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Analytic solution for the critical state in superconducting elliptic films
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A thin superconductor platelet with elliptic shape in a perpendicular magnetic field is considered. Using a
method originally applied to circular disks, we obtain an approximate analytic solution for the two-dimensional
critical state of this ellipse. In the limits of the circular disk and the long strip this solution is exact, i.e., the
current density is constant in the region penetrated by flux. For ellipses with arbitrary axis ratio the obtained
current density is constant to typically 1023, and the magnetic moment deviates by less than 1023 from the
exact value. This analytic solution is thus very accurate. In increasing applied magnetic field, the penetrating
flux fronts are approximately concentric ellipses whose axis ratiob/a<1 decreases and shrinks to zero when
the flux front reaches the center, the long axis staying finite in the fully penetrated state. Analytic expressions
for these axes, the sheet current, the magnetic moment, and the perpendicular magnetic field are presented and
discussed. This solution applies also to superconductors with anisotropic critical current if the anisotropy has
a particular, rather realistic form.@S0163-1829~99!04825-0#
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I. INTRODUCTION

Most experiments with high-Tc superconductors deal wit
thin flat samples in a perpendicular magnetic fieldH, for
example,c-axis-oriented monocristalline platelets or film
In this connection, in recent years the problem of the criti
state of such samples has attracted considerable interest
e.g., Ref. 1, and the references cited therein. Exact ana
solutions were obtained only for a circular disk2 and a thin
infinitely long strip.3–5 In deriving these solutions it was es
sential that the critical states of the disk and the strip hav
known symmetry. For the strip the critical-state distributio
of the magnetic field and the current do not depend on
longitudinal coordinate while the disk has a rotational ax
In both cases the directions of circulating currents are fi
and known in advance, and thus the critical-state equat
are one-dimensional~1D!. In the present paper we obtain a
approximate analytic solution of a two-dimensional~2D!
problem, namely, a thin superconductor platelet of ellip
shape in a perpendicular magnetic field. This solution
ables one to understand the critical states of real super
ductors when the above-mentioned symmetry is absent.
accuracy of our solution is very high, especially for the
tegral quantities like the magnetization of the sample, an
may be used to analyze experimental data. Besides this
analysis of our solution reveals qualitatively new features
the critical state of thin superconductors like flux fronts w
varying curvature and the possibility of rotating flux-line a
rangments.

We derive this solution in Sec. II and analyze it in Se
III, reproducing the known solutions for disks and strips a
discussing the interesting new features. In Sec. IV we ap
our solution to anisotropic superconductors, and in Sec
we summarize the results.
PRB 600163-1829/99/60~1!/592~9!/$15.00
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II. DERIVATION

Let us place the origin of the coordinate system in t
center of the sample and let its plane coincide with thexy
plane. The external magnetic fieldH is directed along thez
axis, i.e., along the thicknessd of the sample. The boundar
of the superconductor in thexy planeG is described by the
ellipse ~see Fig. 1!

x2

a0
2 1

y2

b0
2 51,

where a0 and b0 are the semiaxes of the ellipse (a0>b0
@d). The critical current densityj c is assumed to be con
stant. The critical-state equations for the thickness-integra
current densityJ(x,y)5*2d/2

d/2 j (x,y,z)dz in the partly pen-
etrated critical state have the following form. In the regi
betweenG and the penetrating flux frontg one has

FIG. 1. The three ellipses defining the edgeG of the film with
semiaxesa0 , b0; an earlier flux front passing through a given poi
(x,y) ~semiaxesaxy , bxy , dashed line!; and the present flux fron
with semiaxesa, b.
592 ©1999 The American Physical Society
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PRB 60 593ANALYTIC SOLUTION FOR THE CRITICAL STATE IN . . .
uJ~x,y!u5 j cd[Jc . ~1!

Here the common assumption has been made that the d
tion of the current does not depend on the coordinatez across
the small thickness of the sample. In the flux-free region, i
insideg, the perpendicular induction should vanish,

Bz~x,y!50. ~2!

In addition, the equation

¹•J~x,y!50 ~3!

must hold for anyx andy inside the sample. In deriving th
solution we follow the method of Mikheenko and Kuzovlev2

Wheng coincides withG, i.e., the flux does not penetrate th
superconductor, the solution of Eqs.~2! and ~3! may be
found by considering the field on the surface of an idea
screening oblate ellipsoid in a uniform magnetic fieldHiz.
The field at the surface of the ellipsoid is tangential to it a
has the form6

Ht~x,y,z!5
H

12Nzz
@ ẑ2n̂~ ẑn̂!#.

