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Analytic solution for the critical state in superconducting elliptic films
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A thin superconductor platelet with elliptic shape in a perpendicular magnetic field is considered. Using a
method originally applied to circular disks, we obtain an approximate analytic solution for the two-dimensional
critical state of this ellipse. In the limits of the circular disk and the long strip this solution is exact, i.e., the
current density is constant in the region penetrated by flux. For ellipses with arbitrary axis ratio the obtained
current density is constant to typically 1%) and the magnetic moment deviates by less thart Ttbm the
exact value. This analytic solution is thus very accurate. In increasing applied magnetic field, the penetrating
flux fronts are approximately concentric ellipses whose axis o<1 decreases and shrinks to zero when
the flux front reaches the center, the long axis staying finite in the fully penetrated state. Analytic expressions
for these axes, the sheet current, the magnetic moment, and the perpendicular magnetic field are presented and
discussed. This solution applies also to superconductors with anisotropic critical current if the anisotropy has
a particular, rather realistic fornhS0163-182€09)04825-Q

I. INTRODUCTION II. DERIVATION

) o ) Let us place the origin of the coordinate system in the

Most experiments with higfi superconductors deal with center of the sample and let its plane coincide with xiye
thin flat samples in a perpendicular magnetic fieldfor  plane. The external magnetic fiehlis directed along the
example,c-axis-oriented monocristalline platelets or films. axis, i.e., along the thickneskof the sample. The boundary
In this connection, in recent years the problem of the criticalof the superconductor in they planel is described by the
state of such samples has attracted considerable interest, selipse (see Fig. 1
e.g., Ref. 1, and the references cited therein. Exact analytic X2y
solutions were obtained only for a circular disknd a thin —+ 5=
infinitely long strip®>~° In deriving these solutions it was es- a bp
sential that the critical states of the disk and the strip have ahere a, and b, are the semiaxes of the ellipsey&bg
known symmetry. For the strip the critical-state distributions>d). The critical current density, is assumed to be con-
of the magnetic field and the current do not depend on thétant. The critical-state equations for the thickness-integrated
longitudinal coordinate while the disk has a rotational axis.current densityd(x,y)=f23,j(x,y,z)dz in the partly pen-

In both cases the directions of circulating currents are fixetrated critical state have the following form. In the region
and known in advance, and thus the critical-state equation@etweenl” and the penetrating flux front one has

are one-dimensiondlLD). In the present paper we obtain an
approximate analytic solution of a two-dimension@D)
problem, namely, a thin superconductor platelet of elliptic
shape in a perpendicular magnetic field. This solution en-
ables one to understand the critical states of real supercon-
ductors when the above-mentioned symmetry is absent. The
accuracy of our solution is very high, especially for the in-
tegral quantities like the magnetization of the sample, and it
may be used to analyze experimental data. Besides this, the
analysis of our solution reveals qualitatively new features of
the critical state of thin superconductors like flux fronts with
varying curvature and the possibility of rotating flux-line ar-
rangments.

We derive this solution in Sec. Il and analyze it in Sec.
I, reproducing the known solutions for disks and strips and  F|G. 1. The three ellipses defining the edgef the film with
discussing the interesting new features. In Sec. IV we applgemiaxes,, by; an earlier flux front passing through a given point
our solution to anisotropic superconductors, and in Sec. \(x,y) (semiaxesa,,, b,,, dashed ling and the present flux front
we summarize the results. with semiaxes, b.
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[A(x,y)|=jd=J.. ) Let the penetrating flux front be the ellipse
Here the common assumption has been made that the direc- X 'y
tion of the current does not depend on the coordinateross f ab)’ 5) =1 5
the small thickness of the sample. In the flux-free region, i.e.,
inside y, the perpendicular induction should vanish, with the long axisa depending on the short axis Then,
according to the above assumption, we write for the compo-
B.(x,y)=0. (2)  nentsJ, andJ, of the sheet current,

In addition, the equation

J ——Hfb"W(b')F (Ll b’ )db’ (6)
Xy b “Ylab) b’ a(b’) ’

must hold for any andy inside the sample. In deriving the \yherew(b’) is a weight function ané, andF, are defined
solution we follow the method of Mikheenko and Kuzovfev. by Egs.(4). The sheet currents) with any weightW(b’)

