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Possible existence of topological excitations in quantum spin models in low dimensions
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The possibility of the existence of topological excitations in the anisotropic quantum Heisenberg model in
one and two spatial dimensions is studied using the coherent state method. It is found that a part of the
Wess-Zumino term contributes to the partition function, as a topological term for ferromagnets in the long-
wavelength limit in both one and two dimensions. In particular X\dimit of the two-dimensional anisotropic
ferromagnet is shown to retain the topological excitations, as expected from the quantum Kosterlitz-Thouless
scenario[S0163-18209)13429-5

[. INTRODUCTION evant situations, we choose the anisotropy of the above spin
models to thexXy like.

Quantum spin systems in low dimensions have acquired In the following we perform all the calculations on the
considerable significance in condensed matter physics in rdattice with a finite lattice parameten in the long-
cent times. In particular, two-dimension@D) spin+4 quan-  wavelength limit. We write down the expressions of the
tum Heisenberg antiferromagn@HAF) evoked a lot of in- quantum Euclidean action in the quasicontinuum limit, so
terest in light of the discovery of high-temperature that we have a clear understanding of the topological terms,
superconductors.Many interesting theoretical and experi- while the physical system retains its lattice structure.
mental works probing the magnetic property of various 2D
systems and also that of many quasi-one-dimensional sys- lIl. CALCULATIONS
tems brought into notice important features of anisotropic
quantum spin modefs:* Parallel to this, a possible extension ~ The quantum Euclidean actid®[n] for the spin coher-
of Kosterlitz-ThoulesgKT) scenerio to quantum ferromag- ent fieldsn(t) can be written &’
netic spin models has also been attempted.

However, in spite of this endeavor, many crucial ques- ) 40t (B ) B
tions have remained unanswered and in particular the origin SelN1= ~1+Swzn]+ Tfo dtafn(H)]"+ fo dtH(n),
of the existence of topological excitations in quantum ferro- 1)
magnetic and antiferromagnetic models seems to be myste-
rious. The existence of topological excitations in isotropicwhere. is the magnitude of the spin and
1D AF is well known>® The case of 1D ferromagnetism
(both isotropic and anisotropic on the other hand, has H(n)=(n|H(S)|n), 2
drawn lesser attentioh® One possible reason for this could _ _ S _
be the lack of proper theoretical analyses of the quantuni!(S) being the spin Hamiltonian in the representatiofihe
nature of the problem, which we describe in this paper. In thdV/ess-Zumino temsy; is given by
2D case even for AF, the issue of the existence of topological 5 .
excitations is still not settled fully, although most of the the- _ _
oretical calculations rule out such a possibifityMoreover, Swzln]= fo dtfo drn(t,n)-an(t, DO D=A, (3)
the highT . oxides in the insulating antiferromagnetic phase
seem to be governed by anisotrof@®) Heisenberg models, with n(t,0)=n(t), n(t,1)=ny, and n(0,r)=n(B,7), t
whereas the theoretical efforts have mostly been confined te[0,8], 7e[0,1].

the isotropic case onf?®’The 2D ferromagnetic situation In Eqg. (3), A is the area of the cap bounded by the trajec-
has remained even less understood sd far. tory I' parametrized by(t) on the sphere:

This motivated us to study the anisotropic quantum
Heisenberg ferromagnetic and antiferromagnetic models in n-n=1. (4)

1D and 2D, in a unified manner. ) ) ] )
Here |n) is the spin coherent state as defined in Ref. 6. The

spin Hamiltonian forXXZ Heisenberg ferromagnets is given
Il. MATHEMATICAL FORMULATION by

We analyze the quantum actions f&XZ ferromagnets
and antiferromagnets in 1D and 2D by the spin coherent state 14 g) = — 31)-3r' ) —ax r r 5
method® The philosophy behind this procedure is that the S g(%) S-S =g Zgr) SANS(. )
existence of a topological term in the full quantum partition _
function of a quantum spin system implies topological exci-With g=>0 and O<\z<1. r,r’ run over the lattice, and
tations in the systerfiKeeping in mind the physically rel- (r,r") signifies nearest-neighbor interaction & (S,S;).
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A. Linear chain

