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Possible existence of topological excitations in quantum spin models in low dimensions

Ranjan Chaudhury* and Samir K. Paul†

S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 091, India
~Received 11 December 1998!

The possibility of the existence of topological excitations in the anisotropic quantum Heisenberg model in
one and two spatial dimensions is studied using the coherent state method. It is found that a part of the
Wess-Zumino term contributes to the partition function, as a topological term for ferromagnets in the long-
wavelength limit in both one and two dimensions. In particular, theXY limit of the two-dimensional anisotropic
ferromagnet is shown to retain the topological excitations, as expected from the quantum Kosterlitz-Thouless
scenario.@S0163-1829~99!13429-5#
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I. INTRODUCTION

Quantum spin systems in low dimensions have acqu
considerable significance in condensed matter physics in
cent times. In particular, two-dimensional~2D! spin-12 quan-
tum Heisenberg antiferromagnet~QHAF! evoked a lot of in-
terest in light of the discovery of high-temperatu
superconductors.1 Many interesting theoretical and exper
mental works probing the magnetic property of various
systems and also that of many quasi-one-dimensional
tems brought into notice important features of anisotro
quantum spin models.2–4 Parallel to this, a possible extensio
of Kosterlitz-Thouless~KT! scenerio to quantum ferromag
netic spin models has also been attempted.5

However, in spite of this endeavor, many crucial qu
tions have remained unanswered and in particular the or
of the existence of topological excitations in quantum fer
magnetic and antiferromagnetic models seems to be my
rious. The existence of topological excitations in isotrop
1D AF is well known.3,6 The case of 1D ferromagnetism
~both isotropic and anisotropic!, on the other hand, ha
drawn lesser attention.3,6 One possible reason for this cou
be the lack of proper theoretical analyses of the quan
nature of the problem, which we describe in this paper. In
2D case even for AF, the issue of the existence of topolog
excitations is still not settled fully, although most of the th
oretical calculations rule out such a possibility.6,7 Moreover,
the high-Tc oxides in the insulating antiferromagnetic pha
seem to be governed by anisotropic~2D! Heisenberg models
whereas the theoretical efforts have mostly been confine
the isotropic case only.1,2,6,7 The 2D ferromagnetic situation
has remained even less understood so far.5,6

This motivated us to study the anisotropic quantu
Heisenberg ferromagnetic and antiferromagnetic model
1D and 2D, in a unified manner.

II. MATHEMATICAL FORMULATION

We analyze the quantum actions forXXZ ferromagnets
and antiferromagnets in 1D and 2D by the spin coherent s
method.6 The philosophy behind this procedure is that t
existence of a topological term in the full quantum partiti
function of a quantum spin system implies topological ex
tations in the system.8 Keeping in mind the physically rel
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evant situations, we choose the anisotropy of the above
models to theXY like.

In the following we perform all the calculations on th
lattice with a finite lattice parametera in the long-
wavelength limit. We write down the expressions of t
quantum Euclidean action in the quasicontinuum limit,
that we have a clear understanding of the topological ter
while the physical system retains its lattice structure.

III. CALCULATIONS

The quantum Euclidean actionSE@n# for the spin coher-
ent fieldsn(t) can be written as6,9

SE@n#52 i sSWZ@n#1
sdt

4 E
0

b

dt ] t@n~ t !#21E
0

b

dt H~n!,

~1!

wheres is the magnitude of the spin and

H~n!5^nuH~S!un&, ~2!

H(S) being the spin Hamiltonian in the representations. The
Wess-Zumino termSWZ is given by6

SWZ@n#5E
0

b

dtE
0

1

dt n~ t,t!•] tn~ t,t!∧]tn~ t,t!5A, ~3!

with n(t,0)[n(t), n(t,1)[n0 , and n(0,t)[n(b,t), t
P@0,b#, tP@0,1#.

In Eq. ~3!, A is the area of the cap bounded by the traje
tory G parametrized byn(t) on the sphere:

n•n51. ~4!

