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Multiple scattering of radiation in clusters of dielectrics

F. J. Garcı´a de Abajo*
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 25 January 1999!

A fast, accurate, and general technique for solving Maxwell’s equations in the presence of a finite cluster of
arbitrarily disposed dielectric objects is presented. The electromagnetic field is first decomposed into multi-
poles with respect to centers close to each of the objects of the cluster and multiple scattering is carried out
until convergence is achieved. Radiation scattering cross sections are obtained using this method for clusters
formed by homogeneous spheres and coated spheres made of different materials~Al, Si, and SiO2), including
magnetic ones. Near- and far-field distributions are offered as well.@S0163-1829~99!00531-7#
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I. INTRODUCTION

The electromagnetic response of small structures to ex
nal sources constitutes a field of intense research due to
promising technological applications of photonic device1

These are in essence materials tailored on the microm
scale to exhibit unusual properties of transmission2 and
reflection3 of radiation that can be exploited in the design
filters and mirrors for light. Special emphasis has be
placed in the study of periodic structures in connection
photonic bands, which are formed in a similar way as el
tronic bands in solids.4–11,1,12,13The photonic properties o
these materials have been tested in macroscopic struc
using radiation in the GHz regime, where absolute band g
have already been obtained.9,10 On the theory side, differen
methods have been developed to solve Maxwell’s equat
in the presence of periodic arrays, including extensions
those used in low-energy electron diffraction,4,5,13

plane-wave7 and Bloch wave8 expansions, and the transfe
matrix approach.11,14

Actual photonic microstructures have been recently e
ployed to confine light in a finite region of space,15,16 result-
ing in well-defined narrow modes that could be eventua
used in laser design. This opens the field of photonic ch
istry, where arbitrarily distributed micrometer elements a
combined to confine, scatter, or emit light. Therefore, th
retical methods suited to solve the electromagnetic prob
near clusters of dielectric objects are needed to explore
possibilities offered by these structures as they become
creasingly complex. The present work constitutes an atte
to advance in this direction.

The solution of Maxwell’s equations finds application in
number of spectroscopy techniques, including spontane
emission,17 light emission from scanning tunnelin
microscopes,18 scanning near-field optical microscop
~SNOM!,19,20 and electron-energy-loss spectrosco
~EELS!.21,14 For instance, SNOM permits one to obtain sp
tial resolution on a nanometer scale by using an exte
probe to bring the light of a laser of much larger wavelen
to the area of the specimen under examination,19 posing the
problem of understanding the measured far-field induced
local interaction of laser light with structures whose size
much smaller than the wavelength. This technique comb
PRB 600163-1829/99/60~8!/6086~17!/$15.00
r-
he

ter

f
n
o
-

res
ps

ns
f

-

y
-

e
-
m
he
n-
pt

us

-
al
h

y
s
es

spatial localization and radiation of energy appropriate
sample valence-band features.20

The simulation of EELS relies on the availability of met
ods to calculate the field induced by an external elect
interacting with complex nanostructures. Beyond so
nonrelativistic22–24 and relativistic25–27 analytical solutions
for simple geometries, numerical methods have been s
cessfully used in this respect.14 In particular, the relativistic
boundary element method28 consists of representing the in
terfaces of a given heterostructure by means of charges
currents that are solved self-consistently in the presenc
an external field.29 However, the magnitude of the numeric
problem becomes unaffordable for targets composed o
large number of elements. In an attempt to circumvent t
issue, granular structures have been studied using effec
medium theories, taking advantage of averaging over r
dom distributions of objects.30–34

The formalism introduced in this paper allows one to
duce the solution of Maxwell’s equations in the presence
a cluster of arbitrarily distributed dielectric objects to th
knowledge of the individual scattering properties of each
the objects. For that purpose, the electromagnetic field is
decomposed into multipoles around each constituent of
cluster, and multiple elastic scattering of the multipole e
pansions ~MESME! is carried out until convergence i
achieved. The time required to numerically solve this pro
lem is proportional to the square of the number of objects
the cluster. This permits one to compute radiation scatte
cross sections for a cluster formed by a large number
objects within any desired degree of accuracy.35

The present formalism shares many features with ot
theories employed to study electron diffraction in solids.36–42

This is a consequence of the fact that electrons moving in
interstitial region between the atoms of a solid, where
potential is nearly flat, are governed by the same Helmh
wave equation that rules the propagation of free photons,
only difference lying in the matching conditions satisfied
either the electron wave functions or the electromagn
fields.1

The theory of MESME is presented in Sec. II, where
general, computationally efficient technique is derived t
allows us to solve Maxwell’s equations in clusters of ar
trarily disposed dielectrics. Section III describes further co
putational details. The application to the simulation of rad
tion scattering is given in Sec. IV. Some numerical examp
6086 ©1999 The American Physical Society
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PRB 60 6087MULTIPLE SCATTERING OF RADIATION IN . . .
are discussed in Sec. V for clusters of different sizes. Fina
the main conclusions are summarized in Sec. VI. Gaus
atomic units~a.u., that is,e5m5\51) will be used from
now on, unless otherwise specified.

II. MULTIPLE ELASTIC SCATTERING APPROACH
TO THE ELECTROMAGNETIC PROBLEM

The electromagnetic field induced by interaction of
external source with a cluster of dielectric objects will
solved in terms of MESME around the objects of the clus
Some of the underlying ideas involved in this formalis
have been borrowed from cluster models for the simulat
of electron diffraction in solids,39–42and adapted to deal with
the electromagnetic field rather than the electron wave fu
tion, exploiting the well-known analogy between electrons
solids and light in nanostructures.1,12 A similar extension
from electrons to photons was carried out by Ohtaka
co-workers4,5,13 allowing methods developed for the simul
tion of low-energy electron diffraction to be employed in t
study of photonic band structures for periodic arrays
spheres, and, more recently, for two-dimensional lattices
cylinders.43,44 Instead, finite clusters of arbitrarily distribute
objects are considered here, and the photonic properties
variety of systems are investigated. A full curved-wave~mul-
tipole! treatment of the electromagnetic field is used, in co
bination with improved iterative multiple-scattering tec
niques. The electron wave functions employed in
electron-diffraction analogy are replaced here by scalar fu
tions that represent the electromagnetic field.45 The analysis
carried out in this section combines the following element35

~a! The external electromagnetic field~e.g., the field set
up by incoming radiation or by an external fast electron! is
decomposed into multipoles around each object of the c
ter. This decomposition is reviewed in Sec. II A using a n
tation appropriate for its application to MESME.

~b! The scattering on each individual dielectric object
represented by complex scattering matrices, which pe
one to obtain the contribution of each object to the scatte
field, as discussed in Sec. II B.

~c! The field resulting from scattering on a given obje
needs to be propagated to other objects of the cluster w
further scattering can take place. This involves nontriv
translations of multipoles, which will be examined in Se
II C.

~d! Finally, the solution of Maxwell’s equations is ex
pressed in terms of self-consistently-calculated scatte
fields. This leads to the MESME secular equation presen
in Sec. II D.

Therefore, this formalism permits one to express the
lution of Maxwell’s equations in the presence of a cluster
arbitrarily disposed dielectric objects in terms of the in
vidual scattering properties of the constituents of the clus
Spherical objects, for which the scattering properties are
lected in analytical expressions given in Sec. II B, will
considered here for simplicity. The details of the formalis
are given next and a more schematic picture is offered in
1 and its caption.

