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Profile of a decaying crystalline cone
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The decay of a crystalline cone below the roughening transition is studied. We consider local mass transport
through surface diffusion, focusing on the two cases of diffusion limited and attachment-detachment limited
step kinetics. In both cases, we describe the decay kinetics in terms of step-flow models. Numerical simulations
of the models indicate that in the attachment-detachment limited case the system undergoes a step-bunching
instability if the repulsive interactions between steps are weak. Such an instability does not occur in the
diffusion limited case. In stable cases the height profile,t), is flat at radiir <R(t) ~t* Outside this flat
region the height profile obeys the scaling scenafibir = F(rt ~ ). A scaling ansatz for the time-dependent
profile of the cone yields analytical values for the scaling exponents and a differential equation for the scaling
function. In the long-time limit, this equation provides an exact description of the discrete step dynamics. It
admits a family of solutions and the mechanism responsible for the selection of a unique scaling function is
discussed in detail. Finally, we generalize the model and consider permeable steps by allowing direct adatom
hops between neighboring terraces. We argue that step permeability does not change the scaling behavior of
the system, and its only effect is a renormalization of some of the param&6163-182899)04332-3

. INTRODUCTION vidual atoms, and step-flow modéfs*~8These models are
usually solved numerically, and provide results which can be
The properties of crystalline nanostructures are of considdirectly related to the microscopic dynamics. However, in
erable interest because of the technological importance ahost cases, it is difficult to understand the behavior of the
nanostructures in fabrication of electronic devices. Kineticsystem on larger length scales on the basis of these results.
properties of nanostructures attracted particular attention, Research efforts were also directed towards isolated sur-
since in many cases nanostructures are thermodynamicalfgce structures. The decay of isolated step bunches, islands,
unstable and tend to decay with time. Such decay processes hills was studied both experimentdfi?® and
have been studied both theoretically and experimentally. theoretically>~?*Here too there is an apparent gap between
Considerable effort was devoted to the study of periodiche microscopic and macroscopic theoretical approaches.
structures. The decay of one- and two-dimensional gratings In this work we attempt to bridge this gap in the case of a
was studied extensively. The emerging experimentakimple surface structure, i.e., an infinite crystalline cone. We
picturé—* is that below the roughening temperature thesegive a complete account of the surface dynamics based on a
structures decay in a shape-preserving manner. Macroscopitep-flow model, and then derive a continuum model which
facets are observed at the maxima and minima of the gragives a very accurate description of the evolution of the cone
ings. Although these systems are out of equilibrium, the apand becomes exact in the long-time limit. We do not make
pearance of facets is a manifestation of the cusp singularitany assumptions of small slope or small surface curvature.
of the surface free energy at the high-symmetry crystalline The crystalline cone consists of an infinite number of cir-
orientation. cular concentric steps. A similar system was studied by Ret-
There are basically two theoretical approaches to théori and Villain!® who considered the decay of bidirectional
problem of surface evolution in general and nanostructursurface modulations. Their results are relevant in the case of
decay in particular. On the one hand, there are phenomenasmall amplitude modulations when the profile peaks and val-
logical models which treat the crystal surface as a continuoukeys affect each other. Our work addresses the opposite situ-
medium®~1° The evolution of the surface is then driven by ation when a single peak can be considered as an isolated
the tendency of the system to lower its free engi@yen in  structure and in this sense is complimentary to theirs.
terms of continuous spatial variabje¥he advantage of such Below the roughening transition, atomic steps have a fi-
models is that they are relatively simple and can sometimesite free energy. Their existence on the surface strongly af-
lead to analytical predictions of surface evolution. However fects its morphological evolution. In many cases, one can
these models ignore the discrete nature of surface stepignore the formation of islands and voids on the surface and
which may become important below the roughening transiconsider only adatom diffusion and attachment and detach-
tion. In addition, most of them rely on assumptions of smallment processes to and from step edges. The decay of a nano-
surface slope and/or surface curvat(méth the exception of  structure is then dominated by the motion of steps. In order
Ref. 8, and are unable to properly treat the behavior of theto describe the decay process mathematically, one has to
macroscopic facets observed experimentally. solve the diffusion equation for adatoms on the terraces be-
On the other hand, there are models which treat surfactwveen the steps, with boundary conditions at the step edges,
evolution on a smaller scale. Among these are microscopiin the spirit of the Burton-Cabrera-Frank modélf the ge-

modelst!~1* where the basic degrees of freedom are indi-ometry of the nanostructure is simple, this procedure leads to
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a set of coupled equations of motion for the steps. Our goal r
in the present work is to construct and solve these equation
of motion for the simple case of an infinite crystalline cone.
A partial account of this work is found in Ref. 25. The ki-
netic step model for the cone is derived in Sec. Il. In Sec. Il
we carry out numerical simulations of the model and exam-
ine the evolution of surface morphology under various con-
ditions.

Previous experimental and theoretical research on deca
of nanostructures has demonstrated that in most cases tf
surface reaches a scaling state where the typical length sca
depends on time algebraically. Our simulations show that th
cone profile also exhibits such a scaling behavior. In Sec. |
we show analytically that the step-flow model admits such
solutions. We calculate the scaling exponents and derive ¢
continuum equation for the scaling function. The properties
of the scaling function are anglyzed n Secs._ V and V. FIG. 1. lllustration of the step configuration in a crystalline

It has been suggested that in some materials steps may ane. The step height is exaggerated.
permeable to flow of atoms; i.e., atoms can hop between
neighboring terraces without attaching to the step whichy;
separates them. In Sec. VII we discuss the consequences Q
step permeability on the decay of an infinite cone, and sho
that permeability does not change the qualitative behavior o
the system.

fusion field is always in a steady state; i.e., for any step

nfiguration, the diffusion field reaches a steady state before
e steps move significantly. Within this quasistatic approxi-

ation, the right-hand side of the diffusion equation can be

neglected. Using the radial symmetry of the cone, we can
write the static diffusion equation in polar coordinates as

II. STEP-FLOW MODEL OF A CRYSTALLINE CONE

9*Ci(r) N 19Ci(r) —0

We now consider a crystalline surface which consists of (1)
flat terraces, parallel to a high-symmetry plane of the crystal ar? rooor
and separated by atomic steps. Islands and voids are ignoreck . . L
The evolution of such systems of steps was treated long agT) e general solution of this equation is
by Burton, Cabrera, and Fratfk(BCF). The BCF theory C.(r)=A InT+B;. 2

assumes that mass transfer between terraces is governed by
diffusion of adatoms on the terraces. These atoms are emittethe coefficientsA; and B; are determined by the boundary
and absorbed at step edges, which according to BCF act @®nditions at the step edges. To define these conditions, we
perfect sinks and sources. This last assumption, however, igssume that the flux of atoms at the two step edges bounding
valid only when adatom diffusion is the rate limiting process.the ith terrace is determined by first-order kinetics, charac-
Modifications of the BCF model account for the finite rate ofterized by an attachment-detachment rate coeffidient
adatom attachment-detachment processes at step edges. The