Here ẑ is the unit vector alongz, n̂ is the unit vector norma
to the surface, andNzz is the appropriate demagnetizing fa
tor. For a thin oblate ellipsoid with semiaxesa0>b0@c0 one
has7 12Nzz5(c0 /b0)E(k) whereE(k) is the complete el-
liptic integral of the second kind withk2512b0

2/a0
2. For

example, whena05b0 ~disk! one hasE(0)5p/2 and 1
2Nzz5pc0/2a0, and whena0@b0 ~strip! one hasE(1)51
and 12Nzz5c0 /b0. Letting c0→0 and taking into accoun
the relation between the surface screening current and
tangential field,Jsurf5n̂3Ht ,6 we arrive at the sheet curren

J~x,y!52ẑ3Ht ,

whereHt is the field on the upper side of the platelet. Th
result applies to films of any shape; it means that the m
nitude of the field change across the film thickness equaJ.
In thin ellipses, in the regionf (x/a0 ,y/b0),1 with f (u,v)
[u21v2, one obtains forJ5(Jx ,Jy):

Jx5
2H

E~k!

y

b0
S[2HFxS x

a0
,

y

b0
,
b0

a0
D ,

Jy52
2H

E~k!

xb0

a0
2 S[2HFyS x

a0
,

y

b0
,
b0

a0
D , ~4!

where S51/A12x2/a0
22y2/b0

2 and k2512(b0 /a0)2. If
f (x/a0 ,y/b0).1, we defineFx5Fy50. When a partially
penetrated critical state occurs in the sample, we look for
solution of Eqs.~1!, ~2!, ~3! as a linear combination of dis
tributions like that described by formulas~4!. In other words,
we assume that the front of flux penetration has the shap
an ellipse with the ratio of the semiaxes depending on
depth of the penetration, see Fig. 1. This assumption is e
for disks and strips and also in the limiting case of a sm
depth of penetration. As will be seen from the results o
tained below, the deviation from this assumption increa
with increasing depth but remains very small. The propo
approximation thus is sufficient for most practical purpos
ec-
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Let the penetrating flux front be the ellipse

f S x

a~b!
,
y

bD51 ~5!

with the long axisa depending on the short axisb. Then,
according to the above assumption, we write for the com
nentsJx andJy of the sheet current,

Jx,y52HE
b

b0
W~b8!Fx,yS x

a~b8!
,

y

b8
,

b8

a~b8!
D db8, ~6!

whereW(b8) is a weight function andFx andFy are defined
by Eqs. ~4!. The sheet current~6! with any weightW(b8)
satisfies Eq.~3! due to the definition of the functionsFx and
Fy . In the elliptic region

f S x

a~b!
,
y

bD,1

and this current creates a constant field equal to

2HE
b

b0
W~b8!db8,

which has to compensate the applied fieldH. Thus, condition
~2! reduces to the equation

E
b

b0
W~b8!db851. ~7!

The functionsW(b) and a(b) must be obtained from the
equality

Jx
21Jy

25Jc
2 , ~8!

which follows from Eq.~1!. Let x50. Then Eq.~8! takes the
form which was considered in Ref. 2, and we find

W~b!5
Jc

pH

E~k!

bA12b2/b0
2

~9!

with k2512@b/a(b)#2. Now we can obtain the function
Jx(x50,y) @while Jy(x50,y)50] and calculate the tota
currentI circulating in the sample,

I 5E
0

b0
Jx~0,y!dy5

2

p
Jcb0 arccos

b

b0
. ~10!

TheH dependence of the penetration depthb(H) along they
axis is determined by Eq.~7!. This yields

H

Hc
5E

b

b0 E~k!db8

b8A12b82/b0
2

~11!

with Hc[Jc /p[ j cd/p andk2512@b8/a(b8)#2, see Fig. 2.
To determine the dependencea(b) let us repeat the abov
reasoning, Eqs.~5!–~10!, but now we shall considerb as a
function ofa and integrate overa8 from a to a0. At y50 we
can findW(a8) and calculateI again, obtaining

I 52E
0

a0
Jy~x,0!dx5

2

p
Jca0 arccos

a

a0
. ~12!
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Since the total current crossing any radius must be the sa
we may equate the currents~10! and ~12!. This yields the
dependence ofa on b ~Fig. 3!,

a~b!5a0 cosS b0

a0
arccos

b

b0
D . ~13!