The quantum Euclidean action in the quasicontinuum limit can be written as

Se[n]=—isSHP— sz dxf dtn-g,n0d, n+ 2 f dxf dt(gn)?+

X foﬁdt[(axﬁ)2+ Az(d4n2)?], (6)

whereSP=25"" _1mSWz[n(2ar)] is the nontopological part of the WZ ter8y,; on the chainl =2ma, andn=(fi,nz). We

have wrltten down Eq(6) in the long-wavelength limit. We analyze ti8g,, term in the following manner:

m-1

E Swaln(an]= E Swaln(2an]+ E Swzln{(2r+1)a}]

m—1

L B
=2Suzn(— 2am)]+SWZ[n(2am)]+2 2 SNZ[n(Zar)]+ J:defodtn-&tnDaxn

—(p—1)2a L—(p—2)2a
f dx+f dx+---
L —-L

B 1 (L B
f dtn-&tnDaanr—f dxf dtn-g;n0ayn, (7)
0 2)-L Jo

=2Sy[n(— 2am>]+sNz[n<2am>]+22 Swzln(2ar)]+2

L—-2a
+f dx
—L

where I=p=2m. Since we keep the lattice parametefi-

nite and we takeSt— 0, Eq.(6) takes the form 2 Swzln(ar)]
m-p
Se[n]=—ix moP——f dxf dtn-gnla,n =2 > s,[n(2an]

y=-m

2

s°ga (L B - L—(p—1)2a L-(p—2)2a L—2a

+22[" ax] Catomzenan ® +2U ar [0 e [ o
- —L —L —L

In order that the Euclidean action E@) is finite for very B 1L B
largeL, we have X . dtn-gnon+ > _de . dtn-gnlayn,
lim 4,i=0, lim d;n,=0, 9) (12

IX[—e [x| e

where we have made use of Eg). Notice that only the last

i.e., nN—ng(t) on the circlex?+t?=R? R—o with n-n  term in Eq.(12) covers the entire chain where the boundary
=1. points are identified via the configuratiohl). Therefore the

This defines a mapping frortx,t) space to the internal topological content inS,; is the last integral in Eq(12)
spacen-n=1. However, there is a smaller classrofields  which is same as Eq10). The rest of the terms in E¢12)
on the(x,t) space which satisfies E(Q) with ny(t) indepen-  are nontopological. From E¢7) the nontopological part can
dent oft, denoted byn,. In that case the boundary points in be written as
the (x,t) space are identified With a single point, and we have

a topological mappingSy, < S with 7,(S?)=2.1% The m-1
winding number in this case is given by SWP= 2r:2—m Swzln(2ar)]. (13
1 Due to translational invariance of on the chain, each term
Q= EJ dx dtn-gnbayn, (10 in Eq. (13) describes the same cap of atdagiven by Eq.

(3). Thus Eq.(13) can be written as

whereQ e Z. Thus, for field configurations represented by
m—1

{n(x,1): lim n(x,t)=ng}, (11) Spiop=2 2 A=2(2m—1).A=const. (14)

x|

Eq. (7) can be written as Therefore Eq(8) becomes
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is (L B will be a winding number through Eq10) for eachy. This
Se[n]z—gf dXJ dtn-gnbayn happens because of the fact that edel) plane (i.e., y
-t 0 =cons) has its boundary points identified for field configu-
Jga (L B rations satisfying Eq(19) and the(x,t) plane can be thought
+t J dXJ dt[ (371> + N 2(dxnz)?]. of as a spher&? passing through the north pole 81. So for
- eachy we have a mapping from the correspondirg) plane
(15 (=$S?) to S, Therefore we can write