BCF model was also generalized to include elastic and en- aC; o

tropic interactions between stefsee, for example, Refs. 10 Dsa_r =k(Ci|,i—Ci 9,

and 26. In this section we construct such a generalized BCF Fi

model for the morphological evolution of a conic hill on a

crystal surface. D &_C, —K(C|, —C8) 3)
Consider the surface of an infinite crystalline cone, which Sor | Wiy Zit1l

consists of circular concentric steps of radiit), separated ”1

by flat terraceqFig. 1). The indexi grows in the direction whereC%is the equilibrium concentration of atoms on the
away from the center of the cone. These steps may absorb g#rrace adjacent to thi¢h step. Using these boundary condi-
emit atoms, which then diffuse across the neighboring tertions, we find that the constarés are given by

races with a diffusion constaits. Assuming no deposition

of new material, no evaporation, and no transport through the cii-ci,
bulk, the adatom concentratidh(?) on theith terrace sat- A= D¢/ 1 1\ )
isfies the diffusion equation Inri—Inri, ;= —| —+—
kiri rie
o > <9Ci(F) Employing mass conservation at the step, we obtain the step
DsVeCi(r)= , velocity,
at
wherer is a two-dimensional vector parallel to the high- dri _ 9Ci aCil) —aD AimAi-a ®)
symmetry terraces. In most situations, the time scale associ- dt *\ or au |l L

ated with step motion is much larger than the time scale of
surface diffusion. One can therefore assume that the adatowhere() is the atomic area of the solid.
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In order to complete the solution of the diffusion problem, . dp; a—aj_y
we have to determine the equilibrium adatom concentration Pi=ar " o
at step edges. This concentration depends on the local step
curvature and on the radii of neighboring steps. According tawvith
the Gibbs-Thomson relatio ;% is given by

g §—&iv1
i L Mi e 4 1 1\
cieq:c‘*°exp—~ce‘J(1+—), (6) 1—q)n2 (_+ )
T T (1-a) Pi a pPi Pi+1
in units where the Boltzmann constant is equal to 1. Here
is the chemical potential associated with the addition of an ¢ _i+ 2pi41 1
atom to the solid at thizh step,T is the temperature, ar@®4 " pi Pi+1t P (pii—pi)°
is the adatom equilibrium concentration at the edge of a
straight isolated step. To evaluate the step chemical poten- 2pi-1 1
tial, u;, we take into account the step line tensibh,and a _Pi+Pifl‘ (pi—pi_13) (10
I I—

repulsive interaction between nearest-neighbor steps. The

magnitude of this interaction is inversely proportional to theEquations(10) depend on two parameterg=T2G/(Q2I'%)
square of the distance between the steps at large distanceseasures the strength of step-step interact®nslative to
Such a dependence is consistent with entropic as well age line tension I', while the parameter q=[1
elasti¢”*® interactions between straight steps. We follow +kQT/(DT)]"* determines the rate limiting process in the
Ref. 16 and take the interaction energy between step  system. Whem— 1, diffusion across terraces is fast and the

and an atomic segment of thth step to be rate limiting process is attachment and detachment of ada-
toms to and from steps. On the other hand, whe#O0, the
U ) G\/ﬁriﬂ @) steps act as perfect sinks and the rate limiting process is
Fialiv1)= , diffusion across terraces.
(ri+ric)(rie—r)?
whereG is the interaction strength. The chemical potential of . RESULTS OF SIMULATIONS

theith step is then given b
P J y We integrated Eqs(10) numerically both in the case of

AU ris)+Ur,ri—)] diffusion limited kinetics(DL) and in the case of attachment-
: (8)  detachment limited kineticADL ). The initial configuration
was a uniform step train. In principle, the initial step separa-

This equation applies also to the chemical potential of thédion is a parameter of the model. However, for any value of
first step if we sety=0. this parameter one can change the units of length and time

As we show below, in the long-time limit the distance an(_j get the_ same e_quations of motion with initial step sepa-
between steps is small compared with the step radius. In thigtion of unity and different values of the parameigendd.
limit we can approximate the step chemical potential by ~ Thus it is sufficient to consider an initial step separation of

or
SN

'S ar,

unity.
or 24, 1 ~ When the repulsive interactions between steps are weak
Mi=T+Q P 3 (i.e., g is smal), there is a striking difference between the
' i1l (rieg =) dynamics in the DL and ADL limits. In the ADL case the
or. 1 system becomes unstable towards step bunching, whereas in
__oit ) _ (99  the DL case there is no such instability. However, whes
Fitricg (ri—ri_p)° large enough the instability disappears even in the ADL case.

. N L ) Let us first discuss situations where the step bunching insta-
This approximation simplifies the algebra considerably, angjjity does not occur. Figure 2 shows the time evolution of

we verified that it does not affect the analytical and numeriypo system in the ADL and the DL cases with a relatively
cal results described below. _ large value ofg. Each line in the figures describes the evo-
We are now ready to write down the step equations ofyion of the radius of one step. We note that the innermost
motion using Eqs(4), (5), and the Gibbs-Thomson relation gten shrinks while the other steps expand and absorb the
(6). It is convenient to use dimensionless ragji, and di-  atoms emitted by the first step. When the innermost step
mensionless time: disappears, the next step starts shrinking, and so on. Our
observations indicate that the time at which thb step dis-

p-—lr- appearsy,, grows withn as r,~n*. This process results in
ar' a propagating front, which leaves a growing plateau or a
facet at the center of the cone. At large times, (tienen-
— 2 DT\ ! sionles$ position of this front behaves ason(7)~ 7%
_ eq() S . . . .
7=DC or 1+ wor, ¢ This is shown by the dashed lines in Fig. 2.

This power law is an indication of a much more general
In terms of these variables, the equations of motion take thand interesting phenomenon. It turns out that at large times,
form not only the front position but also the positions of minimal
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FIG. 2. Time evolution of the step radii in tHa) ADL and (b) DL cases withg=0.01. The radius of the facet edge can be fitted by a
7 power law(dashed lines

and maximal step densities scale " In fact, the step  §~*D(p,7) against, all the data with different values af

densityD(_p,r), de_fined as the inverse step sep_aration, Obeyﬁnd the same value of # collapse onto a single curve
the following scaling scenario: There exist scaling exponents '

@, B, and v, which define the scaled variabless pr #'” F(x,0). ) . )
and 6= 7. In terms of these variables To verify that our system obeys this scaling ansatz, we

define the step density at a discrete set of points in the
middle of the terraces:
D(p,7)= 0“F(X,0), (11
b pi(7)+pi+1(7) ) 1

where the scaling functioR is aperiodicfunction of 6 with 2 ' pir1(7) —pi(7)’
some perioddy. Our ansatz is somewhat weaker than stan-
dard scaling hypotheses, which would assume the scalingigure 3 shows plots ob(p,7) as a function ofk=pr 4
function F is independent of). We introduce this periodic  for a fixed value off and six different values of in the
dependence because our simulations strongly indicate a pADL and the DL cases. The excellent data collapse shows
riodic behavior, generated by the motion of the first s&8®  that our scaling ansatz indeed holds with=0, 3=1, and
Fig. 2. Thus the disappearance time of stepis 7, y=4 in both cases.
=(n6o)”. An immediate consequence of the scaling ansatz \We now turn to discuss effects of interactions between
is that if we defined=6+n6, with 0<60<6,, and plot steps. As shown above, the behavior of the cone in the ADL