Formulas~4!–~6!, ~9!, ~11!, and~13! give the solution for the
critical state in the ellipse. If this solution were exact, Eq.~8!
would hold for anyx andy in the region between the curve
G and g. The numerical analysis shows that, in reality, t
quantity J̃[(Jx

21Jy
2)1/2/Jc gradually deviates from 1 as th

point (x,y) moves away fromG. However, this deviation
remains small, typically 1024–1022, and is not visible in

FIG. 2. The semiaxesa andb of the elliptic flux fronts plotted as
reduced penetration depths (a02a)/b0 ~dashed lines! and (b0

2b)/b0 ~solid lines! versus the applied fieldH ~in units of Hc

5Jc /p) for thin ellipses with eccentricitiese5b0 /a05 1, 0.9, 0.7,
0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0. The curve for the disk@e51, a5b,
Eq. ~20! with Hc replaced byJc/2] is marked by circles. For strips
b @Eq. ~20!# is marked by crosses, and one hasa02a50.

FIG. 3. The long semiaxisa as function of the short semiaxisb
of the penetrating elliptic flux front for various eccentricitiese
5b0 /a05 1, 0.9, 0.8, . . . , 0.1, 0, Eq.~13!.
e,

Figs. 4–7. In the fully or almost fully penetrated state ne
the pointsx56a(b50), y50, this deviation may reach a
few percent. Our expressions provide thus a very good
scription of the critical state in elliptic platelets. In particula
since this small deviation ofJ(x,y) from Jc occurs mainly
near the axisy50, its influence on the magnetic mome
will be negligible, see Sec. III.

Interestingly, an explicit expression can be obtained
the b dependence of the magnetic momentm of our elliptic
disk in the critical state. In the ideal screening state a
ellipsoid with volumeV and semiaxesa0 ,b0 ,c0 in a field
Hiz has the magnetic moment

mideal~a0 ,b0 ,c0!52
VH

12Nzz
52

4p

3

a0b0c0

12Nzz
H.

For thin oblate ellipsoids witha0>b0@c0 the demagnetizing
factor is7 Nzz512(c0 /b0)E(k) with k2512b0

2/a0
2. Taking

FIG. 4. 3D plot of the magnitude of the sheet currentuJ(x,y)u,
Eq. ~19!, in a thin ellipse withb0 /a050.7 at b/a050.2. In the
flux-penetrated region the plottedJ/Jc deviates from unity by less
than 1023.

FIG. 5. Profiles of the sheet currentJx(0,y) in a thin ellipse with
b0 /a050.7 for various degrees of flux penetrationb/a05 0.69, 0.6,
0.5, . . . , 0.1, 0.05~from right to left!. Note the precise saturation t
J5Jc , which demonstrates the accuracy of our approximation.
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PRB 60 595ANALYTIC SOLUTION FOR THE CRITICAL STATE IN . . .
the limit c0→0 one obtains the magnetic moment of an id
ally screening thin ellipse,

mideal~a0 ,b0!52
4p

3

a0b0
2

E~k!
H. ~14!

For the thin ellipse in the critical state we write

m5E
b

b0
W~b8!mideal@a~b8!,b8#db8. ~15!

With the weight~9! the elliptic integralE(k) drops out and
this integral yields

m52
2

3
Jca0b0

2Fcos~arcsinb̃1e arccosb̃!

12e

1
cos~arcsinb̃2e arccosb̃!

11e
G , ~16!

FIG. 6. Stream lines~solid lines! of the sheet currentJ(x,y) in
a thin ellipse with~a! b0 /a050.7, b/a050.2 ~yielding a50.624)
and ~b! b0 /a050.5, b/a050.1 ~yielding a50.775). Also shown
are five previous flux fronts~dashed lines! at equidistant values o
b. The edge of the film and the inner flux front are indicated
circles and a bold line. Note that in general the sheet current d
not flow parallel to the flux fronts and that its magnitude is const
in the flux-penetrated region.
-

wheree5b0 /a0 andb̃5b/b0. The dependencem(H) is ob-
tained from Eqs.~11! and ~16!, see Fig. 8.

