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Profile of a decaying crystalline cone

Navot Israeli* and Daniel Kandel†

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
~Received 4 May 1999!

The decay of a crystalline cone below the roughening transition is studied. We consider local mass transport
through surface diffusion, focusing on the two cases of diffusion limited and attachment-detachment limited
step kinetics. In both cases, we describe the decay kinetics in terms of step-flow models. Numerical simulations
of the models indicate that in the attachment-detachment limited case the system undergoes a step-bunching
instability if the repulsive interactions between steps are weak. Such an instability does not occur in the
diffusion limited case. In stable cases the height profile,h(r ,t), is flat at radiir ,R(t);t1/4. Outside this flat
region the height profile obeys the scaling scenario]h/]r 5F(rt 21/4). A scaling ansatz for the time-dependent
profile of the cone yields analytical values for the scaling exponents and a differential equation for the scaling
function. In the long-time limit, this equation provides an exact description of the discrete step dynamics. It
admits a family of solutions and the mechanism responsible for the selection of a unique scaling function is
discussed in detail. Finally, we generalize the model and consider permeable steps by allowing direct adatom
hops between neighboring terraces. We argue that step permeability does not change the scaling behavior of
the system, and its only effect is a renormalization of some of the parameters.@S0163-1829~99!04332-5#
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I. INTRODUCTION

The properties of crystalline nanostructures are of con
erable interest because of the technological importanc
nanostructures in fabrication of electronic devices. Kine
properties of nanostructures attracted particular attent
since in many cases nanostructures are thermodynami
unstable and tend to decay with time. Such decay proce
have been studied both theoretically and experimentally.

Considerable effort was devoted to the study of perio
structures. The decay of one- and two-dimensional grati
was studied extensively. The emerging experimen
picture1–4 is that below the roughening temperature the
structures decay in a shape-preserving manner. Macrosc
facets are observed at the maxima and minima of the g
ings. Although these systems are out of equilibrium, the
pearance of facets is a manifestation of the cusp singula
of the surface free energy at the high-symmetry crystal
orientation.

There are basically two theoretical approaches to
problem of surface evolution in general and nanostruct
decay in particular. On the one hand, there are phenom
logical models which treat the crystal surface as a continu
medium.5–10 The evolution of the surface is then driven b
the tendency of the system to lower its free energy~given in
terms of continuous spatial variables!. The advantage of suc
models is that they are relatively simple and can sometim
lead to analytical predictions of surface evolution. Howev
these models ignore the discrete nature of surface st
which may become important below the roughening tran
tion. In addition, most of them rely on assumptions of sm
surface slope and/or surface curvature~with the exception of
Ref. 8!, and are unable to properly treat the behavior of
macroscopic facets observed experimentally.

On the other hand, there are models which treat surf
evolution on a smaller scale. Among these are microsco
models,11–14 where the basic degrees of freedom are in
PRB 600163-1829/99/60~8!/5946~17!/$15.00
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vidual atoms, and step-flow models.10,15–18These models are
usually solved numerically, and provide results which can
directly related to the microscopic dynamics. However,
most cases, it is difficult to understand the behavior of
system on larger length scales on the basis of these res

Research efforts were also directed towards isolated
face structures. The decay of isolated step bunches, isla
or hills was studied both experimentally19,20 and
theoretically.21–23Here too there is an apparent gap betwe
the microscopic and macroscopic theoretical approaches

In this work we attempt to bridge this gap in the case o
simple surface structure, i.e., an infinite crystalline cone.
give a complete account of the surface dynamics based
step-flow model, and then derive a continuum model wh
gives a very accurate description of the evolution of the co
and becomes exact in the long-time limit. We do not ma
any assumptions of small slope or small surface curvatu

The crystalline cone consists of an infinite number of c
cular concentric steps. A similar system was studied by R
tori and Villain,15 who considered the decay of bidirection
surface modulations. Their results are relevant in the cas
small amplitude modulations when the profile peaks and v
leys affect each other. Our work addresses the opposite
ation when a single peak can be considered as an isol
structure and in this sense is complimentary to theirs.

Below the roughening transition, atomic steps have a
nite free energy. Their existence on the surface strongly
fects its morphological evolution. In many cases, one c
ignore the formation of islands and voids on the surface
consider only adatom diffusion and attachment and deta
ment processes to and from step edges. The decay of a n
structure is then dominated by the motion of steps. In or
to describe the decay process mathematically, one ha
solve the diffusion equation for adatoms on the terraces
tween the steps, with boundary conditions at the step ed
in the spirit of the Burton-Cabrera-Frank model.24 If the ge-
ometry of the nanostructure is simple, this procedure lead
5946 ©1999 The American Physical Society
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PRB 60 5947PROFILE OF A DECAYING CRYSTALLINE CONE
a set of coupled equations of motion for the steps. Our g
in the present work is to construct and solve these equat
of motion for the simple case of an infinite crystalline con
A partial account of this work is found in Ref. 25. The k
netic step model for the cone is derived in Sec. II. In Sec.
we carry out numerical simulations of the model and exa
ine the evolution of surface morphology under various c
ditions.

Previous experimental and theoretical research on de
of nanostructures has demonstrated that in most case
surface reaches a scaling state where the typical length s
depends on time algebraically. Our simulations show that
cone profile also exhibits such a scaling behavior. In Sec
we show analytically that the step-flow model admits su
solutions. We calculate the scaling exponents and deriv
continuum equation for the scaling function. The propert
of the scaling function are analyzed in Secs. V and VI.

It has been suggested that in some materials steps ma
permeable to flow of atoms; i.e., atoms can hop betw
neighboring terraces without attaching to the step wh
separates them. In Sec. VII we discuss the consequenc
step permeability on the decay of an infinite cone, and sh
that permeability does not change the qualitative behavio
the system.

II. STEP-FLOW MODEL OF A CRYSTALLINE CONE

We now consider a crystalline surface which consists
flat terraces, parallel to a high-symmetry plane of the cry
and separated by atomic steps. Islands and voids are ign
The evolution of such systems of steps was treated long
by Burton, Cabrera, and Frank24 ~BCF!. The BCF theory
assumes that mass transfer between terraces is govern
diffusion of adatoms on the terraces. These atoms are em
and absorbed at step edges, which according to BCF a
perfect sinks and sources. This last assumption, howeve
valid only when adatom diffusion is the rate limiting proces
Modifications of the BCF model account for the finite rate
adatom attachment-detachment processes at step edges
BCF model was also generalized to include elastic and
tropic interactions between steps~see, for example, Refs. 1
and 26!. In this section we construct such a generalized B
model for the morphological evolution of a conic hill on
crystal surface.

Consider the surface of an infinite crystalline cone, wh
consists of circular concentric steps of radiir i(t), separated
by flat terraces~Fig. 1!. The indexi grows in the direction
away from the center of the cone. These steps may abso
emit atoms, which then diffuse across the neighboring
races with a diffusion constantDs . Assuming no deposition
of new material, no evaporation, and no transport through
bulk, the adatom concentrationCi(rW) on the i th terrace sat-
isfies the diffusion equation

Ds¹
2Ci~rW !5

]Ci~rW !

]t
,

where rW is a two-dimensional vector parallel to the hig
symmetry terraces. In most situations, the time scale ass
ated with step motion is much larger than the time scale
surface diffusion. One can therefore assume that the ada
al
ns
.
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diffusion field is always in a steady state; i.e., for any st
configuration, the diffusion field reaches a steady state be
the steps move significantly. Within this quasistatic appro
mation, the right-hand side of the diffusion equation can
neglected. Using the radial symmetry of the cone, we
write the static diffusion equation in polar coordinates as

]2Ci~r !