(12

0.6r

0.4

0.2r

@ x=pr~ 4 (©) x=pr~ 4

FIG. 3. Data collapse of the density function in tf@ ADL and (b) DL cases withg=0.01. The values of the scaling exponents used

here are=0, B=1, andy=4. These figures show density functions with six different values afid the same value o as a function
of x=pr~ Y4 Different symbols correspond to different valuesnofThe unscaled data are shown in the insets.
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FIG. 4. () Time evolution of the step radii in the DL case wijl=10°. (b) Data collapse of the density function in the same system.
Different symbols correspond to different times.

and the DL limits is very similar when the repulsion betweenlow-density region follow a threefold periodicity. If the value
steps is strong. We have already mentioned that when thef g is further reduced, bunches of steps collapse together,
repulsion is weak, the behavior of the system in the DL limitand finally the whole system becomes unstable toward step
is very different from its behavior in the ADL case. This is bunching[Fig. 5(f)]. Neighboring steps merge and form a
not surprising, since linear stability analygsee Appendix bunch, which in turn merges with another bunch, and so on.
A) of the two cases in the absence of step-step interactiorStep bunches rather than isolated steps become the dynamic
predicts that the ADL case is unstable towards step bunchingbjects in the system.

while the DL case is marginal. In intermediate cases (0
<1) the system is unstable when the interactions are suffi-
ciently weak.

Figure 4 shows the time evolution and the data collapse of
the density function in the DL case when step-step interac- The above results suggest that when the step-bunching
tions are weak. As one can see, the behavior of the cone iastability does not occur, the time evolution of the system
qualitatively similar to the largg example[Fig. 2(b)] and can be described by a step-density function, which is con-
the scaling ansatz still holds. Quantitatively, the step densityinuous in both position and time variables. In this section we
near the facet edge is much higher for small valueg éfiso  derive such a continuum model by carrying out a scaling
the dependence of the scaling function on scaled time withimnalysis. We obtain an equation which governs the scaling
a collapse period is much more pronounced when the inteifunction and evaluate the scaling exponents analytically.
actions are weak. Motivated by the simulation results, we assume that at

The dependence of step kinetics on the strength of théong times the scaling ansatz, EG1), holds. This, together
interactions is much more complicated in the ADL case. Fig-with conservation of the total volume of the system, already
ure 5 shows the evolution and, when possible, the scaledetermines the two scaling exponenisand 8. First, we
density function of a series of ADL systems which differ in derive a relation between these scaling exponents by consid-
the value ofg. The two quantitative observations we made inering the height profileh(p,7). Assuming steps of unit
the DL case also hold here: The high step-density regioieight, the height difference between two points on the sur-
near the front becomes more dense, and the time dependerfaee is given by the number of steps between them. The
of the scaling function becomes more pronounced as theontinuous analog of this statement can be used to derive the
value ofg is reducedFigs. 5a)—5(d)]. In addition, we noted following relation between the height profile and the step
that the approach of the system towards the scaling state gensity:
slower. Adjacent to the dense region at the edge of the facet
is another region of very low density of steps. This region p
becomes less dense as the valuegd$ reduced. Below a h(p,7)=ho( T)—f D(p',m)dp’, (13
critical value,g., of the interaction parameter, a few steps 0
between the low-density region and the facet edge form Qhereh(7) is the height at the origin. Far enoudin the
bunch. At this stage t'h(.a scalmg ansatz bfeaks down. Thﬁmit p—?go)), h(p,7) dogs not changg with time. Cglculating
system no longer exhibits a _S|mple periodic nature, wh|ch[he height change at infinity using EG.3), we find
results from the collapse of single steps, one at a time. In-
stead, it seems to adopt a complicated almost periodic pat- ‘
tern which involyes the cpllaps.e o_f_many steps in each pe- ho( T)—ho(O)—T<a+B)/7JOC[F(X,G)—F(OC,O)]CIXZO,
riod [Fig. 5(e)]. Hints for this periodicity changes are already 0
present in Figs. @ and Hc), where the steps crossing the (14

IV. SCALING ANALYSIS AND THE CONTINUUM
MODEL
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where we have changed the integration variable and used the In addition, conservation of the total volume of the sys-
definition [Eq. (11)] of the scaling functiorf. On the other  tem,V, implies that

hand,hy(0)—hg(7,) =n becauser, is the time of disappear-

ance of thenth step.y satisfies the relation,~n?, and

therefore we havehO(O)—ho(Tn)~rﬁ’7. This and the
#e*P!v dependence in Eql4) lead to the relationy+ 3

=1.

VZZmeph(p,T)dp (15

0
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is independent of. Integration by parts of the derivative of Xi+kF Xi+ke1 91
this integral with respect t@ yields the following equation: - 2

f”’ ,dD(p,T) dp

0 ot

Xi+k+1~ Xj+k
1 9"F(x,0)
ax”

=0. (16)

e

Evaluating this integral in terms of the functidhand the

scaled variableg and #, we obtain the equation X
f x2 (17)  As long ask is finite, the difference; . ,—x is small in the
0 long-time limit. It is therefore useful to expangl, , around

This can be satisfied for ab only if =0, sinceFisa X%

Xi+kt Xitkr1

5 —x) . (23

aF(X,0) N IF (X, 0)
0 a6

periodic function ofd. Combining this result with the previ- "
ously obtained relatiom+ 8=1, we conclude that _
y b X=Xt Y, il " (24)
a=0, B=1. (18

and insert this expansion into E@3). The resulting equa-

Thus, y is the only nontrivial scaling exponent in the tion is expanded as a power seriesdin®. By requiring that
model. To evaluatey and the scaling functiolr, we con-  the equation be obeyed to all ordersdn?, we can calculate
tinue with the equation for the full time derivative of the stepthe coefficientse,,, for any desireck and n. These coeffi-

densityD: cients will involve the functionF and its derivatives with
d q respect tax, which are all periodic functions of.
ab _ b T D Zr (19) Next, we express the velocitigs andp; . ; in terms of the
dr  dr  dp dr scaled radiix;_», X;_1, ... , X,z using Eq.(10) and the

transformation to scaled variables. We then use (B4). to

Equation(19) can be evaluated in the middle of the terrace
d (19 expand the velocities in powers @& . The result of this

between two stepé.e., atp=(p;+pi.1)/2). The left-hand
side of Eq.(19) is calculated by taking the time derivative of €XPansion is
Eq. (12): dD/dr:_— D_ (pi+1—pi). This, togethe_:r with the i1t pi= 0 A+O(07Y)],
fact thatdp/d 7= (p;+ pj+1)/2, leads to the relation (25)
. . o g4 -1
dD pii1+p; dD 5 S piv1—pi=0 [B+O(6 )]
g 2 + 57 TP piva=p)=0. (20 4 and B are known expressions involvirig, F’, F”, F”,
F"”, where the primes denote partial derivatives with respect