A. Electromagnetic multipoles and scalar functions

Let us start by expressing the electromagnetic field
terms of multipoles with respect to a given originra within a
y,
n
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homogeneous region of space free of charges and curr
The electric fieldE is by necessity transversal in that regio
and thus, it can be expressed in frequency spacev as45,27

E5Laca
M2

i

k
“3Laca

E , ~1!

where k5v/c, La52 i (r2ra)3“ is the orbital angular
momentum operator relative to the positionra , andca

M and

FIG. 1. Diagrammatic representation of the elements involved
the solution of Maxwell’s equations in the presence of a cluste
dielectric objects using multiple elastic scattering of multipole e
pansions@MESME; see Eq.~18!, reproduced in this figure as well#.
The electromagnetic field is expressed in terms of scalar funct
ca , made up of multipoles relative to dielectric objectsa, b, etc.
The external field acting on objecta ~upper right corner of this
figure!, ca

ext , is a superposition of spherical plane waves with no
energy flux around the object@double-arrow line; see Eq.~6!#. Its
scattering ata, represented by the scattering matrixta , gives rise
to a superposition of scattered outgoing waves@ taca

ext; see Eqs.~7!
and ~8!# which adds to the induced part of the total field produc
by self-consistent scattering on objecta, ca

ind . The remaining con-
tribution to ca

ind is provided by the scattering of the self-consiste
induced field coming from each other objectbÞa. The latter is
calculated in various steps~starting from the upper left corner!:
first, the system is rotated by means of a rotation matrixRab such
that the bond vectorra2rb is made to point along the positivez
axis; the resulting rotated outgoing waves centered atrb (Rabcb

ind)
are then expressed in terms of spherical plane waves centeredra

by linearly translating spherical harmonics (Gab
z is the operator for

translations along thez axis, as explained in Sec. II C!; an addi-
tional translation operatorTab

z is necessary to compensate for th
lack of invariance of multipoles under translation of the origin; t
result is then rotated back to the original position and scattere
objecta. Finally, summation overbÞa yields Eq.~18!.
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6088 PRB 60F. J. GARCI´A de ABAJO
ca
E are the so-called magnetic and electric scalar functio

respectively. If the region under consideration is filled w
medium j and described by its frequency-dependent lo
dielectric functione j and magnetic permeabilitym j , one
finds, upon insertion of Eq.~1! into Maxwell’s equations,
that the scalar functions satisfy the wave equation

~¹21kj
2!c50, ~2!

wherekj5kAe jm j ~the square root is chosen here to hav
non-negative imaginary part!. Besides, the magnetic field i
found to be

H52
i

km j
“3Laca

M2e jLaca
E , ~3!

and the scalar functions can be determined fromE using the
identities45,27

ca
M5

1

La
2

La•E ~4!

and

ca
E5

i

ke jm j

1

La
2 ~La3“ !•E. ~5!

Notice that the longitudinal modes are explicitly left out
this formalism,45,27preventing from possible numerical prob
lems.

Equation~2! implies that the multipole expansion of th
electromagnetic field in the homogeneous region under c
sideration can be constructed as a sum of free sphe
waves. The absence of sources in that region indicates
these waves cannot lead to a net energy flux through
closed surface contained within it, so that they can be term
spherical plane waves by analogy to conventional pl
waves. In particular, the scalar functions that describe
external field can be expanded in terms of spherical harm
ics YL as

ca
ext~r !5(

L
j L@kj~r2ra!#ca,L

ext , ~6!

where L5( l ,m), j L(u)5 i l j l(uuu)YL(û) represents one o
the noted spherical plane waves,j l is a spherical Bessel func
tion, and

ca5Fca
M

ca
E G

groups both magnetic and electric components.

B. Single scattering on a dielectric object

Now let us focus on a dielectric object located nearra and
surrounded by a homogeneous mediumj 50 of dielectric
function e0 and magnetic permeabilitym0 , so that, for a
given frequency componentv, the momentum of the elec
tromagnetic field isk05kAe0m0 ~if j 50 refers to the
vacuum, one hase05m051 andk05k5v/c).

The total electric field is the superposition of the exter
field and the field induced by scattering on the object un
s,
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consideration, that is,E5Eext1Eind. In addition, the electro-
magnetic field in the homogeneous mediumj 50 is a com-
bination of outgoing and incoming spherical waves, rep
sented by spherical Hankel functionshl

(1)(k0r ) and
hl

(2)(k0r ), respectively.46 In particular,Eind finds its sources
in the charges and currents induced by the external field
the dielectric object, and therefore, it has to be a combina
of only outgoing waves. In other words, the correspond
scalar functions can be written

ca
ss~r !5(

L
hL

(1)@k0~r2ra!#ca,L
ss , ~7!

wherehL
(1)(u)5 i lhl

(1)(uuu)YL(û). The superscript ss refer
to the fact that the field induced in the presence of just o
object can be considered to be the result of single scatte
by comparison to the case of a cluster of several obje
where multiple scattering becomes relevant, as shown la
in this work. Equation~7! is valid for r outside a sphere
centered atra and fully containing the dielectric object~i.e.,
containing the sources of the induced field!.

Within the linear-response approximation, the comp
nents of the scattered field have to be proportional to thos
the external field. Therefore, one can write, in terms of
coefficients of expressions~6! and ~7!,

ca,L
ss 5(

L8
ta,LL8ca,L8

ext , ~8!

whereta,LL8 is the so-called scattering matrix. This is sch
matically shown in the upper right corner of Fig. 1, whe
the external field acting ona, represented by a double-arro
line to emphasize the fact that it is made up of spheri
plane wavesj L , gives rise to outgoing scattered waveshL

(1)

that generateca
ss, represented by outgoing arrows.

The elements of the scattering matrix can be determi
for eachL by solving Maxwell’s equations in the presence
the dielectric object with the asymptotic condition

c~r !. j L@k0~r2ra!#1(
L8

ta,L8LhL8
(1)

@k0~r2ra!#, r˜`,

implicitly defining ta,L8L , and the requirement thatc be fi-
nite everywhere. Ifra lies within a homogeneous region o
spacej , possibly inside the dielectric object, the finiteness
c means that only spherical plane wavesj L9@kj (r2ra)# con-
tribute at that point, since both outgoing and incomi
spherical waves diverge at their origin.

Although the formalism presented in this work can
applied to arbitrarily shaped objects, whose scattering ma
ces are generally dense and can be obtained numerica29

we will only consider for simplicity spherically symmetri
objects, for which the matching conditions satisfied by t
fields ~i.e., the continuity of the normal displacement, t
tangential electric field, the normal magnetic induction, a
the tangential magnetic field! reduce, after using Eqs.~1! and
~3!, to the continuity ofca

M , eca
E , (1/m)(11r ]/]r )ca

M ,
and (11r ]/]r )ca

E , where local response of the materia
involved in the system is assumed ande and m are the
frequency-dependent response functions that take valuee j
and m j inside mediumj . Thus magnetic and electric scala
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functions are not coupled during scattering on a spheric
symmetric object. Furthermore, one can writeta,LL8
5ta,ldLL8 in this case.

In particular, for a homogeneous sphere of radiusa made
of material j 51 and surrounded by mediumj 50, one re-
covers expressions familiar from Mie’s scatterin
theory.47,5,27More precisely, the scattering matrices for ma
netic and electric components read

t l
M ,E5

2 j l~r0!a l
M ,E1@r0 j l~r0!#8b l

M ,E

hl
(1)~r0!a l

M ,E2@r0hl
(1)~r0!#8b l

M ,E
, ~9!

where a l
M5m0@r1 j l(r1)#8, b l

M5m1 j l(r1), a l
E

5e0@r1 j l(r1)#8, b l
E5e1 j l(r1), r j5kja, and the prime de-

notes differentiation with respect tor j . Equation~9! repro-
duces the non-magnetic limit whenm05m151.27

For a nonmagnetic coated sphere of radiia>b made of
materials j 51 ~inner part! and j 52 ~outer part!, and sur-
rounded by vacuum, Eq.~9! is still valid if one sets

a l
M5@r1 j l~r1!#8Al2 j l~r1!Bl ,

b l
M5@r1 j l~r1!#8Cl2 j l~r1!Dl ,

a l
E5e2@r1 j l~r1!#8Al2e1 j l~r1!Bl ,

b l
E5e2$e2@r1 j l~r1!#8Cl2e1 j l~r1!Dl%,

Al5 j l~r2!@r3hl
(1)~r3!#82hl

(1)~r2!@r3 j l~r3!#8,

Bl5@r2 j l~r2!#8@r3hl
(1)~r3!#82@r2hl

(1)~r2!#8@r3 j l~r3!#8,

Cl5 j l~r2!hl
(1)~r3!2hl

(1)~r2! j l~r3!,

Dl5@r2 j l~r2!#8hl
(1)~r3!2@r2hl

(1)~r2!#8 j l~r3!,

r15k1b, r25k2b, r35k2a, and r05ka. This expression
converges smoothly to the homogeneous sphere limit w
both b˜0 or a5b. It also reproduces the polarizability co
efficients in the limitc˜`.48

Radiation scattering cross sections are presented for
lated spheres in Figs. 2 and 3, and they are discussed in
V.