]r 2
1

1

r

]Ci~r !

]r
50. ~1!

The general solution of this equation is

Ci~r !5Ai ln r 1Bi . ~2!

The coefficientsAi and Bi are determined by the boundar
conditions at the step edges. To define these conditions
assume that the flux of atoms at the two step edges boun
the i th terrace is determined by first-order kinetics, char
terized by an attachment-detachment rate coefficientk:

Ds

]Ci

]r U
r i

5k~Ci ur i
2Ci

eq!,

2Ds

]Ci

]r U
r i 11

5k~Ci ur i 11
2Ci 11

eq !, ~3!

whereCi
eq is the equilibrium concentration of atoms on th

terrace adjacent to thei th step. Using these boundary cond
tions, we find that the constantsAi are given by

Ai5
Ci

eq2Ci 11
eq

ln r i2 ln r i 112
Ds

k S 1

r i
1

1

r i 11
D . ~4!

Employing mass conservation at the step, we obtain the
velocity,

dri

dt
5VDsS ]Ci

]r
2

]Ci 21

]r D U
r i

5VDs

Ai2Ai 21

r i
, ~5!

whereV is the atomic area of the solid.

FIG. 1. Illustration of the step configuration in a crystallin
cone. The step height is exaggerated.
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5948 PRB 60NAVOT ISRAELI AND DANIEL KANDEL
In order to complete the solution of the diffusion proble
we have to determine the equilibrium adatom concentra
at step edges. This concentration depends on the local
curvature and on the radii of neighboring steps. According
the Gibbs-Thomson relation,Ci

eq is given by

Ci
eq5C̄eqexp

m i

T
'C̄eqS 11

m i

T D , ~6!

in units where the Boltzmann constant is equal to 1. Herem i
is the chemical potential associated with the addition of

atom to the solid at thei th step,T is the temperature, andC̄eq

is the adatom equilibrium concentration at the edge o
straight isolated step. To evaluate the step chemical po
tial, m i , we take into account the step line tension,G, and a
repulsive interaction between nearest-neighbor steps.
magnitude of this interaction is inversely proportional to t
square of the distance between the steps at large dista
Such a dependence is consistent with entropic as wel
elastic27,28 interactions between straight steps. We follo
Ref. 16 and take the interaction energy between stepi 11
and an atomic segment of thei th step to be

U~r i ,r i 11!5
GAVr i 11

~r i1r i 11!~r i 112r i !
2

, ~7!

whereG is the interaction strength. The chemical potential
the i th step is then given by

m i5
VG

r i
1AV

]@U~r i ,r i 11!1U~r i ,r i 21!#

]r i
. ~8!

This equation applies also to the chemical potential of
first step if we setr 050.

As we show below, in the long-time limit the distanc
between steps is small compared with the step radius. In
limit we can approximate the step chemical potential by

m i5
VG

r i
1VGS 2r i 11

r i 111r i

1

~r i 112r i !
3

2
2r i 21

r i1r i 21

1

~r i2r i 21!3D . ~9!

This approximation simplifies the algebra considerably, a
we verified that it does not affect the analytical and nume
cal results described below.

We are now ready to write down the step equations
motion using Eqs.~4!, ~5!, and the Gibbs-Thomson relatio
~6!. It is convenient to use dimensionless radii,r i , and di-
mensionless timet:

r i5
T

VG
r i ,

t5DsC̄
eqVS T

VG D 2S 11
DsT

kVG D 21

t.

In terms of these variables, the equations of motion take
form
,
n
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ṙ i[
dr i

dt
5

ai2ai 21

r i
,

with

ai5
j i2j i 11

~12q!ln
r i

r i 11
2qS 1

r i
1

1

r i 11
D ,

j i5
1

r i
1gS 2r i 11

r i 111r i
•

1

~r i 112r i !
3

2
2r i 21

r i1r i 21
•

1

~r i2r i 21!3D . ~10!

Equations~10! depend on two parameters:g5T2G/(V2G3)
measures the strength of step-step interactionsG relative to
the line tension G, while the parameter q5@1
1kVG/(DsT)#21 determines the rate limiting process in th
system. Whenq˜1, diffusion across terraces is fast and t
rate limiting process is attachment and detachment of a
toms to and from steps. On the other hand, whenq˜0, the
steps act as perfect sinks and the rate limiting proces
diffusion across terraces.

III. RESULTS OF SIMULATIONS

We integrated Eqs.~10! numerically both in the case o
diffusion limited kinetics~DL! and in the case of attachmen
detachment limited kinetics~ADL !. The initial configuration
was a uniform step train. In principle, the initial step sepa
tion is a parameter of the model. However, for any value
this parameter one can change the units of length and
and get the same equations of motion with initial step se
ration of unity and different values of the parametersg andq.
Thus it is sufficient to consider an initial step separation
unity.

When the repulsive interactions between steps are w
~i.e., g is small!, there is a striking difference between th
dynamics in the DL and ADL limits. In the ADL case th
system becomes unstable towards step bunching, where
the DL case there is no such instability. However, wheng is
large enough the instability disappears even in the ADL ca
Let us first discuss situations where the step bunching in
bility does not occur. Figure 2 shows the time evolution
the system in the ADL and the DL cases with a relative
large value ofg. Each line in the figures describes the ev
lution of the radius of one step. We note that the innerm
step shrinks while the other steps expand and absorb
atoms emitted by the first step. When the innermost s
disappears, the next step starts shrinking, and so on.
observations indicate that the time at which thenth step dis-
appears,tn , grows withn astn;n4. This process results in
a propagating front, which leaves a growing plateau o
facet at the center of the cone. At large times, the~dimen-
sionless! position of this front behaves asr front(t);t1/4.
This is shown by the dashed lines in Fig. 2.

This power law is an indication of a much more gene
and interesting phenomenon. It turns out that at large tim
not only the front position but also the positions of minim
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FIG. 2. Time evolution of the step radii in the~a! ADL and ~b! DL cases withg50.01. The radius of the facet edge can be fitted b
t1/4 power law~dashed lines!.
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and maximal step densities scale ast1/4. In fact, the step
densityD(r,t), defined as the inverse step separation, ob
the following scaling scenario: There exist scaling expone
a, b, and g, which define the scaled variablesx[rt2b/g

andu[t1/g. In terms of these variables

D~r,t!5uaF~x,u!, ~11!

where the scaling functionF is aperiodic function ofu with
some periodu0. Our ansatz is somewhat weaker than st
dard scaling hypotheses, which would assume the sca
function F is independent ofu. We introduce this periodic
dependence because our simulations strongly indicate a
riodic behavior, generated by the motion of the first step~see
Fig. 2!. Thus the disappearance time of stepn is tn
5(nu0)g. An immediate consequence of the scaling ans
is that if we defineu5 ū1nu0 with 0<ū,u0, and plot
s
ts

-
ng

e-

tz

u2aD(r,t) againstx, all the data with different values ofn

and the same value of ū collapse onto a single curve
F(x,ū).

To verify that our system obeys this scaling ansatz,
define the step density at a discrete set of points in
middle of the terraces:

DS r i~t!1r i 11~t!

2
,t D5

1

r i 11~t!2r i~t!
. ~12!