Wheny coincides withl’, i.e., the flux does not penetrate the satisfies Eq(3) due to the definition of the functiors, and
superconductor, the solution of Eq&) and (3) may be F, . In the elliptic region

found by considering the field on the surface of an ideally
screening oblate ellipsoid in a uniform magnetic fi¢ldz.
The field at the surface of the ellipsoid is tangential to it and
has the forr

V-J(x,y)=0 ©)

y
Nam b

and this current creates a constant field equal to

s

H
1-N,,

Ht(Xiylz): [2_ ﬁ(iﬁ)]

bg
—Hf W(b'")db’,
~ - b
Herez is the unit vector along, n is the unit vector normal ] o N
tor. For a thin oblate ellipsoid with semiaxag=b,>c, one (2 reduces to the equation
has 1—N,,=(co/bo)E(k) whereE(Kk) is the complete el- bo
liptic integral of the second kind wittk?®=1—bZ/a3. For f W(b')db’ =1. )
example, whenay=b, (disk one hasg(0)==/2 and 1 b
—N;;=mCo/280, and whenag> by (strip) one hasE(1)=1  The functionsW(b) and a(b) must be obtained from the
and 1-N,,=cy/bg. Letting c,—0 and taking into account equality
the relation between the surface screening current and the

tangential field Jg, = nx H,,® we arrive at the sheet current J)2(+J§=J§, (8)

Ix y):22>< H which follows from Eq.(1). Letx=0. Then Eq(8) takes the
' v form which was considered in Ref. 2, and we find

whereH; is the field on the upper side of the platelet. This

result applies to films of any shape; it means that the mag- Je E(k)

nitude of the field change across the film thickness eqiials W(b)= H b\/ﬁ ©

In thin ellipses, in the regiofi(x/ay,y/by) <1 with f(u,v) 0

=u®+v?, one obtains fod=(J,,J): with k?*=1—[b/a(b)]?>. Now we can obtain the function
Jx(x=0y) [while J,(x=0y)=0] and calculate the total

_AH Y X ¥ b currentl circulating in the sample,
XTE() h. S=_HFX PR TR R
E(k) bo ap' by’ ag
|—fb°Jo dy=23.b b 10
5z 2H xbOS_ e X y by . = s x(0Yy) y=_—Je oarccosb—o. (10)
y— E(k) a_é = y a_O’b_O’a_o ) (4)

TheH dependence of the penetration dep(i) along they

where S=1/\1—x%a2—yZb2 and k2=1—(bg/ag)2. If axis is determined by Ed7). This yields

f(x/ag,y/bg)>1, we defineF,=F,=0. When a partially b Kdb’
penetrated critical state occurs in the sample, we look for the i: f OL
b b’J1—b’'?/b

solution of Egs.(1), (2), (3) as a linear combination of dis- Hec

tributions like that described by formul&$). In other words, ) ] 5 ) o .

we assume that the front of flux penetration has the shape §fith Hc=Jc/7=].d/m andk®=1—[b’/a(b’)]*, see Fig. 2.
an ellipse with the ratio of the semiaxes depending on thd O determine the dependenagb) let us repeat the above
depth of the penetration, see Fig. 1. This assumption is exaégasoning, Eqsi5)—(10), but now we shall consider as a
for disks and strips and also in the limiting case of a smalfunction ofa and integrate ovea’ fromato a,. At y=0 we
depth of penetration. As will be seen from the results ob<an findW(a’) and calculatd again, obtaining

tained below, the deviation from this assumption increases a 5 a

with increasing dept'h but remains very small. _The proposed | = _j OJy(x,O)dx: = J.a,arccos—. (12)
approximation thus is sufficient for most practical purposes. ™ Ll

(11)
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FIG. 2. The semiaxesandb of the elliptic flux fronts plotted as
reduced penetration depthsy(—a)/b, (dashed lines and (b
—b)/by (solid lineg versus the applied fieléH (in units of H,
=J. /) for thin ellipses with eccentricities=b,/ay,= 1, 0.9, 0.7,
0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0. The curve for the disk 1, a=b,
Eq. (20) with H, replaced byl./2] is marked by circles. For strips,
b [Eqg. (20)] is marked by crosses, and one lags-a=0.
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FIG. 4. 3D plot of the magnitude of the sheet currgli,y)|,
Eq. (19), in a thin ellipse withby/ay=0.7 atb/ay=0.2. In the
flux-penetrated region the plotteldJ. deviates from unity by less
than 10°3.