C. Translation of electromagnetic multipoles

When more that one dielectric object is considered,
results of scattering from each object~e.g., b) need to be
propagated to each of the rest of the objects of the clu
~e.g.,a), where further scattering events can take place. T
involves both~i! translation of the spherical harmonics a
pearing in the multipole expansions discussed above, and~ii !
translation of the origin of multipoles fromrb to ra along the
bond vectordab5ra2rb .

~i! Translation of spherical harmonics.The spherical har-
monics and spherical Hankel functions that made up the m
tipole expansion of the results of scattering atrb are given in
coordinates relative torb . They can be expressed with re
spect to a new originra by using the formula for translation
of spherical harmonics,36–38
ly

-
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FIG. 2. Total radiation-scattering cross section for an isola
sphere of SiO2 as a function of incoming photon energy for variou
values of the sphere radiusa, as indicated by means of labels. Th
cross section, calculated by using Eq.~30!, has been normalized to
the projected areapa2.

FIG. 3. Dependence of the elastic cross section on scatte
angleu for isolated SiO2 spheres of radius~a! a520 nm and~b!
a5160 nm, as given by the integral of Eq.~29! over azimuthal
directions. The differential cross section has been multiplied by su
and it is given per degree and normalized to the projected areapa2.
The contour curves limiting white areas correspond to values
0.001, 0.011, and 0.06 in the left part of figure~a!, the right part of
figure ~a!, and figure~b!, respectively. The distance between co
secutive contour curves corresponds to fixed values of 0.00
0.001, and 0.005, respectively.
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hL8
(1)

@k0~r2rb!#5(
L

j L@k0~r2ra!#Gab,LL8 ~10!

~valid provided thatur2rau,dab), where

Gab,LL854p(
L9

hL9
(1)

~k0dab!^L8uL9uL&

is the Green function of Eq.~2!, written in the basis set o
spherical harmonics attached tora and rb , and

^L8uL9uL&5E dV YL8
* ~V!YL9~V!YL~V!

is a Gaunt integral. Whendab is directed along the positivez
axis ~i.e., the quantization direction!, the Green function re-
duces to

Gab,LL8
z

5dmm8A4p (
l 95u l 2 l 8u

l 1 l 8

A2l 911i l 9hl 9
(1)

~k0dab!

3^ l 8mu l 90u lm&. ~11!

A recurrence relation has been reported that permits u
evaluateGab,LL8

z efficiently.41 Notice thatGab propagates
magnetic and electric components separately.

~ii ! Translation of the origin of multipoles.Unfortunately,
the scalar functionsc are not invariant under translations
the origin of coordinates. This comes from a lack of inva
ance of the angular momentum operator involved in Eq.~1!,
which transforms as

Lb5La2 idab3“

when changing the origin fromrb to ra . Therefore, the elec
tric field induced by scattering atrb can be expressed as

Eb
ind5Lbcb

M , ind2
i

k
“3Lbcb

E, ind

5Lacb
M , ind2

i

k
“3Lacb

E, ind

2 idab3“cb
M , ind2

1

k
“3~dab3“ !cb

E, ind ~12!

in terms of operators relative tora . Following the discussion
of Sec. II A, Eb

ind can be written

Eb
ind5Lacab

M , ind2
i

k
“3Lacab

E, ind,

wherecab
ind accounts for the contribution to the induced fie

coming from scattering atb and expressed in terms o
spherical plane waves arounda. Now magnetic and electric
components ofcab

ind can be obtained from Eqs.~4! and ~5!
after substitutingE by Eb

ind as given by Eq.~12!, leading to
the following rule of transformation of the scalar functio
under translation of the origin along the vectordab :49
to

-

cab
M , ind5cb

M , ind1 i
dab

La
2
•~La3“ !cb

M , ind

1
ke0m0

La
2

dab•Lacb
E, ind ~13!

and

cab
E, ind5cb

E, ind1 i
dab

La
2
•(La3¹…cb

E, ind2
k

La
2

dab•Lacb
M , ind,

~14!

where the substitution¹2
˜2k0

2 has been performed. Now
linear translation operatorT can be defined to represent th
rule. T acts on the multipole components of the above sca
functions and takes a particularly simple form whendab is
directed along the positivez axis. More explicitly,

Fcab,L
M , ind

cab,L
E, indG5(

L8
Tab,LL8

z Fcb,L8
M , ind

cb,L8
E, indG ,

where

Tab,LL8
z

5FdLL8 0

0 dLL8
G

1dmm8k0dabF pll 8m qll 8mAe0m0

2qll 8m

Ae0m0

pll 8m
G , ~15!

qll 8m5
md l ,l 8

l ~ l 11!
,

pll 8m5d l 11,l 8Dl 11,m2d l 21,l 8DL ,

and

DL5
i

l
A ~ l 1m!~ l 2m!

~2l 21!~2l 11!
, ~16!

as shown in the Appendix.
Notice thatcb

ind is made up of spherical outgoing wave
(hL

(1)) centered atrb ~this is represented by outgoing arrow
centered aroundb in the upper left corner of Fig. 1!. The
translation of spherical harmonics discussed in point~i!
above allows one to expresscb

ind in terms of spherical plane
waves (j L) centered at a new originra ~see the diagram on
the left part of Fig. 1!. On the other hand, the translation
the origin of multiples discussed in point~ii ! operates oncb

ind

@already translated as explained in point~i!# to producecab
ind ,

which is also made up of spherical plane waves centere
ra .

In brief, the combination of these two operators allows
to obtain the coefficients of the multipole expansion ofcb

ind

arounda as TabGabc̃b
ind , wherec̃b

ind represents the vecto
formed by the coefficientscb,L

ind of the multiple expansion of
cb

ind aroundb.
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D. Multiple scattering

Now let us focus on a cluster of dielectric objects labe
by coordinate vectorsra . Our aim is to obtain the scala
functions appropriate for the electromagnetic field that sa
fies Maxwell’s equations in the presence of the cluster,
to relate these functions to the scattering properties of e
individual component of the cluster.

The induced part of the self-consistent scattered field
be expressed as the sum of contributions coming from
different cluster componentsa, that is,

c ind~r !5(
a

ca
ind~r !.

Sinceca
ind finds its origin in the charges and currents induc

in objecta, it has to be a combination of spherical outgoi
waves centered aroundra :

ca
ind~r !5(

L
hL

(1)@k0~r2ra!#ca,L
ind . ~17!

Equation~17! is valid for r outside a sphere centered atra
and fully containing objecta.

Within the single-scattering~ss! approach,ca
ind is given

by the scattered fieldca
ss discussed in Sec. II B. This resul

from single scattering of the external field as expressed
Eq. ~8!, conveniently written using matrix notation as

c̃a
ss5tac̃a

ext,

where the vectorc̃a
ss(ext) has componentsca,L

ss(ext) and the ma-
trix ta has componentsta,LL8 .