Figure 3 shows plots ofD(r,t) as a function ofx5rt21/4

for a fixed value ofū and six different values ofn in the
ADL and the DL cases. The excellent data collapse sho
that our scaling ansatz indeed holds witha50, b51, and
g54 in both cases.

We now turn to discuss effects of interactions betwe
steps. As shown above, the behavior of the cone in the A
ed
FIG. 3. Data collapse of the density function in the~a! ADL and ~b! DL cases withg50.01. The values of the scaling exponents us

here area50, b51, andg54. These figures show density functions with six different values ofn and the same value ofū, as a function
of x5rt21/4. Different symbols correspond to different values ofn. The unscaled data are shown in the insets.
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FIG. 4. ~a! Time evolution of the step radii in the DL case withg51026. ~b! Data collapse of the density function in the same syste
Different symbols correspond to different times.
en
t
i

is

io
hin

uf

e
a
e

si

th
te

th
ig

ale
in
in
io
e
th

te
ac
on

ps

Th
ic
In

pa
pe
y
e

e
her,
step
a
on.
amic

hing
m

on-
we
ing
ling

at

dy

sid-

ur-
he
the

ep

g

and the DL limits is very similar when the repulsion betwe
steps is strong. We have already mentioned that when
repulsion is weak, the behavior of the system in the DL lim
is very different from its behavior in the ADL case. This
not surprising, since linear stability analysis~see Appendix
A! of the two cases in the absence of step-step interact
predicts that the ADL case is unstable towards step bunc
while the DL case is marginal. In intermediate cases (0,q
,1) the system is unstable when the interactions are s
ciently weak.

Figure 4 shows the time evolution and the data collaps
the density function in the DL case when step-step inter
tions are weak. As one can see, the behavior of the con
qualitatively similar to the largeg example@Fig. 2~b!# and
the scaling ansatz still holds. Quantitatively, the step den
near the facet edge is much higher for small values ofg. Also
the dependence of the scaling function on scaled time wi
a collapse period is much more pronounced when the in
actions are weak.

The dependence of step kinetics on the strength of
interactions is much more complicated in the ADL case. F
ure 5 shows the evolution and, when possible, the sc
density function of a series of ADL systems which differ
the value ofg. The two quantitative observations we made
the DL case also hold here: The high step-density reg
near the front becomes more dense, and the time depend
of the scaling function becomes more pronounced as
value ofg is reduced@Figs. 5~a!–5~d!#. In addition, we noted
that the approach of the system towards the scaling sta
slower. Adjacent to the dense region at the edge of the f
is another region of very low density of steps. This regi
becomes less dense as the value ofg is reduced. Below a
critical value,gc , of the interaction parameter, a few ste
between the low-density region and the facet edge form
bunch. At this stage the scaling ansatz breaks down.
system no longer exhibits a simple periodic nature, wh
results from the collapse of single steps, one at a time.
stead, it seems to adopt a complicated almost periodic
tern which involves the collapse of many steps in each
riod @Fig. 5~e!#. Hints for this periodicity changes are alread
present in Figs. 5~a! and 5~c!, where the steps crossing th
he
t
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low-density region follow a threefold periodicity. If the valu
of g is further reduced, bunches of steps collapse toget
and finally the whole system becomes unstable toward
bunching@Fig. 5~f!#. Neighboring steps merge and form
bunch, which in turn merges with another bunch, and so
Step bunches rather than isolated steps become the dyn
objects in the system.

IV. SCALING ANALYSIS AND THE CONTINUUM
MODEL

The above results suggest that when the step-bunc
instability does not occur, the time evolution of the syste
can be described by a step-density function, which is c
tinuous in both position and time variables. In this section
derive such a continuum model by carrying out a scal
analysis. We obtain an equation which governs the sca
function and evaluate the scaling exponents analytically.

Motivated by the simulation results, we assume that
long times the scaling ansatz, Eq.~11!, holds. This, together
with conservation of the total volume of the system, alrea
determines the two scaling exponentsa and b. First, we
derive a relation between these scaling exponents by con
ering the height profileh(r,t). Assuming steps of unit
height, the height difference between two points on the s
face is given by the number of steps between them. T
continuous analog of this statement can be used to derive
following relation between the height profile and the st
density:

h~r,t!5h0~t!2E
0

r

D~r8,t!dr8, ~13!

whereh0(t) is the height at the origin. Far enough~in the
limit r˜`), h(r,t) does not change with time. Calculatin
the height change at infinity using Eq.~13!, we find

h0~t!2h0~0!2t~a1b!/gE
0

`

@F~x,u!2F~`,0!#dx50,

~14!
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FIG. 5. Time evolution and scaled density functions of ADL systems with different interaction strengths.~a! and~b! g51023, ~c! and~d!
g5531024, ~e! g52.531024, and~f! g51026.
-

s-
where we have changed the integration variable and used
definition @Eq. ~11!# of the scaling functionF. On the other
hand,h0(0)2h0(tn)5n becausetn is the time of disappear
ance of thenth step.g satisfies the relationtn;ng, and
therefore we haveh0(0)2h0(tn);tn

1/g . This and the
t (a1b)/g dependence in Eq.~14! lead to the relationa1b
51.
the In addition, conservation of the total volume of the sy
tem,V, implies that

V52pE
0

`

rh~r,t!dr ~15!
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is independent oft. Integration by parts of the derivative o
this integral with respect tot yields the following equation:

E
0

`

r2
]D~r,t!

]t
dr50. ~16!

Evaluating this integral in terms of the functionF and the
scaled variablesx andu, we obtain the equation

E
0

`

x2FaF~x,u!

u
1

]F~x,u!

]u Gdx50. ~17!

This can be satisfied for allu only if a50, sinceF is a
periodic function ofu. Combining this result with the previ
ously obtained relationa1b51, we conclude that

a50, b51. ~18!

Thus, g is the only nontrivial scaling exponent in th
model. To evaluateg and the scaling functionF, we con-
tinue with the equation for the full time derivative of the st
densityD:

dD

dt
5

]D

]t
1

]D

]r

dr

dt
. ~19!

Equation~19! can be evaluated in the middle of the terra
between two steps„i.e., atr5(r i1r i 11)/2…. The left-hand
side of Eq.~19! is calculated by taking the time derivative o
Eq. ~12!: dD/dt52D2( ṙ i 112 ṙ i). This, together with the
fact thatdr/dt5( ṙ i1 ṙ i 11)/2, leads to the relation

]D

]r

ṙ i 111 ṙ i

2
1

]D

]t
1D2~ ṙ i 112 ṙ i !50. ~20!

Now we change variables tou and xi[r iu
21 ~since b

51), and transform Eq.~20! into an equation for the scalin
function F:

]F

]x
S ug21

ṙ i 111 ṙ i

2
2

x

g
D 1

u

g

]F

]u
1F2ug~ ṙ i 112 ṙ i !50.

~21!

The step velocitiesṙ i and ṙ i 11 can also be expressed
terms of thexi ’s, but we defer this algebraic manipulation
a later stage.

Our next goal is to take a continuum limit of Eq.~21! in
the variablex5(xi 111xi)/2. Such a continuum limit be
comes exact in the long-time limit. To see this, let us rew
Eq. ~12! in terms ofxi ’s, u, andF:

xi 112xi5
u21

F„~xi 111xi !/2,u…
. ~22!

According to this equation, the difference between succ
sive xi ’s is of orderu21 whereverF does not vanish. In the
large u ~long-time! limit, these differences become vanis
ingly small. This justifies the continuum limit in the variab
x.