Figs. 4-7. In the fully or almost fully penetrated state near
the pointsx=*+a(b=0), y=0, this deviation may reach a
few percent. Our expressions provide thus a very good de-
scription of the critical state in elliptic platelets. In particular,

Since the total current crossing any radius must be the samegince this small deviation a¥(x,y) from J. occurs mainly

we may equate the curren(&0) and (12). This yields the
dependence od on b (Fig. 3),

b)= Bo P 13
a(b)=agco a—oarccoTO . (13
Formulas(4)—(6), (9), (11), and(13) give the solution for the
critical state in the ellipse. If this solution were exact, ).
would hold for anyx andy in the region between the curves

I' and y. The numerical analysis shows that, in reality, the

quantity J=(JZ+J7)*%J; gradually deviates from 1 as the
point (X,y) moves away froml'. However, this deviation
remains small, typically 10°~10 2, and is not visible in

e=0
1
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o
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FIG. 3. The long semiaxia as function of the short semiaxis
of the penetrating elliptic flux front for various eccentricities
:bo/a(): 1, 09, 08, P ,O.l, O, Eq(l3)

near the axisy=0, its influence on the magnetic moment
will be negligible, see Sec. Ill.

Interestingly, an explicit expression can be obtained for
the b dependence of the magnetic momembf our elliptic
disk in the critical state. In the ideal screening state any
ellipsoid with volumeV and semiaxesy,by,cq in a field
H||z has the magnetic moment

VH

41 a0b0C0
Mideal @0,Po,C0) =~ 7~ =
2z

3 1-N,
For thin oblate ellipsoids withg=by>c, the demagnetizing
factor i N,,=1—(cq/bo)E(k) with k?=1—b3/a2. Taking

1F

©,y)7J
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FIG. 5. Profiles of the sheet currehj(0,y) in a thin ellipse with
by/ay=0.7 for various degrees of flux penetratiota,= 0.69, 0.6,
0.5, ...,0.1, 0.05(from right to left). Note the precise saturation to
J=J., which demonstrates the accuracy of our approximation.
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FIG. 6. Stream linessolid lineg of the sheet curreni(x,y) in
a thin ellipse with(a) by/ay=0.7, b/ayg=0.2 (yielding a=0.624)
and (b) by/ay=0.5, b/ag=0.1 (yielding a=0.775). Also shown
are five previous flux front¢dashed linesat equidistant values of

FIG. 7. The stream lines of the sheet current in the same ellipse
(bg/ag=0.7) at two different times during flux penetration: at
b/ay,=0.65 (solid lines, almost ideal screeningnd b/ay;=0.01
(dashed lines, almost full penetratjoMNote that the orientation of
the sheet current at some places changes strongly during the pen-
etration, leading to a rotating vortex arrangment across the thick-
ness of the film.

wheree=b,/a, andb="b/b,. The dependence(H) is ob-
tained from Eqgs(11) and(16), see Fig. 8.

Next we give the expression for the magnetic field
H,(x,y) in the penetrated region betwe€nand y. Let the
point (X,y) be located on the ellipse

X2 y2
2 Tz 1 (17)
Ay bXy

with semiaxesa,, and b,,, where b<b,,<b, and a,,
=a(by,) satisfies Eq(13), i.e., the ellipse is a previous flux

b. The edge of the film and the inner flux front are indicated byfront, Fig. 1. Then we obtain
circles and a bold line. Note that in general the sheet current does

not flow parallel to the flux fronts and that its magnitude is constant

in the flux-penetrated region.

the limit c,— 0 one obtains the magnetic moment of an ide-

ally screening thin ellipse,

4 aobg
Mideal @0,00) = = - %H- (14
For the thin ellipse in the critical state we write
bg
m= fb W(b")mygea[a(b’),b’]db’. (15