The singly scattered field coming from a certain objecb
can in turn suffer scattering on every other object of
cluster aÞb. That is, ca

ind receives contributions comin
from previous scattering on every other objectbÞa. This
leads to a self-consistent relation for the induced field t
can be written as

lc̃a
ind5c̃a

ss1ta (
bÞa

Habc̃b
ind , ~18!

where the first term on the right-hand side is the result
direct single scattering of the external field ata; the second
term describes both the propagation of the self-consiste
scattered field originating in every other objectbÞa from b
to a and the subsequent scattering of this field ata; l51 is
introduced for convenience; and the operatorHab accounts
for the propagation just noted.Hab can be conveniently con
structed in four steps as follows~see the left part of Fig. 1 for
a schematic representation of this procedure!.35

~i! Following previous work of electron diffraction in
solids,36,39 the bond vectordab is rotated onto thez axis by
using a rotation matrixRab ,46 which acts on the spherica
harmonics of the multipole expansion ofcb

ind . The Euler
angles corresponding to this rotation can be chosen (0,u,p
2w) if ( u,w) are the polar angles ofdab .

~ii ! The resulting rotated scalar functions are then pro
gated a distancedab along the positive direction of thez
axis. This is accomplished by multiplying by the Green fun
tion Gab

z given by Eq.~11!.
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~iii ! The lack of invariance of multipoles under transl
tions of the origin needs to be overcome by multiplying
the linear translation operatorTab

z described in Sec. III C
@Eq. ~15!#.

~iv! Finally, thez axis has to be rotated back onto thedab

direction usingRab
21 , and one has

Hab5Rab
21Tab

z Gab
z Rab . ~19!

The analogy with electron diffraction in solids38,39 is com-
plete, except for the lack of invariance just pointed out.

The rotation matrices can be in turn decomposed into
muthal and polar rotations as46

Rab,LL85d l l 8Rmm8
( l )

~0,u,0!~21!m8eiwm8, ~20!

and this helps to soften the computational demand in
evaluation of Eq.~18!, as shown in Sec. III.

III. COMPUTATIONAL PROCEDURE

An efficient scheme is presented in this section that
lows us to solve Eq.~18! within affordable limits in both
computation time and storage demand. The operators
volved in Eqs.~18!–~20! are approximated by finite matrice
of dimension@( l max11)2#2, wherel max is the maximum or-
bital angular momentum number under consideration~this is
for each component, electric and magnetic; note that Gr
functions and rotation matrices act independently on eac
these components!. In the calculations that follow, conver
gence has been achieved forl max<12 in most cases.

The direct inversion of Eq.~18! is computationally pro-
hibitive for large clusters. A procedure for solving it th
mimics the multiple-scattering expansion consists in start
with c̃a

ind,15c̃a
ss as a guess forc̃a

ind , and then calculating the
result of scattering up to an ordern.2 by using the iterative
relation

c̃a
ind,n5c̃a

ss1ta (
bÞa

Habc̃b
ind,n21 . ~21!

This is nothing but the Taylor expansion ofc̃a’s in powers
of ta’s. This procedure has been found computationally c
venient in many cases wherec̃a

ind,n
˜c̃a

ind asn˜`, particu-
larly in electron diffraction in solids,39,42 but it may lead to
divergences when any of the eigenvalues oftH has a modu-
lus larger than 1.

Here Eq. ~18! has been solved by using the recursi
method,50,51 wherel plays the same role as the energy
former electronic band-structure calculations. Although o
is only interested in the valuel51, the recursion method
results advantageous because it is fully convergent eve
situations where Eq.~21! leads to divergences.38 This is the
case in many of the examples offered below, where str
scatterers are placed relatively close to each other.

The computational costs of both the iteration proced
and the recursion method is basically coming from the m
tiplications Habc̃b

ind . These two methods require the sam
number of those multiplications per iteration, namely,N(N
21), whereN is the number of objects in the cluster. Th
factorization of Hab given in Eqs.~19! and ~20! has the
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virtue of reducing both~a! the storage capacity required
evaluate those multiplications and~b! the computational ef-
fort.

~a! A significant reduction in memory requirements c
be accomplished if the coefficients of each polar rotat
Rmm8

( l ) (0,u,0) @see Eq. ~20!#, each azimuthal rotation

(21)m8eiwm8, each translation of spherical harmonicsGab
z ,

and each translation of the origin of multipolesTab
z are com-

puted and stored only the first time that they are encounte
along the entire calculation. In addition, for any arbitra
cluster, the pointsra can be chosen in such a way that th
form a highly symmetrical mesh, where many bond distan
and angles are repeated~this might require that the pointsra

do not lie necessarily in the geometrical centers of the
jects that they label!. If this is the case, the total number o
different bond distances and bond polar angles is consi
ably smaller than the number of bond vectorsdab . To illus-
trate this, let us put forward the example of a simple-cub
lattice cube of sidep in units of the lattice constant; thi
cluster containsp3 nodes and (2p21)321 different bond
vectors, a number that has to be compared with at mostp2

bond distances, since the square of the distance between
pair of nodes has to equal an integral number, and the
tance between opposite corners isA3p ~a better estimate fo
this case results in'1.8p2 different bond distances for larg
p values!.

~b! For a given maximum value of the orbital angula
momentum numberl max, the dimension of each vectorc̃a is
( l max11)2 ~for each component, electric and magnetic!, so
that every matrix-vector productHabc̃b involves 4(l max
11)4 complex multiplications. However, all of the matrice
that appear on the right-hand side of Eq.~19! are sparse, as
one can see from Eqs.~11!, ~15!, and~20!. A detailed inspec-
tion leads to the conclusion that only'(20/3)(l max11)3

complex multiplications are needed to evaluate the prod
Habc̃b whenHab is decomposed as shown in Eq.~19!. This
is a factor of' l max/2 smaller than the direct matrix-vecto
product.

Further reduction in computational and storage dem
can be achieved if symmetry relations for the Green fu
tions and the rotation matrices46 are used~e.g., Gab,lm,l 8m

z

5Gab,l 82m,l 2m
z ).

Notice that multiplications by scattering matricesta do
not affect significantly the total computational costs for re
tively large clusters~e.g., above ten objects!, since they take
place just outside the summation over cluster objectsb in
Eq. ~18!, so that onlyN of those multiplications are neede
per interation.

A fully automated implementation of these ideas has b
performed, resulting in a new code~MESME! that provides
the solution of Eq.~18! for clusters of arbitrarily distributed
constituents by investing a computation time

CPU'AN2~ l max11!3,

where A is a constant (A;1024 s on a Pentium at 333
MHz!.
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IV. APPLICATION TO THE SCATTERING
OF RADIATION

The formalism presented in Sec. II will be applied here
the study of scattering of radiation in a cluster of arbitrar
distributed dielectric objects. Section IV A will be devoted
derive analytical expressions for the multipole expansion
efficients of an incoming plane wave. The far field produc
by the charges and currents induced in the cluster will
discussed in Sec. IV B.

A. Multipoles of the incoming radiation

When the cluster is illuminated by a plane wave, the e
ternal electric field can be written52

Eext5eWeiK i•r, ~22!

where eW is the ~complex! polarization vector, which is as
sumed to be normalized asueW u51, andK i is the momentum
of the incoming light.Eext must satisfy the wave equation i
the surrounding mediumj 50, and therefore,uK i u5k0

5kAe0m0, wherek5v/c.52

The multipole coefficients of the scalar functions intr
duced in Sec. II A can be obtained by expanding Eq.~22! in
spherical plane waves and inserting the resulting expres
into Eqs.~4! and ~5!.45 One finds

Fca,L
M ,ext

ca,L
E,extG5

4peiK i•ra

l ~ l 11! F zWL* ~V i !•eW

zWL* ~V i !•~eW3K i !/~ke0m0!
G ,

~23!

whereV i refers to the polar angles ofK i ,

zWL~V!5LYL~V!

5FC1

2
Ylm11~V!1

C2

2
Ylm21~V!,2

iC1

2
Ylm11~V!

1
iC2

2
Ylm21~V!, mYL~V!G , ~24!

andC65A( l 6m11)(l 7m).