In practice, we take the continuum limit in the followin
way. We evaluate the functionF at the position (xi 1k
1xi 1k11)/2 by using its Taylor expansion
e

s-

FS xi 1k1xi 1k11

2
,u D[

u21

xi 1k112xi 1k

5 (
n50

`
1

n!

]nF~x,u!

]xn

3S xi 1k1xi 1k11

2
2xD n

. ~23!

As long ask is finite, the differencexi 1k2x is small in the
long-time limit. It is therefore useful to expandxi 1k around
x,

xi 1k5x1 (
n51

`

fknu
2n, ~24!

and insert this expansion into Eq.~23!. The resulting equa-
tion is expanded as a power series inu21. By requiring that
the equation be obeyed to all orders inu21, we can calculate
the coefficientsfkn for any desiredk and n. These coeffi-
cients will involve the functionF and its derivatives with
respect tox, which are all periodic functions ofu.

Next, we express the velocitiesṙ i andṙ i 11 in terms of the
scaled radiixi 22 , xi 21, . . . , xi 13 using Eq.~10! and the
transformation to scaled variables. We then use Eq.~24! to
expand the velocities in powers ofu21. The result of this
expansion is

ṙ i 111 ṙ i5u23@A1O~u21!#,
~25!

ṙ i 112 ṙ i5u24@B1O~u21!#.

A andB are known expressions involvingF, F8, F9, F-,
F99, where the primes denote partial derivatives with resp
to x. The full expressions are given in Appendix B. Th
existence of derivatives up to fourth order in this equation
a consequence of the fact that each step ‘‘interacts’’ w
four other steps~two on each side! through the equations o
motion ~10!. Inserting Eqs.~25! into Eq. ~21!, we obtain the
following differential equation forF:

2F8
x

g
1ug24S F8

A
2

1F2BD1
u

g

]F

]u
1O~ug25!50.

~26!

Consider Eq.~26! at largeu. Our expansion in the smal
parameteru21 is valid only at values ofx whereF does not
diverge or vanish~see above!. Therefore, the first term in Eq
~26! is O(1). This term has to be canceled by the seco
term if we requireF to satisfy a single differential equation
Hence, we must have

g54. ~27!

The fourth term vanishes asu˜` sinceg25,0, and the
third term must vanish as well. Therefore, in the largeu
limit, F is only a function ofx, and we are left with an
ordinary differential equation forF:

F8SA2 2
x

4D1F2B50. ~28!
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The detailed form of this equation in the DL and ADL cas
is also given in Appendix B.

Let us emphasize several important properties of our s
ing analysis. First, the values of the scaling exponents
calculated (a50, b51, andg54) are consistent with the
results of numerical simulations~see above!. Second, our
continuum model is valid for arbitrarily large surface curv
ture and slope~unlike other treatments10,15!. Moreover, since
our model is an expansion in the truly small parameteru21

@see Eq.~22!# it becomesexact in the largeu ~long-time!
limit. Finally, note that in going to the continuum limit w
lost the periodic dependence ofF on u. This periodicity is
generated by the first step, which follows a unique equa
of motion. We did not incorporate this unique behavior in
the continuum model and therefore should not be surpr
that this information is lost.

As we emphasized, our continuum model is an exact r
resentation of the original discrete system. For this reaso
is interesting to compare it with other continuum mode
which do not emerge as limits of discrete systems of ste
Many authors use the continuity equation

]h

]t
1¹JW50 ~29!

to account for the surface evolution. Hereh is the surface

height andJW is the current density of diffusing adatoms. Th
equation is of course correct and reduces the problem

calculatingJW . It is widely assumed8,10 that JW is proportional
to the gradient of the surface chemical potentialm, as ex-
pected in diffusive systems. In the case of attachme
detachment limited systems it was suggested by Nozie`res29

that the chemical potential gradient should be divided by
profile slope. Our model is consistent with the first picture
the DL case and with the second in the ADL case.

To show this, we take the gradient of Eq.~29!. This leads
to

]DW

]t
}¹¹•JW , ~30!

where2DW is the gradient of the profile. We now return
Eq. ~28! and transform it back to an equation for the st
densityD(r,t). Remembering that the term2xF8/4 in Eq.
~28! arises from the time derivative ofD, we find that in the
general case we can write

]D

]t
1

]

]r F1

r

]

]r S r

12q12qD
•

]m

]r D G50

with ~31!

m5
1

r
1gS D2

r
13D

]D

]r D .

Equation~31! is nothing but the radial component of Eq.~30!
written in terms of the dimensionless variablesr andt with

J5
1

12q12qD

]m

]r
. ~32!
l-
e

n

d

p-
it
,
s.

to

t-

e

Therefore in the DL case (q50) the adatom current is
indeed proportional to the chemical potential gradient. In
ADL case (q51) the chemical potential gradient is divide
by the local step density as suggested by Nozie`res. In addi-
tion, we note that in the limitr˜` ~where the steps are
nearly straight!, our chemical potential@Eq. ~31!# becomes
identical to the chemical potential of Ref. 8.

V. PROPERTIES OF THE SCALING FUNCTION

In this section we use Eq.~28! to study properties of the
scaling functionF. We also discuss the boundary conditio
necessary to solve Eq.~28!. We begin by noting that accord
ing to the numerical simulations of the step model, there
growing plateau or facet at the top of the cone. Our num
cal solutions for the scaling function indicate that all physic
solutions indeed have such a special point, which can
identified as the facet edge. Let us examine the behavio
the step density on the facet and at its edge. At any gi
time there is only one single step on the facet~the first step
during its collapse towards the origin!. We have seen that th
size of the facet grows indefinitely, and therefore the s
density on the facet vanishes in the long-time scaling lim
Moreover, in Appendix C we show that in the long-tim
limit, the step density is a continuous function even at
facet edge; i.e., it goes to zero continuously as the facet e
is approached from above.

Denoting the scaled position of the facet edge byx0, the
above observations can be expressed in the form

F~x!50, ;x<x0 . ~33!

Note thatF(x)50 is not a solution of Eq.~28!. This does not
contradict the continuum model, since the model was deri
only for the case of a finite step density@see Eq.~22!#. Thus
the scaling function has to satisfy Eq.~28! only atx.x0, and
x5x0 is a singular point.

Let us now study the nature of this singularity at the fa
edge. Returning to our simulation data, we note that near
facet edge, the scaling function is extremely steep~see Fig.
3!. Indeed, the expansion of Eq.~28! in smallF suggests that
in the vicinity of x0 , F(x) can be written as a power series
Ax2x0. Thus althoughF is continuous atx0, all its deriva-
tives with respect tox diverge at the singular point.

We now turn to discuss the boundary conditions nec
sary to solve Eq.~28!. First, we examine the behavior ofF at
infinity. Far enough from the origin the steps do not mov
Hence in the limitr˜` the step density remains at its initia
value. This implies that

lim
x˜`

F~x!51. ~34!

It turns out that this condition corresponds to two bound
conditions, since it is only possible to satisfy Eq.~34! if F8
vanishes at infinity. In fact, by considering the asympto
expansion ofF, it can be shown that for largex

F511a4x241O~x28!, ~35!

wherea453(11g) in the DL case anda45 3
2 (11g) in the

ADL case.
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In order to solve Eq.~28!, we need two additional bound
ary conditions atx5x0. The first of these isF(x0)50 @see
Eq. ~33!#. Another boundary condition atx5x0 can be de-
rived by enforcing volume conservation. From Eq.~15!, the
volume change during the timet is given by

2pE
0

`

r@h~r,t!2h~r,0!#dr. ~36!