Equation(12) corresponding to an antiferromagnet<(0) 1 1 5 .
reads —f dx dy dtn-atnDaXn(x,y,t)zJ' Q(y)dy.
4 ) 0 -L

1 (L B
Swz="73 J dx f dtn-an0d,n, (16 (22)
-t Jo By similar arguments

with Si%P vanishing due to a staggering operation. So we get 1 (L B L
back the same result as obtained for isotropic EJdeX dyJo dt”"?tnmy”(xly't):LLQ(X)dX-
antiferromagnet§. (23)

B. Two-dimensional square lattice Note that we can apply the above principle for the mapping

2 H 2\ 10 H
. G o Sonys— St since m3(S?)=Z. *° Thus, using Egs(20) and
The spin Hamiltonian in this case is given by BE&) _(21), the action(17) becomes
wherer runs over the 2D square lattice. The quantum action

for the anisotropic ferromagnet in the long-wavelength limit oL 5
is given by Se[n]=— 2—;f dx dyf dt[n- gnOdyn+n- anOdyn]
-L 0
_ g/ [t B s
Seln]=—i:2 swz[n<r>]+7f dxdyf dtf (3,) g2 (L B
r -L 0 ><(x,y,t)+TJ dx dyf dt[ (a,n)
-L 0
+N2(0N2) %+ (3, R)2+ N2(dynz) 21 (XY, 1), (17) 5 o 5
A2 AN2)*+ (9,7 +Az(9yn) 106y, (24)

Finiteness of the actiofll7) gives

The first integral in Eq(24) is a topological term as follows

from Egs.(22) and(23). Let us point out that the right-hand
N(X,y,t)—no(t) (18 side of Eq.(20) vanishes identically on the lattice in the

on the two-spherec®+y?+t>=R? R—», andn—n=1. long-wavelength limit under a staggering operation in the

This boundary condition gives a mapping from they,ty  case of antiferromagnets.

space to the internal sphenen=1. However, Eq(18) ad-

mits a class oh fields whereny(t) is independent of de- IV. CONCLUSIONS
noted byng, in which case we have a mappiuﬁzjhys—sﬁ1t - )
andI15(S?) =Z.1° Thus, for the field configurations, We have presented a unified scheme for analyzing the
topological terms in the effective action corresponding to the
{n(x,y,t): lim n(x,y,t)=nq} (190  long-wavelength limit of XY-like anisotropic quantum
[x|—o0 Heisenberg ferromagnets and antiferromagnets in one and

following the same line of arguments as in the case of IineafWO spatial dimensions for any value of the spin. Our calcu-

chain, we can show that tHg,, term corresponding to 2D fatlon r::)rlngs out Cleir.lyhthil hidden topqlo.g|c|al cor;trlputlor}
square lattices can be written as rom the S, term, which influences statistical mechanics o

ferromagnets in one dimension. This is probably manifested

1 (L B in the “solitonlike excitations™” occurring in many experi-
> SwAn(n)]=siP+ 5[ dx dYJ dt[n-gnlayn mental systems corresponding to these motiéls.may be
' -t 0 also interesting to point out that in 1D the roles of kink and
+n-gn0ayn](x,y,t), (20) antikink are interchanged. as we go from ferromagnets to
antiferromagnets due to sign reversal in the respective topo-
S\’}\‘,%p:{Z(Zm—l)}zA. (21 logical termg[see Eqs(15) and(16)]. In the 2D situation in

the limit A;—0, these excitations probably lead to the pro-
) 5 ) posed “vortex-antivortex” scenario in the “quantum KT”

For the mappingS;,,<—Si, We can parametrize thec,y, picture® On the contrary the 2D AF model does not exhibit
space with boundary points identified yplanes in which  any topological excitation in its long-wavelength behavior.

case Let us conclude by pointing out that our whole calcula-
1 (L p tion_al approach is meanipgful only.in the Iovv_-tempera_ture
i dxf dtn-a,n0d.n regime where the spin-spin correlation length is appreciably
4w )" o X large®!!
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