energies beco
small, in which the radius of curvature of the wall is mu
larger thanl. Since it is shown12 that weak curvature ha
very little effect on wall tunneling, the wall can be assum
to be flat and remained flat during the tunneling process.
external magnetic field with a negativex component in the
xz plane leads to the additional energy16

22AwM0HzQ2pAwlM0HxS k11

2 D S Q̇

kv0
D 2

. ~7!

The reason why we need the field with a negativex compo-
nent is associated with the adjustment of the range of
first-order transition via the effective mass in Eq.~9!. In or-
der words, as the second term in the effective mass~9! which
comes from the directional dependence of the field cont
utes more, the magnitude ofb in Eq. ~9! for the phase bound
ary is expected to be smaller, which is more relevant to
experimental situations, as will be seen later. DenotingQ/l0
to be X, from Eqs.~5!, ~6!, and ~7! the total energy for the
domain wall becomes

1

2
mS dX

dt D
2

1U~X!, ~8!

whereU(X)5Vp
(0)(X)2hzX, hz52AwM0Hzl0 , Vp

(0)(X)5
2V0sech2X, and the effective mass is represented as

m5Ml0
2@12mH1b f~X!#, ~9!
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with mH5a tanuH , a5(p/4)M0Hz(1/K uu11/K'), b
52V0 /E0, and f (X)5X tanhXsech2X. Here we note that
the third term in Eq.~9! originated from the pinning potentia

~6! via l for Q̇!Akv0.
Let us analyze the structure of the potentialU(X). Since

the external magnetic field brings the system into a me
stable state by tilting the potential, the domain wall has
chance to move out of the potential. As the field is increas
the metastable state disappears in the situationU9(Xi)50,
i.e., Xi5arctanh(1/A3) andU8(Xi)uh

z
c50 where8 indicates

the differentiation of the function with respect toX. This
critical magnetic fieldhz

c@5(4A3/9)V0# corresponds to the
classical depinning fieldHz

c multiplied by 2AwM0l0. Denot-
ing X0 andXb to be theX coordinate of the metastable po
sition and the top of the potential, respectively, we have
,X0<Xi<Xb . Since the second and the third term in E
~9! are expected to be important to determine the ph
boundary, it is meaningful to estimatef (Xb) depending on

the magnitude of H̄z(5Hz /Hz
c)<1. Noting that H̄z

@[g(Xb)# is a function ofXb with 1/A3< tanhXb<1 via
U8(Xb)50, we have 0< f (Xb)&0.32, as is shown in Fig. 2

Now, interested in the transition rateG; exp(2Fmin /T)
whereFmin is the minimum of the effective ‘‘free energy’’2,4

F[E1TS(E)2Umin with respect toE, we consider the leas
action in the imaginary time

Smin~E!52E
X1(E)

X2(E)

dXA2m~X!@U~X!2E#, ~10!

whereX1(E) and X2(E) are the turning points for the par
ticle with energy2E in the inverted potential2U(x). As
was previously mentioned, the effective mass depends on
coordinate and the direction of the field, which will be im
portant in obtaining the first-order transition. In order to ha
the phase boundary between the first- and the second-o
transition, we need to consider the behavior ofSmin(E)
around the top of the barrier. Expanding the integrand in
~10! nearXb which corresponds to the top of the barrier, a
introducing dimensionless energy variable2,4 p@[(Umax

FIG. 2. TheH̄z dependence of the quantityf (Xb), where ~a!
tanhXi(51/A3)< tanhXb<1, and~b! 0< tanhX0<1/A3. Note that

the maximum off (Xb) occursH̄z.0.82.



n

. 1
no

ne
e
on
th

o
th
r
m

em

is
r

-

n be

in-
en

lts
the

aled

e e
tions

6264 PRB 60BRIEF REPORTS
2E)/(Umax2Umin)# whereUmax (Umin) corresponds to the
top ~bottom! of the potential, we have the minimal actio
near the top of the barrier

Smin~p!5pA2m~Xb!