Integrating this equation by parts and requiring volume c
servation, we get

E
0

`

r2@D~r,t!2D~r,0!#dr50. ~37!

In terms of scaled variables, the preceding equation can
written as

E
0

`

x2~F21!dx5E
x0

`

x2~F21!dx2
x0

3

3
50, ~38!

where we have used the fact thatF vanishes belowx0. The
evaluation of the integral in Eq.~38! can be done by multi-
plying Eq.~28! by x2 and integrating it with respect tox. The
resulting equation is

E
x0

`

x2S F8A
2

1F2BDdx5E
x0

`x3F8

4
dx. ~39!

The integralM25*x2(F8A/2 1F2B)dx on the left-hand
side is carried out in Appendix C, and is expressed in te
of F and its derivatives. The result of this integration co
bined with integration by parts of the right-hand side of E
~39! leads to

E
x0

`

x2~F21!dx5
1

3
@x3~F21!24M2#ux0

` . ~40!

Inserting this relation in Eq.~38!, we obtain the boundary
condition

M2ux0
50. ~41!

We have used the facts that the surface term at infinity in
~40! vanishes andF(x0)50.

At this point we have four boundary conditions, two
infinity and two atx0. We may now obtain a unique solutio
of Eq. ~28! if we know the value ofx0. What determinesx0?
To answer this question, consider the height of the con
the origin,h0, at timet5tn21 and at timet5tn . tn21 and
tn are the disappearance times of two successive steps
thereforeh0(tn21)2h0(tn)51. We can also calculate thi
difference from Eq.~14!. Combining these two results, w
arrive at the relation

~tn
1/g2tn21

1/g !E
0

`

~F21!dx521. ~42!

Recalling thattn5(u0n)g and using the fact thatF vanishes
below x0, we can rewrite the preceding equation as

E
x0

`

~F21!dx2x052u0
21 . ~43!
-

be

s
-
.

q.

at

nd

The integral in Eq.~43! can be evaluated by integrating E
~28! with respect tox. The result is

E
x0

`

~F21!dx54M0ux0
1x0 , ~44!

where the integralM05*(F8A/21F2B)dx is carried out in
Appendix C and is expressed in terms ofF and its deriva-
tives. Combining Eq.~43! and Eq.~44!, we obtain the rela-
tion

4M0ux0
52u0

21 . ~45!

The left-hand side of this equation depends onx0, thus relat-
ing x0 to u0, the scaled collapse time period of the ste
What then is the value ofu0? It is determined by the motion
and collapse of the first step. The behavior of the first ste
different from that of all the other steps, since it does n
have neighboring steps with smaller radii. Thus, our co
tinuum model, which treats all the steps on equal footi
does not contain any information on the value ofu0. We
therefore expecta family of valid scaling functions consis
tent with the continuum model with different values ofx0 or
u0. The unique value ofx0 observed in simulations is dete
mined by the discrete nature of the steps, and at this stag
are not able to calculate it.

VI. NUMERICAL EVALUATION
OF THE SCALING FUNCTION

We now find the scaling function numerically. Consid
first the DL case. We choose a value ofx0 and solve Eq.~28!
starting atx5x0. As explained in the preceding section,F
can be expanded in powers ofAx2x0 in the vicinity of x0:

F~x!5 (
n51

`

kn~Ax2x0!n, ~46!

where we have already used the boundary condition~33!.
We therefore have three additional free parameters in
expansion, which should be determined by the bound
conditions~34! and~41!. We choose these parameters as
first three odd coefficients in the expansion~46!: k1 , k3, and
k5 ~the first two even coefficients vanish!. Using the bound-
ary condition~41!, we can expressk5 as a function ofk1 and
k3 through the relation

k55
k1

6x0
2

2
k3

2

2k1
1

k3

9x0
2

1

6gx0
3k1

,

thus reducing the number of free parameters to two.
Finally we use the boundary condition~34! to find the

coefficientsk1 andk3. Since Eq.~34! addresses the value o
F at infinity, it cannot be easily applied to the expansion oF
in the vicinity of x0. We therefore start from an initial gues
for the values ofk1 and k3, solve Eq.~28! numerically for
this choice of parameters, and then tunek1 andk3 until the
boundary condition~34! is satisfied. For a given choice ofk1
and k3, we found the solution of Eq.~28! in the following
way. Numerical integration starting atx0 is impossible be-
cause the derivatives ofF diverge there. Therefore, we firs
used the expansion~46!, truncated at a high enough order,
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PRB 60 5955PROFILE OF A DECAYING CRYSTALLINE CONE
evaluate the functionF and its first three derivatives atx
5x01dx, for some choice ofdx. Then, using these value
we integrated Eq.~28! numerically fromx01dx. We made
sure that the solution is not sensitive to the choice ofdx.

The above procedure was employed to generate the
ing function for a range of values of the scaled facet ed
position,x0, and the following picture emerged. There is
special minimal value ofx0, which we denote byx0* . For
x0,x0* , there is no solution of Eq.~28! which satisfies the
boundary conditions. For each value ofx0>x0* , there is a
unique solution which satisfies the boundary conditio
Thus, as we anticipated, there is a one-dimensional famil
scaling functions parametrized by the value ofx0>x0* .

Sincex0 is related tou0 through Eq.~45!, this family of
solutions can alternatively be labeled by the value ofu0. We
used Eq.~45! to calculateu0(x0) and found that it is a mono
tonically decreasing function. In particular,u0(x0) is maxi-
mal atx0* . This is reasonable, since it means that a sma
facet corresponds to a longer period and thus to a slo
facet edge.

Despite the existence of many possible scaling functio
our simulations suggest that the system reaches a un
scaling solution independent of initial conditions. What is t
selected solution? In Fig. 6 we compare the calculated s
ing functions with simulation data in the DL case. We do th
for three different values ofg, the interaction strength param
eter. Wheng is large, there is an impressive agreement
tween the simulations data and thex0* solution @Fig. 6~a!#.
When g is reduced~i.e., for weaker interactions betwee
steps! the observed scaling function deviates from thex0*
solution@Figs. 6~b! and 6~c!#. However, in these cases the
is another solution with a larger value ofx0 that best fits the
simulation data. The agreement between this best-fit solu
and the simulation data is again excellent.

The above observations suggest thatx0* is the selected
solution in the largeg limit. We propose the following argu
ment to support this scenario. Since the parameterg is a
measure of the strength of the step-step interactionG relative
to the step line tensionG, the largeg limit is equivalent to
the smallG limit. The collapse of the first step is driven b
the step line tension. In the largeg limit, the collapse driving
force is minimal and the collapse time period is maximal.
we mentioned above, a long collapse period is equivalen
a large value ofu0, which corresponds to a small value ofx0.
Thus the largeg limit corresponds to the minimal value o
x0, i.e., x5x0* .