With the weight(9) the elliptic integralE(k) drops out and
this integral yields

2 2

cogarcsinb+ e arccod)
1-e

coqarcsinb— e arccod)
1+e

; (16)

0.01

M _—tanh(H )

0.00

FIG. 8. The magnetic momer{thagnetization curyeof thin
ellipses in a perpendicular magnetic field in the Bean model, plotted
in normalized form as deviation from the strip resull,
=tanh@,) versus a reduced fieltl,=H/H, for eccentricitiese
=by/ag= 1,0.9,0.7,0.5,0.4, 0.3, 0.2, 0.1, and 0.05, see Bqs3,

(16), and(24)—(26).
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FIG. 9. Contour linegsolid lineg of the perpendicular magnetic
field H,(x,y) of a thin ellipse withby/a,=0.7 in the plane=0 for
partial flux penetration witth/ay;=0.2, as in Fig. €a). Note that

these contours are nearly parallel to the elliptic flux fronts shown a%longy (left) and alongx (right) for discrete equidistant values wf

dashed lines fob/ay;=0.7, 0.6, 0.5, 0.4, 0.3, and 0.2. The edge of

-1 -08 -06 -04 -02 0 02 04 06 08 1 1.2
Yy X

FIG. 10. Profiles of the magnetic field,(X,y) of Fig. 9 plotted

or y, respectively. The dashed line marks the applied ftéltH

the specimen and the inner flux front are marked by bold lines_ 5 39

Inside the inner flux front one has exacti(x,y)=0.

byy  db’

b 1—b'?/b}

’ 2 !
X[ b /§+a(b)+E(¢,k)]_ 8
a(b’) V &(¢+b'?) b’

H,(x,y)=H,

inside v (in the field-free corg For points outside the super-
conductor we seth,,=bg, yielding g=0. The function
g(x,y) is the local magnetizatiofor density of current
loops introduced in Ref. 8; the contour lineg(x,y)
=const coincide with the current stream lines; one has
g(x,y)=0 on the edgéd" of the elliptic sampléand outsidg

and the volume under the “mountaing(x,y), coincides

Here E(¢,k) is the elliptic integral of the second kind, With the magnetic momeri.6). We emphasize that the cur-

sing=[&(£+b'?)T*2, k?=1—[b’/a(b’)]?, and
2§=X2+y2_a/2_b/2+[(x2+y2_a/2_b12)2

_4(b/2a12_X2b12_y2a/2)]1/2

with a’=a(b’) from Eq. (13). The magnetic field outside
the superconductor in the=0 plane is given by the same
expressior(18) but with the upper boundaty,, replaced by
by, and inside the flux fronty one hasH,=0, see the Ap-
pendix. Contour lines and profiles Hif,(x,y) are depicted in

Figs. 9—11. At large distancas=(x*+y?)Y?>>a,=b, the
field (18) becomes

H,(x,y)—H—m/(4mr3),

as expectefiwith magnetic momenin from Eq. (16).

To end this section we give an elegant representation of

the sheet curreni(x,y). Substituting Egs(4) and (9) into
Eq. (6), the expression for the componewdsandJ, can be
written as follows:

o o

JXZJC@, Jy:_ 051
) Zfbo db’ L x2 y?
xy)=——| —=\/1-—-—.
EAA A N pe Ty a2(b') b’

(19

rent stream lines in the general ellipse ace parallelto the
flux front v, see Fig. 6, in contrast to the situation in thin
disks and strips, and in longitudinal geometry.

IIl. ANALYSIS

One easily verifies that the obtained expressions for the
penetration depth, Eq11), the magnetic field, Eq18), and
the currents, Eq(19), go over into the appropriate formulas
for the disk whenay=b, and for the strip> whenagy>b,.
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FIG. 11. 3D plot of the magnetic field,(x,y) for by/ay=0.7

As in Eq.(18) the boundary,, is the semiaxis of a previous andb/a,=0.2 as in Figs. 9 and 10. The logarithmic infinity at the

flux front defined by Eq(17) if the point (x,y) is located

between the curveE and y, andb,,=b when the point is

edge of the ellipse is cut off di,/H.=3.5 to limit the irregular
peaks caused by the equidistant grid used for this plot.
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For the strip one haB(k=1)=1 and formula1l) yields the  with mg,;andH, from Egs.(24) and (25). Formula(26) is
flux-front position good also for rectangular films, wheme,is well known and
m’(0) has to be obtained numerically using the method of

b 1 (20 Ref-9.