U2
DU@p1bp21O~p3!#, ~11!

where17 m(Xb).0 and

b5
DU

16U2
H 12U4U2115U3

2

2U2
2

13S m8~Xb!

m~Xb! D S U3

U2
D

1
m9~Xb!

m~Xb!
2

1

2 S m8~Xb!

m~Xb! D 2J , ~12!

with the derivatives of the potential denoted byU25
2U9(Xb)/2(.0), U35U (3)(Xb)/3! and U45U (4)(Xb)/4!
Then, the effective free energy can with the help of Eq.~11!
be written as

Fmin~p!5DU@11ap1bp21O~p3!#, ~13!

where a5T/T0
(c)21 with T0

(c)5AuU9(Xb)u/m(Xb)/(2p).
Owing to the general conditions for FST discussed in Ref
FST can occur depending on the monotonic or nonmo
tonic behavior of the period of oscillationt(p) in the in-
verted potential. In other words, whether the slope oft(p) is
negative or positive near the top of the barrier determi
FST. Since the minimum of the effective free energy det
mines the transition rate in the exponential approximati
G; exp(2Fmin)/T, the phase transitions are governed by
behavior of the free energy, to be more specific, the sign
second derivative of the free energy around the top of
barrier, just as the Landau model of phase transition. Acco
ingly, the factora changes signs at the phase transition te
peratureT5T0

(c) . If the factorb is negative~positive!, the
system becomes the first-~second-! order transition, and
therebyb50 determines the phase boundary between th
Writing b5(9/4A3)Hz

c/(K uu /M0), one can see from Fig. 3

FIG. 3. TheH̄z dependence of the phase diagram for a giv
mH50.97. Inset: The phase boundary formH50 ~a!, 0.5 ~b!, 0.97
~c!, and 0.99~d!. The minimal values ofb are approximately 14.9

~a!, 7.5 ~b!, 0.45 ~c!, and 0.15~d! at H̄z.0.37.
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that the phase boundary strongly depends onmH , b, andH̄z .

The lessb is, the smaller the range ofH̄z for the first-order
transition becomes. For a givenmH there exists a minimum
of b in the phase boundary, e.g.,bm.0.45 formH50.97 and

the correspondingH̄z is approximately 0.37 whose value
independent ofmH . As is noted in Fig. 3, the first-orde
transition can be observed in the field range, 0,Hz /Hz

c

&0.62 formH51, in which it occurs irrespective of the mag
nitude ofb.18

The crossover temperature at the phase boundary ca

obtained by using the relation betweenb and H̄z at the

boundary for a givenmH and T0
(c)(mH ,b,H̄z). As follows

from Fig. 4, the corresponding crossover temperature
creases asmH increases, and has a maximum for a giv

mH , e.g., T̄0(mH50.97, H̄z.0.4).1.36 whereT̄0 is de-
fined as

T̄05T0 /
1

2p
A3)

2
~gHz

c!S 2gK'

M0
D ,

5A~12tanh2Xb!~2113 tanh2Xb!

@12mH1b f~Xb!#
.

~14!

Here we also note thatH̄z for the maximum ofT̄0 is inde-
pendent ofmH .

Our final note concerns the brief illustration of the resu
with concrete numbers. In order to do that, we have taken
physical quantities, e.g., from Ref. 13. For instance,b is
calculated to be about 0.1, 0.08, and 1.03 and the sc

factor in the denomenator ofT̄0 in Eq. ~14! 5.4, 27.4, and
155 in unit of mK for YIG, Ni, and SrRuO3, respectively.
Correspondingly, among these samples SrRuO3 is best can-
didate for FST because of the large value ofb and the large
value of the scaled factor forT0 mainly originating from

n FIG. 4. The scaled quantum-classical crossover temperaturT̄0

at the phase boundary between first- and second-order transi
where mH50.99 ~a!, 0.97 ~b!, 0.5 ~c!, and 0 ~d!. Note that the

maximal values ofT̄0 are approximately 2.48~a!, 1.36~b!, 0.33~c!,

and 0.23~d! at H̄z.0.4.
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larger coercivityHz
c ~Figs. 3 and 4!. Thus, it would be inter-

esting to study the phase transition for the materials as la
coercivity as possible.

In conclusion, we have considered phase transition
tween quantum and classical regimes for the depinning
of a domain wall. The effective free energy has been ca
lated near the top of the barrier. We have discussed the p
boundary between the first- and the second-order trans
B
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depending on the magnetic field and its crossover temp
ture. The investigations presented here opens new poss
ties to observe such transitions experimentally in a dom
wall system.
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