Next we give the expression for the magnetic fie
Hz(x,y) in the penetrated region betweenG andg. Let the
point (x,y) be located on the ellipse

x2

axy
2

1
y2

bxy
2

51 ~17!

with semiaxesaxy and bxy , where b<bxy<b0 and axy
5a(bxy) satisfies Eq.~13!, i.e., the ellipse is a previous flu
front, Fig. 1. Then we obtain

es
t

FIG. 7. The stream lines of the sheet current in the same ell
(b0 /a050.7) at two different times during flux penetration:
b/a050.65 ~solid lines, almost ideal screening! and b/a050.01
~dashed lines, almost full penetration!. Note that the orientation of
the sheet current at some places changes strongly during the
etration, leading to a rotating vortex arrangment across the th
ness of the film.

FIG. 8. The magnetic moment~magnetization curve! of thin
ellipses in a perpendicular magnetic field in the Bean model, plo
in normalized form as deviation from the strip resultMr

5tanh(Hr) versus a reduced fieldHr5H/H1 for eccentricitiese
5b0 /a05 1, 0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05, see Eqs.~11!,
~16!, and~24!–~26!.
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Hz~x,y!5HcE
b

bxy db8

A12b82/b0
2

3H b8

a~b8!
Aj1a2~b8!

j~j1b82!
1

E~w,k!

b8
J . ~18!

Here E(w,k) is the elliptic integral of the second kind
sinw5@j/(j1b82)#1/2, k2512@b8/a(b8)#2, and

2j5x21y22a822b821@~x21y22a822b82!2

24~b82a822x2b822y2a82!#1/2

with a85a(b8) from Eq. ~13!. The magnetic field outside
the superconductor in thez50 plane is given by the sam
expression~18! but with the upper boundarybxy replaced by
b0, and inside the flux frontg one hasHz50, see the Ap-
pendix. Contour lines and profiles ofHz(x,y) are depicted in
Figs. 9–11. At large distancesr 5(x21y2)1/2@a0>b0 the
field ~18! becomes

Hz~x,y!→H2m/~4pr 3!,

as expected,6 with magnetic momentm from Eq. ~16!.
To end this section we give an elegant representation

the sheet currentJ(x,y). Substituting Eqs.~4! and ~9! into
Eq. ~6!, the expression for the componentsJx andJy can be
written as follows:

Jx5Jc

]g

]y
, Jy52Jc

]g

]x
,

g~x,y!52
2

pEbxy

b0 db8

A12b82/b0
2A12

x2

a2~b8!
2

y2

b82
.

~19!

As in Eq.~18! the boundarybxy is the semiaxis of a previou
flux front defined by Eq.~17! if the point (x,y) is located
between the curvesG and g, andbxy5b when the point is

FIG. 9. Contour lines~solid lines! of the perpendicular magneti
field Hz(x,y) of a thin ellipse withb0 /a050.7 in the planez50 for
partial flux penetration withb/a050.2, as in Fig. 6~a!. Note that
these contours are nearly parallel to the elliptic flux fronts shown
dashed lines forb/a050.7, 0.6, 0.5, 0.4, 0.3, and 0.2. The edge
the specimen and the inner flux front are marked by bold lin
Inside the inner flux front one has exactlyHz(x,y)50.
of

insideg ~in the field-free core!. For points outside the super
conductor we setbxy5b0, yielding g50. The function
g(x,y) is the local magnetization~or density of current
loops! introduced in Ref. 8; the contour linesg(x,y)
5const coincide with the current stream lines; one h
g(x,y)50 on the edgeG of the elliptic sample~and outside!,
and the volume under the ‘‘mountain’’g(x,y), coincides
with the magnetic moment~16!. We emphasize that the cur
rent stream lines in the general ellipse arenot parallel to the
flux front g, see Fig. 6, in contrast to the situation in th
disks and strips, and in longitudinal geometry.

III. ANALYSIS

One easily verifies that the obtained expressions for
penetration depth, Eq.~11!, the magnetic field, Eq.~18!, and
the currents, Eq.~19!, go over into the appropriate formula
for the disk2 whena05b0 and for the strip3–5 whena0@b0.

s
f
.

FIG. 10. Profiles of the magnetic fieldHz(x,y) of Fig. 9 plotted
alongy ~left! and alongx ~right! for discrete equidistant values ofx
or y, respectively. The dashed line marks the applied fieldH/Hc

52.39.