Now consider the ADL case. Although in this limit w
can also expandF in Ax2x0, the numerical procedure de
scribed above is not an effective method of solution in t
case. It turns out that the resulting scaling functions are s
sitive to the choice ofdx. We therefore had to use a differe
method to solve Eq.~28! in the ADL case. Let us denote b
xpeak the minimal value ofx, which corresponds to a loca
maximum ofF. Such a point must exist for any continuou
function satisfying the integral condition~38! and the bound-
ary conditions ~33! and ~34!. By tuning the values of
F(xpeak), F9(xpeak), and F-(xpeak) we found a one-
dimensional family of scaling functions, which satisfy th
boundary conditions. This family can be parametrized by
value of thexpeakor alternatively by the value of the resultin
al-
e
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FIG. 6. Numerical solutions for the DL scaling function com
pared with simulation data. Results for three different values of
step-step interaction parameter are shown:~a! g50.1, ~b! g50.01,
and ~c! g50.001. When the step-step interaction is strong, thex0*
solution ~dashed line! agrees very well with the simulation dat
~circles!. As the value ofg is reduced, the best-fit solution of Eq
~28! ~solid! deviates from thex0* solution to higher values ofx0.
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x0. As in the DL case, we find that there is a minimal val
of x0, denoted byx0* , below which there are no solution
satisfying the boundary conditions.

Figure 7 shows the simulation data compared with cal
lated scaling functions for two values of the interacti
strengthg. We again find that for largeg the simulation data
agree with thex0* solution~dashed line!. Wheng is reduced,
the agreement deteriorates and there is a different solu
with x0.x0* ~solid line! which best fits the simulation data

VII. EFFECTS OF STEP PERMEABILITY

The step-flow model we introduced in Sec. II assum
that steps are impermeable; i.e., adatoms cannot hop bet
neighboring terraces without being incorporated in the s
separating them. In general, however, steps may be pe
able. For example, in a recent paper,16 Tanakaet al. interpret

FIG. 7. Numerical solutions for the ADL scaling function com
pared with simulation data. Results for two different values of
step-step interaction parameter are shown:~a! g50.2 and ~b! g
50.01. When the step-step interaction is strong, the simulation
~circles! agree with thex0* 51.0960.07 solution~dashed line!. As g
is reduced, we notice that the best-fit solution of Eq.~28! ~solid
line! deviates from thex0* 51.460.07 solution to higher values o
x0.
-

on

s
en
p
e-

their experimental results as evidence that steps on Si~001!
are permeable. We therefore ask the following questi
What is the effect of step permeability on decay of nan
structures in general, and on the decay of an infinite con
particular? In this section we show that the scaling expone
of an infinite cone of permeable steps are identical to
exponents associated with impermeable steps. Moreover
only effect of step permeability on the differential equati
for the scaling function is a renormalization of one of
parameters.

Following Ref. 16, we generalize our step-flow model
include step permeability. We assume that flux of adato
between two neighboring terraces due to direct hops is
termined by first-order kinetics. Introducing the permeabil
coefficientp, we rewrite Eq.~3! as

Ds

]Ci

]r U
r i

5k~Ci ur i
2Ci

eq!1p~Ci ur i
2Ci 21ur i

!,

~47!

2Ds

]Ci 21

]r U
r i

5k~Ci 21ur i
2Ci

eq!2p~Ci ur i
2Ci 21ur i

!.

Step permeability does not affect the diffusion equation
self, and therefore the general form of the diffusion fie
given by Eq. ~2!, remains unaltered. However the coef
cientsAi and Bi are affected, and the equations for coef
cients of different terraces become coupled. As a result,
step equations of motion cannot be written in closed for
The scaling analysis therefore becomes more cumberso

As in the case of impermeable steps, we assume tha
the long-time limit the scaling ansatz Eq.~11! holds, with the
same definitions of the scaled variables,x andu in terms of
r andt. We slightly change the definition of the dimensio
less timet to t5t/t0, wheret0 is a time scale which we can
choose to our convenience. The derivation of the expone
a and b in Sec. IV did not involve the dynamics of th
system. Thus the same derivation still holds and the value
a andb are not affected by step permeability. We proceed
evaluate the exponentg and the scaling functionF by study-
ing Eq. ~47!.

For convenience, we parametrize the solutions of the
fusion equation by concentration differences instead of
parametersAi and Bi . These concentration differences,Ui
andVi , are defined as follows:

Ui5Ci~r i !2C̄eq5Ai ln r i1Bi2C̄eq,
~48!

Vi5Ci~r i !2Ci~r i 11!5Ai ln
r i

r i 11
.

In the continuum limit,Ui andVi are continuous functions o
r andt or alternatively ofx andu. We associate the values o
Ui andVi with the middle of thei th terrace, namely

US xi1xi 11

2
,u D5Ui ,

~49!

VS xi1xi 11

2
,u D5Vi .

The scaling scenario for the functionsU andV is

e

ta



ns

t

e
IV

me-

c-
not
er-
one
the
pre-
hen

t to
h-

m
of
er-

ne
tep-
o

ul-

PRB 60 5957PROFILE OF A DECAYING CRYSTALLINE CONE
U~x,u!5um@u~x!1O~u21!#,
~50!

V~x,u!5un@v~x!1O~u21!#.

In terms ofUi , Vi , and the dimensionless radiir i , Eq. ~47!
takes the form

TDsVi

VGr i ln
r i

r i 11

5k~Ui2C̄eqj i !1p@Ui2~Ui 212Vi 21!#,

~51!

2
TDsVi 21

VGr i ln
r i 21

r i

5k~Ui 212Vi 212C̄eqj i !

2p@Ui2~Ui 212Vi 21!#.

Evaluating Eq.~51! at x5(xi1xi 11)/2 we can now em-
ploy Eq. ~24! to expandj i , r i ln(ri /ri11) and r i ln(ri21 /ri)
in powers ofu21:

j i5F1

x
1gS F2

x
13FF8D Gu211O~u22!,

r i ln
r i

r i 11
52

1

F
1O~u21!, ~52!

r i ln
r i 21

r i
52

1

F
1O~u21!.

The xi ’s dependence ofU andV is unknown, so we expand

uS xi 211xi

2 D5 (
n50

`
1

n!

]nu~x!

]xn S xi 211xi

2
2xD n

,

~53!

vS xi 211xi

2 D5 (
n50

`
1

n!

]nv~x!

]xn S xi 211xi

2
2xD n

.

Since the difference between successivex’s is of orderu21,
Eq. ~53! is also an expansion in this small parameter.

Using Eq.~53! together with Eqs.~49! and~50! we isolate
v(x) in Eqs.~51!, keeping only the lowest orders inu21,

u11nv~x!

52

VGkH u11mu~x!2C̄eqF1

x
1gS F2

x
13FF8D G J

DsTF1pVG
,

u11nv~x!5

VGkH u11mu~x!2C̄eqF1

x
1gS F2

x
13FF8D G J

DsTF1~p1k!VG
.

~54!

Since v(x) cannot vanish identically, the two expressio
above are consistent only ifn,21, m521, and

u~x!5C̄eqF1

x
1gS F2

x
13FF8D G . ~55!
Thus, both sides of Eqs.~54! decay in time. We now subtrac
the second line of Eq.~51! from the first line and obtain the
following equation:

DsT

VG S Vi 21

r i ln
r i 21

r i

1
Vi

r i ln
r i

r i 11

D
5~k12p!~Ui2Ui 211Vi 21!. ~56!

Again we expand to lowest order inu21 and isolatev(x):

v~x!52u2(21n)
VG~k12p!

2DsTF21VG~k12p!F
u8~x!. ~57!

v(x) does not depend onu. This implies thatn522 and
v(x) is proportional tou8(x).

To finish the scaling analysis, we return to Eq.~21! and
find the leading orders inu21 of ṙ i 111 ṙ i and ṙ i 112 ṙ i .
Using Eqs.~5! and ~48!, we find that

ṙ i5
DsT

2

VG2
t0S Vi

r i ln
r i

r i 11

2
Vi 21

r i ln
r i 21

r i

D . ~58!