Now we change variables té and x;=p;#~* (since 8  to x. The full expressions are given in Appendix B. The
=1), and transform Eq20) into an equation for the scaling existence of derivatives up to fourth order in this equation is

function F: a consequence of the fact that each step “interacts” with
four other stepgtwo on each sidethrough the equations of
JIF 1p|+1+p| X 0 JF motion (10). Inserting Eqs(25) into Eq.(21), we obtain the
1 KAl s Kb —+F20"(pi11—p))=0. following differential equation fof:
. . (21) rX y—4 rA 2 0 oF y—5) —

The step velocitiesp; and p;; can also be expressed in -F ;“La F §+F B +;ﬁ+o(9 )=0.

terms of thex;’s, but we defer this algebraic manipulation to (26)

a later stage.
Our next goal is to take a continuum limit of E®1) in Consider Eq(26) at larged. Our expansion in the small

the variablex=(x;,;+X;)/2. Such a continuum limit be- paramete® ! is valid only at values ok whereF does not
comes exact in the long-time limit. To see this, let us rewritediverge or vanistisee above Therefore, the first term in Eq.

Eqg. (12) in terms ofx;’s, 6, andF: (26) is O(1). This term has to be canceled by the second
term if we requireF to satisfy a single differential equation.
6t Hence, we must have
Xit+1— X = (22)

F((Xj+1tX%)/2,0)

=4, 2
According to this equation, the difference between succes- 7 (27
sivex;’s is of order8~! whereverF does not vanish. In the The fourth term vanishes a&— since y—5<0, and the
large 6 (long-time limit, these differences become vanish- third term must vanish as well. Therefore, in the large
ingly small. This justifies the continuum limit in the variable limit, F is only a function ofx, and we are left with an

X. ordinary differential equation fof:

In practice, we take the continuum limit in the following
way. We evaluate the functiofr at the position X;. F’(é— 2+ E28=0. 28)
+X;4k+1)/2 by using its Taylor expansion 2 4
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The detailed form of this equation in the DL and ADL cases Therefore in the DL caseqE0) the adatom current is
is also given in Appendix B. indeed proportional to the chemical potential gradient. In the
Let us emphasize several important properties of our scalADL case @=1) the chemical potential gradient is divided
ing analysis. First, the values of the scaling exponents wéy the local step density as suggested by Nezieln addi-
calculated ¢=0, B=1, andy=4) are consistent with the tion, we note that in the limip— (where the steps are
results of numerical simulationésee above Second, our nearly straight our chemical potentiglEq. (31)] becomes

continuum model is valid for arbitrarily large surface curva-identical to the chemical potential of Ref. 8.

ture and slopéunlike other treatment$!9. Moreover, since

our model is an expansion in the truly small paramefet V. PROPERTIES OF THE SCALING FUNCTION

[see Eq.(22)] it becomesexactin the larged (long-time _ ) )

limit. Finally, note that in going to the continuum limit we I this section we use Eq28) to study properties of the

lost the periodic dependence Bfon 6. This periodicity is scaling functionF. We also discuss the boundary conditions

generated by the first step, which follows a unique equatioff€cessary to solve E8). We begin by noting that accord-

of motion. We did not incorporate this unique behavior intoiNd to the numerical simulations of the step model, there is a

the continuum model and therefore should not be surprisegOWing plateau or facet at the top of the cone. Our numeri-

that this information is lost. cal solutions for the scaling function indicate that all physical
As we emphasized, our continuum model is an exact repsolutions indeed have such a special point, which can be

resentation of the original discrete system. For this reason [fentified as the facet edge. Let us examine the behavior of

is interesting to compare it with other continuum models,the step density on the facet and at its edge. At any given

which do not emerge as limits of discrete systems of stepdime there is only one single step on the fattbe first step
Many authors use the continuity equation during its collapse towards the origirWe have seen that the

size of the facet grows indefinitely, and therefore the step
9 . density on the facet vanishes in the long-time scaling limit.
—+VJ=0 (29 Moreover, in Appendix C we show that in the long-time
ot L L . .
limit, the step density is a continuous function even at the
to account for the surface evolution. Hends the surface facet edge; i.e., it goes to zero continuously as the facet edge

. > . e L hed from above.
height and] is the current density of diffusing adatoms. This IS approac .
equation is of course correct and reduces the problem to Denoting the scaled position of the facet edgexgythe

N 0 > _ above observations can be expressed in the form
calculatingd. It is widely assumetf'® thatJ is proportional

to the gradient of the surface chemical potenfialas ex- F(X)=0, VX<X,. (33)
pected in diffusive systems. In the case of attachment-

detachment limited systems it was suggested by Megie  Note thatF (x) =0 is not a solution of E¢(28). This does not
that the chemical potential gradient should be divided by theontradict the continuum model, since the model was derived
profile slope. Our model is consistent with the first picture inonly for the case of a finite step densjsee Eq(22)]. Thus

the DL case and with the second in the ADL case. the scaling function has to satisfy E@8) only atx>xq, and
To show this, we take the gradient of E§9). This leads  x=x, is a singular point.
to Let us now study the nature of this singularity at the facet

edge. Returning to our simulation data, we note that near the
oD . facet edge, the scaling function is extremely stésge Fig.
—*VV-I, (30 3). Indeed, the expansion of E@8) in smallF suggests that

in the vicinity ofxy, F(X) can be written as a power series in

where —D is the gradient of the profile. We now return to VX~ Xo. Thus althouglF is continuous ak, all its deriva-

Eq. (28) and transform it back to an equation for the steptiVeS With respect ta diverge at the singular point.

densityD(p, 7). Remembering that the termxF'/4 in Eq. We now turn to discuss the boundary conditions neces-
(28) arises from the time derivative @, we find that in the ~S&ry to solve Eq(28). First, we examine the behavior Bfat
general case we can write infinity. Far enough from the origin the steps do not move.