FIG. 11. 3D plot of the magnetic fieldHz(x,y) for b0 /a050.7
andb/a050.2 as in Figs. 9 and 10. The logarithmic infinity at th
edge of the ellipse is cut off atHz /Hc53.5 to limit the irregular
peaks caused by the equidistant grid used for this plot.
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PRB 60 597ANALYTIC SOLUTION FOR THE CRITICAL STATE IN . . .
For the strip one hasE(k51)51 and formula~11! yields the
flux-front position

b

b0
5

1

cosh~H/Hc!
, ~20!

which coincides with Eq.~3.5! of Ref. 4 sinceHc5Jc /p.
For the disk,E(k50)5p/2 and we arrive at the same e
pression~20! but with Hc substituted bypHc/25Jc/2, see
Eq. ~19! of Ref. 2. For general ellipses,b(H) falls between
the curves for the disk and the strip, see Fig. 2. It should
noted that the penetration along thex axis does not go all to
the center buta(b) Eq. ~13! approaches the finite valu
a(0)5a0 cos(pe/2) whenb→0.

As for the magnetic moment, whena05b0 Eq. ~16! goes
over to the appropriate formula for disks,2

mdisk52
2

3
Jca0

3Sarccos
1

coshh
1

sinhuhu
cosh2 hD ~21!

with h52H/Jc . In the limit a0@b0, Eq. ~16! yields the
magnetic moment of strips with width 2w and length 2a0,

mstrip522Jca0w2 tanh~H/Hc!, ~22!

with an effective width 2w5(2/3)1/22b0. This mstrip deviates
from the result for a strip with width 2b0 by a factor 2/3. The
reduced effective width is explained as follows. A long na
row ellipse with semiaxesa0@b0 at each positionx may be
approximated by a piece of a long strip with half widthy(x),
having a magnetic moment proportional toy2(x)/b0

251
2x2/a0

2, cf. Eq. ~22!. Averaging this prefactor over th
length 2a0 of the ellipse one arrives at the reduction fac
2/3.

The magnetization curvesm(H) for disks ~21!, strips
~22!, and the general ellipse, Eqs.~16! and ~11!, coincide
almost exactly when they are normalized such that their
tial slope and saturation value are unity. The deviation
these reduced curvesMr(Hr) from the strip result tanh(Hr)
are always smaller than 0.013 as shown in Fig. 8. The m
mum deviation occurs for ellipses with eccentricitye
5b0 /a0'0.7. Taking the initial slopem8(0)5]m/]HuH50
from Eq. ~14!,

m8~0!5
mideal

H
52

4p

3

a0b0
2

E~k!
, ~23!

(k2512e2, e5b0 /a0), and the saturation valuemsat
5m(H→`) from Eq. ~16!,

msat5m~b→0!52
4

3
Jca0b0

2 cos~ep/2!

12e2 , ~24!

and approximating the normalized curves byMr(Hr)
5tanh(Hr) with Mr5m/msat andHr5H/H1,

H15
msat

m8~0!
5Jc

E~k!

p

cos~ep/2!

12e2 , ~25!

we get an excellent approximation for the magnetic mom
of thin ellipses in the Bean model,

m~H !'msattanh~H/H1!, ~26!
e

-

r

i-
f

i-

t

with msat and H1 from Eqs.~24! and ~25!. Formula~26! is
good also for rectangular films, wheremsat is well known and
m8(0) has to be obtained numerically using the method
Ref. 9.

The sheet currentJ, Eqs. ~6! and ~19!, reduces to the
known results for circular disks2 and infinite strips.3–5 In
both limits one obtains the same functional form for t
magnitudesJ(r )5Jcf (r ) and J(y)5Jcf (y), with the same
function: f (y)51 for b<uyu<b0 and

f ~y!5
2

p
arctan

cy

Ab22y2
~27!

for uyu<b, where c5(12b2/b0
2)1/25tanh(h) with h

52H/Jc for the disk andh5pH/Jc for the strip. For long
ellipses with finite length 2a0 in these expressionsb0 should
be replaced by the effective half widthy(x) as discussed
after Eq.~22!.