Putting together Eqs.~50!, ~52!, and~58! we conclude that to
lowest order inu21,

ṙ i 111 ṙ i5u23@Ap1O~u21!#,
~59!

ṙ i 112 ṙ i5u24@Bp1O~u21!#.

Ap and Bp are expressions involvingF, F8, F9, F-, and
F99. Note that the orders ofu21 in these expressions ar
identical to those in the equivalent expressions in Sec.
@Eq. ~25!#. These orders are responsible for the resultg54
in the case of impermeable steps. Therefore, in the per
able case we also haveg54.

After expandingṙ i 111 ṙ i and ṙ i 112 ṙ i , we can use Eq.
~21! to obtain the differential equation for the scaling fun
tion in the permeable case. However, this exercise is
necessary. We avoid it by arguing that the resulting diff
ential equation in the permeable case is equivalent to the
in the impermeable case with renormalization of some of
parameters. To see this, we note that the treatment we
sented here is valid also in the impermeable case. Thus w
p50, the general differential equation must be equivalen
the equation derived in Sec. IV. In addition, the attac
ment/detachment ratek and the permeabilityp affect the step
velocities only through the functionv(x), which depends on
k and p only through the sumk12p. Therefore,k and p
affect the differential equation itself only through the su
k12p. We conclude that the scaling function in the case
permeable steps is identical to the scaling function of imp
meable steps withk12p in the former replacingk in the
latter.

VIII. SUMMARY AND DISCUSSION

We have studied the relaxation of an infinite crystalli
cone below the roughening temperature, in terms of a s
flow model. The model was solved numerically and tw
types of dynamical evolutions were found. When the rep
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sive interactions are strong enough, the decay of the c
proceeds through the collapse of the innermost steps,
step at a time. Weak interactions lead to a step-bunch
instability ~except in pure diffusion limited kinetics!, and the
decay process becomes much more complicated and invo
collapse of bunches of steps.

Focusing on stable cases, we found that in the long-t
limit the decaying step system obeys a scaling scenario.
step density~i.e., the slope of the height profile!, defined as
the inverse step separation, scales in time according
D(r,t)5ta/gF(t2b/gr,t1/g). F is a function of the scaled
position x5t2b/gr and exhibits a periodic dependence
the scaled timeu5t1/g. In particular, the position of the
facet edge at the top of the cone grows astb/g. The values of
the scaling exponents which fit our simulations area50,
b51, andg54.

Following this observation we used a scaling ansatz
transform the discrete step-flow model into a continuum
scription of surface evolution. The basic predictions of t
continuum model are the values of the scaling expone
~which agree with the simulation results! and a differential
equation for the scaling functionF. This continuum model
becomes exact in the long-time scaling limit, and it brea
down whenever the step density vanishes. This fact can
seen both from the derivation of the continuum model a
from the resulting differential equation, which predicts a s
gular behavior at the zeros of the scaling functionF.

We showed that each physical solution of the continu
equation has a special point,x0, at which the scaling func-
tion, F, vanishes.F is singular atx5x0, and we identify this
special point as the scaled position of a facet edge. Thus
edge of a macroscopic facet in the discrete system is a
gular point of the scaling functionF.

A detailed analysis of the discrete system revealed a
ficient number of boundary conditions, which define
unique scaling function,F, for a given value of the scale
facet edge position,x0. However, we were not able to find
unique value forx0, and were left with a one-dimensiona
family of solutions, parametrized byx0. A numerical solu-
tion of the differential equation forF confirmed the existence
of this family. We found that there is a minimal value ofx0,
which we denoted byx0* . For every x0>x0* , there is a
unique scaling function, while forx0,x0* there are no solu-
tions which satisfy the boundary conditions.

A comparison of the numerical solutions ofF with results
of simulations of the discrete system leads to the follow
picture. When the step-step repulsion is strong, there
remarkable agreement between thex05x0* solution and the
simulation data. When the magnitude of the step-step in
action is reduced, the system reaches scaling solutions
x0.x0* . We therefore advance the hypothesis that in
strong interaction limit the system approaches the minim
x0* solution.

Although our work provides a detailed account of the d
cay process of an infinite cone, it leaves a few unresol
issues. First and most important is the fact that we were
able to uniquely determine the value ofx0. We did show that
x0 depends crucially on the detailed collapse process of
innermost step, which is not included in the continuu
model. Thus, in order to evaluatex0, one has to deal directly
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with the discrete step system. Another open issue relate
the behavior of the innermost step is the periodic behavio
the scaling function. This periodicity is observed in the k
netics of the discrete system of steps, and is absent from
solution of the continuum equation. Lastly, when the rep
sive interaction between steps is weaker than a cer
threshold, the system becomes unstable and step bunche
formed. The critical value of the interaction below which th
instability occurs and its dependence on the kinetic para
eter q have not been studied so far. We intend to addr
these open questions in future work.

Finally, we remark that the scaling behavior of the co
profile, predicted in this work, is robust, in particular th
existence of a facet growing ast1/4, as well the existence o
a scaling state does not depend on the detailed form of
repulsive interactions between steps. A quantitative cha
of these interactions may alter the scaling function,F, but the
scaling exponents do not change. Another manifestation
the robustness of the scaling solution is the effect of s
permeability. In principle, step permeability could ha
changed the scaling behavior of the system entirely. Ho
ever, we showed that its only effect on the scaling solution
to modify the attachment-detachment rate coefficient,k, to
k12p.
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APPENDIX A

Here we study the linear stability of circular, uniforml
spaced steps with unit-step separation in the absence of
step interactions. This configuration withrn5n is not a
steady state. However, in the large radius limit the st
move very slowly, and the uniform state is extremely clo
to a steady state. We therefore refer to it as a quasiste
state. We regard the quasisteady state as unstable if
growth of perturbations is faster than the motion of steps

In the absence of step-step interactions, Eqs.~10! simplify
to

ṙn[
drn

dt
5

an2an21

rn
, ~A1!

with

an5

1

rn
2

1

rn11

~12q!ln
rn

rn11
2qS 1

rn
1

1

rn11
D . ~A2!

For large values ofn, the velocity of thenth step in the
quasisteady state is given by

ṙn5
n23

11q
1O~n24!. ~A3!

To check the linear stability of the above configuration, w
perturb the step positions according to

rn5n1Dei (fn2vt). ~A4!
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Equating the time derivative of this perturbation with t
velocity of thenth step results in an equation forv. We find
that to the lowest orders inD andn21,

v5
4iq~12cosf!n22

~11q!2
. ~A5!

Since the magnitude ofv is significantly larger than the ste
velocities in the quasisteady state, positive values of Im(v)
lead to an instability. We see that away from the DL ca
(q.0) the system is unstable. The most unstable mod
s
n
a
th
e
is

f52p ~step pairing!. Thef50 mode~uniform translation!
is marginal as is theq50 ~DL! case.

APPENDIX B

In this appendix we give some technical details of t
algebraic manipulations performed in Secs. IV and V.