by cosiH/H)’ The sheet currend, Egs. (6) and (19), reduces to the
known results for circular disksand infinite strips™ In
both limits one obtains the same functional form for the
magnitudesl(r)=J.f(r) and J(y)=J.f(y), with the same
function: f(y)=1 for b<|y|<b, and

which coincides with Eq(3.5) of Ref. 4 sinceH.=J./m.
For the disk,E(k=0)=#/2 and we arrive at the same ex-
pression(20) but with H, substituted bymzH./2=J./2, see
Eq. (19) of Ref. 2. For general ellipseb(H) falls between
the curves for the disk and the strip, see Fig. 2. It should be 2
noted that the penetration along tkaxis does not go all to f(y)=— arctan
the center buta(b) Eq. (13) approaches the finite value ™
a(0)=ag cos(re/2) whenb—0.

As for the magnetic moment, whex=b, Eq. (16) goes
over to the appropriate formula for disks,

cy
for |y|<b, where c=(1-b?b3)?>=tanhf) with h
=2H/J,. for the disk andh=wH/J, for the strip. For long
ellipses with finite length &, in these expressioris, should
1 sinhh| be replaced by the effective half widiy(x) as discussed
+ osh (2D after Eq.(22).

There is another known result with which our solution

with h=2H/J.. In the limit ag>b,, Eq. (16) yields the may be compared. Namely, in the flux-penetrated region

2
3
Myisk= — = J.ap| Arccos
disk™ — 3+c%0 coshh

magnetic moment of strips with widthw2and length 2, whereJ=J, is constant, the current stream lines are equidis-
5 tant and are thus the “distance functioh?This means all
Mtrip= — 2JcaoW* tani(H/H), (22 points on a given stream line have the same distance from

with an effective width 2v=(2/3)Y2b,. This Mgyip deviates the specimen edge. This property applies to thin filmarof

from the result for a strip with width %, by a factor 2/3. The ~Shape. It applies also in the longitudinal geometry, i.e., in
reduced effective width is explained as follows. A long nar-Poth limits of small and large thickneséin the nonpen-
row ellipse with semiaxeay> b, at each positiox may be etratc_ed_reg_mn the current stream lines are d|ff(_arent in these
approximated by a piece of a long strip with half wigtfx), two limits: in the longitudinal limit one has theije=0 and
having a magnetic moment proportional $8(x)/b2=1 J=0, but in the transverse limit#0). The current stream
—leag of. Eq. (22). Averaging this prefactor ovoer the lines in the penetrated region are thus the envelope lines of

length 2a, of the ellipse one arrives at the reduction factorCirCIes with constant radius(0=r=b, ~b) and with center
2/39 0 P on the specimen edge. Parametrizing our elliptic edge by

The magnetization curvem(H) for disks (21), strips X(¢) =80 C0S¢, ¥(¢) =bg sing, we find for these envelopes

(22), and the general ellipse, Eg€l6) and (11), coincide
almost exactly when they are normalized such that their ini-
tial slope and saturation value are unity. The deviation of
these reduced curved,(H,) from the strip result tank{;)

are always smaller than 0.013 as shown in Fig. 8. The maxiwith W= (bS co§<p+a(2)sin2 ©)Y2. The exact stream lind&8)
mum deviation occurs for ellipses with eccentriciy  have a benddiscontinuity in their slopein the penetrated
=bo/a,~0.7. Taking the initial slopen’(0)=dm/dH|,i—o  region on thex axis ata(b)<|x|<a,—bZ/ao, but they are

X(@,r)=(ap—rby/W)cosep,

y(@,r)=(bg—rag/W)sine, (28

from Eq. (14), smooth ata,—by/a3<|x|<a,. Our approximate solution
m 4o anb? coincides with these (.axact. stream I_ines within line thickness.
m’(0)= ideal T ﬂ, (23) From the stream lines in the critical state, EB8), one
H 3 E(k) obtains the exact magnetic moment of thin ellipses in the

(k2=1—¢?, e=h,/a,), and the saturation valuen, [Ully penetrated critical state,

3

exact__

2
msat - JcaObO

2
4 ,cogemn/2) E(k)— EK(k)}, (29)

Mgo=M(b—0)=— §‘]Ca0b01_—e21 (29

whereK (k) andE(k) are the elliptic integrals of the first and

and approximating the normalized curves By, (H,)  Second kind withk?=1—e?, e=bg/a,, see the Appendix.