Here un& is the spin coherent state as defined in Ref. 6. T
spin Hamiltonian forXXZ Heisenberg ferromagnets is give
by

H~S!52g (
^r ,r8&

S̃~r !•S̃~r 8!2glZ (
^r ,r8&

Sz~r !SZ~r 8!, ~5!

with g.0 and 0,lZ,1. r ,r 8 run over the lattice, and

^r ,r 8& signifies nearest-neighbor interaction andS5(S̃,SZ).
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A. Linear chain

The quantum Euclidean action in the quasicontinuum limit can be written as

SE@n#52 i sSWZ
ntop2

i s

2 E
2L

L

dxE
0

b

dt n•] tn∧]xn1
sdt

2a E
2L

L

dxE
0

b

dt~] tn!21
s2
•ga

2 E
2L

L

dx

3E
0

b

dt@~]xñ!21lZ~]xnZ!2#, ~6!

whereSWZ
ntop52( r 52m

m21 SWZ@n(2ar)# is the nontopological part of the WZ termSWZ on the chain,L52ma, andn5(ñ,nZ). We
have written down Eq.~6! in the long-wavelength limit. We analyze theSWZ term in the following manner:

(
r

SWZ@n~ar !#5 (
r 52m

m

SWZ@n~2ar !#1 (
r 52m

m21

SWZ@n$~2r 11!a%#

52SWZ@n~22am!#1SWZ@n~2am!#12 (
r 52m11

m21

SWZ@n~2ar !#1
1

2 E2L

L

dxE
0

b

dt n•] tn∧]xn

52SWZ@n~22am!#1SWZ@n~2am!#12 (
r 52m

m2p

SWZ@n~2ar !#12F E
2L

L2~p21!2a
dx1E

2L

L2~p22!2a
dx1¯

1E
2L

L22a

dxG E
0

b

dt n•] tn∧]xn1
1

2 E2L

L

dxE
0

b

dt n•] tn∧]xn, ~7!
l

in
v

y

ry
where 1<p<2m. Since we keep the lattice parametera fi-
nite and we takedt˜0, Eq. ~6! takes the form

SE@n#52 i sSWZ
ntop2

i s

2 E
2L

L

dxE
0

b

dt n•] tn∧]xn

1
s2ga

2 E
2L

L

dxE
0

b

dt@~]xñ!21lZ~]xnZ!2#. ~8!

In order that the Euclidean action Eq.~8! is finite for very
largeL, we have

lim
uxu˜`

]xñ50, lim
uxu˜`

]xnZ50, ~9!

i.e., n˜n0(t) on the circlex21t25R2; R˜` with n•n
51.

This defines a mapping from~x,t! space to the interna
spacen•n51. However, there is a smaller class ofn fields
on the~x,t! space which satisfies Eq.~9! with n0(t) indepen-
dent oft, denoted byn0 . In that case the boundary points
the ~x,t! space are identified with a single point, and we ha
a topological mappingSphys

2
˜Sint

2 with p2(S2)5Z.10 The
winding number in this case is given by8

Q5
1

4p E dx dtn•] tn∧]xn, ~10!

whereQPZ. Thus, for field configurations represented b

$n~x,t !: lim
uxu˜`

n~x,t !5n0%, ~11!

Eq. ~7! can be written as
e

(
r

SWZ@n~ar !#

52 (
g52m

m2p

SWZ@n~2ar !#

12F E
2L

L2~p21!2a
dx1E

2L

L2~p22!2a
dx1¯1E

2L

L22a

dxG
3E

0

b

dt n•] tn∧]xn1
1

2 E2L

L

dxE
0

b

dt n•] tn∧]xn,

~12!

where we have made use of Eq.~3!. Notice that only the last
term in Eq.~12! covers the entire chain where the bounda
points are identified via the configuration~11!. Therefore the
topological content inSWZ is the last integral in Eq.~12!
which is same as Eq.~10!. The rest of the terms in Eq.~12!
are nontopological. From Eq.~7! the nontopological part can
be written as

SWZ
ntop52 (

r 52m

m21

SWZ@n~2ar !#. ~13!