Hence in the limitjp— o0 the step density remains at its initial

>

oD 9l1 g ( p 3#” value. This implies that
JR— + —_—l--—_ =
dr dplp dp\1=q+2qD dp lim F(x)=1. (34)
with (3D =
5 It turns out that this condition corresponds to two boundary
pu=—+g D—+3D E) conditions, since it is only possible to satisfy E84) if F’
p p ap|’ vanishes at infinity. In fact, by considering the asymptotic

. . . . expansion of, it can be shown that for large
Equation(31) is nothing but the radial component of E§0)

written in terms of the dimensionless variabfesnd = with F=1+ax *+0(x"8), (35)

J= 1 ‘9_:“ 32) wherea,=3(1+g) in the DL case andy=3(1+g) in the
1-g+29D dp ADL case.
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In order to solve Eq(28), we need two additional bound- The integral in Eq(43) can be evaluated by integrating Eq.
ary conditions ak=Xxg. The first of these i$(xy) =0 [see (28) with respect tax. The result is
Eq. (33)]. Another boundary condition at=x, can be de-
rived by enforcing volume conservation. From E#ff5), the

; o - = +Xg,
volume change during the timeis given by LO(F 1)dx 4M0|><o Xo (44)

o where the integraM,= [ (F' A2+ F?B)dx is carried out in
ZWJO plh(p,7)—h(p,0)]dp. (360 Appendix C and is expressed in termsfofand its deriva-
tives. Combining Eq(43) and Eq.(44), we obtain the rela-
Integrating this equation by parts and requiring volume contion
servation, we get
4Moly,=— 6y . (45)

fo p’[D(p,7)=D(p,0)]dp=0. (37 The left-hand side of this equation dependsgnthus relat-
ing Xg to 6, the scaled collapse time period of the steps.
In terms of scaled variables, the preceding equation can bé/hat then is the value f,? It is determined by the motion
written as and collapse of the first step. The behavior of the first step is
different from that of all the other steps, since it does not
have neighboring steps with smaller radii. Thus, our con-
tinuum model, which treats all the steps on equal footing,
does not contain any information on the value &f We
where we have used the fact tifavanishes belowxo. The  therefore expeca family of valid scaling functions consis-
evaluation of the integral in Eq38) can be done by multi-  tent with the continuum model with different valuesxgfor
plying Eq.(28) by x* and integrating it with respect to The 4, The unique value of, observed in simulations is deter-

oo o0 Xg
fo(F—l)dx=f X*(F-1)dx— =0, (398
0 Xo 3

resulting equation is mined by the discrete nature of the steps, and at this stage we
= [F'A w3 are not able to calculate it.
f XZ(T+F23)dx=f 7 dx. (39)
Xo Xo VI. NUMERICAL EVALUATION
The integral M,=[x?(F' A/2 +F2B)dx on the left-hand OF THE SCALING FUNCTION

side is carried out in Appendix C, and is expressed in terms \ye now find the scaling function numerically. Consider
bined with integration by parts of the right-hand side of Eq.starting atx=x,. As explained in the preceding sectidn,

(39) leads to can be expanded in powers gk— X, in the vicinity of X,

X0

o 1 -
j X2(F—1)dX=§[x3(F—1)—4M2]|X0. (40 F(X)zzl kn(\/X——Xo)n, (46)

Inserting this relation in Eq(38), we obtain the boundary

condition where we have already used the boundary condit&s).

We therefore have three additional free parameters in this
Ml =0. (41) expansion, which should be determined by the boundary
0 conditions(34) and(41). We choose these parameters as the
We have used the facts that the surface term at infinity in Ecfirst three odd coefficients in the expansi@®): k;, k3, and
(40) vanishes andr(xq) =0. ks (the first two even coefficients vanjsiUsing the bound-
At this point we have four boundary conditions, two at ary condition(41), we can expresks as a function ok; and
infinity and two atx,. We may now obtain a unique solution k3 through the relation
of Eq. (28) if we know the value ok,. What determineg,?
To answer this question, consider the height of the cone at Ky kg ks 1
the origin,ho, at time7=r7,_, and at timer=r,. 7,_, and 5:6_x§_ 2k; 9%y 693k,
T, are the disappearance times of two successive steps, and
thereforehy(7,_1) —ho(7,)=1. We can also calculate this thus reducing the number of free parameters to two.
difference from Eq.14). Combining these two results, we Finally we use the boundary conditigi834) to find the

arrive at the relation coefficientsk,; andks. Since Eq.(34) addresses the value of
F at infinity, it cannot be easily applied to the expansiof of
TR __ in the vicinity of xo. We therefore start from an initial guess
(07— 7n2a) fo (F=1)dx=~1. (42) for the values ofk; andks;, solve Eq.(28) numerically for

this choice of parameters, and then tdgeandks until the

Recalling thatr,=(6on)” and using the fact thdt vanishes  oyndary conditiorf34) is satisfied. For a given choice kf

belowx,, we can rewrite the preceding equation as and k3, we found the solution of E¢28) in the following
" way. Numerical integration starting a is impossible be-
J (F=1)dXx—xg=— 961- (43) cause the derivatives &f diverge there. Therefore, we first
Xo used the expansioid6), truncated at a high enough order, to
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evaluate the functiorF and its first three derivatives at

=Xo+ 6x, for some choice obx. Then, using these values FE
we integrated Eq(28) numerically fromxy+ éx. We made 1r Pp” > 0E000B0G0R0S00806Y
sure that the solution is not sensitive to the choicehaf 4

The above procedure was employed to generate the sca o.sf ?

ing function for a range of values of the scaled facet edge ;
position, X, and the following picture emerged. There is a F 4| é
special minimal value ok,, which we denote byg . For ;
Xo<Xg , there is no solution of Eq28) which satisfies the

. _ 0.4f ’
boundary conditions. For each value x=xg , there is a /0
unique solution which satisfies the boundary conditions. !
Thus, as we anticipated, there is a one-dimensional family of 22| !
scaling functions parametrized by the valuexg& X3 . B

Sincexg is related tof, through Eq.(45), this family of % ' S 7 5 Py 10
solutions can alternatively be labeled by the valugpfWe _1/4
(a) X=p T

used Eq(45) to calculatedy(xp) and found that it is a mono-
tonically decreasing function. In particulaig(xg) is maxi-
mal atxg . This is reasonable, since it means that a smaller
facet corresponds to a longer period and thus to a slowe!
facet edge. 1t
Despite the existence of many possible scaling functions,
our simulations suggest that the system reaches a uniqu
scaling solution independent of initial conditions. What is the
selected solution? In Fig. 6 we compare the calculated scal
ing functions with simulation data in the DL case. We do this = 98}
for three different values dj, the interaction strength param-
eter. Wheng is large, there is an impressive agreement be- 0.4}
tween the simulations data and tkg solution [Fig. 6(a)].
When g is reduced(i.e., for weaker interactions between  (,|
steps the observed scaling function deviates from e
solution[Figs. b) and &c)]. However, in these cases there

is another solution with a larger value xyf that best fits the 1 2 3 4
simulation data. The agreement between this best-fit solutiory, X=p 14
and the simulation data is again excellent.

The above observations suggest tRgtis the selected , , . , ,
solution in the largey limit. We propose the following argu-
ment to support this scenario. Since the paramgtés a 12} _
measure of the strength of the step-step interactioalative
to the step line tensiolr, the largeg limit is equivalent to 1t
the smalll’ limit. The collapse of the first step is driven by
the step line tension. In the largdimit, the collapse driving 0.8t .
force is minimal and the collapse time period is maximal. As
we mentioned above, a long collapse period is equivalent tc g6} .
a large value of),, which corresponds to a small valuexgf
Thus the largeg limit corresponds to the minimal value of 0.4¢ .
Xo, 1.8, X=X§ .