=tanh@,) with M,=m/mg;;andH,=H/H;, Comparing the exact resul29) with our approximatemg,
Eq. (24), we find that the deviation is extremely small.

Maat E(k) coqemn/2) Writing f;(e)= cosen/2)/(1—e?) and f,(e)=E(k)

Hi= =J (25  —(e¥2)K(k) we find fy(1)="f,(1)==/4 (disk), f,(0)

= =Jc — 2
m’(0) ™ 1l-e =f,(0)=1 (strip), and 0<f,—f,=<0.001317. The maxi-
we get an excellent approximation for the magnetic momentum deviationf, —f,=0.001317 occurs a&=0.5043. The
of thin ellipses in the Bean model, deviation is an almost symmetric function of the eccentricity
e, f1(e)—f,(e)~0.00138siAen). With Eq. (29) the field
m(H)~mg,tanh(H/H,), (26) H; (25) which enters formuld26) takes the exact value



598 GRIGORII P. MIKITIK AND ERNST HELMUT BRANDT PRB 60

IV. ANISOTROPIC CRITICAL CURRENT

exact 2

exact_ Msat €
Hy _m’(O) _HCE(k)[E(k)_ EK(k)}' (30 The obtained solution allows one to analyze the critical
state of flat superconductors when the critical current density
jc is anisotropicin the plane of the film. Such anisotropy can
foccur, for example, if there are twin boundaries or other
extended or inclined defects, or if the superconductor itself is
anisotropic. A controlled in-plane anisotropy pf of more

omplicated nature may be induced by applying a magnetic

The flux fronts, current stream lines, and contour lines o
the magnetic fieldd,(x,y) in the general elliptic film do not
coincide, as opposed to the situation in circular disks, lon
strips, and in longitudinal geometry. These features of the, parallel to the filnt’ To explain our analysis, we per-
critical state in noncircular thin su_perconductors of finite SIZ€ 1 a transformation of coordinates:
are seen even more clearly in square and rectangular
films,>~** but while those geometries were solved numeri- x=ax', y=py' (31)
cally, we now have an analytic solution for the elliptic film. ]

Another feature of the critical state in thin elliptic films as Wherea andg are some constants and the prime denotes the
compared to the critical state in circular disks and infinitetransformed quantities. Under this transformation the ellipse
strips, is that thedirection of the sheet current at a given ~ With semiaxesa, andb, goes over to an ellipse with semi-
point (x,y) changesduring the penetration of flux, see Fig. axesay=ao/a, by=bo/B, while any small line elementil,

7. This fact may have an important physical consequence fafirected at an angle relative to thex axis, is transformed
films or platelets with thickness exceeding the London peninto the element

etration depth\. As is known'?~®in flat superconductors 2 2o\ 12
with d>X\ in moderate field$ there is a flux and current- dl’ =dI 22£+ S'_zf)
free core described blg| <z.,{X,y). In the cases of strips a B

and disks Fhis core was depi.cted, e.g., in Refs. 13,16. Criticg|hich is directed at an angle’ with

currents circulate only outside the core, fog,{x,y) <|Z|

<d/2. In this shell the critical state has the usual Bean form, a

but the field gradient occuracross the thicknessf the tan @'Iﬂ—taﬂp-

sample since this state is forced by the screening currents,

and the flux lines are almogtrallel to the flat surface. The Since the current crossing the line element must be invariant,
outer rim (equatoy of the flux-free core coincides with the we obtain the following transformation of the sheet current
penetrating flux front since in the region inside the flux frontflowing at an angle= ¢+ 7/2 relative to thex axis:

the perpendicular magnetic fieRl, is practically zero.