There is another known result with which our solutio
may be compared. Namely, in the flux-penetrated reg
whereJ5Jc is constant, the current stream lines are equid
tant and are thus the ‘‘distance function.’’10 This means all
points on a given stream line have the same distance f
the specimen edge. This property applies to thin films ofany
shape. It applies also in the longitudinal geometry, i.e.,
both limits of small and large thickness.~In the nonpen-
etrated region the current stream lines are different in th
two limits: in the longitudinal limit one has therej [0 and
J[0, but in the transverse limitJÞ0). The current stream
lines in the penetrated region are thus the envelope line
circles with constant radiusr (0<r<b02b) and with center
on the specimen edge. Parametrizing our elliptic edge
x(w)5a0 cosw, y(w)5b0 sinw, we find for these envelope

x~w,r !5~a02rb0 /W!cosw,

y~w,r !5~b02ra0 /W!sinw, ~28!

with W5(b0
2 cos2w1a0

2 sin2 w)1/2. The exact stream lines~28!
have a bend~discontinuity in their slope! in the penetrated
region on thex axis ata(b),uxu,a02b0

2/a0, but they are
smooth ata02b0 /a0

2<uxu<a0. Our approximate solution
coincides with these exact stream lines within line thickne

From the stream lines in the critical state, Eq.~28!, one
obtains the exact magnetic moment of thin ellipses in
fully penetrated critical state,

msat
exact52

4

3
Jca0b0

2FE~k!2
e2

2
K~k!G , ~29!

whereK(k) andE(k) are the elliptic integrals of the first an
second kind withk2512e2, e5b0 /a0, see the Appendix.
Comparing the exact result~29! with our approximatemsat,
Eq. ~24!, we find that the deviation is extremely small.

Writing f 1(e)5 cos(ep/2)/(12e2) and f 2(e)5E(k)
2(e2/2)K(k) we find f 1(1)5 f 2(1)5p/4 ~disk!, f 1(0)
5 f 2(0)51 ~strip!, and 0< f 12 f 2<0.001 317. The maxi-
mum deviationf 12 f 250.001 317 occurs ate50.5043. The
deviation is an almost symmetric function of the eccentric
e, f 1(e)2 f 2(e)'0.001 38 sin2(ep). With Eq. ~29! the field
H1 ~25! which enters formula~26! takes the exact value
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H1
exact5

msat
exact

m8~0!
5HcE~k!FE~k!2

e2

2
K~k!G . ~30!

The flux fronts, current stream lines, and contour lines
the magnetic fieldHz(x,y) in the general elliptic film do not
coincide, as opposed to the situation in circular disks, lo
strips, and in longitudinal geometry. These features of
critical state in noncircular thin superconductors of finite s
are seen even more clearly in square and rectang
films,9–11 but while those geometries were solved nume
cally, we now have an analytic solution for the elliptic film

Another feature of the critical state in thin elliptic films a
compared to the critical state in circular disks and infin
strips, is that thedirection of the sheet currentJ at a given
point (x,y) changesduring the penetration of flux, see Fig
7. This fact may have an important physical consequence
films or platelets with thickness exceeding the London p
etration depthl. As is known,12–16 in flat superconductors
with d@l in moderate fieldsH there is a flux and current
free core described byuzu,zcore(x,y). In the cases of strips
and disks this core was depicted, e.g., in Refs. 13,16. Crit
currents circulate only outside the core, forzcore(x,y),uzu
,d/2. In this shell the critical state has the usual Bean fo
but the field gradient occursacross the thicknessof the
sample since this state is forced by the screening curre
and the flux lines are almostparallel to the flat surface. The
outer rim ~equator! of the flux-free core coincides with th
penetrating flux front since in the region inside the flux fro
the perpendicular magnetic fieldBz is practically zero.

Now, since the tangential field at the flat surface is p
pendicular to the sheet currentJ, the changing direction o
J(x,y;b) during flux penetration~i.e., with increasingH and
decreasingb) means that the direction of the penetrating fl
lines in the region belowg also changes. Thus, flux line
with gradually rotating orientationenter through the flat sur
face at each point away from the symmetry axes. Th
U-shaped flux lines move towards the specimen cen
dragged by the Lorentz force, which is balanced by b
pinning. As a result, in the region insideg the layers of the
flux-line lattice exhibit torsion relative to each other a
therefore carry a longitudinal current component, i.e.,
local current density is not exactly perpendicular to the fl
lines. In principle, this may lead to instabilities and flu
cutting processes.17–19 That situation may be related to th
penetration of a rotating field component discussed
Bean20 and by Gilchrist.21