Now consider the ADL case. Although in this limit we 0.2f 1
can also expand in \x—Xg, the numerical procedure de-
scribed above is not an effective method of solution in this 5 5 25 3 35 4 25
case. It turns out that the resulting scaling functions are sen _1/4

sitive to the choice obx. We therefore had to use a different © X=p 7T

method to solve Eq(28) in the ADL case. Let us denote by

Xpeak the minimal value ofx, which corresponds to a local

maximum ofF. Such a point must exist for any continuous  FIG. 6. Numerical solutions for the DL scaling function com-
function satisfying the integral conditiq88) and the bound- pared with simulation data. Results for three different values of the
ary conditions (33) and (34). By tuning the values of step-step interaction parameter are sho@hg=0.1, (b) g=0.01,
F(Xpea: F"(Xpead, and F”(Xpead we found a one- and (c) g=0.001. When the step-step interaction is strong,xhe
dimensional family of scaling functions, which satisfy the solution (dashed ling agrees very well with the simulation data
boundary conditions. This family can be parametrized by thécircles. As the value ofg is reduced, the best-fit solution of Eq.
value of thex,,0r alternatively by the value of the resulting (28) (solid) deviates from theq solution to higher values of.
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their experimental results as evidence that steps @0Hi
are permeable. We therefore ask the following question:
What is the effect of step permeability on decay of nano-
structures in general, and on the decay of an infinite cone in
08l / | particular? In this section we show that the scaling exponents
/ of an infinite cone of permeable steps are identical to the
F . exponents associated with impermeable steps. Moreover, the
0.6 , | only effect of step permeability on the differential equation
, for the scaling function is a renormalization of one of its
1 parameters.
, Following Ref. 16, we generalize our step-flow model to
0.2l ! i include step permeability. We assume that flux of adatoms
, between two neighboring terraces due to direct hops is de-
termined by first-order kinetics. Introducing the permeability

0 ' ' : P 10 coefficientp, we rewrite Eq.(3) as

(@) X=p 1T Jc,
15 ‘ : ‘ ‘ : : . Psr '
- (47)

aCi 4
ﬁlr =k(Ci_41l;, = CF) = p(Cil;, = Ci_4ls,)
i

:k(Ci|ri_Cieq)+p(Ci|ri_Cifl|ri)a

_DS

Step permeability does not affect the diffusion equation it-
self, and therefore the general form of the diffusion field,
given by Eg.(2), remains unaltered. However the coeffi-
cientsA; and B, are affected, and the equations for coeffi-
cients of different terraces become coupled. As a result, the
step equations of motion cannot be written in closed form.
The scaling analysis therefore becomes more cumbersome.
As in the case of impermeable steps, we assume that in
the long-time limit the scaling ansatz Ed.1) holds, with the
b 15 > Y 3 35 4 a5 5 same definitions of the scaled varizlib.lgsand 0 in tgrms qf
—1/4 p and 7. We slightly change the definition of the dimension-
() X=p 1 less timer to 7=t/ty, wheret, is a time scale which we can
FIG. 7. Numerical solutions for the ADL scaling function com- choose tq our Convenignce. The derivation of th_e exponents
a and B in Sec. IV did not involve the dynamics of the

pared with simulation data. Results for two different values of the L g
system. Thus the same derivation still holds and the values of

step-step interaction parameter are shoga:g=0.2 and(b) g o
=0.01. When the step-step interaction is strong, the simulation datg and3 are not affected by step permeability. We proceed to

(circles agree with thect =1.09+0.07 solution(dashed ling Asg ~ evaluate the exponentand the scaling functiof by study-

is reduced, we notice that the best-fit solution of E2B) (solid ing Eq. (47). . . _ .
line) deviates from thec; =1.4+0.07 solution to higher values of ~ For convenience, we parametrize the solutions of the dif-

fusion equation by concentration differences instead of the

0.5r

XO.
parameterdd; and B;. These concentration differencdd,
Xo- As in the DL case, we find that there is a minimal value@ndV;, are defined as follows:
of Xo, denoted byxg , below which there are no solutions —eq —eq
satisfying the boundary conditions. Ui=Ci(r)) —C™=AiInr;+B;—C™
Figure 7 shows the simulation data compared with calcu- ; (48)
lated scaling functions for two values of the interaction V,=Ci(r)—Ci(ri+1)=A In L

strengthg. We again find that for largg the simulation data i1

; * . . .
agree with thecg solu.tlon(dashed ling Wheng 1S reduced, . In the continuum limitU; andV; are continuous functions of
the agreement deteriorates and there is a different S°|Ut'0rnandt or alternatively of and 6. We associate the values of
with xo>xg (solid line) which best fits the simulation data. ; 3nqv. with the middle of th.e'th terrace, namely

1 | ]

VIIl. EFFECTS OF STEP PERMEABILITY XitXia 9) —U,
2 1 1
The step-flow model we introduced in Sec. Il assumes (49)
that steps are impermeable; i.e., adatoms cannot hop between Xi+ X 11
neighboring terraces without being incorporated in the step T,ﬁ) =V;.

separating them. In general, however, steps may be perme-
able. For example, in a recent pap&f,anakaet al.interpret  The scaling scenario for the functiohkandV is
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U(x,0)=6*u(x)+0(0~ 1],
(50)
V(x,0)=0"[v(x)+0(6™1)].

In terms ofU;, V,, and the dimensionless ragii, Eq.(47)
takes the form

TD.V; —
—=k(U;—C*%)+p[U;—(Ui-1—Vi-1],
Qlp; In—
pi Pi+1
(51
TDVi e
T l—k(Ui—l_Vi—l_C &)
Qlp; In—=
Pi P;

—plUi—=(Ui_1— Vi1 1.

Evaluating Eq.(51) at x=(X;+X;,1)/2 we can now em-

ploy Eq. (24) to expandé;, p;In(pi/p;i+1) and p; In(p;i-1/p;)
in powers ofg~*:

F2
= — I ’ -1 -2
& X+g X+3FF ”0 +0(6 9,
Pi -1
piln—=-=+0(6""), (52
Pi+1
pi-i_ 1 1
piln= === +0(67Y),

The x;’s dependence df) andV is unknown, so we expand

(xi1+xi =§ 1 d"u(x) xil+xi_x)”

2 ARl o 2 !
(53

(xi1+xi :i ia”v(x)<xil+xi_x>”

2 AR o 2 '

Since the difference between successiigis of orderg ?,

Eq. (53 is also an expansion in this small parameter.
Using Eq.(53) together with Egs(49) and(50) we isolate

v(x) in Egs.(51), keeping only the lowest orders i 1,

% e

D.TF+pQl ’

“.el]

D.TF+(p+kQT

0l+ VV(X)

— 11
QFk( 6t Hu(x) — Ce‘{; +9

— 11
QFk[ ot Fu(x) — Ce{; +g
01+ VV(X) —

(54)

Since v(x) cannot vanish identically, the two expressions

above are consistent only if<—1, u=-1, and

(59

— 1 [F?
—ceq - ’
u(x) C‘{X-l—g —+3FF ”
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Thus, both sides of Eq$54) decay in time. We now subtract
the second line of Eq51) from the first line and obtain the
following equation:
DT
+
Qr Pioy P
pi P Pi+1