Due to translational invariance ofn on the chain, each term
in Eq. ~13! describes the same cap of areaA given by Eq.
~3!. Thus Eq.~13! can be written as

SWZ
ntop52 (

r 52m

m21

A52~2m21!A5const. ~14!

Therefore Eq.~8! becomes
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SE@n#52
i s

2 E
2L

L

dxE
0

b

dt n•] tn∧]xn

1
s2ga

2 E
2L

L

dxE
0

b

dt@~]xñ!21lZ~]xnZ!2#.

~15!

Equation~12! corresponding to an antiferromagnet (g,0)
reads

SWZ52
1

2 E2L

L

dxE
0

b

dt n•] tn∧]xn, ~16!

with SWZ
ntop vanishing due to a staggering operation. So we

back the same result as obtained for isotro
antiferromagnets.6

B. Two-dimensional square lattice

The spin Hamiltonian in this case is given by Eq.~5!
wherer runs over the 2D square lattice. The quantum act
for the anisotropic ferromagnet in the long-wavelength lim
is given by

SE@n#52 i s(
r

SWZ@n~r !#1
gs2

2 E
2L

L

dx dyE
0

b

dt@~]xñ!2

1lZ~]xnZ!21~]yñ!21lZ~]ynZ!2#~x,y,t !. ~17!

Finiteness of the action~17! gives

n~x,y,t !˜n0~ t ! ~18!

on the two-spherex21y21t25R2, R˜`, and n˜n51.
This boundary condition gives a mapping from the~x,y,t!
space to the internal spheren•n51. However, Eq.~18! ad-
mits a class ofn fields wheren0(t) is independent oft de-
noted byn0 , in which case we have a mappingSphys

3
˜Sint

2

andP3(S2)5Z.10 Thus, for the field configurations,

$n~x,y,t !: lim
uxu˜`

n~x,y,t !5n0% ~19!

following the same line of arguments as in the case of lin
chain, we can show that theSWZ term corresponding to 2D
square lattices can be written as

(
r

SWZ@n~r !#5SWZ
ntop1

1

2a E2L

L

dx dyE
0

b

dt@n•] tn∧]xn

1n•] tn∧]yn#~x,y,t !, ~20!

SWZ
ntop5$2~2m21!%2A. ~21!

For the mappingSphys
3

˜Sint
2 , we can parametrize the~x,y,t!

space with boundary points identified byy planes in which
case

1

4p E
2L

L

dxE
0

b

dt n•] tn∧]xn
t
c

n
t

r

will be a winding number through Eq.~10! for eachy. This
happens because of the fact that each~x,t! plane ~i.e., y
5const! has its boundary points identified for field config
rations satisfying Eq.~19! and the~x,t! plane can be though
of as a sphereS2 passing through the north pole ofS3. So for
eachy we have a mapping from the corresponding~x,t! plane
(5S2) to Sint

2 . Therefore we can write

1

4p E
2L

L

dx dyE
0

b

dt n•] tn∧]xn~x,y,t !5E
2L

L

Q~y!dy.

~22!

By similar arguments

1

4p E
2L

L

dx dyE
0

b

dt n•] tn∧]yn~x,y,t !5E
2L

L

Q~x!dx.

~23!

Note that we can apply the above principle for the mapp
Sphys

3
˜Sint

2 since p3(S2)5Z. 10 Thus, using Eqs.~20! and
~21!, the action~17! becomes

SE@n#52
i s

2a E2L

L

dx dyE
0

b

dt@n•] tn∧]xn1n•] tn∧]yn#

3~x,y,t !1
gs2

2 E
2L

L

dx dyE
0

b

dt@~]xñ!2

1lZ~]xnZ!21~]yñ!21lZ~]ynZ!2#~x,y,t !. ~24!

The first integral in Eq.~24! is a topological term as follows
from Eqs.~22! and~23!. Let us point out that the right-han
side of Eq. ~20! vanishes identically on the lattice in th
long-wavelength limit under a staggering operation in t
case of antiferromagnets.