B. Induced electromagnetic field in the far-field limit
and scattering cross section

The induced electric field can be obtained by insert
into Eq. ~1! the self-consistently calculated induced part
the scalar functions, made up of spherical outgoing wa
hL

(1)@k0(r2ra)# in the interstitial mediumj 50 just outside
the cluster objects. At very large distances from the clus
the spherical outgoing waves behave like

hL
(1)@k0~r2ra!#.

eik0r

k0r
YL~ r̂ !e2 iK f•ra, r˜`,

whereK f5k0r̂ . Furthermore,“ can be substituted byiK f in
Eq. ~1! ~this represents the leading term in ther˜` limit !.
Using Eqs.~1!, ~3!, and~17!, the induced electric and mag
netic far fields are found to be
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Eind.f~V!
eik0r

r
, r˜`, ~25!

and

H ind.Ae0 /m0 r̂3f~V!
eik0r

r
, r˜`, ~26!

where

f~V!5(
a

e2 iK f•ra(
L

@zWL~V! ca,L
M , ind/k0

1 r̂3zWL~V! ca,L
E, ind/k#, ~27!

is the scattering amplitude andV denotes the polar angles o
r .

The radiated energy associated to the induced far field
be derived from the energy flux across an arbitrarily la
sphere of radiusr centered at the cluster, and this flux can
in turn calculated from the integral of the normal Poynti
vector as52

DErad5
c

4pE dtE dV r 2@Eind~r ,t !3H ind~r ,t !#• r̂ ,

where the integral over the time has been included. Expr
ing the fields in terms of their frequency components, o
finds

DErad5E
0

`

v dvE dV G rad~v,V!,

where

G rad~v,V!5
r 2

4p2k
Re$@Eind~v!3H ind~2v!#• r̂% ~28!

can be interpreted as the probability of radiating a photon
energyv per unit of energy range and unit of solid ang
around the directionV.

Inserting Eqs.~25! and ~26! into Eq. ~28!, and noticing
that f–r̂50,53 one finds

G rad~v,V!5
Ae0 /m0

4p2k

dsel~v!

dV
,

where

dsel~v!

dV
5uf~V!u2 ~29!

represents the differential cross section for elastically s
tered photons, which can be computed from the coefficie
of the induced scalar functions using Eqs.~24! and ~27!.

The total interaction cross section can be divided ass tot

5sel1s inel, wheres inel accounts for inelastic losses, co
nected to absorption of the incoming radiation by objects
the cluster. The total cross section can be expressed in t
of the imaginary part of the scattering factorf along the
forward direction by means of the optical theorem for rad
tion, which reads52
an
e

s-
e

f

t-
ts

f
ms

-

s tot~v!5
4p

k0
Im$f~V i !•eW* %. ~30!

Total cross sections for various clusters of spheres
represented in Figs. 2, 4, 6, and 12–15. Elastic cross sec
are shown in Figs. 3, 6–8, and 13. In addition, near-fi
distributions are illustrated in Figs. 5 and 9–11.

V. RESULTS AND DISCUSSION

Clusters formed by spheres made of Al, SiO2 , and Si are
considered next. Their scattering matrices have been ca
lated using Eq.~9!, where the frequency-dependent dielect
functions of these materials are employed. In particular,
response of Al has been approximated by a Drude dielec
function with bulk plasma energyvp515 eV and damping
h51.06 eV. The dielectric functions of Si and SiO2 have
been taken from optical data.54

Figure 2 shows the total cross section of isolated S2
spheres, as calculated from Eq.~30!. Different sphere radius
a have been considered and the results have been norma
to the projected areapa2. Substantial variations in the cros
section can be observed in the region below 10 eV, where
dielectric function has a smooth structure and is basic
real. As the sphere size increases, the low-energy peak in
cross section shifts toward lower energies. This is connec
to retardation effects in the electromagnetic signal when
sphere radius is comparable in size to the wavelength of
radiation~see the upper scale in Fig. 2!. In a simplified pic-
ture where one considers a frequency-independent diele
constant~actually, this is nearly the case in SiO2 in the en-
ergy range 3–8 eV, where Re$e%'2.122.9@Im$e%), one

FIG. 4. Total radiation-scattering cross section for two touch
SiO2 spheres of radiusa5160 nm as a function of incoming photo
energy for different orientations of the cluster~see the inset!. The
incoming radiation is right circularly polarized~RCP!. The cross
section has been normalized to the projected area of two sph
2pa2. The result for an isolated sphere~multiplied by a factor of 2!
is also shown for comparison. The wavelength of the radiation
given on the upper scale, normalized toa.
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can argue that the frequency of the eigenmodes will sc
with a in such a way thatva/c is a dimensionless constan
number, and hence, the larger the radiusa, the smaller the
frequencyv. For energies above 12 eV the normalized cro
section depends very weakly ona.

Angular distributions of elastically scattered photons
represented in Fig. 3 for two different radii of SiO2 spheres,
as calculated from Eq.~29!. The angular distribution of scat
tered radiation has a marked anisotropic character. Notic
particular that forward scattering appears to be domin
over a wide energy range for the larger sphere under con
eration (a5160 nm!.

Actually, this anisotropy in scattering is translated into
orientational dependence of the total cross section in the
of the two-sphere SiO2 cluster of Fig. 4, where right circu
larly polarized radiation52 ~RCP! has been considered. Th
result derived from isolated spheres~thick solid curve, mul-
tiplied by a factor of 2! is very close to the one obtaine
when the dimer is oriented perpendicular to the direction
the incoming radiation. If the dimer is aligned with the d

FIG. 5. Contour maps of the square of the induced-electric-fi
strength in the vicinity of SiO2 spheres of radiusa5160 nm illu-
minated by RCP radiation of 5 eV in energy. The cases of~a! an
isolated sphere and~b! and ~c! a cluster of two touching sphere
with two different orientations relative to the incoming radiatio
have been considered. The plane of representation is schemat
shown in the insets relative to the incoming beam direction and
position of the spheres. The sphere surfaces are represented by
circumferences on the figures. Contour curves limiting white ar
correspond to a value of 2.2 a.u. The difference in value betw
consecutive contour curves is 0.2 a.u. The strength of the exte
field has been normalized to 1 a.u.
le
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rection of incidence of the radiation, forward scattering
the lower sphere focuses scattered radiation on the se
sphere, and this contributes to enhance the role of mult
scattering in this case~thin solid curve!.55 It should be
pointed out that the single-scattering approach results
total cross section that equals the sum of cross sections o
components of the cluster@see Eqs.~27! and ~30!#.

In Fig. 5, the near field has been represented for the
extreme orientations of the SiO2 dimer considered above
and also for the isolated sphere. The magnitude represe
in the figure is the square of the induced electric field, wh
is discontinuous on the sphere surfaces, represented by
circumferences. Notice that the variations of the field in ea
sphere relative to the case of an isolated sphere are
small. Nevertheless, the maximum of the induced field,
cated on the side of the sphere opposite to the incom
radiation, enhances the interaction between the two sph
of the dimer when this is oriented along the direction
incidence of the radiation.

Elastic and total cross sections, given by Eqs.~29! and
~30!, respectively, have been compared in Fig. 6~a! for clus-
ters of Al spheres of radiusa519 nm. Elastic-scattering
cross sections have been obtained by integrating the di
ential cross section over angles of scattering. The ela
cross section lies always below the total one, and the dif
ence between the two of them accounts for absorption
photons by the spheres. The different features of the ene
dependence of the cross section for the isolated sphere
shifted and split when one considers clusters of spheres
significant orientational dependence can be observed in
case of the dimer, where low-energy modes of different
ergy are excited depending on the orientation of the clu
relative to the incoming radiation. In particular, peakA stays
at nearly the same energy for clusters of three and f
spheres, indicating that this feature is connected to sph
sphere interaction in dimers oriented perpendicularly w
respect to the direction of the incoming beam. RCP radiat
is considered in Fig. 6~a!, but a strong dependence on th
polarization is observed for oriented clusters, like the dim
of Fig. 6~b!. Only the electric-field component of the extern
radiation parallel to the dimer axis contributes to excite
low-energy peak at 5.2 eV. Notice the triple-crossing po
E, which occurs due to both the symmetry of the clust
implying that sRCP5sLCP ~i.e., right and left circularly po-
larized radiation lead to the same cross section!, and the
general identitysRCP1sLCP5sLPix1sp'x , where the nota-
tion of Fig. 6~b! has been adopted.