In deriving the solution we have assumed thatB5m0H
and the so-called geometrical barrier22–25is negligible. These
assumptions hold if the characteristic magnetic fieldj cd con-
siderably exceeds the lower critical fieldHc1. In the case
j cd,Hc1 and H,Hc1 the critical state problem become
more complicated. Analytical22,23and numerical24,25methods
to analyze this general problem were recently proposed
particular, if our assumptionB5m0H is replaced by the cor
rect H(B) ~obtained, e.g., from Ginzburg-Landau theory26!
then flux does not penetrate until the applied fieldH has
reached the field of first penetration of flux,Hen

'Hc1tanhAcd/2w, wherec'0.36 for strips with half width
w andc'0.67 for disks with radiusw.25
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IV. ANISOTROPIC CRITICAL CURRENT

The obtained solution allows one to analyze the criti
state of flat superconductors when the critical current den
j c is anisotropicin the plane of the film. Such anisotropy ca
occur, for example, if there are twin boundaries or oth
extended or inclined defects, or if the superconductor itse
anisotropic. A controlled in-plane anisotropy ofj c of more
complicated nature may be induced by applying a magn
field parallel to the film.27 To explain our analysis, we per
form a transformation of coordinates:

x5ax8, y5by8, ~31!

wherea andb are some constants and the prime denotes
transformed quantities. Under this transformation the ellip
with semiaxesa0 andb0 goes over to an ellipse with sem
axesa085a0 /a, b085b0 /b, while any small line element,dl,
directed at an anglew relative to thex axis, is transformed
into the element

dl85dlS cos2w

a2 1
sin2w

b2 D 1/2

,

which is directed at an anglew8 with

tan w85
a

b
tanw.

Since the current crossing the line element must be invari
we obtain the following transformation of the sheet curre
flowing at an anglec5w6p/2 relative to thex axis:

J8~c8!5J~c!bF11S a22b2

b2 D sin2 c8G1/2

.

Thus, if the anisotropic critical current density in some elli
tic sample with semiaxesa08 , b08 can be approximated by th
expression

Jc8~c8!5const~11d sin2 c8!1/2, ~32!

in which d is some constant (d.21), we may reduce the
critical state problem of this anisotropic sample to the isot
pic problem by performing the transformation~31! from x8,
y8 to x, y with b51 anda5A11d. After the transformation
we shall have an elliptic sample with semiaxesa0

5A11da08 , b05b08 and with isotropic critical currentJc

5const, and we can use the solution obtained in Sec. II.
Thus, our solution permits to analyze~at least qualita-

tively! the features of the critical state of anisotropic sup
conducting films. For example, for a circular disk with radi
R and with anisotropic critical current obeying Eq.~32! with
d51, one obtains the transformed ellipse with semiaxesa0

5A2R, b05R and the current distribution and stream lin
depicted in Figs. 4–7 fore50.7, and the magnetic field de
picted in Figs. 9 and 10. These pictures then are transfor
back to the coordinates of the original circular disk
shrinking them alongx by a factor of 0.7. Figure 12 show
another example of a circular disk with larger anisotropyd
53, yieldingJc(p/2)/Jc(0)5a0 /b052. The results of Ref.
27 for square and rectangular plates with anisotropic crit
current are in agreement with this approach. Our solut
may also be used to include the in-plane anisotropy of
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critical current into theories14,15 which analyze the critica
state in flat superconductors taking into account the cur
anisotropy (B/B dependence! associated with the curvatur
of the flux lines.

V. CONCLUSION

In this paper we derived an approximate analytic solut
of the Bean critical-state model for thin elliptic superco
ductors with semiaxesa0 and b05ea0 in a perpendicular
field H. The accuracy of this solution is high and the know
limiting cases of a circular disk and a long strip are reco
ered exactly. With increasingH the penetrating flux front is
an ellipse with axesa andb related by Eq.~13! such that at
full penetration, whenb50, a(b) stays finite, i.e., there is a
section of length 2a(0)52a0 cos(pe/2) on thex axis where
regions with different orientation of the current meet, simi
to the situation in rectangular platelets.9,11,27 The current
stream lines in the penetrated region deviate from ellip
and, in the fully penetrated state, they have a sharp ben
thex axis in the intervaluxu<a02b0

2/a0 that is slightly wider
than 2a(0).