=(k+2p)(Ui—=Ui_1+Vi_y). (56)

Again we expand to lowest order i * and isolatev(x):

QT (k+2p)
2D TF2+QI'(k+2p)F
v(x) does not depend of. This implies thatv=—-2 and
v(X) is proportional tou’(x).
To finish the scaling analysis, we return to Eg1) and
find the leading orders i~ * of p;.,1+p; and pi,1—p;.
Using Eqgs.(5) and(48), we find that

v(x)=—6" ")

u’'(x). (57

. D.T? Vv, Vg
Pi—QFZto .|ni_

P pi
Putting together Eqg50), (52), and(58) we conclude that to

lowest order ing~ 1,

(58)

pis1tpi=0 [ A,+0(07 ],
: ) (59
pir1—pi=0 [B,+O(67H)].
A, and B, are expressions involving, F’, F”, F”, and
F"". Note that the orders of ! in these expressions are
identical to those in the equivalent expressions in Sec. IV
[Eqg. (25)]. These orders are responsible for the resuit4
in the case of impermeable steps. Therefore, in the perme-
able case we also havwe=4.

After expandingp;.;+p; andp;,,—p;, we can use Eq.
(21) to obtain the differential equation for the scaling func-
tion in the permeable case. However, this exercise is not
necessary. We avoid it by arguing that the resulting differ-
ential equation in the permeable case is equivalent to the one
in the impermeable case with renormalization of some of the
parameters. To see this, we note that the treatment we pre-
sented here is valid also in the impermeable case. Thus when
p=0, the general differential equation must be equivalent to
the equation derived in Sec. IV. In addition, the attach-
ment/detachment rateand the permeabilitp affect the step
velocities only through the function(x), which depends on
k and p only through the sunk+2p. Therefore,k and p
affect the differential equation itself only through the sum
k+2p. We conclude that the scaling function in the case of
permeable steps is identical to the scaling function of imper-
meable steps withkk+2p in the former replacing in the
latter.

VIIl. SUMMARY AND DISCUSSION

We have studied the relaxation of an infinite crystalline
cone below the roughening temperature, in terms of a step-
flow model. The model was solved numerically and two
types of dynamical evolutions were found. When the repul-
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sive interactions are strong enough, the decay of the coneith the discrete step system. Another open issue related to
proceeds through the collapse of the innermost steps, oriBe behavior of the innermost step is the periodic behavior of
step at a time. Weak interactions lead to a step-bunchinghe scaling function. This periodicity is observed in the ki-

instability (except in pure diffusion limited kinetitsand the netics of the discrete system of steps, and is absent from the

decay process becomes much more complicated and involv&8!ution of the continuum equation. Lastly, when the repul-
collapse of bunches of steps sive interaction between steps is weaker than a certain
' threshold, the system becomes unstable and step bunches are

Focusing on stable cases, we found that in the Iong't'm‘fa'ormed. The critical value of the interaction below which this

limit the decaying step system obeys a scaling scenario. Thggapility occurs and its dependence on the kinetic param-
step density(i.e., the slope of the height profiledefined as  gter q have not been studied so far. We intend to address
the inverse step separation, scales in time according tghese open questions in future work.

D(p,7)=7Y"F(v F7p,7"). F is a function of the scaled Finally, we remark that the scaling behavior of the cone
position x=7"#7p and exhibits a periodic dependence onprofile, predicted in this work, is robust, in particular the
the scaled timed= 7. In particular, the position of the existence of a facet growing as’* as well the existence of
facet edge at the top of the cone growsr&9. The values of @ scaling state does not depend on the detailed form of the
the scaling exponents which fit our simulations are 0,  repulsive interactions between steps. A quantitative change
B=1, andy=4. of these interactions may alter the scaling functienhut the

Following this observation we used a scaling ansatz tcaling exponents do not change. Another manifestation of

transform the discrete step-flow model into a continuum dethe robustness of the scaling solution is the effect of step

scription of surface evolution. The basic predictions of thispre]rmeag”t';y‘ In lprlngpLe, _stepf [t)hermeat)lllty C?_Uklj h:ve
continuum model are the values of the scaling exponentg anged the scaling behavior of the system enurely. How-

(which agree with the simulation resyltand a differential ever, we showed that its only effect on the scaling s_,olution is
equation for the scaling functioR. This continuum model to modify the attachment-detachment rate coefficiénto

becomes exact in the long-time scaling limit, and it breakd<+ 2P-
down whenever the step density vanishes. This fact can be
seen both from the derivation of the continuum model and

from the resulting differential equation, which predicts a sin- We are grateful to N. Bartelt, H. C. Jeong, D. J. Liu, and
gular behavior at the zeros of the scaling functin J. D. Weeks for helpful discussions. This research was sup-

We showed that each physical solution of the continuunported by Grant No. 95-00268 from the United States—Israel
equation has a special poindg, at which the scaling func- Binational Science FoundatiqQBSF), Jerusalem, Israel.
tion, F, vanishesF is singular atx=Xxy, and we identify this
special point as the scaled position of a facet edge. Thus the APPENDIX A
edge of a macroscopic facet in the discrete system is a sin-
gular point of the scaling functioR.

A detailed analysis of the discrete system revealed a su
ficient number of boundary conditions, which define a
unique scaling functionf, for a given value of the scaled
facet edge positiong,. However, we were not able to find a
unique value forx,, and were left with a one-dimensional
family of solutions, parametrized byy. A numerical solu-
tion of the differential equation fdf confirmed the existence
of this family. We found that there is a minimal value>gf,

ACKNOWLEDGMENTS

Here we study the linear stability of circular, uniformly
fs_paced steps with unit-step separation in the absence of step-
step interactions. This configuration wiiy,=n is not a
steady state. However, in the large radius limit the steps
move very slowly, and the uniform state is extremely close
to a steady state. We therefore refer to it as a quasisteady
state. We regard the quasisteady state as unstable if the
growth of perturbations is faster than the motion of steps.

In the absence of step-step interactions, Ef@). simplify

which we denoted by . For everyx,=x3 , there is a 0
unique scaling function, while fax,<xg there are no solu- - _dpy, ap—as
tions which satisfy the boundary conditions. Pz = o, (AL)
A comparison of the numerical solutions Bfwith results .
of simulations of the discrete system leads to the foIIowingW'th
picture. When the step-step repulsion is strong, there is a 1 1
remarkable agreement between the=x§ solution and the or P
simulation data. When the magnitude of the step-step inter- a,= n fnrl (A2)
action is reduced, the system reaches scaling solutions with (1—q)In Pn _q(i+ 1 )
Xo>Xg . We therefore advance the hypothesis that in the Pn+1 Pn Pn+1
strong interaction limit the system approaches the minimakor |arge values o, the velocity of thenth step in the
Xg solution. quasisteady state is given by
Although our work provides a detailed account of the de- 3
cay process of an infinite cone, it leaves a few unresolved S +o(n 4 (A3)
issues. First and most important is the fact that we were not Pn 1+q '

able to uniquely determine the valuexgf We did show that

Xo depends crucially on the detailed collapse process of th
innermost step, which is not included in the continuum
model. Thus, in order to evaluatg, one has to deal directly pr=n+Ag (¥n-e, (A4)