Now, since the tangential field at the flat surface is per- I()=3()B
pendicular to the sheet curredt the changing direction of
J(X,y;b) during flux penetratiori.e., with increasindd and
decreasingp) means that the direction of the penetrating flux
lines in the region belowy also changes. Thus, flux lines
with gradually rotating orientatiorenter through the flat sur-
face at each point away from the symmetry axes. These JL(¢")=const1+ §sir? )12 (32)
U-shaped flux lines move towards the specimen center,
dragged by the Lorentz force, which is balanced by bulkin Which & is some constantd>—1), we may reduce the
pinning. As a result, in the region insidethe layers of the critical state problem of this anisotropic sample to the isotro-
flux-line lattice exhibit torsion relative to each other and Pic problem by performing the transformati¢sil) from x’,
therefore carry a longitudinal current component, i.e., they’ tox, ywith =1 anda= 1+ §. After the transformation
local current density is not exactly perpendicular to the fluxwe shall have an elliptic sample with semiaxeg
lines. In principle, this may lead to instabilities and flux- =1+ daj, by=b} and with isotropic critical currend,
cutting processeS'° That situation may be related to the =const, and we can use the solution obtained in Sec. IL.
penetration of a rotating field component discussed by Thus, our solution permits to analyZat least qualita-
Bearf® and by Gilchrist? tively) the features of the critical state of anisotropic super-

In deriving the solution we have assumed tBat uoH conducting films. For example, for a circular disk with radius
and the so-called geometrical barffe®is negligible. These R and with anisotropic critical current obeying E&2) with
assumptions hold if the characteristic magnetic figlticon- =1, one obtains the transformed ellipse with semiaxgs
siderably exceeds the lower critical field.;. In the case =2R, b,=R and the current distribution and stream lines
jcd<H. and H<H; the critical state problem becomes depicted in Figs. 4—7 foe=0.7, and the magnetic field de-
more complicated. Analytic&*3and numeric&"**methods  picted in Figs. 9 and 10. These pictures then are transformed
to analyze this general problem were recently proposed. Iback to the coordinates of the original circular disk by
particular, if our assumptioB= uqH is replaced by the cor- shrinking them along by a factor of 0.7. Figure 12 shows
rect H(B) (obtained, e.g., from Ginzburg-Landau thed)y another example of a circular disk with larger anisotrapy
then flux does not penetrate until the applied fieldhas =3, yieldingJ (7/2)/J.(0)=ay/by=2. The results of Ref.
reached the field of first penetration of fluxd., 27 for square and rectangular plates with anisotropic critical
~H_,tanhycd/2w, wherec~0.36 for strips with half width current are in agreement with this approach. Our solution
w andc~0.67 for disks with radiusv.?® may also be used to include the in-plane anisotropy of the

2 2

1/2
aﬂf )sinzw’} .

Thus, if the anisotropic critical current density in some ellip-
tic sample with semiaxes,, b} can be approximated by the
expression

1+
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ies, and the integrated current densiffx,y) is not
necessarily equal tp.d or exactly constant even in the flux-
penetrated region. The precise calculation of the flux and
current distributions inside noncircular disks evensatall
thicknessd>\ then becomes an intricate 3D problem. The
possibility of twisted flux lines in the penetrated region of
noncircular thin disks should thus be considered in more
detail in future work.
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APPENDIX: EVALUATION

The integrals(11) for H/H., Eq. (18) for H,(x,y), and
Eq. (19 for Jy, J,, andg(x,y), like the elliptic integral of
FIG. 12. Current stream linegsolid curves and flux fronts  the second kind,
(dashed curvesin a circular disk with anisotropic critical current
density, Jgy/Jox=J(7/2)1J(0)=2 [6=3 in Eq. (32)] for half 1 [1—m&it?
(b/by=0.5, lefy and full (b/by=0.02, right penetration of flux. E(e,k)=E(s,m)=s f Tz dt (A1)
Shown at the bottom is the isotropic ellipse with axis ratja, 0
=0.5 to which this problem transforms. This ellipse exhibits equi-ith s= sing, m=k2, may be evaluated with high precision
distant current stream lines outside the inner flux front. by a substitution of variables. We first transform the integrals

itical t into theoridd !> which | th itical over b’ into integrals over a variablein the interval O<t
crltical current into theori which ‘analyze the crilical 1 e Eq. (A1). Noting that these integrands may have

state in flat superconductors taking into account the curren Py . i
anisotropy B/B dependencdeassociated with the curvature Stci)tljtsignll\ﬁ ande1/y1-tat the boundaries, we use a sub

of the flux lines.