The scattering on Al spheres has a strong electric cha
ter for the sphere radius under consideration. Actually, if o
setst l

M50 in the calculations presented in Fig. 6, the resu
are nearly indistinguishable on the scale of the figure. T
was expected from previous results on the magnitude of
magnetic components of the scattering matrix for Dru
spheres.27 However, for the SiO2 spheres of Figs. 2 and 4 th
magnetic components play a significant role even for
smallest spheres (a520 nm!, so thatt l

M cannot be dismissed
in that case.

The scattering-angle distributions of some of the elas
cross sections discussed in Fig. 6~a! are analyzed in Fig. 7
The dimer oriented along the direction of incidence of t
radiation @Fig. 7~b!# has a focusing effect on the scatter

d

ally
e
ick
s
n
al



the

in

s
the
n

k-
ad,
ng
gle

ase.

rd

rs
s

re
t

n
as
ill
if
th

f t
re
-
ul

ing

is 2
by
ver

and

f

PRB 60 6095MULTIPLE SCATTERING OF RADIATION IN . . .
FIG. 6. ~a! Total radiation scattering cross section~solid curves!
and elastic scattering cross section~broken curves! for clusters of
1–5 Al spheres of radiusa519 nm. The separation between sphe
surfaces is 2 nm. The cross section has been normalized to
number of spheresN in each case and the projected area of o
spherepa2. The radiation is RCP, and is moving upwards,
shown in the upper inset. The sphere clusters are disposed as
trated in the rest of the insets. Consecutive curves have been sh
a value of 3 upwards to improve readability. The wavelength of
radiation is given on the upper scale, normalized toa. ~b! Depen-
dence of the total scattering cross section on the polarization o
incoming radiation for the horizontal two-sphere cluster conside
in ~a!. The cases of linear polarization~LP! parallel and perpendicu
lar to the bond vector have been considered, as well as circ
polarization.
radiation, enhancing forward scattering as compared to
case of an isolated sphere55 @see Fig. 7~a!#. The two orienta-
tions of the dimer contemplated in Fig. 7 showed certa
similarities in the integrated cross section forv.7 eV @see
Fig. 6~a!#, but their angular distributions reveal notoriou
differences. Lower-energy peaks are observed when
dimer is oriented perpendicular to the radiation directio
@Fig. 7~c!#. Notice the symmetry between forward and bac
ward scattering in the low-energy region in this case. Inste
the high-energy region has a dominant forward-scatteri
character. When a third sphere is added to form a trian
oriented normal to the incoming radiation@Fig. 7~d!#, there
are not substantial changes as compared to the dimer c
However, a fourth sphere on top of the triangle@see Fig.
7~e!# and a fifth underneath@Fig. 7~f!# produce an effect
of focusing of the scattered radiation along the forwa
direction.

Even more dramatic differences between different cluste
are observed in the doubly-differential angular distribution
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FIG. 7. Dependence of the elastic cross section on scatter
angleu for clusters of 1–5 Al spheres of radiusa519 nm, disposed
as shown in the insets. The separation between sphere surfaces
nm. The incoming radiation is RCP, and it is incident as shown
white arrows. The differential cross section has been integrated o
azimuthal directions and multiplied by sinu and it is given per de-
gree and normalized to both the number of spheres in each case
the projected area of one spherepa2. Contour curves limiting white
areas correspond to values of 0.035 in~a! and~b!, 0.022 in~c!–~e!,
and 0.026 in~f!. Consecutive contour curves differ by a value o
0.005 in~a! and ~b!, and 0.002 in~c!–~f!.



n
.

n-
t-

th
ca
he
as
ed

d
A
re
. T
d

ed.
he
ed
ole

d in

of
in
n.
the
ec-

e

e

o
ro

om
t
is
-

te
a

eld

to

ically
ion
ented
the

u. in
tive
rnal

6096 PRB 60F. J. GARCI´A de ABAJO
represented in Fig. 8, where radiation of energy correspo
ing to featuresA andB of Fig. 6~a! has been contemplated
The figure illustrates how different polarizations of the i
coming radiation lead also to very different diffraction pa
terns. The symmetry of the cluster is reflected in that of
far field, as one can see by comparing the two-sphere
with the rest of the clusters. However, a rotation from t
directions of symmetry of the cluster is observed is the c
of circularly polarized radiation. The intensity of scatter
photons is maximum along the forward direction (u50) in
all cases.

Near-field distributions~i.e., the square of the induce
electric field! have been represented in Fig. 9 for isolated
spheres and clusters formed by two and three Al sphe
The parameters of the spheres are the same as in Fig. 6
energy of the radiation corresponds to the features marke

FIG. 8. Distribution of the elastic cross section@Eq. ~29!# over
directions of scattering for various clusters of 2–4 Al spheres
radiusa519 nm whose surfaces are separated by 2 nm. Each
represents results obtained from the same cluster~see insets!, with
the radiation coming normal to the plane of representation fr
underneath~i.e., iz). Various polarizations of the incoming ligh
have been considered~the polarization employed in each column
indicated in the upper insets!. The energy of the radiation corre
sponds to that of pointsA andB in Fig. 6~a! ~i.e., vA55.2 eV and
vB58.2 eV!. ~a!–~p! represent forward-scattering results~i.e.,
angles of scatteringu50290°, with u50 in the center of each
figure!, whereas~q!–~t! correspond to backward scattering~i.e.,
angles of scatteringu590° – 180°, withu5180° in the center of
each figure!. The doubly differential cross section is given per s
reoradian, and normalized to both the number of spheres in e
case and the projected area of one spherepa2. Contour curves
limiting white areas correspond to values of 0.3 in~a! and~d!, 0.6 in
~b!, 0.15 in ~c!, 0.4 in ~e!–~p!, and 0.09 in~q!–~t!. Consecutive
contour curves differ by a value of 0.05 in~a!, ~d!, and~e!–~p!, 0.1
in ~b!, 0.025 in~c!, and 0.01 in~q!–~t!.
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Fig. 6~a!. Circularly polarized radiation has been consider
Notice that the two modes illustrated in the figure for t
isolated sphere show very different distributions of induc
electric field, which can be ascribed to dipole and quadrup
modes in Figs. 9~a! and 9~b!, respectively. For the dimer, a
large enhancement of the induced field can be observe
the region between the two spheres in Figs. 9~c! and 9~d!,
indicating a strong sphere-sphere interaction. The lack
specular symmetry in the plane normal to the radiation
Fig. 9~d! can be attributed to the polarization of the radiatio
For the same energy but using radiation aligned with
dimer, the 5.2-eV mode does not show up in the cross s
tion, as can be seen in Fig. 6~a!, and this is translated into th
very weak induced field shown in Fig. 9~e!. Finally, the case
of three spheres@Fig. 9~f!# shows a strong localization of th