To calculate expressionsA and B in Eq. ~25!, we first
express the scaled positions of the steps as power seri
u21. Inserting Eq.~24! into Eq. ~23! we find that to fifth
order inu21
xi 225x2
5u21

2F
2

3F8u22

F3
1

5~23F821FF9!u23

2F5
1

~293F83161FF8F926F2F (3)!u24

4F7

2
@1935F8421890FF82F91260F2F8F (3)1F2~180F92217FF (4)!#u25

24F9
,

xi 215x2
3u21

2F
2

F8u22

F3
1

~23F821FF9!u23

2F5
2

~33F83221FF8F912F2F (3)!u24

12F7

1
~2135F841126FF82F9212F2F92216F2F8F (3)1F3F (4)!u25

24F9
,

xi5x2
u21

2F
,

xi 115x1
u21

2F
,

xi 125x1
3u21

2F
2

F8u22

F3
2

~23F821FF9!u23

2F5
2

~33F83221FF8F912F2F (3)!u24

12F7

2
~2135F841126FF82F9212F2F92216F2F8F (3)1F3F (4)!u25

24F9
,

xi 135x1
5u21

2F
2

3F8u22

F3
2

5~23F821FF9!u23

2F5
1

~293F83161FF8F926F2F (3)!u24

4F7

1
@1935F8421890FF82F91260F2F8F (3)1F2~180F92217FF (4)!#u25

24F9
, ~B1!
where F and its derivatives are evaluated atx5(xi

1xi 11)/2.
Using these expressions we expand the step velocitie

u21 and obtain Eq.~25!. In the general case the expressio
for A andB are too cumbersome to be written here. Inste
we give these expressions in the two limiting cases. In
DL case,
in
s
d
e

ADL5gS 2F

x3
2

4F8

x2
1

10F82

Fx
1

10F9

x
1

18F8F9

F
16F (3)D

1
2

Fx3
,
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BDL5gS 2
3

x4
1

5F8

Fx3
2

5F83

F3x
2

7F9

Fx2
1

10F8F9

F2x
1

9F92

F2

2
F82~5F19x2F9!

F3x2
1

5F (3)

Fx
1

9F8F (3)

F2
1

3F (4)

F D
2

3

F2x4
2

F8

F3x3
. ~B2!

Inserting Eq.~B2! into Eq.~28! we find the differential equa
tion which governs the scaling function in the DL case:

gS 12F8F (3)13FF (4)19F921
15F8F915FF (3)

x

2
7~F821FF9!

x2
1

6FF8

x3
2

3F2

x4 D 2
3

x4
2

xF8

4
50.

~B3!

In the ADL case,

AADL5gS 1

x3
2

F8

Fx2
1

3F82

F2x
2

3F83

F3
1

5F9

Fx

1
6F8F9

F2
1

3F (3)

F D 1
1

F2x3
1

F8

F3x2
,

BADL5gS 2
3

2Fx4
1

F8

F2x3
2

F82

F3x2
2

3F83

F4x
1

9F84

2F5
2

3F9

F2x2

1
F8F9

2F3x
2

21F82F9

2F4
1

3F92

F3
1

5F (3)

2F2x

1
3F8F (3)

2F3
1

3F (4)

2F2 D 2
3

2F3x4
2

2F8

F4x3

2
3F82

2F5x2
1

F9

2F4x2
, ~B4!

and the differential equation for the ADL scaling function

gS 2
3F

2x4
1

3F8

2x3
2

3F82

2Fx2
2

3F83

2F2x
1

3F84

F3
2

3F9

x2
1

3F8F9

Fx

2
15F82F9

2F2
1

3F92

F
1

5F (3)

2x
1

3F8F (3)

F
1

3F (4)

2 D
2

3

2Fx4
2

3F8

2F2x3
2

xF8

4
2

F82

F3x2
1

F9

2F2x2
50. ~B5!

In Sec. V we used the moments

M05E S F8A
2

1F2BDdx,
M25E x2S F8A
2

1F2BDdx

to set boundary conditions for the scaling function atx0.
In the DL case,

M0DL
5gS F2

x3
2

2FF8

x2
1

5F82

x
1

5FF9

x
19F8F913FF-D

1
1

x3
,

M2DL
5gS 3F2

x
26FF82xF822xFF9

19x2F8F913x2FF-D1
3

x
.

In the ADL case,

M0ADL
5gS F

2x3
2

F8

2x2
1

3F82

2xF
2

3F83

2F2
1

5F9

2x

1
3F8F9

F
1

3F-
2 D 1

1

2x3F
1

F8

2x2F2
,

M2ADL
5gS 3F

2x
2

5F8

2
2

3xF82

2F
2

3x2F83

2F2
2

xF9

2

1
3x2F8F9

F
1

3x2F-
2 D 1

3

2xF
1

F8

2F2
.

APPENDIX C

In this appendix we show that in the scaling state, the s
density near the facet edge must vanish when the facet
diverges. This implies thatF(x0)50, wherex0 is the scaled
position of the facet edge. We restrict ourselves to situati
where steps collapse towards the origin one at a time~con-
sistently with simulation results!.

It is tempting to argue that since our system is expand
and slowing down, in the long-time limit it approaches t
equilibrium state of straight steps in contact with a facet.
this equilibrium state the step density near the facet e
vanishes as a square root. This equilibrium state is not c
sistent with our density function, which also predicts
square root approach to zero, but with a time-dependent
efficient. Moreover, even in the long-time limit, steps in o
system continue to collapse. In each collapse period,
before the step disappears, its chemical potential diverges
these times the system is not close to equilibrium.

Consider the velocity of the first step. It depends on
positions of the first three stepsr1 , r2, andr3 through



s
us

nd

f

ce
-
ep

shes
col-
the
-
ent

he
h a

rom

pe-

PRB 60 5961PROFILE OF A DECAYING CRYSTALLINE CONE
ṙ15
1

r1

j12j2

~12q!ln
r1

r2
2qS 1

r1
1

1

r2
D . ~C1!

r2 is always larger thanr1, so the denominator is alway
negative. The direction of motion of the first step is th
given by the sign of the numerator,

N5j12j25
1

r1
2

1

r2
12gS 1

~r22r1!3

2
r3

r21r3

1

~r32r2!3D , ~C2!

which must be positive to avoid bounding of the first a
second steps.

Fixing r2 andr3, the value ofr1* which minimizesN is
found by solving

]N
]r1

U
r

1*
5

6g

~r22r1* !4
2

1

r1*
2

50. ~C3!

The only solution betweenr2 and the origin is

r1* 5r21A3g

2
2Ar2A6g1

3g

2
.

This is indeed a minimum since the second derivative oN
with respect tor1 is always positive when 0<r1<r2.

Substitutingr1* into N, we find that
M

a-
ch

e

ci.
N~r1* !5
1

r21A3g

2
2Ar2A6g1

3g

2

2
1

r2

1
2g

SAr2A6g1
3g

2
2A3g

2
D 3

2
2gr3

~r21r3!~r32r2!3
. ~C4!

The first three terms ofN(r1* ) decay whenr2 is large. The
fourth term, however, will remain finite unless the differen
r32r2 diverges withr2. If the fourth term does remain fi
nite,N(r1* ) becomes negative, the velocity of the first st
becomes positive, and the first step cannot passr1* on its
way to the origin.

The above analysis indicates that the step density vani
near the facet edge. We consider two scenarios for the
lapse of the first step. In the first scenario the step starts
collapse from a position belowr1* . In this case the separa
tion between the first and second steps is initially diverg
sincer22r1* diverges asAr2. But the initial configuration in
the collapse of one step is the final configuration of t
former collapse period. Thus the former period ended wit
divergent distancer32r2.

In the second scenario the first step starts to collapse f
a position abover1* . If the first step collapses alone~i.e., r2
is large throughout the collapse period!, the distancer3

2r2 must grow to allowr1 to pass throughr1* .
Either way there must be some point in the collapse

riod where the separationr32r2 diverges. At this point the
step density near the facet edge vanishes.
nd
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