IV. CONCLUSIONS

We have presented a unified scheme for analyzing
topological terms in the effective action corresponding to
long-wavelength limit of XY-like anisotropic quantum
Heisenberg ferromagnets and antiferromagnets in one
two spatial dimensions for any value of the spin. Our calc
lation brings out clearly the hidden topological contributio
from theSWZ term, which influences statistical mechanics
ferromagnets in one dimension. This is probably manifes
in the ‘‘solitonlike excitations’’ occurring in many experi
mental systems corresponding to these models.3,4 It may be
also interesting to point out that in 1D the roles of kink a
antikink are interchanged as we go from ferromagnets
antiferromagnets due to sign reversal in the respective to
logical terms@see Eqs.~15! and~16!#. In the 2D situation in
the limit lZ˜0, these excitations probably lead to the pr
posed ‘‘vortex-antivortex’’ scenario in the ‘‘quantum KT’
picture.5 On the contrary the 2D AF model does not exhib
any topological excitation in its long-wavelength behavio

Let us conclude by pointing out that our whole calcu
tional approach is meaningful only in the low-temperatu
regime where the spin-spin correlation length is apprecia
large.6,11



.

pn

s.

li-

r-

PRB 60 6237BRIEF REPORTS
*Electronic address: ranjan@boson.bose.res.in
†Electronic address: SMP@boson.bose.res.in
1P. W. Anderson, Science235, 1196~1987!; Phys. Rev. Lett.59,

2497 ~1987!; J. G. Bednorz and K. A. Mu¨ller, Z. Phys. B64,
189 ~1986!; P. Chuet al., Phys. Rev. Lett.58, 405 ~1987!.

2Y. Endohet al., Phys. Rev. B37, 7443~1988!; K. Yamadaet al.,
ibid. 40, 4557~1989!; M. Satoet al., Phys. Rev. Lett.61, 1317
~1988!; R. Chaudhury, Indian J. Phys., A66A, 159 ~1992!.

3G. M. Wysin and A. R. Bishop, Phys. Rev. B34, 3377~1986!; H.
J. Mikeska, J. Phys. C13, 2913~1980!; J. des Cloizeaux and J
J. Pearson, Phys. Rev.128, 2131~1967!; Y. Endohet al., Phys.
Rev. Lett.32, 170 ~1974!; M. Imada,Finite Temperature Exci-
tations of the XYZ Spin Chain~ISSP, Tokyo, 1982!.

4K. Hirakawa, H. Yoshizawa, and K. Ubukoshi, J. Phys. Soc. J
51, 2151 ~1982!; K. Hirakawaet al., ibid. 52, 4220 ~1983!; S.
Komineas and N. Papanicolaou~private communication!.

5J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!; F.
G. Mertenset al., Phys. Rev. Lett.59, 117 ~1987!; E. Loh, Jr.,
D. J. Scalapino, and P. M. Grant, Phys. Rev. B31, 4712~1985!;
F. Fucito and S. Solomon~unpublished!.
.

6E. Fradkin and M. Stone, Phys. Rev. B38, 7215~1988!; E. Frad-
kin, Field Theories of Condensed Matter Systems~Addison-
Wesley, CA, 1991!.

7P. Horsch, inProceedings of the Mini-Workshop on‘‘ Mecha-
nisms for High Temperature Superconductivity,’’ edited by S.
Lundqvist, E. Tosatti, M. P. Tosi, and Yu Lu~ICTP, Trieste,
1988!; S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phy
Rev. Lett. 60, 1057 ~1988!; S. Tyc, B. I. Halperin, and S.
Chakravarty,ibid. 62, 835 ~1989!; A. Auerbach and D. P. Aro-
vas, ibid. 61, 617 ~1988!.

8R. Rajaraman,Solitons and Instantons: An Introduction to So
tons and Instantons in Quantum Field Theory~North-Holland,
Amsterdam, 1982!.

9A. Parola~private communication!.
10N. Steenrod,The Topology of Fibre Bundles~Princeton Univer-

sity Press, Princeton, 1951!.
11C. K. Majumdar, inProceedings of the Winter School and Inte

national Colloquium held at Panchgani, India, edited by B. S.
Shastry, S. S. Jha, and V. Singh~Springer-Verlag, Berlin, 1985!,
p. 142.