f
w

-
ch

FIG. 9. Contour maps of the square of the induced-electric-fi
strength in the vicinity of Al spheres of radiusa519 nm illumi-
nated by RCP radiation of energy as indicated by labels@see corre-
sponding points in Fig. 6~a!#. The cases of an isolated sphere@~a!
and~b!#, a two-sphere cluster with different orientations relative
the incoming radiation@~c!–~e!#, and a three-sphere cluster~f! have
been considered. The planes of representation are schemat
shown in the insets relative to both the incoming beam direct
and the position of the spheres. The sphere surfaces are repres
by thick circumferences on the figures. The separation between
surfaces of the spheres is 2 nm in~c!–~f!. Contour curves limiting
white areas correspond to a value of 5, 5.5, 8, 8, 3.5, and 9 a.
~a!–~f!, respectively. The difference in value between consecu
contour curves is 0.5 a.u. in all cases. The strength of the exte
field has been normalized to 1 a.u.
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FIG. 10. Contour maps of the square of th
induced-electric-field strength in the vicinity of
cluster of three Al spheres of radiusa519 nm
illuminated by linearly polarized radiation with

the polarization vectoreW as shown in the insets
~the plots in each column are calculated using t
same polarization!. The energy of the radiation is
vA55.2 eV. The plane of representation is sch
matically shown in the insets relative to both th
incoming beam direction and the position of th
spheres. The angle formed between the direct
of propagation of the radiation and the normal
the plane of representation isu i . The sphere sur-
faces are represented by thick circumferences
the figures. The separation between the surfa
of the spheres is 2 nm. Contour curves limitin
white areas correspond to a value of 4 a.u. T
difference in value between consecutive conto
curves is 0.5 a.u. in all cases. The strength of
external field has been normalized to 1 a.u.
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induced field in the interstitial region between the spheres
well as a certain asymmetry also connected to the polar
tion of the radiation.

The near field induced by linearly polarized light incide
along different angles with respect to the normal to a trian
formed by three Al spheres of radiusa519 nm, like those
considered in Fig. 9~f!, is represented in Fig. 10. When th
polarization vector is contained in the plane determined
the normal to the triangle and the direction of incidence
the radiation@s polarization; Figs. 10~a!–10~c!#, the near
field is very sensitive to the angle of incidence. For norm
incidence, the polarization direction has a large projection
two of the bond vectors of the cluster, producing an inte
induced electric field in those regions. For in-plane in
dence, the polarization vector is normal to all bond vecto
and, as a result, the induced field is very weak. This is
qualitative agreement with the conclusions extracted fr
Figs. 6~b! and 9~c!–9~e!, where it was shown that only th
electric field component parallel to the bond vector contr
utes to excite a mode at the energyvA55.2 eV under con-
sideration. Forp polarization @Figs. 10~d!–10~f!# the near
as
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e
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f
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field is rather insensitive to the incidence angle, and this
be attributed to the fact that the projections of the polari
tion vector on the bond vectors of the cluster are independ
of the angle on incidence in this case. Also, the wavelen
of the radiation is over 17 times larger than the sphere rad
~see upper scales in Fig. 6!, and, hence, phase differences
the interaction of external radiation with the spheres for va
ous incidence angles are small.

The evolution of the induced electric field on its way o
from the target is represented in Fig. 11. The near field
shown on different planes parallel to the same three-
sphere cluster considered above@Figs. 11~a!–11~f!#, and also
on concentric hemispheres centered at the cluster@Figs.
11~g!–11~j!#. The electric field evolves smoothly, formin
different patterns that cannot be directly identified with t
far field up to relatively large distances from the cluster. F
hemispheres at distances of 150 and 200 nm, like those
templated in Figs. 11~i! and 11~j!, the induced field starts
resembling the far field represented in Fig. 8~h! for the same
geometry. Upon inspection of Eq.~17!, one concludes tha
the far-field approximation is valid at distancesR from the
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FIG. 11. Contour maps of the square of th
induced-electric-field strength in the vicinity of
cluster of three Al spheres of radiusa519 nm
illuminated by RCP radiation. The energy of th
radiation isvA55.2 eV. The surfaces of repre
sentation are schematically shown in the ins
relative to both the incoming beam direction an
the position of the spheres. Different planes pe
pendicular to the direction of the radiation hav
been considered in~a!–~f!. The distance from the
planes to the centers of the spheres is
@15# 30 nm in ~a!–~f!, respectively. The nea
field has been also represented for points lying
concentric hemispheres whose distance from
cluster center is 50@150# 200 nm in ~g!–~j!,
respectively. In this case, the representation
based upon polar angles with respect to the f
ward direction determined by the center of th
hemispheres, in a similar way as in Fig. 8~h!. The
sphere surfaces are represented by thick circu
ferences in~a!–~c!. The separation between th
surfaces of the spheres is 2 nm. Contour curv
limiting white areas correspond to a value of
a.u. in ~a!–~d!, 2.2 in ~e!, and 1.2 in ~f!. The
difference in value between consecutive conto
curves is 0.5 a.u. in~a!–~d!, and 0.2 in~e! and~f!.
The maximum values in~g!–~j! are 2.5, 0.36,
0.24, and 0.19 a.u., respectively. The strength
the external field has been normalized to 1 a.u
us
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cluster much larger than the cluster size and such thatk0R
!Al max. In the present case, this condition becomesR
!125 nm.

The maxima of the induced electric field are located j
outside the spheres in the case of Al~see Figs. 9–11!,
whereas for SiO2 the induced field is larger insid
the spheres~see Fig. 5!. This is related to the fact that th
wave equation~2!, which rules the propagation of free scal
functions in Al ~SiO2), is the same as the Schro¨dinger equa-
tion for free electrons moving in an repulsive~attractive!
potential, since the real part of the dielectric constant
negative~positive! for the radiation energies under conside
ation.

Single-scattering~ss! results have been compared wi
full multiple elastic scattering of multipole expansion
~MESME! in Fig. 12 for four-Al-sphere clusters of differen
sizes. Multiple scattering effects are shown to be importa
and they lead to dramatic modifications in the cross sect
When the dimensions of the cluster are increased by sca
its geometrical parameters, a general shift of the maxim
the cross sections toward lower energies is observed
result of retardation effects similar to those discussed ab
for SiO2 spheres.

A larger target has been considered in Fig. 13, where
effect of multiple scattering of external radiation has be
t

s

t,
n.
ng
in

a
ve

e
n

studied for a cluster of 60 spheres with the same structur
carbons in a C60 molecule. For SiO2 spheres@Fig. 13~a!#, the
total scattering cross section~solid curves!, as calculated
from Eq. ~30!, follows quite closely the elastic-scatterin
cross section~dashed curves! in the region below'8.5 eV,
where SiO2 is transparent and absorption is negligible. F
Al spheres@Fig. 13~b!#, both cross sections are relative
featureless. The cross section of the Al cluster lies below
result of single scattering~dotted curves, representing 6
times the total cross section of an isolated sphere! in most
of the energy range under consideration. In silica, the pro
nent feature obtained for single scattering at around 9
is converted into a dip when multiple scattering is switch
on.

The case of Si spheres coated with SiO2 has been illus-
trated in Fig. 14. Isolated spheres of radiusa520 nm have
been considered in Fig. 14~a! for different radii of the inner
Si core,b. A prominent feature dominates the spectrum
the case of pure Si~i.e., b5a). The exciton of SiO2 shows
up at around 10.5 eV when the sphere is coated, and it
mains as a dominant feature for the case of pure SiO2 . For
three touching spheres, multiple scattering is observed
play a significant role when the coating layer is thin. Noti
that a coating layer of just 2 nm of SiO2 is able to produce
sizable variations in the cross section. A shift of the mod



u

d
ag

cti
in

n
g
t,

-

ar
in

ur

g
il

he

re

h-
s in
is

ll’s
titu-
the

ere
the
rom
cal
f

eres.

of
ion
ing
ffect

he
are
us-

us
lec-

ci
ng

of

to
ro
d
n

ter
in a
est-

n
n

PRB 60 6099MULTIPLE SCATTERING OF RADIATION IN . . .
toward lower frequencies is observed here again when m
tiple scattering is switched on.