Our analytic solution shows that in noncircular finite s
perconductor films at any point not located near a symm
axis or near the edge, whenH is increased the direction o
the circulating sheet current changes until the flux fro
passes through this point, see Fig. 7. Therefore, in sam
with thicknessd exceeding the London penetration depthl,
the orientation of the flux lines penetrating from the two fl
surfaces changes also, since at the flat surfaces the flux
are at a right angle to the sheet current. As a conseque
the flux-line arrangment rotates alongz in the region where
Bz50. Furthermore, it cannot be ruled out that also in
region withBzÞ0 the flux lines are twisted, i.e., their curva
ture is not planar. If this twist occurs, it means that the o
entation of the current at fixedx,y but different depthz var-

FIG. 12. Current stream lines~solid curves! and flux fronts
~dashed curves! in a circular disk with anisotropic critical curren
density, Jcy /Jcx5J(p/2)/Jc(0)52 @d53 in Eq. ~32!# for half
(b/b050.5, left! and full (b/b050.02, right! penetration of flux.
Shown at the bottom is the isotropic ellipse with axis ratiob0 /a0

50.5 to which this problem transforms. This ellipse exhibits eq
distant current stream lines outside the inner flux front.
nt

n

-

r

s
on

ry

t
es

t
es

ce,

e

-

ies, and the integrated current densityJ(x,y) is not
necessarily equal toj cd or exactly constant even in the flux
penetrated region. The precise calculation of the flux a
current distributions inside noncircular disks even ofsmall
thicknessd.l then becomes an intricate 3D problem. T
possibility of twisted flux lines in the penetrated region
noncircular thin disks should thus be considered in m
detail in future work.
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APPENDIX: EVALUATION

The integrals~11! for H/Hc , Eq. ~18! for Hz(x,y), and
Eq. ~19! for Jx , Jy , andg(x,y), like the elliptic integral of
the second kind,

E~w,k!5E~s,m!5sE
0

1A12ms2t2

12s2t2 dt ~A1!

with s5 sinw, m5k2, may be evaluated with high precisio
by a substitution of variables. We first transform the integr
over b8 into integrals over a variablet in the interval 0<t
<1, like Eq. ~A1!. Noting that these integrands may ha
poles}1/At and}1/A12t at the boundaries, we use a su
stitution

I 5E
0

1

f ~ t !dt5E
0

1

f @ t~u!#t8~u!du, ~A2!

which has a weight functiont8(u)5dt/du that vanishes with
a high power ofu and 12u at u5t50 and atu5t51. A
good such choice is

t5g~u!535u4284u5170u6220u7

t85g8~u!5140u3~12u!3. ~A3!

An even better choice is to iterate Eq.~A3! once, writing

t5g@g~u!#, t85g8~u!g8@g~u!#. ~A4!

With Eq. ~A4! one hast}u16 and t8}u15 near t50, and 1
2t}(12u)16 and t8}(12u)15 near t51. The pole f (t)
}1/At in the original integrand is now removed in the su
stituted integrandF(u)5 f @ t(u)# t8(u)}u7 and similarly
neart51. Since the integrand vanishes rapidly at the bou
aries of the integral, one may use an integration method w
constant weights,

I 5E
0

1

F~u!du'
1

N (
i 51

N

FS i 21/2

N D . ~A5!

This method achieves high precision'1028 even with a
small grid numberN520–30.

In Eqs. ~11!, ~14!, etc., E(k) is given by the definition
~A1! with s51, and forK(k) in Eq. ~29! a similar definition
applies. All these elliptic integrals are easily computed w
high accuracy by this integration method.

-
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Before the integrals forHz(x,y) andg(x,y) can be evalu-
ated for a 2D grid of points (x,y), one has to find the elliptic
flux front that passed through the point (x,y). This may be
done by finding the zeros of the function

p~bxy!5
x2

axy
2

1
y2

bxy
2

21

with axy5 cos@b0 arccos(bxy /b0)#, cf. Eqs. ~13! and ~17!
with length unit a051. This is achieved by starting with
v

s

.

bxy5b ~the short semiaxis of the inner flux front! and iter-
ating bxy←bxy22ep(bxy)/@p(bxy1e)2p(bxy2e)# (e!1)
a few times. A similar procedure may be used to invert
relationH(b), Eq. ~11!, to obtainb(H). To obtain the cor-
rect g(x,y) also inside the flux front, andHz(x,y) also out-
side the superconductor, we chosebxy5b0 for all points out-
side the ellipse with semiaxesa0 , b0, and bxy5b for all
points inside the ellipse with semiaxesa, b by putting bxy

←max@b,min(bxy ,b0)#.
.
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