To check the linear stability of the above configuration, we
Serturb the step positions according to
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Equating the time derivative of this perturbation with the ¢=— 7 (step pairing. The =0 mode(uniform translation
velocity of thenth step results in an equation far We find  is marginal as is thg=0 (DL) case.

that to the lowest orders i andn™1,

APPENDIX B

4ig(1—cos¢)n~?
w= (1+q) (A5) In this appendix we give some technical details of the
algebraic manipulations performed in Secs. IV and V.
Since the magnitude @b is significantly larger than the step ~ To calculate expressiond and B in Eq. (25), we first
velocities in the quasisteady state, positive values ofdn( express the scaled positions of the steps as power series in
lead to an instability. We see that away from the DL cased™ . Inserting Eq.(24) into Eq. (23) we find that to fifth
(q>0) the system is unstable. The most unstable mode ierder ing~*

50t 3F'6°? +5(—3F'2+ FF")6 3 +(—93F'3+ 61FF'F"—6F2F ()94

X2TXT TR T R 2F5 4F7
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24F°
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XX R T T 2F5 4F7
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|
where F and its derivatives are evaluated at=(X; oF  4F' 10F'2 10" 18F'FE" ,
+Xi 4 1)/2. Ao=0| 5~ S+t T E +6F®
Using these expressions we expand the step velocities in X X
6~ and obtain Eq(25). In the general case the expressions
for A and 5 are too cumbersome to be written here. Instead 5

we give these expressions in the two limiting cases. In the +—,
DL case, Fx3
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3 5F' 5F'3 7F" 10F'E" 9F"2
Bpi=9| ——+

—— —+
x4 Fx® F3 Fx? F2x F?

F'?(5F +9x*F") 5F®) L OF F®) 3F(4))

} +
F3X2 Fx F2 F
3 F’
- F2y4 _F3x3' (B2)

Inserting Eq(B2) into Eq.(28) we find the differential equa-
tion which governs the scaling function in the DL case:

15F'F"+5FF®
g| 12F F®+3FFW+oF" 24 ———

2 e T a

7(F'2+FF") 6FF' 3F%| 3 xF'
X X

In the ADL case,

4 1 F 3F'% 3F'3 S5F

o0 T e TR B Fx
6F’F”+3F(3) 1 F’
F2 F F2X3 F3X2’

P 3 F Fr2 3F’3+9F’4 3F”
apL=9 2Ext E23 B3 E%  2F5 E22
F'F” 21F'?F” 3F"> 5F0)
+ - + +
2F3%  2F* F3  2F%
3F'F®  3F® 3 2F
+ + - -
2F  2F% ) 2F3%* R
3F/2 F"
(B4)

N +—,
2F5%%  2F*?

PRB 60

dx

M =fx2(i4+FzB
2 2

to set boundary conditions for the scaling functiorxgt

In the DL case,

_ [F? 2FF' G5F'? BFF"
Mo =0 (5~ — 5+t~ +OF'F'+3FF
L1
x3’

FZ
MZDL=g<T—6FF’—xF’2—xFF”

3
+9x2F'F" + 3x?FF" +
In the ADL case,

M. —dl F F’+3F’2 3F’3+5F”
w0 56 2 BF gr2 | X

3F’F”+3F’”)+ 1 . F’

F 2 2x3F  2x2F2’
_ [3F 5F' 3xF'? 3x*F'® xF"

200" 2x T2 T T2F T op2 2

+3X2F!F/I +3X2FH/ 3 FI
F 2 2xF ' op2
APPENDIX C

In this appendix we show that in the scaling state, the step

density near the facet edge must vanish when the facet size

and the differential equation for the ADL scaling function is diverges. This implies tha(X,) =0, wherex, is the scaled

3F 3F' 3F'? 3F'® 3F'* B3F" 3F'F

-—t—- - +
2x4 2x® 2Fx? 2F% F3 x2 Fx

g

15F'2F”  3F"2 5F®) 3F'F®)  3F®)
o2 F 2x F 2

0. (B5)

In Sec. V we used the moments

F'A
MO:I (T'f-FZB)dX,

position of the facet edge. We restrict ourselves to situations
where steps collapse towards the origin one at a ficos-
sistently with simulation results

It is tempting to argue that since our system is expanding

and slowing down, in the long-time limit it approaches the
equilibrium state of straight steps in contact with a facet. In
this equilibrium state the step density near the facet edge
vanishes as a square root. This equilibrium state is not con-
sistent with our density function, which also predicts a
square root approach to zero, but with a time-dependent co-
efficient. Moreover, even in the long-time limit, steps in our
system continue to collapse. In each collapse period, just
before the step disappears, its chemical potential diverges. At
these times the system is not close to equilibrium.

Consider the velocity of the first step. It depends on the

positions of the first three steps, p,, andp; through
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39 Pz
p2+ \| = \/ p2\/60+ —
29
/ 3g [3g)’
po\6g+ o 7)

[-)_1 51_52

|=—

1 P1
1-q)ln——q| —
( D P2 qu P2

(€1 Mpl

p, is always larger tham4, so the denominator is always
negative. The direction of motion of the first step is thus
given by the sign of the numerator,

Nzgl_fzzi_i‘FZg S -
P1 P2 (p2—p1)° - 2gps _ 4
s 1 ) & (P2+P3)£P3_P2)3 |
02793 (pa—pa)° e first three terms ofV{p7) decay wherp, is large. The

fourth term, however, will remain finite unless the difference
_ N _ _ _ p3— p, diverges withp,. If the fourth term does remain fi-
which must be positive to avoid bounding of the first andnite, AV{p%) becomes negative, the velocity of the first step

second steps. becomes positive, and the first step cannot pgson its
Fixing p, and p3, the value ofp} which minimizesN'is  way to the origin.
found by solving The above analysis indicates that the step density vanishes

near the facet edge. We consider two scenarios for the col-

N lapse of the first step. In the first scenario the step starts the

oV L 69 _ 1 -0 (C3) collapse from a position below} . In this case the separa-
apy ) (po—p)* p>1*2 ' tion between the first and second steps is initially divergent
sincep,— p¥ diverges as/p,. But the initial configuration in
) o the collapse of one step is the final configuration of the
The only solution betweep, and the origin is former collapse period. Thus the former period ended with a
divergent distances;— p,.
39 39 In the second scenario the first step starts to collapse from
p¥=pyr+ 1\ /?_ \/ p2/6g+ - a position above’ . If the first step collapses alortee., p,

is large throughout the collapse peripdhe distanceps
— p, must grow to allowp, to pass throughpy .
This is indeed a minimum since the second derivativé\/of Either way there must be some point in the collapse pe-

with respect tgp, is always positive when€p;<p,. riod where the separatigns— p, diverges. At this point the
Substitutingp? into NV, we find that step density near the facet edge vanishes.
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