Metallic spheres of frequency-independent negative
electric function are contemplated in Fig. 15. For nonm
netic isolated spheres@Fig. 15~a!#, a general trend toward
lower energies is observed in the features of the cross-se
spectrum when the magnitude of the dielectric constant
creases. Also, the cross section increases in magnitude i
same direction, and this is consistent with the fact that ne
tive dielectric functions act like repulsive potentials for ligh
so that, the larger the magnitude ofe, the stronger the inter
action. For a cluster of three nonmagnetic spheres@Fig.
15~b!#, multiple-scattering effects are important and they
enhanced when the magnitude of the dielectric function
creases~notice in particular the dramatic change that occ
whene goes from220 to 240!.

Finally, the lower part of Fig. 15 is devoted to studyin
magnetic spheres as a function of the magnetic permeab
for e5210. The attenuation of the electric field inside t
spheres increases withm following the exponential law
exp(2rA2em), so that m and ueu play a similar role in
this respect. Actually, the modes of both isolated sphe
@Fig. 15~c!# and three-sphere clusters@Fig. 15~d!# are also
shifted toward lower energies when the permeabilitym in-
creases.

FIG. 12. Total scattering cross section for RCP radiation in
dent on tetrahedral clusters of Al spheres of various sizes. Si
scattering results~ss; dashed curves! and full multiple-scattering
results~MESME; solid curves! are shown for clusters of spheres
radius a50.475d, whose centers are separated a distanced ~see
labels!. The radiation is coming along a direction perpendicular
one of the faces of the tetrahedron, as shown in the inset. The c
section has been normalized to both the number of spheres an
projected area of one spherepa2. Consecutive curves have bee
shifted a value of 5 upwards to improve readability.
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VI. CONCLUDING REMARKS

In summary, a general, computationally efficient tec
nique has been presented for solving Maxwell’s equation
a cluster of arbitrarily disposed dielectric objects. Th
method permits one to express the solution of Maxwe
equations in terms of the scattering properties of the cons
ents of the cluster. The computation time scales with
square of the number of elements of the cluster.

The generality of this method relies on the fact that th
is no restriction on the shape or internal structure of
constituents of the clusters under consideration, apart f
the condition imposed by the translation formula of spheri
harmonics@see Eq.~10!#, which requires that the objects o
the cluster can be embedded inside nonoverlapping sph
Work to overcome this restriction is in progress.

The present formalism has been applied to the study
scattering of radiation and different examples of simulat
for clusters formed by spheres have been offered, includ
clusters of magnetic spheres and coated spheres. The e
of multiple scattering of radiation is dramatic in some of t
clusters under consideration. In general, metallic clusters
able to produce larger multiple scattering effects than cl
ters formed by insulators.

Near-field distributions have been presented for vario
clusters. Notice that there is a connection between the e

-
le

ss
the

FIG. 13. ~a! Radiation scattering cross section for a clus
formed by 60 SiO2 spheres with the same structure as carbons
C60 molecule. The radius of the spheres is 49.5 nm. The near
neighbor bond distance is 100 nm. The elastic cross section@dashed
curve; integral of Eq.~29!# is compared with the total cross sectio
@solid curve; Eq.~30!#, and 60 times the total cross section of a
isolated sphere~dotted curve!. ~b! The same as~a! for Al spheres.
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tric field induced at a position near a cluster illuminated
an external plane wave incident along a certain direction,
the radiation emitted along that direction due to a localiz
source at the position under consideration.13 This reciprocity
theorem permits us to extract conclusions on the informa
contained in SNOM images by analyzing the near field
duced in the cluster by external radiation. In this sense,
method presented here can be applied to the analysi
SNOM in complex geometries.

The present theory can deal with different extern
sources. For instance, if the external field is provided b
fast electron, the induced field acting back on the elect
can be used to simulate electron energy losses in scan
transmission electron microscopes.

Finally, an interesting possibility is offered by the exte
sion of quasicrystals56,57 to their photonic counterpart, wher
large clusters of dielectrics would be distributed to form

FIG. 14. Total scattering cross section for RCP radiation in
dent on both~a! an isolated Si sphere coated with SiO2 and ~b! a
cluster of three touching spheres. The sphere radius isa520 nm in
all cases and the radius of the Si coreb is changed as shown b
labels. In~b!, the radiation is coming normal to the plane defined
the sphere centers. The cross section has been normalized t
projected area of one and three spheres in~a! and~b!, respectively.
Consecutive curves have been shifted 0.2 upwards to improve r
ability.
d
d

n
-
e
of

l
a
n
ing

nonperiodic structure able to reflect light forming fivefo
symmetry patterns. Well-defined electronic bands are
served in quasicrystals.56 Similarly, photonic band gaps hav
been predicted in two-dimensional photonic quasicrystal58

and one would expect similar results in three-dimensio
photonic structures, where cluster models like the one de
oped here are ideal to study local properties.
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APPENDIX: TRANSLATION OF THE ORIGIN
OF ELECTROMAGNETIC MULTIPOLES

This appendix is devoted to deriving Eq.~15!, which rep-
resents the explicit form of the transformation rule of mul
pole coefficients of scalar functions under translations of
origin of multipoles from rb to ra along the vectordab
5ra2rb , when the latter is directed along the positivez

-

the

d-

FIG. 15. Total scattering cross section for RCP radiation in
dent on both an isolated sphere@~a! and ~c!# and a cluster of three
identical spheres along the direction normal to the plane of
sphere centers@~b! and~d!#, as a function of frequencyv. Nonmag-
netic spheres (m51) have been considered in~a! and ~b! with
different values of the dielectric constant (e524, 25, 26, 28,
210, 215, 220, and 240). Results for magnetic spheres a
shown in~c! and~d! for e5210 in all cases and different values o
the magnetic permeability (m51, 2, 4, 6, 8, 10, 12, 14, and 16)
The results have been normalized to the projected area of eithe
sphere or three spheres, in each case. The separation betwee
surfaces of the spheres isa/10 in the three-sphere cluster, wherea
is the sphere radius. The wavelength of the radiationl52pc/v is
given on the upper scale, normalized toa. Consecutive curves hav
been shifted 0.2 upwards to improve readability in~c! and ~d!.
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axis. This can be accomplished by projecting Eqs.~13! and
~14! onto multipole components, noticing that each multipo
under consideration is actually a spherical plane wavej L @see
comments immediately after Eq.~6! and those at the end o
Sec. II C#. In particular, thed function in Eq. ~15! comes
from the first term on the right-hand side of Eqs.~13! and
~14!. Moreover, the last term in these equations can be p
jected using the identity

1

La
2

dab•La j L~ua!5
mdab

l ~ l 11!
j L~ua!, ~A1!

where ua5k0(r2ra), L5( l ,m), and the substitution
(1/La

2) j L˜ j L / l ( l 11) has been performed. This gives rise
crossed electric-magnetic terms in Eq.~15!.

The remaining second term requires a more careful an
sis. One can proceed by considering the operator

ẑ•~La3“ !5 i F ~z2za!¹22
1

k0
~ua–“ !]zG . ~A2!

Using the identity¹2 j L52k0
2 j L @see Eq.~2! and notice that

the medium filling the interstitial region between objects
the cluster corresponds toj 50#, Eq. ~A2! leads to
p

i

s

o-

y-

f

ẑ•~La3“ ! j L~ua!52 i l 11k0H ua@ j l~ua!1 j l9~ua!#mYL~uâ!

1F j l8~ua!2
j l~ua!

ua
G

3~12m2!]mYL~uâ!J ,

where m5(z2za)/ur2rau. Now, expressingmYL and (1
2m2)]mYL in terms ofYl 11,m and Yl 21,m ~see for instance
the appendices of Messiah46! and using the recurrence rel
tions of the spherical Bessel functionsj l , one finds

dab

La
2
•~La3“ ! j L~ua!5 ik0dab$Dl 11,mj l 11,m@ua#

2DLj l 21,m@ua#%, ~A3!

whereDL is defined by Eq.~16!. Finally, using Eqs.~A1!
and ~A3! in the multipole expansion of Eqs.~13! and ~14!,
and rearranging the summation indexl , one obtains Eq.~15!.
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