1 1
V. CONCLUSION I= fo f(t)dt= fo flt(u)]t" (u)du, (A2)

In this paper we derived an approximate analytic solution , . . : B . .
of the Bean critical-state model for thin elliptic supercon-Wh'.Ch has a weight functloﬁ(u)—_dt_/du that varlsh_es with
ductors with semiaxesa, and by=ea, in a perpendicular a high power ofu and 1-u atu=t=0 and atu=t=1. A
field H. The accuracy of this solution is high and the knowngOOd such choice is
limiting cases of a circular disk and a long strip are recov-
ered exactly. With increasing the penetrating flux front is
an ellipse with axes andb related by Eq(13) such that at .
full penetration, wherb=0, a(b) stays finite, i.e., there is a t'=g'(w=140°(1-w? (A3)
section of length a(0)= 2a, cos(me/2) on thex axis where  An even better choice is to iterate E@3) once, writing
regions with different orientation of the current meet, similar
to the situation in rectangular platelét?’ The current t=glg(u)], t'=g'(u)g'[g(u)]. (A4)
stream lines in the penetrated region deviate from ellipses
and, in the fully penetrated state, they have a sharp bend d#ith Eq. (A4) one hastxu'® andt’ecu®® neart=0, and 1
thex axis in the intervalx| <a,—b%a, that is slightly wider ~ —t<(1—u)*® and t'=(1-u)*® neart=1. The polef(t)
than 21(0). «1/\t in the original integrand is now removed in the sub-

Our analytic solution shows that in noncircular finite su- stituted integrandF(u)=f[t(u)]t’(u)ecu” and similarly
perconductor films at any point not located near a symmetryieart=1. Since the integrand vanishes rapidly at the bound-
axis or near the edge, wheth is increased the direction of aries of the integral, one may use an integration method with
the circulating sheet current changes until the flux frontconstant weights,
passes through this point, see Fig. 7. Therefore, in samples N
with thicknessd exceeding the London penetration depth 1 1 i—1/2
the orientation of the flux lines penetrating from the two flat ':f Fludu~g ;1 ( )
surfaces changes also, since at the flat surfaces the flux lines
are at a right angle to the sheet current. As a consequencehis method achieves high precisien10 8 even with a
the flux-line arrangment rotates alomgn the region where small grid numbeiN=20-30.

B,=0. Furthermore, it cannot be ruled out that also in the In Egs. (11), (14), etc., E(k) is given by the definition
region withB,+ 0 the flux lines are twisted, i.e., their curva- (A1) with s=1, and forK (k) in Eq. (29) a similar definition
ture is not planar. If this twist occurs, it means that the ori-applies. All these elliptic integrals are easily computed with
entation of the current at fixexly but different depttz var-  high accuracy by this integration method.

t=g(u)=35u*—84u>+70u®—20u’

N (A5)



600

Before the integrals fo ,(x,y) andg(x,y) can be evalu-
ated for a 2D grid of pointsx,y), one has to find the elliptic
flux front that passed through the point,¥). This may be
done by finding the zeros of the function

2 2

(be)= —+L 1
p =t -
Xy aiy biy

with a,,= cogbg arccosb,,/bg)], cf. Egs. (13 and (17)
with length unitag=1. This is achieved by starting with
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b,,=b (the short semiaxis of the inner flux frordnd iter-
ating by« by, —2€ep(byy)/[p(bxy+ €) —p(byy,—€)] (e<1)
a few times. A similar procedure may be used to invert the
relationH(b), Eq. (11), to obtainb(H). To obtain the cor-
rectg(x,y) also inside the flux front, anHl,(x,y) also out-
side the superconductor, we chdgg= b, for all points out-
side the ellipse with semiaxes,, by, and b,,=b for all

points inside the ellipse with semiaxasb by putting b,

«—max b, min(b,,,bg)].
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